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A B S T R A C T

The growing availability of global measurements of sun-induced chlorophyll fluorescence (SIF) can help in
improving crop monitoring, especially the monitoring of photosynthetic activity. However, variations in top-of-
canopy (TOC) SIF cannot be directly interpreted as physiological changes because of the confounding effects of
vegetation biochemistry (i.e. pigments, dry matter and water) and structure. In this study, we propose an ap-
proach of using radiative transfer models (RTMs) and TOC reflectance to estimate the biochemical and structural
effects on TOC SIF, as a necessary step in retrieving physiological information from TOC SIF. The approach was
assessed by using airborne (HyPlant) reflectance and SIF data acquired over an agricultural experimental farm in
Germany on two days, before and during a heat event in summer 2015 with maximum temperatures of 27°C and
34°C, respectively. The results show that over 76% variation among different crops in SIF observations was
explained by variation in vegetation biochemistry and structure. In addition, the changes of vegetation bio-
chemistry and structure explained as much as 73% variation between the two days in far-red SIF, and 40%
variation in red SIF. The remaining unexplained variation was mostly attributed to the variability in physiolo-
gical status. We conclude that reflectance provides valuable information to account for biochemical and
structural effects on SIF and to advance analysis of SIF observations. The combination of RTMs, reflectance and
SIF opens new pathways to detect vegetation biochemical, structural and physiological changes.

1. Introduction

Sun-induced chlorophyll fluorescence (SIF) has been effectively
used as a signal for monitoring vegetation physiology, because of its
functional connection to photosynthesis. The physiological mechanisms
that regulate the fluorescence emission by photosystems also affect the
SIF signals measured by remote sensing techniques (Rascher et al.,
2015). This is the basis for using SIF as an indicator of plant physio-
logical status and stress (Ač et al., 2015; Rossini et al., 2015). SIF is also
an indicator of gross primary production (GPP) as it contains in-
formation on both absorption of photosynthetically active radiation
(PAR) and energy partitioning in photosystems (Guanter et al., 2014;
Yang et al., 2015; Migliavacca et al., 2017; Sun et al., 2017).

Besides physiological regulation, vegetation biochemical composi-
tion and structure also strongly affect SIF observations. Top-of-canopy

(TOC) SIF is an outcome of three processes: absorption of incident PAR
by chlorophylls (Zhang et al., 2018), emission of fluorescence by pho-
tosystems (Van der Tol et al., 2014), and scattering and re-absorption of
emitted fluorescence (Yang and Van der Tol, 2018). The SIF emission
depends on physiological mechanisms, which regulate the partitioning
of PAR absorbed by chlorophylls (APARchl) into three different de-ex-
citation pathways: heat dissipation, photochemistry and fluorescence
(Maxwell and Johnson, 2000; Baker, 2008). The incident PAR absorp-
tion and SIF scattering, however, are mainly determined by non-phy-
siological factors, including vegetation biochemistry (e.g., leaf pig-
ments, water and dry matter), structure, illumination angles (Grace
et al., 2007; Porcar Castell et al., 2014) and observation angles (Liu
et al., 2016; Köhler et al., 2018).

Consequently, variations in TOC SIF cannot be directly interpreted
as changes in plant physiological status. Studies have shown that a
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substantial portion of SIF variation at different spatial and temporal
scales is due to vegetation biochemistry and structure rather than
changes in energy partitioning in photosystems (Van der Tol et al.,
2016; Migliavacca et al., 2017). A part of observed variation in TOC SIF
is also caused by the different viewing angles (Liu et al., 2016; Köhler
et al., 2018). Both canopy structure, leaf biochemistry and observa-
tional conditions largely affect the observed linear relationship between
SIF and GPP (Migliavacca et al., 2017; Yang et al., 2018). Therefore, it
is essential to first account for the non-physiological effects, before
plant physiological changes can be inferred from TOC SIF.

Several simple approaches have been applied to account for varia-
tion in PAR absorption and fluorescence scattering (and re-absorption).
The variation in PAR absorption of a canopy caused by different illu-
mination conditions can be effectively corrected by normalizing SIF by
incident PAR (Daumard et al., 2012). Normalizing SIF by APARchl fur-
ther takes variation in light absorption caused by different vegetation
biochemistry and structure into account (Miao et al., 2018). Viewing
angles have no impact on the light absorption process, but strongly
affect the scattering of SIF into the viewing direction. The variation of
SIF scattering caused by different viewing angles can be partly removed
by angular normalization of SIF. He et al. (2017) demonstrated that the
normalization improves the SIF-GPP correlation. However, these
methods are not always sufficient to retrieve plant physiological status.
First, APARchl measurements are not always available. Second, the
scattering and re-absorption of SIF vary significantly with canopy
structure and leaf properties (e.g., leaf area index (LAI) and chlorophyll
content) apart from viewing angles (Yang and Van der Tol, 2018). More
general and explicit approaches to separate non-physiological (e.g., the
vegetation biochemical, structural and observational condition) and
physiological effects are required.

Vegetation radiative transfer models (RTMs) have been successfully
used to evaluate the effects of vegetation biochemistry and structure on
TOC SIF. RTMs offer an explicit connection between TOC SIF ob-
servations and vegetation biochemical and structural parameters, by
modelling the light absorption and fluorescence re-absorption processes
(Porcar Castell et al., 2014). Sensitivity analyses of RTMs have provided
general information on the impact of biochemical and structural effects
on SIF (Koffi et al., 2015; Verrelst et al., 2016). Nonetheless, applying
RTMs for interpreting field measurements of SIF remains challenging,
because it requires canopy structure and leaf properties as inputs,
which are generally not known a priori.

The use of reflectance spectra to parametrize an RTM for SIF is a
promising strategy to resolve this problem. Studies have shown that
several key leaf properties and canopy structure parameters can be

retrieved from reflectance by inverting an RTM (Jacquemoud, 1993;
Van der Tol et al., 2016; Verhoef et al., 2018). The retrieved parameters
controlling the leaf and canopy radiative transfer may be used to esti-
mate vegetation biochemical and structural effects on SIF. For example,
Zhang et al. (2014) estimated leaf parameters (e.g., leaf water, chlor-
ophyll and dry matter content) from satellite reflectance indices. The
resulting parameters, together with estimates of leaf area index (LAI)
and leaf angles, constrained the non-physiological factors in an RTM
(i.e., the SCOPE model (Van der Tol et al., 2009)) and allowed the
derivation of empirical relationships between seasonal photosynthetic
capacity and TOC SIF.

The present study aims to assess the use of TOC reflectance and
RTMs to infer vegetation biochemical and structural effects on TOC SIF.
We used a unique airborne dataset comprising TOC reflectance and SIF
taken before and during a heat event in 2015 with the HyPlant system
(Rascher et al., 2015). The TOC reflectance was used to estimate canopy
structure and leaf properties by inverting an RTM. The resulting vege-
tation parameters were further used to estimate vegetation biochemical
and structural effects on SIF by using SCOPE.

2. Study area and materials

2.1. Study area

All analyses were performed in a 3 ha (100m × 300m) experi-
mental field (Fig. 1). The field is located in the agricultural experi-
mental research station Campus Klein Altendorf of the University of
Bonn, Germany (50°37’ N, 6°59’ E). The average altitude of the field is
65m above mean sea level. The mean annual precipitation is 603mm
and the mean annual temperature is 9.4°C. There are two weather
stations within the research station continuously recording meteor-
ological data, such as air temperature and precipitation. The study area
faced a heat event which started on July 1st and lasted to July 5th in
2015 with maximum temperatures exceeding 30°C on each of these
days (Dong et al., 2016).

At the study site, four crop types, notably corn (Zea mays L.), winter
wheat (Triticum aestivum L.), winter barley (Hordeum vulgare L.) and
rapeseed (Brassica napus L.), were grown using common field rotation
practices. These four crops are the main crop types in western Germany.
The soil and crops in the study area were treated according to the
agricultural practices of the region with the aim to obtain spatially
homogeneous crops. Corn, however, was planted with two different
densities resulting in one sparse and another dense canopy. To con-
strain airborne data processing, three (black, grey and white) reference

Fig. 1. Overview of the study area and the flight plan before (June 30th, day 1) and during (July 2nd, day 2) the heat event. The crops investigated in the study and
three reference panels are marked with polygons. The background image was acquired on 24th August 2016 (from Google Earth).
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panels were placed next to the experimental field.

2.2. Airborne experiment

The airborne campaigns were conducted on June 30th (day 1, one
day before the heat event) and on July 2nd (day 2, during the heat
event). Both flights were carried out between 15:00 and 16:00 (local
time, UTC+2) at an altitude of 512m above sea level. Flights were
carried out at similar solar zenith angles (i.e., 38° and 34°) under clear
sky conditions. At the time that the airborne data were collected, the
incident photosynthetically active radiation (iPAR) was similar on the
two days (i.e., 1278.8 μmol m−2s−1 and 1366.2 μmol m−2s−1), while
the air temperatures were markedly different (i.e. 26.6°C on day 1 and
33.7°C on day 2) due to the heat event.

To obtain the necessary data, a hyperspectral imaging spectrometer
and a thermal camera were employed in the airborne campaigns. The
hyperspectral spectrometer used in this study was HyPlant, which is a
novel airborne spectrometer dedicated to vegetation functional mon-
itoring (Rascher et al., 2015). It consists of a dual-channel (DUAL)
module and a fluorescence (FLUO) module. These two modules allow
measuring red SIF at 687 nm (F687) and far-red SIF at 760 nm (F760),
and reflectance from 400 nm to 2500 nm. Specifically, the DUAL
module measures contiguous spectra from 380 to 2500 nm with a
spectral resolution of 3 nm in visible and near infrared region, and
10 nm in the short-wave infrared region. The FLUO module measures in
1024 contiguous spectral bands from 670 to 780 nm, with a spectral
resolution of 0.25 nm. A set of representative measurements of the two
modules is shown in Fig. S1 in the supplementary materials. The
thermal camera used here was the VarioCAM (InfraTec, Germany). The
thermal camera was connected to a laptop via GigaEthernet and pro-
cessed with the IRBIS®3 software (Infratec, Germany). The system al-
lows real-time tracking of the measurements and correction of the ab-
solute temperature by setting emissivity (i.e. 0.98 was assumed in this
study), background temperature, ambient air temperature, air humidity
and object's distance. Both the DUAL and FLUO module (i.e., two im-
agers), together with the thermal camera, were properly mounted on a
single platform with the mechanical capability to align the field of view
(FOV).

Supporting atmospherical parameters were acquired to support
airborne data processing. They were measured with a sun photometer
MICROTOPS II (Solar Light, the USA) at the same site every 5min
during the time of airborne flights. Additional meteorological para-
meters from the weather stations are listed in Table 1.

2.3. Measurements of reflectance, SIF and temperature

TOC reflectance was calculated from data measured by the DUAL
module, and TOC SIF was calculated from data measured by the FLUO
module. HyPlant data processing and TOC reflectance calculation have
been described in detail by Rascher et al. (2015). Details of SIF retrieval
can be found in Damm et al. (2014) and Wieneke et al. (2016). In the
following, we outline the main procedure.

Data preprocessing included several steps: First, measured raw data
(digital numbers) of both modules were converted to calibrated at-
sensor radiance data using the radiometric calibration coefficients
provided by the manufacturer. Second, resulting at-sensor radiance
images were then geometrically rectified using navigation data re-
corded by the GPS/IMU unit and resized to a spatial grid of 0.5 m ×
1m. Afterwards, the geometrically rectified at-sensor radiance images
from the DUAL module and the FLUO module were used differently to
obtain TOC reflectance and TOC SIF, respectively.

To obtain TOC reflectance, the preprocessed DUAL images were
atmospherically corrected using an atmospheric and topographic cor-
rection approach for flat terrain (ATCOR-4) (Richter and Schlapfer,
2012). ATCOR-4 is based upon the atmospheric radiative transfer code
MODATRAN-5 (Berk et al., 2005) to pre-calculate look-up tables (LUT)
of atmospheric functions such as transmission, spherical albedo and
path scattered radiance. The atmosphere type and aerosol model were
set to mid-latitude summer and a rural aerosol model. Solar position,
ground elevation, and sensor elevation were parameterized exactly to
the actual measurements during data acquisition. This parameterization
was combined with estimates of atmospheric water vapor and aerosol
optical thickness from MICROTOPS II to better account for atmospheric
absorption and scattering effects.

TOC SIF was retrieved from the preprocessed FLUO images by using
an FLD-based approach. SIF in the two oxygen absorption bands (i.e.,
O2-A and O2-B) located at 687 nm (F687) and 760 nm (F760) was re-
trieved. The SIF retrieval was based on the iFLD method introduced by
Alonso et al. (2008) as a modification of the original FLD method
(Plascyk, 1975). We further updated the method to make it applicable
to airborne use. The main update comprises the use of non-fluorescent
reference surfaces (i.e., the reference panels) to correct potential in-
accuracies in estimating atmospheric functions. Such errors can occur if
atmospheric parameters are not exactly known or slight sensor artifacts
remain (cf. Damm et al. (2014) and Wieneke et al. (2016) for details).
The reliability of obtained SIF using this method was confirmed by
validation activities considering ground fluorescence measurements
(Rossini et al., 2015; Rascher et al., 2015).

The reflectance measurements and SIF at 687 nm and 760 nm, to-
gether with the measurements of brightness temperature are shown in
Figs. 2 and 3. Both reflectance, SIF and temperature varied among the
four crops and between two days.

2.4. The SCOPE model

The SCOPE model (Van der Tol et al., 2009) was used to retrieve
vegetation parameters from TOC reflectance and to estimate the bio-
chemical and structural effects on TOC SIF. SCOPE consists of one leaf
RTM (Vilfan et al., 2016), three canopy RTMs (Verhoef, 1984; Van der
Tol et al., 2009), a biochemical model (Van der Tol et al., 2014), a soil
reflectance model (Verhoef et al., 2018), an aerodynamic model and an
energy balance model (Van der Tol et al., 2009). These models are
internally connected. We briefly introduce the models (combinedly)
used in this study.

The Brightness-Shape-Moisture (BSM) model simulates soil re-
flectance. BSM separates the effects of soil brightness, soil moisture and
spectral shape on soil reflectance and requires soil brightness (B), soil
moisture (SMp), and two spectral-shape related parameters ( and λ)
(Table 2) (Verhoef et al., 2018). Fluspect (Vilfan et al., 2016), which is
based on PROSPECT (Jacquemoud and Baret, 1990), simulates leaf
reflectance, transmittance, and fluorescence emission of both forward
(shaded) and backward (illuminated) side. Simulation of SIF emission
of a leaf requires the input of incident radiation to the leaf and fluor-
escence emission efficiency (ϵF). The overall efficiency is estimated with
the biochemical model of Van der Tol et al. (2014) and distributed over
different wavelengths following Vilfan et al. (2016).

At the canopy level, RTMo, RTMf and RTMt, which are three SAIL
(Verhoef, 1984) based models, compute the radiative transfer of

Table 1
The meteorological conditions during the airborne campaigns before and
during the heat event.

Parameters 30th June (Day 1) 2nd July (Day 2)

DOY (day of year) 182 184
Acquisition time (local) 15:51 15:16
Solar zenith (θs, degree) 38 34
Solar azimuth (ψs, degree) 237 224
Air temperature (Ta, °C) 26.6 33.7
Shortwave radiation (W m−2) 756 808
Wind speed (m s−1) 3 2
Air pressure (hPa) 997 996
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incident radiation, emitted fluorescence and thermal radiation, re-
spectively. RTMo provides TOC reflectance simulations, and APARchl of
each leaf in different positions in the canopy. RTMf simulates the ra-
diative transfer of emitted SIF by leaves in a canopy and TOC SIF. SIF
emission from each leaf can be simulated by Fluspect, using leaf
APARchl from RTMo and fluorescence emission efficiency from the
biochemical model. RTMt calculates absorbed and emitted thermal
radiation of each leaf. Simulation of the thermal radiation requires the
temperatures of all leaves as input, on the other hand the temperatures
in turn depend on the absorbed thermal radiation. Therefore it is

necessary to iterate in order to obtain energy balance closure.

3. Methods

Our approach was to use reflectance to quantify soil, leaf and ca-
nopy properties, before using SCOPE to simulate vegetation biochem-
ical and structural (i.e., non-physiological) effects on the measured SIF.
As summarized in Fig. 4, we first retrieved vegetation parameters from
TOC reflectance by inverting the reflectance routine of SCOPE (i.e.,
RTMo). Afterwards, we used the retrieved properties to simulate TOC
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Fig. 2. Reflectance measurements on day 1 and day 2 in the spectral region of 400–2500 nm and 400–700 nm. The buffers represent the standard deviation of the
measurements.
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Fig. 3. RGB, temperature, SIF at 687 nm F687 and at 760 nm F760 images of the experiment area before and during the heat event. Crops are marked in the RGB image:
1: rapeseed; 2a: corn (sparse); 2b: corn (dense); 3: barley; 4: wheat.
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SIF by using RTMf with a fixed fluorescence emission efficiency (ϵF).
Finally, we inferred the impact of vegetation biochemistry and structure
on the variation of SIF by comparing the measured SIF with modelled
SIF. The approach was evaluated by an error propagation analysis. For
further completely independent validation of the SCOPE forward
modelling, we compared the measured brightness temperature to

simulated brightness temperature.

3.1. Retrieving soil, leaf and canopy parameters from reflectance

3.1.1. Characterizing soil background
Soil background information of the canopies were partially obtained

from bare soil pixels. We assumed that in the study area soil beneath the
canopies differentiate from the bare soil only by moisture (SMp). In
other words, the other three soil parameters, B, and λ were assumed
to be the same for vegetation-covered soil and of bare soil. By assuming
this, we retrieved B, and λ from the reflectance spectra of the bare
soil, and used the retrieved parameters to characterize vegetation-
covered soil. To obtain the values of these three parameters, twenty soil
spectra were taken from the images on each day. For the retrieval of the
parameters from each of these reflectance spectra, we used the nu-
merical optimization method. The numerical optimization method aims
at minimizing a cost function, which quantifies the differences between
measured and simulated signals by successive changes of the input
parameters. The cost function is

=f R R R R( ) ( )soil s m
T

s m (1)

where Rs is simulated (soil) reflectance, and Rm is the measured (soil)
reflectance in all bands of the spectra between 400 and 2500 nm (i.e.,
623 bands). The reflectance spectra of bare soil are shown in Fig. S2 in
the supplementary materials. We used the function ‘lsqnonlin’ of the
optimization toolbox of Matlab R2017a, selecting a Trust Region al-
gorithm for updating parameter values within the ranges shown in
Table 2. The BSM model was iteratively executed and iteration stopped
when the improvement of the cost function (fsoil) was less than 10−3.

Table 2
The ranges and initial values of the key parameters used in SCOPE.

Parameter Interpretation Unit Range Initial
value

Soil: BSM (Verhoef et al., 2018)
B Soil brightness − 0–0.9 0.5
Latitude ( ) Soil spectral latitude − 10–60 45
Longitude (λ) Soil spectral longitude − 10–50 40
SMp Soil moisture volume

percentage
− 5–55 20

Leaf model: Fluspect (Vilfan et al., 2016)
Cab Chlorophyll a+ b content μg cm−2 0–80 40
Cdm Leaf mass per unit area g cm−2 0–0.02 0.01
Cw Equivalent water thickness cm 0–0.1 0.02
Cs Brown pigments a.u. 0–1 0.5
Cca Carotenoid content μg cm−2 0–30 10
N Leaf structure parameter − 0–3 1.5

Canopy models: RTMo and RTMf (Van der Tol et al., 2009)
LAI Leaf area index m2 m−2 0–7 3
LIDFa Leaf inclination

determination a
− − 1 to 1 −0.35

LIDFb Leaf inclination
determination b

− − 1 to 1 −0.15

Fig. 4. Flowchart of estimating the impact of vegetation biochemistry and structure effects on TOC SIF. Note: ‘R’, ‘F’, ‘T’ and ‘P’ refer to reflectance, fluorescence,
temperature and vegetation parameters, respectively. ‘1’ and ‘2’ represent day 1 and day 2, respectively. RTMo, RTMf and RTMt are three submodels in SCOPE.
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3.1.2. Retrieving leaf and canopy parameters
Leaf and canopy parameters were retrieved from TOC reflectance

independently for each of the two days. We again used the numerical
optimization method and minimized the cost function (Eq. (1)), but
now using the reflectance of vegetation canopies and the canopy re-
flectance model (i.e., coupling RTMo and BSM) instead of the bare soil
reflectance and BSM.

We selected several representative measurements from the re-
flectance images to perform the retrieval as the numerical optimization
method is computationally demanding. The average of reflectance
within a randomly selected patch consisting of 5 by 5 pixels was taken
as one measurement of a crop. We sampled 16 patches for every crop
except wheat, and the 16 patches for corn were sampled from both the
dense and sparse fields (i.e. eight patches from each). For wheat only
eight patches were chosen due to the small size of the wheat field. Eight
patches were sampled from each of the two corn fields. There were 112
patches (i.e., 56 for each day) selected in total.

Prior information is crucial to reduce the ill-posedness of the inverse
problems. The soil parameters, B, and λ, were kept to the average
values retrieved from the reflectance of bare soil, while SMp of each
canopy was treated as an unknown parameter and was estimated from
TOC reflectance. In addition to the soil background, the observational
conditions were pre-defined. The solar zenith angles were calculated
according to the acquisition time and location as 38° for day 1 and was
34° for day 2. We assumed the sensor view angle as spatially constant
on a single image and in nadir direction although the HyPlant field of
view ranged from +/− 14°. For a nadir view, the azimuth angle is
arbitrary. Furthermore, the spectra of incoming direct solar light and
diffuse light were directly obtained from MODTRAN 5 (Berk et al.,
2005). With this prior information, fitting one reflectance spectrum
eventually requires tuning 10 parameters, notably SMp, Cab, Cdm, Cw,
Cca, N, LAI, LIDFa and LIDFb in Table 2.

3.2. Simulating TOC SIF and temperature

We simulated the vegetation biochemistry and structure effects on
TOC SIF by modelling SIF with RTMf. The retrieved soil, leaf and ca-
nopy parameters characterized the canopy, and the incident irradiance
and sun-observer geometry defined the observational conditions. These
factors controlled the light absorption and fluorescence re-absorption
processes.

The other process, fluorescence emission, is parametrized by the
fluorescence emission efficiency (ϵF), which describes the efficiency of
the dissipation of APARchl as fluorescence radiation. This efficiency,
referred to as the ‘ physiological factor’ in this study, is mainly de-
termined by (1) APARchl, (2) leaf temperature, (3) the maximum rate of
carboxylation (Vcmax), and (4) other ambient environmental conditions,
such as relative air humidity, air pressure and concentration of O2 and
CO2 in the leaf boundary layer (Van der Tol et al., 2014).

To estimate the impact of the non-physiological factors, we treated
the physiological status (ϵF) of the plants as a constant in all simula-
tions. The value of ϵF was set to 0.014 (i.e. 40% above the default value
of 0.01 in SCOPE for a dark adapted leaf), which is a realistic value for
steady state fluorescence during daytime (Van der Tol et al., 2014). The
spectral distribution of the efficiency followed Vilfan et al. (2016). We
ran the whole SCOPE model to simulate TOC SIF (an output of RTMf)
and canopy temperature (an output of RTMt and the energy balance
model). We set the emissivity of leaves of all crops to 0.98. The
brightness temperature from SCOPE was compared to the measure-
ments for validation of the model inversion process.

3.3. Error propagation analysis

We analysed the propagation of noise in the measured reflectance
spectra to the uncertainties (i.e., the standard deviations) in the re-
trieved parameters and further to the simulated TOC SIF. We used the

spectrally averaged standard deviation of reflectance measurements of
each reference panel (black, grey and white) (see Fig. S3 in the sup-
plementary materials) as the noise of reflectance measurements
(σR=0.012). This uncertainty was comparable to the spectrally
average change in reflectance of these panels between the two days,
which was 0.014. This approach provides a spectrally independent es-
timate of the reflectance uncertainty due to instrumental noise.

We first computed the Jacobians of SCOPE for TOC reflectance and
SIF to simplify the local relationships among the measured reflectance,
retrieved parameters and TOC SIF. The Jacobians (JR and JF) were
computed for each set of optimized parameters and for each crop as:

=
…

…
…

R p R p

R p R p
J

/ /

/ /
R

n

n

1

1b b

1 1

(2)

=
…

…
…

F p F p

F p F p
J

/ /

/ /
F

n

n

640 1 640

850 1 850 (3)

where JR is the local model sensitivity of reflectance at each wavelength
of the b bands of the HyPlant DUAL module (b=623) to each of the 10
optimized parameters, and JF is the local model sensitivity of TOC SIF
spectra at each fluorescence wavelength (i.e., 640 nm–850 nm, 1 nm
resolution) to each parameter. In total, we had 56 reflectance spectra on
each day (i.e., 16 for rapeseed, barley and corn, and 8 for wheat), and
thus 56 sets of optimized parameters and Jacobians. We analysed the
Jacobians for measurements on day 1 only, because the Jacobians on
day 2 were very similar to those on day 1.

Using the Jacobians the reflectance model is described with a locally
linear approximation by ΔR= JRΔp, where p is a matrix of the model
parameters and R is reflectance spectra. The inverse model is given by

=p J J J R( ) .R R R
T 1 T (4)

Therefore, the covariance matrix of p as a result of noise in reflectance
can be obtained as:

=
=

E E
E

p p J J J R R J J J
J J J R R J J J

( ) [( ) ( ) ]
( ) ( ) ( )

r R R R R R

R R R R R R

T T 1 T T T 1

T 1 T T T 1 (5)

where E(ΔRΔRT) is the covariance matrix of the reflectance measure-
ments. We assumed that this covariance matrix is diagonal and uniform
(all diagonal elements equal), characterized by a variance R

2, and
computed the covariance matrix of the retrieved parameters due to
measurement noise as:

=E p p J J( ) ( )R R R
T T 1 2 (6)

We further estimated the propagation of uncertainties in the re-
trieved parameters caused by noise in reflectance into the model si-
mulation of TOC SIF.

= =
=

E E EF F J p p J J p p J
J J J J

( ) ( ) ( )
( )

F F F F

F R R F R

T T T T T

T 1 T 2 (7)

The standard deviation (uncertainty) of the simulated TOC SIF (σF) was
then found as the square roots of the diagonal elements of this matrix (E
(ΔFΔFT)).

4. Results

4.1. Results of retrieved vegetation parameters from TOC reflectance

Table 3 lists the retrieved key parameter values. Among the four
crops, there was considerable variation in the retrieved leaf chlorophyll
and leaf water content. For example, the retrieved chlorophyll content
of rapeseed was only half of that of corn, and the retrieved leaf water
content of rapeseed was twice as high as that of corn. The retrieved
canopy structure parameters LAI and average leaf angle (ALA), of which
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the latter one was calculated from LIDFa as = ×ALA 45 360 LIDFa 1
2

(Verhoef, 1998), varied moderately among the crops. LAI was clearly
different for the two types of corn canopy, while, as expected, the other
vegetation parameters showed no appreciable differences between the
two corn fields. Besides the differences among the crops, the parameters
retrieved from reflectance changed between the two days as well. For
example, there were some changes in ALA and Cab. In general, the
model reproduced the measured TOC reflectance well with RMSE be-
tween 0.006 and 0.01 (for the comparison of the measured and mod-
elled reflectance spectra, see Fig. S4 in the supplementary materials).

4.2. Comparison between modelled and measured temperature

Using the retrieved parameters in Section 4.1 as input, we modelled
the brightness temperature with RTMt and the energy balance model in
SCOPE. Fig. 5 shows a comparison between the measured and modelled
brightness temperature. The simulated values were close to the mea-
surements with R2= 0.92 and RMSE = 0.76°C. We also compared the
modelled and measured differences between air temperature and ca-
nopy temperature (Tc− Ta). The model predicted these differences well
with R2= 0.71 and RMSE= 0.7°C.

4.3. Simulation of biochemical and structural effects on SIF

Fig. 6 shows the modelled and measured TOC SIF of the four crops.
Although the physiological factors were assumed to be constant for four
crops (i.e., ϵF = 0.014), the SIF variation among the four crops was
reproduced well using the non-physiological information (i.e., the ve-
getation parameters retrieved in Section 4.1). Between the modelled

and measured SIF, R2 was 0.76 for F687 and was 0.84 for F760. The
RMSE was 0.10 for F687 and 0.12mWm−2nm−1sr−1 for F760. In both
modelled and measured SIF, there was a common tendency for F687 and
F760 to be higher in rapeseed and barley than in wheat and corn.

Nevertheless there were some discrepancies between the measured
and modelled SIF. In particular on day 2, clear differences in F687 be-
tween the simulations and measurements were found. The measured
F687 of barley on day 2 was much lower than the modelled values, while
that of rapeseed was higher than the modelled values.

Fig. 7 shows SIF variation between the two days from the HyPlant
measurements and from the model simulation. Although the fluores-
cence emission efficiency was set to the same on two days, the model
simulation explained the changes in F687 of wheat and in F760 of ra-
peseed, corn and barley. Only for wheat a substantial discrepancy (over
60%) between the model predicted and measured change in F760 was
found. The change in the measured F760 was much better modelled than
the change in F687. For example, the measured F687 of barley decreased
on day 2, but the modelled values increased. The simulated change in
F687 was higher than the measured change in both rapeseed and corn.

4.4. Uncertainties from the error propagation analysis

Table 4 lists the uncertainties of the inferred parameters from the
error propagation analysis. The average values and standard deviations
of the 56 simulations on day 1 are presented. High uncertainties ap-
peared in the retrieval of SMp and LIDFb. The uncertainties were 81%
and 50% of their ranges in Table 2, respectively. The inferred leaf
structure parameter N and ALA had moderate uncertainties. The re-
mainder of the parameters had considerably lower uncertainty.

Table 3
The retrieved values of soil moisture (SMp) leaf chlorophyll content (Cab), leaf water content (Cw), canopy LAI and canopy average leaf angle (ALA) before and during
the heat event. Note: the values are presented as ’mean (std)’.

Parameter Rapeseed Barley Wheat Corn (sparse) Corn (dense)

day 1 day 2 day 1 day 2 day 1 day 2 day 1 day 2 day 1 day 2

SMp(%) 14.6 (7.3) 12.5 (8.4) 14.0 (4.2) 10.8 (5.4) 14.0 (6.7) 9.4 (8.4) 5.7 (5.4) 8.4 (3.4) 7.7 (6.3) 10.4 (4.6)
Cab (μg cm−2) 22.9 (0.3) 21.7 (1.6) 32.6 (2.3) 27.4 (3.0) 50.2 (1.8) 49.4 (2.6) 39.1 (1.3) 45.5 (2.0) 42.8 (1.0) 51.5 (1.8)
Cw (cm−1) 0.07 (0.001) 0.065 (0.003) 0.04 (0.002) 0.036 (0.002) 0.038 (0.002) 0.036 (0.0019) 0.021 (0.001) 0.025 (0.001) 0.024 (0.001) 0.029 (0.001)
LAI 4.1 (0.18) 4.0 (0.16) 4.3 (0.20) 4.3 (0.21) 3.7 (0.20) 3.6 (0.19) 2.5 (0.17) 2.7 (0.16) 3.4 (0.16) 3.4 (0.17)
ALA (°) 51.6 (4.6) 58.0 (3.2) 64.8 (2.6) 67.0 (2.8) 66.3 (1.6) 69.1 (2.1) 71.6 (1.7) 67.4 (2.2) 70.0 (1.8) 64.7 (2.2)
RMSE of refl 0.01 (0.007) 0.01 (0.007) 0.008 (0.005) 0.006 (0.007) 0.007 (0.004) 0.006 (0.007) 0.007 (0.003) 0.006 (0.003) 0.007 (0.003) 0.006 (0.004)

Fig. 5. Modelled and measured canopy brightness temperature (Tc) and canopy-air temperature differences (Tc− Ta).
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Fig. 8 shows the uncertainty of TOC SIF from the error propagation
analysis. We took the values of ‘ measured SIF’ of the reference panels
(i.e., non-fluorescent targets) as the noise in the SIF measurements. The
noise was 0.05 and 0.10mWm−2nm−1sr−1 for F687 and F760 respec-
tively. The uncertainties in the simulated SIF resulting from the mea-
surement uncertainty in the reflectance were 0.00044 and
0.0037mWm−2nm−1sr−1 at 687 nm and 760 nm, respectively. These
values were rather minor compared with the noise in the measured SIF.

5. Discussion

5.1. Modelling biochemical and structural effects on SIF

We simulated TOC SIF by using the vegetation parameters retrieved
from TOC reflectance, while keeping the fluorescence emission effi-
ciency (ϵF) constant. In this way, the simulated differences among crops
and between the days in SIF were exclusively caused by differences in
the absorption of PAR and the re-absorption of SIF, and they were fully
independent of the fluorescence emission efficiency.

The variation in observed SIF among the crops and between the two

days could be largely explained by the effects of different biochemical
and structural properties. These effects explained 76% and 84% var-
iation among the four crops for observed F687 and F760, respectively

Fig. 6. Modelled and measured red fluorescence (F687) and far-red fluorescence (F760).
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Fig. 7. Modelled and measured variation of SIF on two days (day 2–day 1).

Table 4
The uncertainties of parameters estimated from the error propagation analysis.
Note: the mean and standard derivation of the uncertainty in the 56 sets of
retrieved parameters are presented, as well as the mean uncertainty relative to
its range in Table 2.

Parameter Mean
uncertainty

Std uncertainty Mean uncertainty (relative
to its range)

SMp [%] 40.5 29.4 81.0%
Cab [μg cm−2] 6.1 2.5 7.6%
Cdm [g cm−2] 0.0085 0.001 40%
Cw [cm−1] 0.0009 0.0001 0.9%
Cs [-] 0.030 0.005 3%
Cca[μg cm−2] 4.3 2.4 14.3%
N [-] 0.49 0.07 16.3%
LAI [-] 0.7175 0.1 10.1%
ALA [°] 24.7 6.8 27.4%
LIDFb [-] 1.0 (0.4) 50.0%
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(Fig. 6). They also explained 40% and 73% variation between the two
days for observed F687 and F760 (Fig. 7). These findings match with the
results from a global sensitivity analysis conducted by Verrelst et al.
(2015), who showed that over 80% of both red and far-red SIF varia-
bility is due to variation in biochemistry and structure.

The unexplained part of change in SIF may well be caused by
changes in plant physiology, as represented in the model by the para-
meter ϵF. On day 1, the simulated SIF matched very well with the
modelled SIF for all crops, but on day 2 there were clear differences
between the modelled and simulated F687 (Fig. 6A). By keeping the
physiological factor constant, we overestimated F687 in barley, but
underestimated F687 in rapeseed (Fig. 6A) and F760 in corn (Fig. 6B).
This would imply (assuming that our estimation of the structural effects
on SIF was correct), that ϵF differed among the crops on day 2, and that
ϵF changed between the two days. An estimate of the canopy effective ϵF
can be obtained by normalizing measured by modelled SIF. The good
match between the model simulations and measurements on day 1 for
both red and far-red SIF implies that ϵF of the crops was all close to
0.014 and the spectrum of the efficiency was close to the one in Vilfan
et al. (2016). On day 2, the overestimation and underestimation men-
tioned above suggest that ϵF of the crops diverged from this a priori
value of 0.014. In addition, the over- and underestimation of red SIF
were inconsistent with those for far-red SIF, which could be either to a
model representation errors (i.e. the shape of the emission spectrum) or
SIF retrieval errors. The surface temperature on the second measure-
ment day was well above the optimum for crops of the C3 photo-
synthetic pathway, and was in the range where temperature effects on
enzyme kinetics may affect the light saturated carboxylation rates and
thus the dissipation of energy over three pathways. However, in view of
the lack of ground truth data for the fluorescence emission efficiency in
this study, we were unable to substantiate the hypothesis that the re-
maining variability of SIF is indeed due to the physiological regulation
of the energy dissipation pathways. With our methodology we never-
theless demonstrate that there is remaining variability in SIF after
correction for the dominant biochemical and structure effects.

Comparing SIF at 687 nm and 760 nm, we found that the non-
physiological factors explained the variation in F760 much better than
the variation in F687 (Fig. 7). This indicates that ϵF at the two bands
changed differently and the spectral shape of ϵF varied between the two
days. The physiological variation caused more variation in F687 than in
F760. This is consistent with the general understanding that physiolo-
gical information is most profound in red SIF (Rossini et al., 2015;
Verrelst et al., 2016). The different sensitivity of red and far-red SIF to
the photosynthetic activity offers the approach of using red/far-red SIF
ratio to better infer physiological status.

5.2. Uncertainty and simulation accuracy

Ill-posedness of retrievals is a common problem in model inversions.
Parameters that have little influence on reflectance may not be accu-
rately retrieved. The high uncertainties in the retrieved SMp and LIDFb
(Table 4) found in the error propagation analysis are directly related to
their small contribution to TOC reflectance compared to for example
LAI and LIDFa (Jacquemoud et al., 1995; Verrelst et al., 2015). As a
consequence, soil information and LIDFb cannot be accurately retrieved
from TOC reflectance. Fortunately, it appears that TOC SIF is not sen-
sitive to these parameters either (Verrelst et al., 2016; Van der Tol et al.,
2016). The uncertainties of these parameters will have little effect on
uncertainties in the simulation of the vegetation biochemical and
structural effects on SIF. In contrast, SIF is more sensitive to LAI and
Cab, of which the retrievals from reflectance are usually reliable (Weiss
et al., 2004; Houborg et al., 2007; Darvishzadeh et al., 2008). Earlier
findings by Van der Tol et al. (2016) and Verrelst et al. (2015) showed
that for both reflectance and SIF the most influential parameters were
Cab, Cdm, LIDFa and LAI. The shared sensitivities of reflectance and SIF
to most vegetation parameters lead to low error in simulated SIF (σF)
(Fig. 8).

The rationale for using reflectance to estimate biochemical and
structural effects on SIF is a close relationship between reflectance and
SIF. TOC SIF and reflectance are connected through their common
dependence on radiative transfer processes. On the one hand, the
scattering of SIF is directly linked with TOC reflectance (Yang and Van
der Tol, 2018). Reflectance measurements can be used to estimate the
scattering effects on observed SIF (Liu et al., 2018). On the other hand,
PAR absorption can be estimated from TOC reflectance as well. For
example, the reflectance indices NDVI and EVI appear to be good
measures of fPAR (Bartlett et al., 1989; Myneni et al., 2002). The ve-
getation biochemistry and structure affect TOC SIF through the process
of PAR absorption and SIF scattering, and both processes can be char-
acterized by reflectance directly.

A more intuitive way of understanding the similarity of reflectance
and fluorescence changes over the two days is by considering the ab-
sorption as the complementary part of the reflectance. The increase of
visible reflectance in rapeseed, barley and wheat (Fig. 2) indicates that
these crops absorbed less radiation on day 2. The reduction of ab-
sorption of incident light is one of the causes for the decrease of F687
and F760 of the three crops in Fig. 7.

Other studies have reported a correlation between SIF and re-
flectance as well. Konings et al. (2017) showed that NDVI and SIF of
grassland were strongly correlated with R2= 0.67. Badgley et al.
(2017) reported that there was a strong correlation between satellite
measurements of near-infrared reflectance index and SIF. The direct
connection between SIF and reflectance could explain the low un-
certainty in modelled SIF (σF), although there were high uncertainties
in some retrieved parameters (σp). What matters more is the sensitivity
of TOC SIF to reflectance than the sensitivity of reflectance to the in-
dividual model parameters.

The changes in some retrieved parameters between the two days
were not significant compared with the uncertainties from the error
propagation analysis (Tables 3 and 4). This does not necessarily mean
that the model failed to predict the changes in SIF from reflectance. In
the error propagation analysis, we assumed that the noise in reflectance
was spectrally independent. This assumption may lead to over-
estimation of uncertainties in the retrieved parameters. Moreover, some
systematic errors in reflectance on the two days, which were not con-
sidered in the error propagation, may cancel out errors in the inferred
parameters.

The changes in retrieved Cab between the two days comply with
qualitative knowledge on the growth stage of the crops. Rapeseed,
barley and wheat were in the beginning of their senescent stages and
they decreased in Cab. Corn, in contrast, was in the vegetative stage V9
(i.e. before tasseling) and showed an increase in Cab due to growing.

Fig. 8. The uncertainty of TOC SIF simulation from error propagation analysis.
The line and buffer represent the mean and standard deviation.
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Moreover, the difference in LAI between the two corn plots complied
with the different planting densities. According to the inferred LIDF (i.e.
leaf inclination distribution function) parameters, the leaf angle dis-
tributions (LADs) of the four crops were subjected to either the plagi-
ophile (i.e. ALA=45 °) or erectophile type (i.e. ALA=81 °), which are
consistent with the literature, e.g. De Wit (1965), Zou et al. (2014) and
Fang (2015). In addition, the estimated Cab values are within the range
of published data, e.g. Daughtry et al. (2000) for corn and Hamblin
et al. (2014) for wheat. However, the lack of in-situ measurements for
direct validation is a limitation of our study.

As an additional validation of our results, we compared modelled to
measured brightness temperature. The model predicted the brightness
temperature well by using the retrieved parameters and measured
meteorological data (Fig. 5A). More importantly, the differences be-
tween brightness and above-canopy air temperature were predicted
well (Fig. 5B). This provides confidence in the accuracy of the model
and the retrieved parameters. The air-canopy temperature differences
are determined by the latent and sensible heat exchange, which are
affected by both canopy structure and stomatal conductance. The model
predicted the temperature less well on day 2 probably due to the model
misrepresentation of temperature dependence of stomatal aperture (i.e.
the Ball-Berry parameter) or temperature dependence of rate coeffi-
cients and/or Vcmax in the photosynthesis model.

5.3. Implications

The combination of reflectance and SIF enables us to advance the
analysis of SIF observations. HyPlant is a unique airborne system that
measures reflectance spectra and fluorescence simultaneously with a
very high spatial resolution. Several satellite missions also provide
opportunities to explore the applications on larger scales, such as
TROPOMI and GOME-2 (Joiner et al., 2013; Guanter et al., 2015). The
planned Fluorescence Explorer (FLEX) satellite will orbit in tandem
with one of the Sentinel-3 (S3) satellites taking advantage of its optical
and thermal sensors to provide an integrated package of measurements
(Drusch et al., 2017). Verhoef et al. (2018) showed with synthetic
scenarios that it was promising to retrieve vegetation biochemical and
structural parameters from FLEX/S3 multi-sensor data. Although we
did not provide an explicit study on heat stress detection due to a lack
of supporting in-situ measurements, the approach we proposed has the
potential in retrieving plant physiological and structural response to
stress.

6. Conclusions

The physiological, biochemical and structural factors jointly control
TOC fluorescence. We show that hperspectral reflectance alone explains
a large portion of the SIF variation across space and time. This is due to
the information contained in TOC reflectance about leaf and canopy
structure properties. RTMs are a useful tool to not only retrieve the leaf
and canopy parameters from reflectance, but also to estimate their ef-
fects on TOC SIF. The estimation is reliable because SIF and reflectance
are directly connected through vegetation biochemical and structural
properties. In our view, hyperspectral reflectance combined with RTMs
provide exciting opportunities for the quantitative use of SIF observa-
tions and a comprehensive set of information to assess physiological,
biochemical, and structural variation.
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