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Abstract. We introduce set packing games as an abstraction of situations in
which n selfish players select subsets of a finite set of indivisible items, and
analyze the quality of several equilibria for this class of games. Assuming that
players are able to approximately play equilibrium strategies, we show that the
total quality of the resulting equilibrium solutions is only moderately subopti-
mal. Our results are tight bounds on the price of anarchy for three equilibrium
concepts, namely Nash equilibria, subgame perfect equilibria, and an equilib-
rium concept that we refer to as k-collusion Nash equilibrium.

1 Introduction

The set packing problem is one of Karp’s 21 NP-complete problems [22]; it is
problem [SP3] in [17]. In set packing, the task is to select from a given collection
S of subsets of some finite universe of items J, a collection of k disjoint subsets,
for a given number k. In the weighted optimization version of the problem,
each subset S € S has a weight w(S), and the goal is to find disjoint subsets
of maximum total weight. Set packing is NP-complete [I7], and with respect to
the approximability of the weighted optimization version, see, e.g. [13].

We here propose and analyze a game theoretic variation of the maximum
weight set packing problem, which is defined as follows. We have set of n play-
ers, indexed i € {1,...,n}. Each player is equipped with a downward closed
collection &; of subsets of a finite ground set J. S; are the subsets that are
feasible for player 4, and then § = U} S; is the collection of feasible subsets of
all players. Each item j € J has a weight w;, and the objective of any player i is
to select a subset S € §; maximizing w(S) = ;g w;. Any of the items j € J,
however, can only be selected by at most one of the players. In that situation,
we define a (pure strategy) Nash equilibrium as a selection of subsets .S;, one
for every player i = 1,...,n, so that S; NSy = () for any two players 7 # k, and
for each player 4, none of the subsets T; € S; with T; C J\ (Ug;) Sk has a value
w(T;) larger than w(S;). In words, given the items selected by other players,
among the feasible subsets still available to player i, S; is the one that maxi-
mizes total value. Note the following peculiarity: When considering set packing
games as n-player strategic form games with strategy spaces S; per player, and
(S1,...,Sy) is a strategy profile, we have to declare the payoff equal to —oo
for all players ¢ and k with S; NSy # 0, in order to always guarantee that an
equilibrium outcome corresponds to a set packing. As a consequence of this
definition, once the strategies of all players except ¢ are fixed at some strategy
vector S_; = (S1,...,8i-1,Si+1,...,5n), any rational choice by player i, i.e.,
with payoff > —oo, does not affect the payoff of the other players.



Our interest goes into the quality of several types of equilibria for this class
of games, which to the best of our knowledge has not been addressed so far.
For the entire paper, we measure the quality of an (equilibrium) solution by the
total value of all selected items, or equivalently, the sum of all players’ selected
values > ; w(S;). The question is by how much an equilibrium solution falls
behind an optimal solution that could be computed by some central authority.
For a maximization problem as the one considered here, recall that the price of
anarchy [30423] denotes the ratio of the value of an optimal solution over the
value of an equilibrium solution. We analyze the price of anarchy for three dif-
ferent equilibrium concepts, namely Nash equilibria, subgame perfect equilibria
(defined by Selten [33]) of a sequential version of the game, and a third equilib-
rium concept that we refer to as k-collusion Nash equilibria, as also defined by
Hayrapetyan et al. [19]. Because the combinatorial problems of an equilibrium
play of any player could be NP-hard in general, we consider a-approximate
versions for all three equilibrium concepts, for any « > 1. The idea of approx-
imate equilibria is by now a widely accepted concept with different variations.
Already Roughgarden and Tardos [32] consider it for network routing games;
see also [34] for hardness results in the context of congestion games. Our price
of anarchy bounds are tight for all a-approximate versions.

Our original motivation to look into this class of games is a subclass of
set packing games, namely throughput scheduling games. It is precisely this
subclass of set packing games that we have studied in an extended abstract
underlying this paper [20]. In throughput scheduling, studied e.g. in [7I8] from
the algorithmic perspective, the set J corresponds to a set of non-preemptive
jobs, each with a release time r;, due date d;, and a weight w;. Each player has
one or several machines in order to process jobs. In the most general setting,
the machines can be unrelated, meaning that the processing time of any job
may depend on the machine ¢ it is processed on, and the £ x m matrix (pg;) of
processing times on machines can have rank > 1. A subset S; of jobs is then
feasible for player i if there exists a schedule of the jobs in S; on the set of
machines of player i, so that each job can be processed in the time window
[, d;]. Obviously, the set of jobs feasible for player i is then downward closed.

Our contribution is summarized as follows. If all players are able to play a-
approximate Nash equilibria, the price of anarchy for set packing games equals
a+1. We also show that a-approximate subgame perfect equilibria of a sequen-
tial version of set packing games have a price of anarchy equal to a4+ 1, but for
the special case of symmetric set packing games (to be defined later), subgame
perfect equilibria yield an improved price of anarchy of ¢/e/( {/e — 1), which is
tight, too. Finally, we define (a-approximate) k-collusion Nash equilibria. They
have been defined before by Hayrapetyan et al. [I9] in the context of congestion
games to study the price of collusion, and constitute a generalization of k-strong
Nash equilibria [4/1]. The simple idea is that up to k players may collude and
are allowed to use any profit sharing protocol among themselves, hence can be
thought of as acting like a single player. Specifically, an n-collusion Nash equi-
librium is then just another name for an optimal solution. For that equilibrium
concept, and when players are assumed to be able to play a-approximate k-



collusion Nash equilibria, we derive a tight bound on the price of anarchy equal
toa+ (n—k)/(n—1).

2 Motivation & Related Work

Our motivation to study set packing games is to understand the performance
of decentralized service systems where items are posted, e.g. on an internet por-
tal, and service providers can select these jobs on a take-it-or-leave-it basis. The
problem can be seen as a stylized version of coordination problems that appear
in several application domains. We give three examples. (1) When operating
microgrids for decentralized energy production, the goal is to consume locally
produced energy as much as possible. Here, the items are the operation of appli-
ances in households (e.g. loading a car battery) which come with a time window
and a certain monetary value. Players, on the other side, are intermediaries or
local energy producers that want to maximize the total value of items than can
be accepted given a profile of available energy; see, e.g. [6126] for more context.
(2) In cloud computing, service providers such as Google provide an infrastruc-
ture service. Here, the items are computational tasks to be distributed over
data- and computing centers. The aim of a federated cloud computing environ-
ment, e.g. [12], is to “coordinate load distribution among different cloud-based
data centers in order to determine optimal location for hosting application ser-
vices”. (3) In private car sharing portals like e.g. Tamyca [35], items are car
rental requests for a certain time period, and such a request comes with a given
price. Car owners in the vicinity can select such requests from the portal and
rent out their car(s). Stripping off some of the potentially complicating practical
features from these applications, exactly yields the type of set packing problems
that we we address here.

The overall conclusion of the analysis of equilibria that we provide here, in
the light of these applications, is that the loss of efficiency caused by the lack
of centralized distribution of items is only very moderate.

As to related work on set packing games, we are not aware of publications
that have addressed this specific problem before. Much of the work in algo-
rithmic game theory addresses auctions, congestion games or other types of
scheduling and load balancing games. One distinguishing feature of set pack-
ing games is that players, e.g. machines in throughput scheduling games, select
items and not vice versa. Of course, other models also exist where e.g. ma-
chines are the set of players, most prominently the task scheduling problem of
the seminal publication on algorithmic mechanism design by Nisan and Ronen
[28]. There, however, the strategy spaces of the players are the times required
to perform all tasks, not the selection of tasks.

Moreover, as discussed already above, a distinguishing feature of set pack-
ing games, when compared e.g. with congestion games or many other machine
scheduling games, is the fact that by the specific payoff structure that we im-
pose, players other than player i influence the availability of strategies from the
strategy set S; for player i, and the strategy then chosen by player i, when ra-
tional, does not affect other players anymore. It is this feature that admittedly
appears somewhat special, yet in a sequential version of the game where players



select items one after the other (in any given order), this is very natural. As
it will turn out, there are Nash equilibria that are not realizable as subgame
perfect equilibria of such a sequential game.

As matter of fact, the analysis of subgame perfect equilibria as opposed to
Nash equilibria is one of the major technical contributions of this paper. At the
time of writing the conference publication [20] underlying this full-length pa-
per, the idea of considering sequential versions of games, and Selten’s subgame
perfect equilibria [33] as an alternative to avoid the “curse of simultaneity” of
Nash equilibria had just been brought up by Paes Leme et al. [29]. In contrast
to the price of anarchy which relates the outcome of the worst possible Nash
equilibrium to that of an optimal solution [30J23], the sequential price of anar-
chy [29] relates the outcome of the worst possible subgame perfect equilibrium
of all sequential versions of the game where players act subsequently (and far-
sighted), to the outcome of an optimal solution. For set packing games, it is
not hard to see (see Theorem |4 below) that any outcome of a subgame perfect
equilibrium of a sequential version of the game is also a Nash equilibrium in
the single-shot, strategic form of the game, but not vice versa. But this is not
true in general. See, e.g. [I5] for a network routing counterexample where the
sequential price of anarchy is unbounded, while the price of anarchy is known
to be 5/2 [514]. Indeed, subsequent to [29], for a handful of problems it was
shown that the sequential price of anarchy is lower than the price of anarchy
[18120021129], while for some others this is exactly opposite [2/9/15].

As mentioned earlier, our results are for a-approximate solutions for all
equilibrium concepts that we address, and any «« > 1. The idea to consider such
relaxed notions of equilibrium also appears in early publications on the price of
anarchy, such as [32]. The motivation is two-fold. First, one may argue that it
is not realistic that a player 7 willing to switch strategies for small deviations.
That said, a player ¢ may be content already when S; is an a-approximate
best response to S_;; see below. Moreover, it is conceivable that players are
bound by their computational resources, and because of that are not able to
play optimally. To give a concrete example, consider the throughput scheduling
example where each player ¢ owns a single machine, and the feasibility system is
all sets of job j € J that can be feasibly scheduled on that machine. In the 3-field
notation of [16], this problem reads 1|r;| > S w;U;, where “1” stands for one single
machine, r; specifies that there are release dates, and the objective ) - w;Uj is to
minimize the total weight jobs that finish after their duedate d; (equivalently,
maximize the number of jobs scheduled before their duedate d;). In that case,
the input of the problem would realistically not be a list of all feasible sets
S;, but the input would be the set of jobs j € J with their time windows
[r;,d;], processing times p; and values wj. It follows from Lenstra et al. [24]
that the problem to compute a best response describes an NP-hard optimization
problem. More generally, if players control a set of several (unrelated) machines
each, the problem to compute a best response reads R|r;| Y w;U; (“R” for
unrelated machines), which is equivalent to the throughput scheduling problem
as it has been addressed by Bar Noy et al. [7], and subsequently in [8]. For this
problem, and when computation of players is bound to be polynomial time,
only constant factor approximation algorithms are available.



Two interesting special cases of throughput scheduling exist where players
are able to compute an optimal play. One is when feasibility sets S; are the
sets of jobs that cane be feasibly scheduled on a single machine, and jobs have
unit weights and zero release dates. This problem is solved in polynomial time
by the Moore-Hodgson algorithm [27]. Another is when the feasibility system
S; is the set of jobs with unit processing times that can be scheduled on a set
of identical, parallel machines. This problem can be solved as an assignment
problem [I1].

3 Preliminaries

We fix some notation and the basic definitions. There are n players, and a
finite ground set J of items. Each item j € J has a value w;. For S C J,
we let w(S) := > ;cqwj. Each player i has a strategy set S; C 27 which is
downward closed, i.e., if S; € §;, then T; € S; for all T; C S;. Given a strategy
profile (Si,...,5y), as usual define S_; := (S1,...,S5i—1,5i+1,...,5,) as the
strategies of all players except i, and for any set of players K C {1,...,n},
define S_g accordingly.

When (S1,...,S,) is a strategy profile with S; € S; for all i = 1,...,n, the
payoffs for player ¢ are defined as
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—00  otherwise.

A strategy profile (S1,. .., Sy) is an a-approximate Nash equilibrium (for o > 1)
if it is true that for all players i =1,...,n

w(Si,S_1) > “w(Ty, S_) forall Ty €S, (1)
«

Note that the existence of Nash equilibria with w(S;, S—;) > 0 for all players 4
is guaranteed by the fact that the feasibility systems S; are downward closed.

For a solution S = (51, ...,S,), in a slight but convenient abuse of notationm
let us write w(S) := Y., w(S;) for the total value that it achieves. The price
of anarchy (PoA) [30/23] for a class of games Z is then the ratio

w(OPT (1))
PoA =sup sup ———2, 2
ez seney  w(S) @)

where NE(I) denotes the set of all a-approximate Nash equilibria of instance
I € Z. Note that for set packing games, OPT(I) is a Nash equilibrium too,
hence the price of stability as proposed in [3] equals 1.

Next, consider the extensive form game that is obtained when imposing
some order, say 1,...,n on the players. A strategy for player ¢ is then more
complex, as it must specify one action .S; for all possible combinations of ac-
tions of preceding players 1,...,7—1, that is, one action S; for each node of the

! We use S to denote both, a strategy vector S = (Si,...,Sn) as well as the total set of items
that it induces, i.e., S = Uj=,.5;. That will not yield any confusion, however.



game tree on level i. An a-approximate subgame perfect equilibrium is then a
strategy that guarantees at least a 1/a-fraction of the optimal action for each
of the nodes of the game tree on level i. As we deal with a full information
game, (a-approximate) subgame perfect equilibria can be computed via back-
ward inductionﬂ A nice feature of set packing games is that the computation
of (a-approximate) subgame perfect equilibria is not suffering from the typi-
cal hardness results for sequential games that is due to farsighted behaviour
of players: Indeed, computing outcomes of subgame perfect equilibria may be
PSPACE-hard with n players [29], and NP-hard even with two players only [I5].
For set packing games, an optimal action for the i-th player, upon observing
the actions Si, ..., S;_1 of the preceding players, is computed by solving the
optimization problem

maxw(T) s.t. T C.J\ N LSy and T € S;,

This suffices, as by the specific payoff structure of set packing games, the value
attained by player i is no longer affected by payers i+ 1,..., n (as long as they
are rational). This problem is computationally hard only if the combinatorial
structure encoded by S; is hard.

The price of anarchy for a-approximate subgame perfect equilibria, also
called sequential PoA [29], is then defined analogously to the price of anarchy

n ,

PT (1
sequential PoA = sup sup M, (3)
ez sespery  w(S)

where the first supremum sup;c7 is also taken over all possible orders of play-
ers, and SPE(I) denotes all outcomes that can be obtained as a-approximate
subgame perfect equilibria of instance I.

Finally, assume that up to k of the given n players may collude, and are
allowed to use any profit-sharing rule among them. In other words, we can
think of a group K of up to k players as maximizing their joint value w(Sg) :=
Y icx w(S;). Then an a-approximate k-collusion Nash equilibrium is a strategy
profile (S1,...,S,) such that the following is true for all sets K of at most k
players,

w(Sk,S—_K) > lw(T, S_g) forall T=UjegT;andT; €S;. (4)
o

Obviously, the price of anarchy for a-approximate k-collusion Nash equilibria
is then again defined analogously to the price of anarchy in by

k-collusion PoA = sup sup w ) (5)
ez sece ) w(S)

where CE(I) denotes the set of a-approximate k-collusion Nash equilibria of
instance I.

2 E.g., see [31]. That is conceptually simple but generally not polynomial time.



4 An Illustrating Example

To illustrate our definitions, consider the following, simple example.

Ezample 1. Assume that we have n = 2 players and two items J = {1,2},
with weights w; = wy = 1, and the feasible subsets are S; = {0, {1},{2}} and
Sy = {0,{2}}. <

Then we obviously have that OPT = (OPT1,0PT3) = ({1},{2}) is an
optimal solution with w(OPT') = 2. Next to OPT, the solution S = (51, S2) =

({2},0) is a Nash equilibrium, too, because {1} ¢ Sz. That yields that this
instance has PoA=2. The strategic form of this game is depicted in Figure

player 2
0 {2}
0 0,0 0,1
player 1[{1}| 1,0 1,1
{2}] 1,0 [—o0,—0

Fig. 1. Strategic form for Example [I| with Nash equilibria in bold.

When considering the sequential game where player 1 precedes player 2,
this yields a game tree that is depicted in Figure [2] Here, all Nash equilib-
ria are also obtained as subgame perfect equilibria, namely ({1}, ({2},0,{2}))
and ({2}, ({2},0,{2})), with outcomes (S1,S52) = ({1},{2}) and ({2},0) and
corresponding payoffs (1,1) and (1,0), respectively. The worst case subgame
perfect equilibrium is indicated in bold in Figure 2] For the reverse order of
the sequential game (player 2 — player 1), the only subgame perfect equilibria
are ({2}, ({1},{1})) and ({2}, ({2}, {1})), with as unique outcome (S7,S2) =
({1},4{2}) and corresponding payoff (1,1). As the sequential PoA takes the worst
case over all possible sequential games, Example [I| has sequential PoA=2. In
general, Nash equilibria exist which are not sequentially realizable at all (cf.
also [25]); see also Example [3| below.

player 1

player 2

{2}

1,1) (1,0) (—o0,—00)  (1,0) (0,1) (0,0)
Fig. 2. Game tree for sequential version (player 1 — player 2) of Example
Finally, assume that both players collude, then obviously, the only allocation

that maximizes their joint payoff is (S1,S52) = ({1},{2}) and corresponding
payoff (1,1). Therefore, the 2-collusion PoA = 1.



5 Warmup: The Price of Anarchy

We begin by giving the simple proof for the upper bound on the price of anarchy
for arbitrary set packing games.

Theorem 1. PoA < «a + 1 for set packing games, assuming that all players
play a-approrimate Nash equilibria.

Proof. Take any instance with optimal solution OPT and Nash equilibrium S,
and let S; and OPT;, i = 1,...,n, be the items selected by player ¢ in S and
OPT, respectively. For W C J, let W = J \ W be the complement of W in J.

Since all items in S are available, and all items in OPT; are feasible for
player i, and all §; are downward closed, by the definition of a-approximate
Nash equilibrium we have for all players i that aw(S;) > w(OPT; N S). Now
we get, by using linearity of the objective function across players,

(a+1)w(S) > aw(S) +w(OPT NS)
— Z; aw(S;) + w(OPT N S)

> Zé_l w(OPT; N S) + w(OPT N S)
=w(OPT) .

O

Next we give a matching lower bound example, which is in fact a simple
instance for throughput scheduling (yet an asymmetric set packing game, see
Section [6] below).

Ezample 2. Assume without loss of generality that a = p/q, where p > gq.
Consider a game with g 4+ 1 players. For each player 4, there is one machine,
which we also denote by i. The set J of items are jobs that are partitioned
into two sets P and @, with |P| = p,|Q| = ¢. Each job j € J has deadline
d; = 1, unit weight w; = 1, and its processing time on machine 1 is p;;1 = 1/p.
Moreover, jobs j € () have processing time p;; = 1 on any other machine 7 # 1,
while jobs j € P have processing time pj;; = 2 on any other machine ¢ # 1. Note
that any subset of jobs of size p can be feasibly allocated to player 1. Players
2...n can be allocated only one job each, and only jobs from Q. See Figure
for an illustration in the case where oo = 3/2. N

Theorem 2. PoA > a+1 for throughput scheduling games (and hence also for
set packing games), assuming that all players play a-approximate Nash equilib-
T10.

Proof. In the optimum solution OPT', all p + g jobs are feasibly allocated: All
jobs in P are allocated to player 1, and each of the jobs in @ is allocated to
one of the ¢ other players 2,...,q+ 1. Now consider the a-approximate Nash
equilibrium S where only ¢ jobs are allocated: All jobs from @ are allocated
to player 1, and no jobs are allocated to players 2,...,q + 1. This is indeed
an a-approximate Nash equilibrium, as player 1 achieves a total value of ¢,
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Fig. 3. Example 2] for p = 3 and ¢ = 2. Numbers represent machines. Rectangles represent
jobs. The left side of each job is its starting time, its width is its processing time on the
machine on which it is allocated. The dashed line is the deadline, which is the same for all
jobs in this example.

while maximally that player can be allocated p = aq jobs. In other words, the
a-approximate Nash condition holds for player 1. Moreover, given that all
jobs from @ are allocated to player 1, players 2,...,¢+ 1 cannot do better than
a value 0, as none of the jobs from P are feasible for these players. We conclude
that PoA > w(OPT)/w(S) = (p+q)/q=a+ 1. 0

Note that when « is not rational, we can obtain a price of anarchy arbitrarily
close to o + 1 by letting p/q approach a. Also recall that o = 1 for the special
case where the players can verify whether a solution is a Nash equilibrium,
which yields the following.

Corollary 1. PoA = 2 for set packing games and throughput scheduling games.

Finally note that the upper bound is universal in the sense that it is indepen-
dent of how the (a-approximate) Nash equilibrium is obtained. It is conceivable
that specific algorithms can yield a better bound for the price of anarchy. How-
ever, the existence of more complicated counter-examples for specific algorithms
is not unlikely either (see next Section [f] for an example).

6 The Sequential Price of Anarchy

It is actually not difficult to see that the example that we have used in the
preceding section as a lower bound example for Nash equilibria, also provides a
lower bound for subgame perfect equilibria. Hence we get the following for free.

Theorem 3. The sequential PoA = a+1 for set packing games and throughput
scheduling games, assuming that players play a-approximate subgame perfect
equilibria.

Proof. Recall Example [2| and assume that player 1 is the first to make a selec-
tion. Then if player 1 makes the same selection of job set ) as in the proof of



Theorem [2| the obtained solution can indeed be obtained as an a-approximate
subgame perfect equilibrium, as player 1 cannot improve by more than a fac-
tor « by selecting other jobs, and given that, all other players have nothing to
choose. (We can specify any reasonable actions for those parts of the game tree
that are not played in this equilibrium.) By the same argument as before, the
lower bound on the price of anarchy follows. O

To finish the proof of Theorem[3] observe that the upper bound of Theorem!T]
also carries over, by the subsequent theorem.

Theorem 4. For set packing games, the actions played in an a-approximate
subgame perfect equilibrium of any sequential version of set packing game define
an a-approrimate Nash equilibrium in the original, single-shot game.

Proof. Consider the actions S = (S1,...,5,) played in any subgame perfect
equilibrium SPFE of any sequential version of the set packing game. Assume
w.l.o.g. the order was 1,...,n. Consider any player i choosing S;. As the choice
S; is part of a subgame perfect strategy, we know aw(S;) > w(T;) for all T; € S;
with T; C J \ Uz;llSk, since in a subgame perfect equilibrium, ¢’s payoff is not
affected by (rational) subsequent players k > i, for any such 7;. This because,
for any such T;, none of the subsequent players k > ¢ will choose to select an
Sk with T; N Sg # (). But this of course also implies that aw(S;) > w(T;) for all
T; € S; with T; € J \ U Sk, by the same argument. This is exactly the Nash
condition , which is true for all players i. Hence .S a Nash equilibrium in the
original, single-shot game. O

Note that this is not true in general. See, e.g., [15] for an example. Indeed, it
is a result of the definition of payoffs for set packing games. Finally, for a = 1,
we obtain the following.

Corollary 2. The sequential PoA = 2 for set packing games and throughput
scheduling games.

7 Symmetric Set Packing Games

We call a set packing game symmetric whenever there is only one feasibility
system S that is the same for all players ¢, but a player i can select x; feasible
sets from S, for some integer x; > 1. Note that when all x; = 1, this exactly
means that the strategic form game is symmetric in the sense that all players
have exactly the same strategy set. However we choose to allow players to select
multiple feasible sets. In the throughput scheduling context, that would be a
player who controls z; identical machines. We define z := Y " | z; to be the
total set of feasible sets from S that can be chosen by all players together, and
note that = > n.

In this section we show that the symmetric version of set packing games
allows an improvement in the price of anarchy when considering sequential
games and subgame perfect equilibria. In the light of Theorem [ that boils
down to the statement that some of the Nash equilibria that are responsible
for the price of anarchy of a + 1 (which also holds for symmetric set packing



games, see Theorem |5 below), are not achievable by sequential play, hence they
are probably not realistic.

The Price of Anarchy

Theorem 5. PoA = a+ 1 for symmetric set packing games, assuming that all
players play a-approximate equilibria.

The upper bound « + 1 is a consequence of Theorem [Il The lower bound
follows from the following example, which is again an example where the fea-
sibility sets are defined by a throughput scheduling problem. Symmetry means
that all machines are identical.

Ezample 3. Let @ = p/q. There are n players i, each corresponding to one
machine. The set J of p+ (¢+ 1)(n — 1) jobs is again partitioned into two sets
P,Q, Q| =q(n—1)+p,|P| = (n—1). All jobs j € J have deadline d,, = 1. Job
J € Q have processing times p; = 1/(q(n — 1) + p) and weight w; = 1, while
jobs j € P have processing times p; = 1 and weight w; = p. See Figure E| for
an illustration for the case where p =3,¢ =2 and n =3 N

OPT Nash Equilibrium S

(I be |0
2 2] i Q

3 3]

Fig. 4. Example [3| for p = 3,¢ = 2,n = 3. Numbers represent machines. Rectangles represent
jobs. The left side of each job is its starting time, its width is its processing time. The dashed
line is the deadline, which is the same for all jobs in this example.

Proof (of the lower bound). In the optimum solution OPT, player 1 is allocated
all jobs in @, and each other player is allocated exactly one job in P. Consider
Nash equilibrium S where each player is allocated ¢ jobs in ). Note that S is
indeed an a-approximate Nash equilibrium: Any player ¢ could choose at most
one job from P or at most p jobs from @, since other players are allocated g(n—1)
jobs from () in total. Neither of the feasible deviations increases player i’s
utility by more than a factor a. For this example, w(OPT)/w(S) = %Eln_l) =

%—%%l—kozforn—)oo. O



For a = 1, we obtain the following.

Corollary 3. PoA = 2 for symmetric set packing games and throughput schedul-
ing games with identical machines.

Note that (for & = 1) this Nash equilibrium is not subgame perfect in the
corresponding sequential game; in any subgame perfect equilibrium, the first
player would necessarily choose all jobs from Q.

7.1 Sequential Price of Anarchy

In contrast to the asymmetric case, subgame perfect equilibria indeed rule out
some of the bad quality Nash equilibria when considering symmetric set packing
games. The main result of this section is:

Theorem 6. The sequential PoA = {/e/({/e — 1) for symmetric set packing
games, when all players play a-approximate subgame perfect equilibria.

First we prove the lower bound, which is again a throughput scheduling
instance.

Ezample 4. There are n players. Each player i corresponds to one machine. The
set J of n? jobs is partitioned into n sets Ji,...,Jn, |Ji| = n for all k& € [n].
We refer to a job from Jj, as a k-job. All k-jobs have deadline k. All jobs j € J
have processing time p; = 1 and weight w; = 1. See Figure [5|for an illustration
for the case where n =5 and o = 1. N

Lemma 1. The sequential PoA > /e/( /e — 1) for identical set packing games,
when all players play a-approzimate subgame perfect equilibria.

Proof. In the optimum solution OPT, every player is allocated exactly one k-job
for all k = 1,...,n. Therefore w(OPT) = n?.

We construct an a-approximate subgame perfect outcome S, as follows: For
every player ¢ = 1,...,n in this order, we find the maximum number of jobs that
can be feasibly allocated to this player, given jobs already assigned to players
1,...,i—1, and when considering jobs with the largest deadlines first (which are
the most flexible jobs). Denote this number of jobs m;. We allocate to player i
exactly [m;/a] of these jobs, so that the allocation is still an a-approximation.
Let S; be the jobs allocated to player ¢ in this way.

We bound w(S) in the following way: Let rp(i) = |S|ZQ“]’“‘, i.e. r(i) is the
fraction of k-jobs allocated to player i, relative to the total number of jobs
allocated to player 4. Let 1, = > " | r%(i). Now,

ZTk—ZZTk ZZ'S,Q[M Zzn;lzn. (6)

k=1i=1" =1 k=1

In S, any player ¢ who gets allocated a k-job, is not allocated any job from
Jj,j > k+ 2, hence she is allocated at most [(k+1)/a] < (k4 1+ «a)/a jobs.
Therefore, each k-job contributes at least a/(k + 1+ «) to ri. For any k for
which all of the n k-jobs are allocated in .S, we obtain

re >na/(k+1+a). (7)



OPT Equilibrium S

J1 Ja J3 Jy Js
A~~~
1 1 2 3 4 5 1 5 5 5 5 5
2 1 2 3 4 5 2 4 4 4 4
3 1 2 3 4 5 3 3 3 3 4
4 1 2 3 4 5 4 2 3 3
5 1 2 3 4 5 5 2 2

Fig. 5. Example [4] in case of 5 players and o = 1. Numbers represent machines. Rectangles
represent jobs. The left side of each job is its starting time, its width is its processing time.
The number in each job is its deadline.

Now, for some k' > 0, by construction of the allocation we have that for all
k > n—FK all n k-jobs are allocated, as well as a subset of the (n— (k’+1))-jobs.
We obtain

n no

no
> > _— > ——dk 8

where the first inequality follows from @, the second inequality follows from
(7), and the last inequality follows from basic calculus.

Because the last term is upper bounded by n, we can derive an upper bound
on k'. In fact, basic calculus shows that

1 e —1 n
/7<:’>(nJr +a)(¥e—1) = ﬁdk>n,
% k:n_k/k—i-l—i-a

which together with yields that k' < % Because only k-jobs
with &k > n — (k' 4+ 1) are allocated, we conclude that

, (n+1+a+ ol5)(ge—1)
w(S) < (K +1)n < oe ‘n.

We see that

w(OPT) - n{/e {/e

wl) T m+l4a+ D;ﬁl)(e/é—l) T -1

and the claim follows. O

for n — oo,




Note that the lower bound construction assumes that players choose the
most flexible jobs first, which seems reasonable from a practical point of view.
Also note that in the lower bound example, z; = 1 for all players. Therefore,
the lower bound holds even in the special case when the strategic form game is
symmetric.

To derive a matching upper bound on the sequential price of anarchy for
symmetric set packing games, we use a proof idea from Bar-Noy et al. [7] in
their analysis of k-GREEDY, but we generalize it for the case where x; > 1
for some players ¢ (e.g., player i controls multiple identical machines in the
throughput scheduling setting).

We want to prove:

Theorem 7. The sequential PoA < {/e/(§/e — 1) for symmeyric set packing
games, when all players play a-approximate subgame perfect equilibria.

Denote by S; the items selected by player i in an a-approximate subgame
perfect equilibrium, and recall that S denotes both the strategy vector and
S = U S;, the total set of selected items. The following lemma lower bounds
the total weight collected by player 3.

Lemma 2. We have for all players 1
w(Si) = ~Lw (OPT (J\ Uj<iS)) -
where OPT (W) denotes an optimal solution for any subset of items W C J.

Proof. Let W := J\U;<;S;. Let OPT" denote the maximum weight set of items
that player i can achieve from W. Observe that w(OPT") > (z;/z)w(OPT(W)).
This follows because player ¢ could potentially select the x; most valuable fea-

sible sets from OPT(W). Now, because we assume an a-approximate subgame
perfect equilibrium, w(S;) > w(OPT")/a > z;w(OPT(W))/(za). 0

Proof (of Theorem [7). Let v := za, and recall that w(OPT) = w(OPT(J))
denotes the value of an optimal solution. We use Lemma [2] to get

w(S;) > %w <OPT (J\UM Sj)) > % (w(OPT) -3 w(sj)) ,

where the latter inequality holds because w(OPT) —>_;_; w(S}) represents the
Sj. Add Y77} w(S;) to both

j<t

value of a feasible solution for the items J \ |J
sides to get

7<t

A W — i—1
S u(sy) = B LTSy, )
= 0! v o

We want to prove by induction on ¢ that
7 x! x!
1 — — 1 2
3 w(s)) = %w(opn , (10)
i=1 T
where 2} = Z§:1 ;.
The base case i = 1 is the following lemma, proved by yet another inductive
argument on xj.



Lemma 3.

Proof. We know by definition of v, and by plugging ¢ = 1 into Lemma [2] that
z1
w(S1) > —w(OPT).
g

Hence we are done when we can prove by induction on x; that

L2 S el Ot

Y yH
When z1 =1, we get

127—(7—1):17

Y Y Y

which clearly holds. Assume the claim holds for z; = k — 1. We get

k k=1 1
=4 =
Y Y
k=1 _ (m _ 1)k—1
57 (kv : 1) 1
A Y
el Bt S el Bt ) A e
~F
el Ol Ol
k- )
Y
proving Lemma [3] 0

Assume now that holds for i — 1. Applying the induction hypothesis to @[}
we get

7 /

g B et A

= g Y !

~w(oPT).

This can be used to prove the inductive claim, using the following.

Lemma 4.

— Ty _ —1)%k-1 Ty — 1)
e et ] (y =)™ % (7, D

Y Y fyx;cfl vk



Proof. We have

2 Bk e il @ el

¥ ¥ !
Cap (=)t N Ykt = (y = D)%
o "}/ fyx;cfl fyx;vfl
A= =D (= 1)1 N YRt = (7 = 1)k
- 'Yxk 71‘;971 ryx;cfl
(oG DT (s e

'ymk ,-Y'T;cfl ,733;9,1
I VN O Vi
,ymk 73{7271
I Ol Vi
= e 7
where the first inequality follows from Z& > w, as shown in the proof
v vk

of Lemma (3| and the last equality follows from z} =z} | + xy. 0

Hence we get for ¢ = n (see also [7, Thm 3.3])

n

w(8) =S w(s;) > Ww(op:r) |
j=1

We therefore get that the
v @y e
Pl =17 ey — (=1~ e—1’

where the last inequality follows because the right hand side is exactly the limit
for x — oo, and the series b, = (za)?/((za)® — (za — 1)*) is monotone in z,
with by = o < {/e/({/e — 1). This ends the proof of Theorem O

sequential PoA <

Basic calculus shows that

for @ > 1. Hence the improvement over the (Nash equilibrium) price of anarchy
which was o + 1 is substantial. Note that for « = 1,PoA =¢/(e — 1) ~ 1.58.

Corollary 4. The sequential PoA = e/(e — 1) = 1.58 for symmetric set pack-
ing games, when all players play subgame perfect.

8 k-Collusion Price of Anarchy

While sequential play was a way to reduce the price of anarchy for symmetric
set packing games, we now show that collusion of players helps to reduce the



price of anarchy, too. This is true also for general, asymmetric set packing
games. Recall that an a-approximate k-collusion Nash equilibrium means that
no coalition K of up to k players can improve their total value w(K) by more
than a factor a.

Theorem 8. The k-collusion PoA = a + Z—:If for set packing games, when all

players play a-approximate k-collusion Nash equilibria.

Note that for k¥ = 1, we consider a-approximate Nash equilibria and the 1-
collusion PoA = « + 1, which is consistent with Theorem |1l Also note that for
k = n, we consider an a-approximate (centralized) solution, so for a = 1 this
is just an optimal solution.

Proof. First we give an upper bound proof.

Lemma 5. The k-collusion PoA < a + Z—:’f for set packing games, when the
players play an a-approximate k-collusion Nash equilibrium.

Proof. The proof mimics our earlier proof of Theorem [I only here we have
to keep track of the values of more subsets of J. We fix an optimal solution
OPT and a k-collusion Nash equilibrium S, write N = {1,...,n}, and use the
following notation:

the total weight of items in OPT; NS; fori,j € N,
wi; = { the total weight of items in S; \ OPT  fori=0,j€ N,
the total weight of items in OPT;\ S fori € N,j=0.

Our proof is based on the following observation: Players from any coalition
K collude and collectively deviate if and only if the total weight of items allo-
cated to them increases by more than a factor a > 1, by choosing any set of
items in (Ujer Si) U (J \ UigkSi). Therefore, in particular for all coalitions K
of size k in any a-approximate k-collusion Nash equilibrium, we have

. z<zxij+w) >3 (S

jeEK \ieN €K \JjeK

Note that all items that contribute to the left-hand side are allocated to players
in K in the equilibrium S. Also note that all items that contribute to the
right-hand side can be feasibly allocated to players in K, since these items are
allocated to players from K in OPT'. Also, these items are available for coalition
K, since they are either allocated to players in K in S, or not allocated. We
rewrite this as

a Z (Z $ij+x(]j> > Zzl‘ij+2(xii+$i0) : (11)
jeK \ieN €K jeK ieK
i#j



Now, any player 7 is 2in (Z:%) coalitions of size k, and any combination of two
ne

players 4,7 is in (k—2) coalitions of size k. Therefore, summing over all
coalitions K of size k yields

a<2_4> §:<§:xm+xw)

JEN \ieN
n—2 n—1
2<k—2> szzj‘*' <I<:— 1) Z($ii+$io)-
iEN jEN ieN
i#]j
Adding
n—1 n—2 n—2
()G ER- () Rxm
€N jEN i€EN jEN
i#]j i#j

to both sides yields

() D ) (5o

jEN
i#j
<n — 1) ZGZN];V%] ( B > ZEZN(xu + 40) - (12)
i#]

Therefore,

(o) (120))wes
o [((2)+ () S+ () < (23) Sow

JEN
2o (Go) G R (o) (R
2 Rz () e
i#j

= (12} )utorn).

where the last inequality follows from (12). This yields

n—1 n—2
k-collusion PoA < aw —at 2T i .
(i21) n—1



In fact, this proof of the upper bound provides us with an easy way to create
a tight lower bound example for any n.

Ezample 5. We make the upper bound analysis tight by setting x; = 0 and
zo; = 0 for all players i« € N . We normalize x;; = 1 for all players i¢,j € N
for which i # j, and finally we set ;0 = n — k + (n — 1)(a — 1) for all players
1 € N. We construct the strategy spaces such that any player ¢ can only choose
subsets of either OPT'; or S;, where S; is the set chosen in the in the k-collusion
Nash equilibrium. The resulting game for n = 3,k = 2 is shown in Figure[6] <

OPT Equilibrium S
playerl r19=1 ;(1!07:] mmm
player2 201 =1 20 = To1 =1 T3 =1
2a0—1
player3 wg =1 @y = 1 a0 = g =1
2a0 — 1
playerl playerl player3

Fig. 6. The k-collusion Nash equilibrium from Example [5|for £ = 2 and n = 3. Circled items
are allocated to the same player. Each item is named after the value used in the upper bound
proof.

To see that this actually yields an a-approximate k-collusion Nash equilib-
rium, consider any coalition K of k players. If players play strategy profile S,
any player in K has utility n — 1. By switching to the strategy chosen in OPT,
each player in K obtains utility (k— 1)1+ 1((n—1)(a—1)+n—k) =a(n—1),
which is fine. If some players in K choose a subset of the items chosen in OPT,
and other players in K choose a subset of the items chosen in S, then this yields
a total value at most a(n — 1) for each player. We see that no coalition of k
players can improve by deviating, from which the result follows. O

For oo = 1, we obtain the following as a special case.

Corollary 5. The k-collusion PoA =1+ Z—:’f for set packing games.

Although the k-collusion price of anarchy is strictly lower than the price of
anarchy for all £ > 2, note that this improvement becomes negligible for large
n. Interestingly, as opposed to all other lower bound examples in this paper, we
did not find a matching lower bound example for throughput scheduling games.



9 Conclusions

An obvious departure from the suggested model for set packing games, and
interesting direction for future research is a model where more than one player
may select one and the same item. Then, the actual allocation might be frac-
tional, or probabilistically. This would also allow to consider mixed strategies,
which would not be well-defined in the discrete setting we address here. This de-
parture, however, requires other techniques, as it means to give away the main
distinguishing feature of set packing games that we have exploited to obtain our
bounds, namely that players only affect each other via the set of “available”
items, and that given, do not affect the resulting payoffs.

Acknowledgements

A preliminary version with parts of the results presented in this paper appeared
in the conference proceedings [20]. Thanks to Rudolf Miiller, Frits Spieksma,
and Johann Hurink for some helpful discussions.

References

1. N. Andelman, M. Feldman, and Y. Mansour. Strong price of anarchy. Games and Eco-
nomic Behavior, vol 65, 289-317, 2009.

2. A. Angelucci, V. Bilo, M. Flammini, and L. Moscardelli. On the sequential price of
anarchy of isolation games. In: Z. Cai, A. Zelikovsky, A.G. Bourgeois (eds.), Computing
and Combinatorics (COCOON 2013), Lecture Notes in Computer Science 8591, 17-28,
2013.

3. E. Anshelevich, A. DasGupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden.
The price of stability for network design with fair cost allocation. In Proceedings of the
45th FOCS, 295-304, 2004.

4. R.J. Aumann. Acceptable points in general Coorpertaive n-Person Games. In: Contri-
butions to the Theory of Games IV, Annals of Mathematics Studies 40 (R.D. Luce and
A. W. Tucker, eds.) 287-324, Princeton University Press, 1959.

5. B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow. In Pro-
ceedings of the 37th STOC, 57-66, 2005.

6. V. Bakker, M.G.C. Bosman, A. Molderink, J.L.. Hurink and G.J.M. Smit. Demand side
load management using a three step optimization methodology. In Proceedings of the 1st
SmartGridComm, 431-436, 2010.

7. A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput of mul-
tiple machines in real-time scheduling. STAM Journal on Computing, vol 31, 331-52,
2001.

8. P. Berman and B. DasGupta. Multi-phase Algorithms for Throughput Maximization for
Real-Time Scheduling. Journal of Combinatorial Optimization, vol 4, 307-323, 2000.

9. V. Bilo, M. Flammini, G. Monaco, and L. Moscardelli. Some anomalies of farsighted
strategic behavior. In: T. Erlebach and G. Persiano (eds.), Approximation and Online
Algorithms (WAOA 2012), Lecture Notes in Computer Science 7846, 229-241, 2013.

10. V. Bilo, M. Flammini, G. Monaco, and L. Moscardelli. On the performances of Nash
equilibria in isolation games. Journal of Combinatorial Optimization, vol 22, 378-391,
2011.

11. P. Brucker. Scheduling Algorithms (4th ed.), Springer Verlag, Berlin, 2004

12. R. Buyya, R. Ranjan, and R.N. Calheiros. Intercloud: Utility-oriented federation of cloud
computing environments for scaling of application services. In: C.H. Hsu, L.T. Yang, J.H.
Park and S.S. Yeo (eds.), Algorithms and Architectures for Parallel Processing, Lecture
Notes in Computer Science 6081, 13-31, 2010.



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

B. Chandra, and M.M. Halldérsson. Greedy local improvement and weighted set packing
approximation. Journal of Algorithms, vol 39, 223-240, 2001.

G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion games.
In Proceedings of the 37th STOC, 67-73, 2005.

J.R. Correa, J. de Jong, B. de Keijzer, and M.J. Uetz. The Curse of Sequentiality in
Routing Games. In: E. Markakis and G. Schéfer: Web and Internet Economics (WINE
2015), Lecture Notes in Computer Science 9470, 258-271, 2015.

R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan. Optimization and approximation
in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics,
5(2):287-326, 1979.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, Freeman, New York, 1979.

R. Hassin and U. Yovel. Sequential scheduling on identical machines. Operations Re-
search Letters, vol 43, 530-533, 2014.

A. Hayrapetyan, E. Tardos, and T. Wexler. The effect of collusion in congestion games.
In Proceedings of the 38th STOC, 89-98, 2006.

J. de Jong, M. Uetz, and A. Wombacher. Decentralized throughput scheduling. In: P.G.
Spirakis and M. Serna (eds.), Algorithms and Complexity (CIAC 2013), Lecture Notes
in Computer Science 7878, 134-145, 2013.

J. de Jong and M. Uetz. The sequential price of anarchy for atomic congestion games. In:
T.-Y. Liu, Q. Qi and Y. Ye (eds.), Web and Internet Economics (WINE 2014), Lecture
Notes in Computer Science 8877, 429-434, 2014.

R.M. Karp. Reducibility among combinatorial problems. In: Complexity of Computer
Computations (R.E. Miller, J.W. Thatcher, and J.D. Bohlinger, eds.), The IBM Research
Symposia Series, 85-103, Springer, 1972.

E. Koutsoupias and C.H. Papadimitriou. Worst-case equilibria. Computer Science Re-
view, vol 3, 65-69, 2009. (Preliminary version appeared in Proceedings 16th STACS,
1999)

J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of Machine Scheduling
Problems. Annals of Discrete Mathematics, vol 1, 343-362, 1977.

I. Milchtaich. Crowding Games are Sequentially Solvable. International Journal of Game
Theory, vol 27, 501-509, 1998.

A. Molderink, V. Bakker, M.G.C. Bosman, J.L. Hurink, and G.J.M. Smit. Management
and control of domestic smart grid technology. IEEE transactions on Smart Grid, vol 1,
109-119, 2010.

J.M. Moore. An n job, one machine sequencing algorithm for minimizing the number of
late jobs. Management Science, 15:102-109, 1968.

N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior,
vol 35, 166-196, 2001.

R. Paes Leme, V. Syrgkanis, and E. Tardos. The curse of simultaneity. In Proceedings of
the 3rd ITCS, 6067, 2012.

C.H. Papadimitriou, Algorithms, Games, and the Internet. In Proceedings of the 33rd
Annual ACM Symposium on the Theory of Computing, 2001, pp. 749-753.

H. Peters, Game Theory: A Multi-Leveled Approach. Springer, 2nd ed., 2015.

T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the ACM, vol 49,
236-259, 2002.

R. Selten. Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetriagheit:
Teil 1: Bestimmung des dynamischen Preisgleichgewichts. Zeitschrift fiir die gesamte
Staatswissenschaft, vol 121, 301-324, 1965.

A. Skopalik and B. Vécking. Inapproximability of pure Nash equilibria. In Proceedings
of the 40th STOC, 355-364, 2008.

http://www.tamyca.com


http://www.tamyca.com

	The Quality of Equilibria for Set Packing Games

