
Computing a Minimum-Cost k-Hop Steiner Tree
in Tree-Like Metrics
Martin Böhm
University of Bremen, Germany
martin.boehm@uni-bremen.de

Ruben Hoeksma
University of Twente, The Netherlands
r.p.hoeksma@utwente.nl

Nicole Megow
University of Bremen, Germany
nicole.megow@uni-bremen.de

Lukas Nölke
University of Bremen, Germany
noelke@uni-bremen.de

Bertrand Simon
University of Bremen, Germany
bsimon@uni-bremen.de

Abstract
We consider the problem of computing a Steiner tree of minimum cost under a k-hop constraint
which requires the depth of the tree to be at most k. Our main result is an exact algorithm for
metrics induced by graphs of bounded treewidth that runs in time nO(k). For the special case of a
path, we give a simple algorithm that solves the problem in polynomial time, even if k is part of the
input. The main result can be used to obtain, in quasi-polynomial time, a near-optimal solution
that violates the k-hop constraint by at most one hop for more general metrics induced by graphs of
bounded highway dimension and bounded doubling dimension.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathemat-
ics of computing → Combinatorial optimization

Keywords and phrases k-hop Steiner tree, dynamic programming, bounded treewidth

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.18

Related Version A full version of the paper is available at https://arxiv.org/abs/2003.05699.

Funding Partially funded and supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) Projects ME 3825/1 and 146371743 – TRR 89 Invasive Computing.

Acknowledgements We thank Jiří Sgall for discussions on k-hop MST on paths and an anonymous
reviewer for pointing us to the connection between highway dimension and doubling dimension.

1 Introduction

We are given a finite metric space (V,d) with a set of n points V and a distance function
d : V × V → Q+, a set of terminals X ⊆ V , a root r ∈ X , and an integer k ≥ 1. A k-hop
Steiner tree is a tree Š = (VŠ , EŠ) rooted at r that spans all points in X and has a depth
of at most k. That is, X ⊆ VŠ ⊆ V and for v ∈ VŠ , the number of edges in the r-v path
in Š is at most k. The cost of a Steiner tree is the sum of edge costs

∑
{u,v}∈EŠ

d(u, v), with

© Martin Böhm, Ruben Hoeksma, Nicole Megow, Lukas Nölke, and Bertrand Simon;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4796-7422
mailto:martin.boehm@uni-bremen.de
https://orcid.org/0000-0002-6553-7242
mailto:r.p.hoeksma@utwente.nl
https://orcid.org/0000-0002-3531-7644
mailto:nicole.megow@uni-bremen.de
https://orcid.org/0000-0003-0523-0668
mailto:noelke@uni-bremen.de
https://orcid.org/0000-0002-2565-1163
mailto:bsimon@uni-bremen.de
https://doi.org/10.4230/LIPIcs.MFCS.2020.18
https://arxiv.org/abs/2003.05699
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Computing a Minimum-Cost k-Hop Steiner Tree in Tree-Like Metrics

edge costs given by d. We consider the minimum-cost k-hop Steiner tree problem (k-hop
MŠT problem1) that asks for a k-hop Steiner tree of minimum cost. When X = V , this is
equivalent to the minimum-cost k-hop spanning tree (k-hop MST) problem.

The k-hop MŠT problem is highly relevant for many applications, e.g., in the design
of transportation and communication networks, particularly regarding the efficiency and
reliability of routing. A restriction on the hop distances aims at reducing transmission
delays, avoids flooding the network when routing, reduces packet loss and increases reliability
of networks by limiting the amplifying effect of link failures. There exists a multitude of
applications; see, e.g., [7, 11,15,18,19,22,31,32].

In this work, we show how to solve the k-hop MŠT problem in certain tree-like metrics.
That is, we consider metrics which are represented by graphs from certain tree-like graph
classes using the natural correspondence between metric spaces and weighted complete graphs
via the shortest path metric. We say a weighted graph G = (V,E) induces a metric (V, d) if
for any two vertices u, v ∈ V the length of the shortest u-v path in G equals d(u, v). A metric
is called a tree (resp. path) metric if there is a tree (resp. path) inducing it, and it is called a
metric of bounded treewidth if it is induced by some graph with bounded treewidth. For a
given metric, it can be decided in polynomial time if it is a path metric, a tree metric, or a
metric of constant treewidth ω; details are outlined in Section 2. For convenience, we may
not always distinguish between a metric and the graph inducing it.

Previous work. Hop-constrained problems have been studied since the 1980s. Various
well-studied problems are in fact special cases of the k-hop MŠT problem, most notably, the
k-hop MST problem, where X = V , the Minimum Steiner Tree problem, where k ≥ n, and
the Uncapacitated Facility Location problem, where k = 2. Hardness and inapproximability
results are therefore valid for k-hop MŠT as well. In particular, k-hop MŠT is NP-hard [4],
even for graph metrics, while the Minimum Steiner Tree problem is polynomial-time solvable
on graphs of bounded treewidth [12].

When considering metrics more general than those of bounded treewidth, several hardness
results are known. Bern and Plassmann [9] show that the Steiner tree problem on a metric
induced by a complete graph with edge weights 1 or 2 is MaxSNP-hard. The same is shown
for metric 2-hop MST by Alfandari and Paschos [3]. Thus, these problems do not admit a
PTAS, unless P = NP. Manyem and Stallmann [30] show that k-hop MŠT on a graph with
unit-weight edges and 2-hop MST cannot admit a constant-factor approximation algorithm.
They also show that k-hop MST on a graph with edge weights 1 or 2 cannot admit a PTAS.
For general non-metric graphs, Alfandari and Paschos [3] prove that even for 2-hop MST
no (1− ε) log(n)-approximation can exist unless NP ⊆ DTIME[nO(log logn)].

The following works, while conceptually closest to our paper, focus on approximation
algorithms. Kortsarz and Peleg [27] consider k-hop MŠT on non-metric graphs obtaining a
approximation factor O(logn) for constant k and O(nε) otherwise. Althaus et al. [4] give
a O(logn)-approximation for arbitrary k for metric k-hop MST that first uses a randomized
embedding of the given metric into a hierarchically-separated tree and then solves this
problem optimally. For constant k, Laue and Matijević [28] derive a PTAS for k-hop MŠT
in the plane. Their algorithm implies a QPTAS for Euclidean spaces of higher dimensions.
While the first constant-factor approximation algorithm for metric k-hop MŠT is due to

1 For brevity and as homage to the work of Jarník and Kössler [24, 26], we use the Czech letter Š to
distinguish Steiner trees from spanning trees in MŠT resp. MST. The pronunciation of Š is 〈 sh 〉, the
same as the German pronunciation of the letter S in Steiner.

M. Böhm, R. Hoeksma, N. Megow, L. Nölke, and B. Simon 18:3

Kantor and Peleg [25], the factor 1.52·9k−2 is prohibitively high. For k = 2, a nearly optimal
algorithm is known. The best known approximation ratio of 1.488 for metric Uncapacitated
Facility Location [29] and lower bound of 1.463 [20] are valid for metric 2-hop MST as well.

The bounded-diameter minimum Steiner tree problem [19, 25] is also closely related
to our bounded-hop problem, yet neither a generalization, nor a special case. Here, for
given d we look for a minimum-cost Steiner tree with diameter at most d. For constant d,
an O(1)-approximation algorithm is known for graph metrics [25]. For non-metric cost
functions, an o(logn)-approximation algorithm has been ruled out, assuming P 6=NP [8].

Furthermore, shallow-light and buy-at-bulk Steiner trees [6,13,16,23,27] are conceptually
similar to k-hop MŠTs. However, a key difference is that, here, lengths of paths in the tree
are bounded w.r.t. metric distance instead of the number of edges on the path. Elkin and
Solomon [16] additionally bound the number of hops, but do so by O(logn) to bound other
measures of interest. Chimani and Spoerhase [13] consider two different measures for distance
and weight and achieve an nε-approximation, violating the distance by a factor of 1 + ε.

Minimum-cost k-hop spanning and Steiner trees have been studied in the context of
random graphs as well. There, the goal is to give estimates on the weight of an optimal tree.
In this setting, sharp threshold for k are known [5].

Our Results. In Section 3, we give a quite simple exact algorithm for the path metric which
runs in polynomial time, even when k is part of the input.

I Theorem 1. On path metrics, k-hop MŠT can be solved exactly in time O(kn5).

Our main result is a dynamic program (DP) for metrics with bounded treewidth. In Section 4,
we first consider the special case of tree metrics. Here, cells are indexed by a vertex v as well
as 2k additional vertices. The latter represent possible parents of v at different depths in
a k-hop MŠT. Specifically, for each depth in this Steiner tree, there is one possible parent
in T [v] and one outside, where T [v] denotes the subtree (w.r.t. the tree metric) rooted at v.

Our DP is substantially different from that in [4] which is tailored to hierarchically-
separated trees. While the DP for planar graphs in [28] has similarities to our construction
for tree metrics, a notable difference lies in the indexing of their cells by distances. In our
case, such a strategy does not carry enough information; hence, we resort to indexing by
vertices, as explained above, and retain more structure.

In Section 5, we extend the approach to metrics of bounded treewidth.

I Theorem 2. On metrics of treewidth ω, k-hop MŠT can be solved exactly in time nO(ωk).

This result also facilitates a quasi-polynomial time approximation algorithm for more general
metrics induced by graphs of bounded highway dimension. This graph class was introduced
in [2] to model transportation networks. Intuitively, in graphs of bounded highway dimension,
locally, there exists a small set of transit vertices such that the shortest paths between two
distant vertices pass through some transit vertex; details in Section 6.

Using a framework from [17], we show in Section 6 that Theorem 2 and the constant-factor
approximation designed in [25] lead to the following result.

I Theorem 3. For a metric induced by a graph of bounded highway dimension and a
constant k, let OPTk be the cost of a k-hop MŠT. A (k + 1)-hop Steiner tree of cost at most
(1 + ε)OPTk, for ε > 0, can be computed in quasi-polynomial time.

This seems to be the first result with resource augmentation in the context of hop-constrained
network design. This research direction was proposed in [4].

MFCS 2020

18:4 Computing a Minimum-Cost k-Hop Steiner Tree in Tree-Like Metrics

There is a close relation between the highway dimension and the well-known concept of
doubling dimension [21]. A metric space has doubling dimension d if every ball of radius r
can be covered by 2d balls of radius r/2. Abraham et al. [1] discuss the relation between these
two concepts and show that constant doubling dimension does not imply constant highway
dimension but that the converse is true. Hence, Theorem 3 directly implies the following.

I Corollary 4. For a metric of bounded doubling dimension and a constant k, let OPTk be
the cost of a k-hop MŠT. A (k + 1)-hop Steiner tree of cost at most (1 + ε)OPTk, for ε > 0,
can be computed in quasi-polynomial time.

2 Preliminaries

Let (V,d) be a metric induced by the graph G = (V,E). We assume that G is the minimal
graph inducing (V,d), that is, there is no edge in G that can be removed without changing
some shortest path. In order to break ties consistently, we assume shortest paths in G to be
unique. This can be achieved by adding some sufficiently small noise to the input by slightly
moving each point. A k-hop MŠT for the modified instance is also optimal for the original
instance. Furthermore, the minimal graph G inducing (V,d) is unique.

Given a metric (resp. the inducing graph), we can decide in polynomial time whether it
is a path metric, a tree metric, or a metric of treewidth ω for some constant ω ≥ 1. To do so,
we determine G efficiently by computing all-pair shortest paths and keeping only those edges
in G that are part of some shortest path. To verify that G is a path or a tree, we simply
run a depth-first search. Moreover, for constant ω, it can be decided in polynomial time
whether G has treewidth ω by computing a treewidth decomposition [10].

We give two alternative representations of Steiner trees that are useful when working with
partial solutions. Let Š be a Steiner tree on (V,d) with terminals X ⊆ V and root r ∈ X .
Let VŠ ⊆ V with X ⊆ VŠ be the set of vertices in Š. The tree Š can be viewed as a function
mapping a vertex of VŠ \{r} to its immediate predecessor, i.e., its parent in Š. More generally,
for U ⊆ V , call a function α : U \{r} −→ V an anchoring on U . The anchor α(v) of vertex v
represents its parent in Š, and we set α(w) = w if w /∈ VŠ .

If Š is of minimum cost, this additionally allows for the following representation. Consider
a function assigning to each vertex v ∈ VŠ its depth, i.e. the number of edges on the r-v path
in Š. Since a vertex v ∈ VŠ \ {r} of depth x is anchored to the (uniquely determined) vertex
of depth x−1 that is of minimum distance to v w.r.t. d, this yields a complete representation
of Š. Generalizing again to subsets U ⊆ V , we call a function ` : U −→ {0, 1, . . . , k} ∪ {∞}
a labeling on U . We call `(w) the label of w and set `(w) = ∞ if w /∈ VŠ . Note that this
representation automatically enforces the k-hop condition. See Figure 1 for an example of
a k-hop MŠT with the corresponding anchoring and labeling.

When Š is of minimum cost and U = V , we can easily compute an anchoring from a
labeling or vice versa. However, when considering partial solutions, i.e., when U V , this
may not be possible. Thus, to retain the essential structural information, we utilize both
representations simultaneously in this case. This motivates the following definition.

I Definition 5. A pair (`, α) is called a labeling-anchoring pair (LAP) on U if the labeling `
and anchoring α are consistent, i.e. for every u ∈ U \ {r} for which α(u) ∈ U and `(u) 6=∞,
we have `(u) = `(α(u)) + 1. Moreover, if `(u) =∞ then u /∈ X and α−1(u) = {u}.

The cost of a LAP (`, α) is given by
∑
u∈U\{r} d(u, α(u)). In this sum, the term d(u, α(u))

is called the cost to anchor u. When U (V , we may say partial LAP to emphasize that the
LAP only represents a portion of Š, namely the edges between U and its anchors.

M. Böhm, R. Hoeksma, N. Megow, L. Nölke, and B. Simon 18:5

r

u3

u

u1

u2

w

w1

w2

v α(v) `(v)
r − 0
u r 1
u1 u 2
u2 u 2
u3 u 2
w r 1
w1 w 2
w2 w 2
w3 w 2
x x ∞

Figure 1 A 2-hop MŠT (green) with root r and terminals u1, u2, u3, r, w,w1, w2 on a tree metric
(black) with unit-weight edges. Its cost is 11. The table on the right describes the corresponding
labeling ` and anchoring α, where x symbolizes vertices not used by the MŠT.

Furthermore, we use the representation as LAP to avoid the ambiguity that arises from
simultaneously considering a Steiner tree Š and the tree-like graph G that induces the
underlying metric space. For example, in Section 4, both Š and G are trees. Throughout
the paper, we represent Steiner trees as LAPs. Hence, we use the term anchor to refer to a
predecessor in Š instead of parent. Additionally, when talking about distances or closeness,
we always refer to distances in G. Given a point v and a set U ⊆ V , denote by closestv(U)
the (unique) element of U with minimum distance to v. For simplicity, we write closestv(u,w)
instead of closestv({u,w}).

In Sections 4 and 5, when querying a DP cell, a vertex with a desired label may not exist.
To make these queries technically simple, we extend the vertex set of the metric to contain
an auxiliary vertex, denoted by v∅. It is defined to have distance ∞ to all other vertices. In
order to avoid the use of k auxiliary vertices (one per label), we slightly abuse notation and
assume that the equality `(v∅) = i is correct for all i ∈ [k] where [k] = {1, 2, . . . , k}. Note
that anchoring v∅ incurs an infinite cost, so it will never be used in a k-hop Steiner tree.

3 The k-hop MŠT Problem in Path Metrics

Our first result is an efficient algorithm for k-hop MŠT on path metrics. We view a path
metric as a set of vertices V = {v1, v2, . . . , vn} placed on the real line from left to right, such
that edges in the path correspond to consecutive vertices. In this special case, there exists a
(uniquely defined) minimum-cost k-hop MŠT OPT = (`, α) rooted at r ∈ V that only uses
terminals. Indeed, if OPT contains a non-terminal vertex v, we may simply replace it by the
next vertex on the line in the direction in which v has the most edges (break ties arbitrarily).
This removes a non-terminal vertex without increasing the cost of OPT or violating the
k-hop condition. In this section, we therefore assume X = V .

We give a recursive procedure which computes the k-hop MST, and discuss the complexity
of computing it via dynamic programming. The goal is to first compute the internal (non-leaf)
vertices of the k-hop MST, and then add the cost of anchoring the leaves to the closest
internal vertices.

A key observation is the following. Fix an internal vertex s of depth `(s) < k. It partitions
the remaining vertex set into the vertices on the left of s, and those on the right of s. If a
vertex i to the left of s is of depth `(i) > `(s), then in OPT, the vertex i is never adjacent to
a vertex to the right of s, see Figure 2. This follows from the fact that such a vertex could
be attached to s directly, decreasing the overall cost of OPT without using more hops.

MFCS 2020

18:6 Computing a Minimum-Cost k-Hop Steiner Tree in Tree-Like Metrics

i
s

j
G

Steiner tree

Figure 2 The optimal k-hop MŠT never attaches j to i if `(i) > `(s).

a c s′ b s

A[p, s, a, c−1] A[p−1, s′, c, s′−1] A[p−1, s′, s′ +1, b]

G

Steiner tree

Figure 3 Computation of A[p, s, a, b] with three recursive calls.

We define a recursive expression A[p, s, a, b] for p ∈ N and s, a, b ∈ [n]. Intuitively, it
yields the minimum cost p-hop spanning tree Š rooted at vs that contains all vertices vi
with i ∈ [a, b] and satisfies s /∈ [a, b]. If a > b, let [a, b] = ∅.

For p ∈ N and s, a, b ∈ [n], define A[p, s, a, b] as follows.
1. If a > b, then A[p, s, a, b] = 0.
2. If a = b, then A[p, s, a, a] = d(vs, va).
3. If p = 1, then A[1, s, a, b] =

∑
x∈[a,b]d(vs, vx) (all vertices anchored to vs).

4. If p > 1, consider the right-most child vs′ of vs in Š such that s′ ∈ [a, b]. The sub-tree
of Š rooted at vs′ covers all vertices vi with i ∈ [c, b] for some c ∈ [a, s′]. Thus A[p, s, a, b]
is the sum of the cost of this subtree and that of all remaining subtrees of vs in [a, c− 1].
That is, A[p, s, a, b] is defined as

min
s′∈[a,b], c∈[a,s′−1]

d(vs′ , vs) +A[p, s, a, c− 1] +A[p− 1, s′, c, s′ − 1] +A[p− 1, s′, s′ + 1, b] .

See Figure 3 for an illustration where b < s. Note that in the last case, any recursive call
can refer to an empty interval and incur zero cost.

Proof of Theorem 1. Due to the key observation above, A[p, s, a, b] correctly computes the
minimum cost of a p-hop spanning tree Š with root vs and vertices vi with i ∈ [a, b]: For s′
and c as in OPT, there are no edges in OPT between [a, c − 1], [c, s′ − 1] and [s′ + 1, b].
Also, the recursive procedure only queries intervals [a, b] with s /∈ [a, b]. The cost of OPT
is A[k, r, 0, r − 1] +A[k, r, r + 1, n].

We dynamically compute the values A[p, s, a, b] by iterating in an increasing manner over p
in an outer loop and the set of intervals [a, b] in an inner loop, with shorter intervals having
precedence. This is feasible, as a call of A[p, s, a, b] recursively only queries values A[p′, s′, a′, b′]
with p′ < p or (b′− a′)+ < (b− a)+. Assuming that all previous values are precomputed, the
value of a cell A[p, s, a, b] can be computed in time O(n2). Since there are only kn3 possible
values of (p, s, a, b) to be queried, the total running time is bounded by O(kn5). J

4 The k-hop MŠT Problem in Tree Metrics

I Theorem 6. In tree metrics, k-hop MŠT can be solved exactly in time nO(k).

In this section, we construct a dynamic program for the k-hop MŠT problem on tree
metrics. Consider an instance of k-hop MŠT with root r ∈ X and metric (V,d) induced by
a tree T = (V,E). Without loss of generality, we consider T to be rooted at r. For v ∈ V ,
denote by T [v] the set of vertices in the subtree of T rooted at v.

M. Böhm, R. Hoeksma, N. Megow, L. Nölke, and B. Simon 18:7

r=ρ0(v)

v

v1 v2

φ1(v)

v3 =φ2(v)

φ4(v)

φ3(v)

ρ1(v)

ρ3(v)

ρ2(v)
T [v]

Figure 4 Possible anchoring guarantees ρ(v), φ(v) for vertex v. Its subtree T [v] with respect
to the underlying metric (black) is highlighted in green. To satisfy the anchoring guarantees, in a
Steiner tree, v must be anchored to either φ2(v) or ρ2(v). Note that k = 4 and ρ4(v) = v∅.

We start by giving a high-level overview of our approach for computing the minimum cost k-
hop Steiner tree OPT = (`, α). We use a dynamic program with cells Ā[v, ρ, φ] indexed by a
node v ∈ V and vectors ρ and φ of k vertices each. Intuitively, ρ and φ represent anchoring
guarantees that convey information about the structure of OPT in relation to v and serve as
possible points to which v is anchored in α. Specifically, for each possible label i, there are two
anchoring guarantees φi ∈ T [v] and ρi ∈ V \T [v] with `(φi) = `(ρi) = i that act as candidates
for anchoring v in OPT to a vertex of depth i. If `(v) = i+1, then α(v) = closestv(φi, ρi). We
show that a cell Ā[v, ρ, φ] computes a partial labeling-anchoring pair (LAP, recall Definition 5)
on T [v] that is of minimum cost and respects the given anchoring guarantees. The cells are
filled up in a bottom-to-top manner, starting at the leaves of the underlying tree T . Doing
this consistently, while filling in correct anchoring guarantees, finally yields OPT.

Anchoring guarantees. Fix a vertex v∈V \ {r}. Formally, its anchoring guarantees are
given by φ(v) =

(
φ1(v), . . . , φk−1(v)

)
and ρ(v) =

(
ρ1(v), . . . , ρk−1(v)

)
such that φi(v) ∈ T [v]

and ρi(v) ∈ V \ T [v] for all i ∈ [k − 1]. Additionally, we allow the φi(v) and ρi(v) to take
the value v∅ and let ρ0(v) = r and φ0(v) = v∅; see Figure 4.

In our search for partial solutions, we are interested in partial LAPs on T [v]. Given a
LAP, denote by λi(v) the vertex in T [v] of label i closest to v (or v∅ if no such vertex exists).
Let P(v, ρ(v), φ(v)) be the (possibly empty) set of LAPs on T [v] respecting the anchoring
guarantees. That is, its elements (`, α) satisfy:
(i) For all i, we have φi(v)=λi(v). In particular, if φi(v)=φj(v) and i 6=j, then φi(v)=v∅.
(ii) A vertex w ∈ T [v] with `(w) 6=∞ is anchored to a vertex of T [v] with label `(w)− 1 or

to ρ`(w)−1(v). Recall that `(w) =∞ implies α(w) = w (and w /∈ X).

Intuitively, P(v, ρ(v), φ(v)) represents all relevant ways to extend a partial LAP (`′, α′)
on V \ T [v] to V while respecting the anchoring guarantees. Note that vertices of T [v] are
anchored either to another vertex in T [v] or to some ρi(v). Therefore, if ρi(v) is used, it
should be the closest vertex to v outside of T [v] for which `′(ρi(v)) = i. Assume (`′, α′) is
extended with minimum cost and consider the subtree T [vj] of a child vj of v. Its vertices are
anchored either to a vertex of T [vj], or to a φi(v) (which may be in the subtree of a different
child), or to a ρi(v). The anchoring guarantees φi(v) are then necessary to determine the
anchoring guarantees ρi(vj) for the children of v. Note that when defining P, we do not
require any constraint on the values of ρ.

The dynamic program. For v 6= r, let A[v, ρ(v), φ(v)] be the minimum cost of a LAP
on T [v] in P(v, ρ(v), φ(v)), or ∞ if none exists. Denote by v1, v2, . . . , vp the children of v
in T . We fill the cells Ā[v, ρ(v), φ(v)] of our dynamic programming table according to the

MFCS 2020

18:8 Computing a Minimum-Cost k-Hop Steiner Tree in Tree-Like Metrics

following recursive relation. For a vertex v that is a leaf of T , we define

Ā[v, ρ(v), φ(v)] :=


0, if v /∈ X and φi(v) = v∅ for all i;
d(v, ρiv−1(v)), if ∃ unique iv, s.t. φiv (v) = v ;
∞, otherwise.

(1)

For non-leaf vertices, we define

Ā[v, ρ(v), φ(v)] := cv +
p∑
j=1

min
φi(vj)∈Φi(vj),∀i

Ā[vj ,ρ(vj), φ(vj)] . (2)

Here, cv is the cost of anchoring v while Φi(vj) and ρ(vj) encode which of the n2k−2 possible
anchoring guarantees of vj are consistent with that of v. The cells of each child are queried
independently. Precise definitions of Φi(vj), ρ(vj) and cv follow.

Let Φi(vj) be the subset of T [vj] consisting of all feasible choices for φi(vj). Specifically,
if φi(v) ∈ T [vj], then Φi(vj) = {φi(v)}. Indeed, as the shortest v-φi(v) path passes
through vj , node φi(v) must be the closest vertex to vj in T [vj] with (already guaranteed)
label i. If φi(v) = v∅, we must have Φi(vj) = {v∅} or contradict Property (i). Otherwise,
if v∅ 6= φi(v) /∈ T [vj], then Φi(vj) contains all w ∈ T [vj] with d(v, w) ≥ d(v, φi(v)) and the
auxiliary vertex v∅. A distance d(v, w) < d(v, φi(v)) would contradict the choice of φi(v) as
the vertex in T [v] of label i closest to v.

As for ρi(vj), we define it to be the feasible choice for ρi(vj), which is (uniquely)
determined as follows. If φi(v) ∈ T [vj], then ρi(vj) = ρi(v) since the shortest vj-ρi(vj) path
passes through v. Otherwise, we have ρi(vj) = closestv(ρi(v), φi(v)).

We now define cv. If v /∈ X and no φi(v) equals v, then cv := 0. Next, if there exists a
unique iv such that φiv (v) = v, let cv := d(v, closestv(ρiv−1(v), φiv−1(v))). In all other cases
set cv :=∞, as the values of φ(v) are contradictory.

Proof of Theorem 6. By mathematical induction, we prove that Ā[v, ρ(v), φ(v)], as defined
in Equations (1) and (2), is equal to A[v, ρ(v), φ(v)], for v 6= r and every ρ(v), φ(v).

For the base step, i.e. when v is a leaf of T , we consider the three cases of Equation (1).
If v /∈ X and φi(v) = v∅ for all i, then clearly Properties (i) and (ii) are satisfied for
the LAP that excludes v from the Steiner tree, so Ā[v, ρ(v), φ(v)] = A[v, ρ(v), φ(v)] = 0.
Otherwise, there is at most one LAP that satisfies (i) and (ii), namely the one that anchors v
to ρiv−1(v) if iv is defined. It incurs a cost of d(v, ρiv−1(v)), as desired. If no such LAP
exists, P(v, ρ(v), φ(v)) = ∅ and both A[v, ρ(v), φ(v)] and Ā[v, ρ(v), φ(v)] are infinite. This
concludes the base step.

Our induction hypothesis is that

Ā[v′, ρ(v′), φ(v′)] = A[v′, ρ(v′), φ(v′)], for all v′ 6= r, ρ(v′), and φ(v′) . (IH)

Now, for some non-leaf v, we assume that (IH) holds for all children v′ ∈ T [v] \ {v} of v
and prove that (IH) holds for v as well. For v, the recursive equation (2) becomes

Ā[v, ρ(v), φ(v)] := cv +
p∑
j=1

min
φi(vj)∈Φi(vj),∀i

A[vj ,ρ(vj), φ(vj)] .

If cv = ∞, then P(v, ρ(v), φ(v)) = ∅, so both A[v, ρ(v), φ(v)] = ∞ = Ā[v, ρ(v), φ(v)].
From now on, assume that cv is finite. We prove (IH) for v by showing the two inequalities
A[v, ρ(v), φ(v)] ≥ Ā[v, ρ(v), φ(v)] and A[v, ρ(v), φ(v)] ≤ Ā[v, ρ(v), φ(v)].

M. Böhm, R. Hoeksma, N. Megow, L. Nölke, and B. Simon 18:9

First direction, A[v, ρ(v), φ(v)] ≥ Ā[v, ρ(v), φ(v)]. Consider the LAP (`, α) which
yields the value A[v, ρ(v), φ(v)]. In particular, Properties (i) and (ii) are satisfied. If no such
LAP exists, then A[v, ρ(v), φ(v)] =∞ and the inequality holds. For each child vj of v, set
φi(vj) = λi(vj), which respects φi(vj) ∈ Φi(vj). Also, set ρ(vj) = ρ(vj) as defined above. We
show that for each vj , the restriction of the LAP (`, α) to T [vj] belongs to P(vj , ρ(vj), φ(vj)).

Property (i) follows directly from the choice of φi(vj) = λi(vj).
For Property (ii), consider a vertex w ∈ T [vj] which is not anchored to a vertex of T [vj].

We show that α anchors w to ρ`w
(vj), with `w := `(w)− 1. Note that by definition of ρ(vj),

we have that ρ`w (vj) is equal to ρ`w (v) or φ`w (v), so `(ρ`w (vj)) = `w. Since α is an
anchoring of minimal cost (with respect to the given guarantees), w is anchored to the
vertex α(w) = closestw{x ∈ T [v]∪{ρ`w

(v)} | `(x) = `w}, so α(w) = closestvj
(ρ`w

(v), φ`w
(v)).

If φ`w
(v) ∈ T [vj], then ρ`w

(vj) = ρ`w
(v) = α(w) since w is not anchored to a vertex in T [vj].

If φ`w
(v) /∈ T [vj], then ρ`w

(vj) = closestvj
(ρ`w

(v), φ`w
(v)) = α(w), by definition of ρ(vj).

Therefore, the LAP (`, α) restricted to T [vj] belongs to P(vj , ρ(vj), φ(vj)), so its cost is at
least A[vj , ρ(vj), φ(vj)]. If `(v) 6=∞, then α(v) = closestv(ρiv−1(v), φiv−1(v)) with cost cv,
since the anchoring cost is minimized. If `(v) =∞, then cv = 0, so

A[v, ρ(v), φ(v)] = cv +
p∑
j=1

A[vj , ρ(vj), φ(vj)] ≥ Ā[v, ρ(v), φ(v)] .

Second direction, A[v, ρ(v), φ(v)] ≤ Ā[v, ρ(v), φ(v)]. We assume Ā[v, ρ(v), φ(v)] to be
finite, otherwise the inequality trivially holds. Consider the LAPs corresponding to the values
A[vj , ρ(vj), φ(vj)] for which the value Ā[v, ρ(v), φ(v)] is attained. We extend these LAPs on
the subtrees T [vj] to (`, α) on T [v] in the following way. If v /∈ X and no φi(v) equals v, we
let `(v) = ∞ and α(v) = v. Otherwise, as cv 6= ∞ by our assumption at the start of the
proof, there exists a unique iv such that φiv (v) = v. We then let `(v) = iv and anchor v to
closestv(ρiv−1(v), φiv−1(v)). We show that this yields an element of P(v, ρ(v), φ(v)).

We first show Property (i). If iv is defined, φiv (v) = v = λiv (v) since `(v) = iv.
Consider φi(v) for i 6= iv. If φi(v) = v∅, then all φi(vj) = v∅ too by definition of Φi(vj).
Thus, λi(vj) = v∅ for all j and `(v) 6= i, so λi(v) = v∅ = φi(v). Otherwise, if φi(v) 6= v∅,
there exists a ji with φi(v) ∈ T [vji

]. Then, we have λi(vji
) = φi(v), and for all j, we have

d(v, λi(vj)) = d(v, φi(vj)) ≥ d(v, φi(v)). Since `(v) 6= i, we obtain λi(v) = φi(v).
It is easy to see that Property (ii) holds as well. If we set α(v) = v, then v /∈ X and

`(v) =∞. Otherwise, we define α(v) to be either ρiv−1(v) or φiv−1(v) ∈ T [v]. Furthermore,
any vertex w of T [vj] is anchored either to a vertex in T [vj] ⊆ T [v] or to ρ`(w)−1(vj), since
the partial anchorings fulfill Property (ii). That means w is either anchored to a vertex
of T [v] or, by definition of ρ(vj), to ρ`(w)−1(v).

In conclusion, (`, α) ∈ P(v, ρ(v), φ(v)), so its cost is at least A[v, ρ(v), φ(v)].

By mathematical induction, this proves that A[v, ρ(v), φ(v)] = Ā[v, ρ(v), φ(v)], for all
v 6= r, ρ(v) and φ(v). Therefore, the cells A[v, ρ(v), φ(v)] can be computed in time nO(k).
Define A[r], with v1, v2, . . . , vp being the children of r and ρ∅ := {r, v∅, . . . , v∅}, as

A[r] =
p∑
j=1

min
φi(vj)∈T [vj], ∀i∈[k−1]

A[vj , ρ∅, φ(vj)] .

Indeed, A[vj , ρ∅, φ(vj)] represents the minimum cost of a k-hop Steiner tree over T [vj] ∪ {r}
that is rooted at r and respects λi(vj) = φ(vj). Restricting to ρ∅ prevents nodes from being
anchored to other subtrees, but this is more expensive than anchoring directly to the root.
Thus, A[r] gives the cost of a k-hop MŠT. The complexity to compute A[r] is linear in the
size of the table, i.e. nO(k).

MFCS 2020

18:10 Computing a Minimum-Cost k-Hop Steiner Tree in Tree-Like Metrics

Sb1 = SbSb2 = Sb

Sb

Join node

V \ (Cb ∪ Sb)

Sb = Sb1 = Sb2

Cb1 Cb2

Bags in TG

Connections
in G

Cb

Sb

Sb1 = Sb ∪ {v}

Forget node

V \ (Cb ∪ Sb)

Sb

v
Cb1 Cb

Sb1

Sb

Sb1 = Sb \ {v}

Introduce node

V \ (Cb ∪ Sb)

Sb1
v

Cb1 = Cb

Sb

Figure 5 Types of bag nodes in a nice tree decomposition and possible edges in G.

5 Metrics of Bounded Treewidth

In this section, we extend the dynamic program from Section 4 to metrics of bounded
treewidth. A graph G = (V,E) is said to have treewidth ω, if there exists a tree TG = (B,EB)
whose nodes b ∈ B are identified with subsets Sb ⊆ V , called bags, satisfying: (i) for each
edge in E, there is a bag containing both endpoints, (ii) for each vertex in V , the bags
containing it form a connected subtree of TG, and (iii) each bag contains at most ω + 1
vertices. The tree TG is called a tree decomposition of G. It is a nice tree decomposition [14]
if w.r.t. a designated root br, every node b has one of the following four types, see Figure 5.

Leaf : Its bag is empty, that is, Sb = ∅.
Join node: It has two children b1 and b2 with Sb = Sb1 = Sb2 .
Forget node of v: It has one child b1 with Sb1 = Sb ∪ {v} and v /∈ Sb.
Introduce node of v: It has one child b1 with Sb1 = Sb \ {v} and v ∈ Sb.

By (ii), a vertex in V may have several introduce nodes but at most one forget node. Let Cb
be the union of the bags Sb′ for all descendants b′ of b, excluding vertices in Sb. Property (ii)
implies that there is no edge between Cb and V \ (Sb ∪ Cb), see Figure 5, and that, for a join
node, Cb1 ∩Cb2 = ∅. Given a graph of treewidth ω, we can compute a nice tree decomposition
with |B| = O(nω) in polynomial time [14]. W.l.o.g. our input is a nice tree decomposition TG.

The dynamic program. Choose a root node br whose bag contains the root r of the k-hop
MŠT which we aim to compute. To extend the dynamic programming approach from
Section 4 to nice tree decompositions, we again compute cells in a bottom-up fashion, now
in TG. A key difference lies in the fact that, here, a node b in TG corresponds to several
vertices in G, so we require anchoring guarantees for every vertex in Sb. A DP cell, indexed
by a bag b and O(nωk) anchoring guarantees, computes a minimum cost LAP on Cb that
respects these guarantees. Thankfully, the structure of the nice tree decomposition enables us
to recurse in an organized manner and construct the cells consistently. Join nodes combine
previous results. Forget nodes decide the label and anchoring of the corresponding vertex
and possibly new anchoring guarantees needed due to forgetting it. Introduce nodes deduce
anchoring guarantees about the introduced vertex from previous knowledge.

M. Böhm, R. Hoeksma, N. Megow, L. Nölke, and B. Simon 18:11

V \ (Sb ∪ Cb) Sb Cb

u = ρu2 = ρw2

w = ρw3

ρu3

ρw1
ρu1

ρu0 = ρw0 = r
φu1

φu2 = φw2

φw1

Figure 6 Possible values of ρi and φi for two vertices u and w. Note that φu
3 = φw

3 = v∅.

Fix a bag b ∈ B. Its anchoring guarantees are given by φ(b) = {φui (b) | i ∈ [k−1]∧u ∈ Sb}
and ρ(b) = {ρui (b) | i ∈ [k−1]∧u ∈ Sb}, with all φui (b) ∈ {v∅}∪Cb and ρui (b) ∈ {v∅}∪V \Cb.
We additionally set φu0 (b) = v∅ and ρu0 (b) = r for all u, see Figure 6. We use these anchoring
guarantees to define a subset of partial LAPs on Cb. Specifically, let P(b, ρ(b), φ(b)) be the
(possibly empty) set of partial LAPs on Cb respecting the anchoring guarantees. That is, its
elements (`, α) satisfy:
(i′) φui (b) is the closest vertex to u in Cb of label i (or v∅ if no such vertex exists);
(ii′) Each vertex u of Cb with `(u) 6=∞ is anchored either to a vertex of Cb of label `(u)− 1

or to ρw`(u)−1(b) for some w ∈ Sb.
(iii′) For all i and u,w ∈ Sb, we have d(u, ρui (b)) ≤ d(u, ρwi (b)).

Intuitively, P(b, ρ(b), φ(b)) represents all relevant ways to extend a partial LAP on V \Cb
to V : vertices of Cb are anchored either to a vertex of Cb or to some ρui (b). Let A[b, ρ(b), φ(b)]
be the minimum cost of a partial LAP on Cb in P(b, ρ(b), φ(b)), or ∞ if this set is empty.
Note that if Property (iii’) is satisfied and b is a leaf, then A[b, ρ(b), φ(b)] = 0.

In the following, we define in a recursive procedure how to fill the cells Ā[b, ρ(b), φ(b)] of
our dynamic programming table Ā for each node b ∈ B. The goal will be to again show that
Ā = A. First, as an easy special case, if Property (iii’) is not respected by ρ(b), we set Ā to
infinity, which matches with the fact that P(b, ρ(b), φ(b)) is empty and A = ∞. Next, we
describe how to compute Ā depending on the type of the node b when (iii’) is respected.

Leaves: Node b has no child and Sb = ∅. We set Ā[b, ρ(b), φ(b)] = 0.

Join nodes: Node b has children b1, b2 with Sb1 = Sb2 = Sb and Cb1 ∪ Cb2 = Cb
and Cb1 ∩ Cb2 = ∅. Intuitively, the objective is to independently query partial solutions
on each Cbj

. We compute sets of possible values for ρui (bj) and φui (bj) which define sets of
partial LAPs on each Cbj

respecting such guarantees. These possible values are determined
such that the minimum cost of a combination of any two partial LAPs on Cb1 and Cb2 in
these sets equals A[b, ρ(b), φ(b)]. Here, the ρui (bj) need to be equal to the closest anchoring
guarantee outside of Cbj

. The φui (bj) may take any value not contradicting φ(b). Specifically,
for both j ∈ {1, 2}, i ∈ [k − 1] and u ∈ Sb:

We set ρui (bj) = closestu{{ρui (b)} ∪ {φwi (b) | w ∈ Sb ∧ φwi (b) /∈ Cbj
}}.

If φui (b) ∈ Cbj , then we set Φu
i (bj) = {φui (b)}. Otherwise, we set

Φu
i (bj) = {x ∈ Cbj

∪ {v∅} | for all z ∈ Sb, we have d(z, φzi (b)) ≤ d(z, x) (?)} .

where (?) ensures that φzi (b) is the vertex in Cb that is closest to z.
We then define

Ā[b, ρ(b), φ(b)] =
∑

j∈{1,2}

min
φu

i
(bj)∈Φu

i
(bj), ∀i∈[k−1], u∈Sbj

Ā[bj ,ρ(bj), φ(bj)] . (3)

MFCS 2020

18:12 Computing a Minimum-Cost k-Hop Steiner Tree in Tree-Like Metrics

Forget node of v: We have Sb1 = Sb ∪ {v} and Cb1 = Cb \ {v}. There is no edge between
v and V \ (Cb ∪ Sb). In this node, we want to define the label iv of v and the corresponding
anchoring of v. However, φ(b) may not contain sufficient information for deciding iv, since v
can be far away from Sb. We therefore need to consider all possible values for iv, that is all
values that are consistent with the guarantees φ(b). We first define the set Iv of possible
labels of v that do not contradict φ(b), then proceed to define possible values of φ(b1), ρ(b1),
and finally, we express the cost to anchor v.

Let Iv be the set of labels i such that for all u ∈ Sb, we have d(u, v) ≥ d(u, φui (b)) and for
all i′ 6= i, we have φui′(b) 6= v. In other words, if there is a label i and u ∈ Sb with φui (b) = v,
then Iv cannot contain any other label: In order to respect the guarantee φui (b) = v, we must
have iv = i. Moreover, if there exists some u ∈ Sb and i such that φui (b) is further from u

than v, then Iv cannot contain i as it would contradict the definition of φui (b). If v /∈ X
and no φui (b) equals v, we include ∞ in Iv as v does not need to have a finite label in order
to respect the guarantees φi(b). If Iv is empty, set Ā[b, ρ(b), φ(b)] to be infinite since it is
impossible to label v while respecting the guarantees φi(b). Assume now that Iv is not empty.

The values φui (b1) can take any value in Cb1 not contradicting φ(b). Specifically, for u ∈ Sb,
if φui (b) 6= v let Φu

i (b1) = {φui (b)}, and if φui (b) = v, let

Φu
i (b1) = {x ∈ Cb1 ∪ {v∅} | d(u, v) ≤ d(u, x)} .

Indeed, if φui (b) = v, then we need to provide a new guarantee for φui (b1), as v ∈ Sb1 , which
must be further from u than v. We also define

Φv
i (b1) = {x ∈ Cb1 ∪ {v∅} | for all u ∈ Sb, we have d(u, φui (b)) ≤ d(u, x) (?)}.

Again, (?) must be satisfied since φui (b) is the vertex in Cb which is closest to u.
For the remainder, fix some iv ∈ Iv. In the case where iv =∞, we need not consider ρiv ’s.

Otherwise, any path from v to a vertex in V \ Cb passes through Sb. Therefore, ρvi (b1) is
determined by ρvi (b1) = closestv{ρui (b) | u ∈ Sb} for i 6= iv, and ρviv (b1) = v. Similarly,
for u ∈ Sb, let ρui (b1) = ρui (b) for i 6= iv, and ρuiv (b1) = closestu{ρuiv (b), v}.

Additionally, we charge a cost of civ for anchoring v. If iv = ∞ then set civ := 0.
Otherwise, set civ := d(v, closestv{φviv−1(b1), ρviv−1(b1)}).

We then define, with ρ(b1) depending on iv and civ depending on φui (b1),

Ā[b, ρ(b), φ(b)] = min
iv∈Iv

min
φu

i
(b1)∈Φu

i
(b1), ∀i∈[k−1], u∈Sbj

(
civ + Ā[b1,ρ(b1), φ(b1)]

)
. (4)

Introduce node of v: In this case, b has one child b1 with Sb1 = Sb \ {v} and Cb1 = Cb.
There is no edge between v and Cb = Cb1 as v /∈ Sb1 ∪ Cb1 , see Figure 5. If there is an i with
φvi (b) 6= closestv{φui (b) | u ∈ Sb1} then Ā[b, ρ(b), φ(b)] is infinite since the shortest v-φvi (b)
path has to pass through a vertex of Sb by the above observation. Otherwise, the guarantees
do not change, so we define ρ(b1) = ρ(b), φ(b1) = φ(b), and we set

Ā[b, ρ(b), φ(b)] = Ā[b1, ρ(b1), φ(b1)] . (5)

One can check that the running time to compute Ā is nO(ωk). The correctness of this
dynamic program, i.e., the proof of the equality A = Ā and the specification of the final
queries on the root bag cells are discussed in the full version of the paper.

M. Böhm, R. Hoeksma, N. Megow, L. Nölke, and B. Simon 18:13

6 The k-hop MŠT Problem in Metrics of Bounded Highway
Dimension

In this section, we consider k-hop MŠT in metrics of bounded highway dimension an give the
proof of Theorem 3. Denoting Br(v) = {u ∈ V | d(u, v) ≤ r}, the highway dimension of a
graph is defined as follows in [17]. Given a universal constant c > 4, the highway dimension
of a graph G is the smallest integer h such that for every r ≥ 0 and v ∈ V , there is a set
of h vertices in Bcr(v) that hits all shortest paths of length more than r that lie entirely
in Bcr(v). Before stating the results, we first define a δ-net of a graph, which is informally a
subset of vertices which are far from each other, while every vertex in the graph is close to
this subset. Formally, a δ-net of a graph G, is a subset U of V such that for all u ∈ V , there
exists v ∈ U with d(u, v) ≤ δ and for all u, v ∈ U , we have d(u, v) > δ.

Feldmann et al. [17] proved the following result, which gives sufficient conditions for a
problem to admit a QPTAS on graphs of constant highway dimension.

I Theorem 7 (Reformulation of [17, Theorem 8.1]). For a graph G of constant highway
dimension and a problem P satisfying conditions 1-6 below, a (1 + ε)-approximation can be
computed in quasi-polynomial time.
1. An optimum solution of P can be computed in time nO(ω) for a graph of treewidth ω;
2. A constant-approximation of P on metric graphs can be computed in polynomial time;
3. The diameter of the graph can be assumed to be O(n ·OPTG), where OPTG is the cost

of an optimal solution in G;
4. An optimum solution for P on a δ-net U has cost at most OPTG +O(nδ);
5. The objective function of P is linear in the edge cost;
6. A solution for P on a δ-net U can be converted to a solution on V for a cost of O(nδ).
We now show that our main result, Theorem 2, together with a previously known result,
leads to Theorem 3, by using a slight variation of Theorem 7 to allow resource augmentation.

Proof of Theorem 3. Applying Theorem 7, it remains to verify that the k-hop MŠT problem
satisfies its six conditions, for k constant, if we allow the algorithm to use one more hop (i.e.,
computing a (k + 1)-hop Steiner tree) than the optimal solution of cost OPTk to which we
compare it. The conditions and the explanation of why they are fulfilled are detailed below.
1. Theorem 2 states precisely this condition for k-hop MŠT.
2. For k-hop MŠT in metric graphs, there exists a (1.52·9k−2)-approximative algorithm [25].
3. The diameter of G can be assumed to be O(n · OPTk) since edges of cost larger than

1.52 · 9k−2 ·OPTk can be deleted after computing the approximation of OPTk from [25].
4. Consider an optimum k-hop MŠT on V and move each vertex not in U to the closest

vertex in U . This induces an extra cost of O(nδ) and is a solution on U .
5. The objective function of k-hop MŠT is indeed linear in the edge cost.
6. This condition requires an additional hop. We claim that a solution for k-hop MŠT on

a δ-net U can be converted to a (k + 1)-hop Steiner tree on V for an additional cost of
O(nδ). Indeed, given a k-hop Steiner tree on U , we can anchor all vertices from V \ U to
their closest vertex in U for an additional cost of O(nδ) and obtain a (k + 1)-hop Steiner
tree. This procedure of extending a solution is performed exactly once in the underlying
algorithm. Therefore we can allow the algorithm to use one more hop on G than the
solution on U . Note that this property is not stated explicitly in [17]. J

MFCS 2020

18:14 Computing a Minimum-Cost k-Hop Steiner Tree in Tree-Like Metrics

References
1 Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck.

Highway dimension and provably efficient shortest path algorithms. J. ACM, 63(5):41:1–41:26,
2016.

2 Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck. Highway dimension,
shortest paths, and provably efficient algorithms. In Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete Algorithms, pages 782–793, 2010.

3 Laurent Alfandari and Vangelis Th. Paschos. Approximating minimum spanning tree of depth
2. International Transactions in Operational Research, 6(6):607–622, 1999.

4 Ernst Althaus, Stefan Funke, Sariel Har-Peled, Jochen Könemann, Edgar A. Ramos, and
Martin Skutella. Approximating k-hop minimum-spanning trees. Oper. Res. Lett., 33(2):115–
120, 2005.

5 Omer Angel, Abraham D. Flaxman, and David B. Wilson. A sharp threshold for minimum
bounded-depth and bounded-diameter spanning trees and steiner trees in random networks.
Combinatorica, 32(1):1–33, 2012.

6 Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and Michiel Smid. Euclidean
spanners: Short, thin, and lanky. In Proceedings of the Twenty-Seventh Annual ACM Sympo-
sium on Theory of Computing, page 489–498, 1995.

7 Anantaram Balakrishnan and Kemal Altinkemer. Using a hop-constrained model to generate
alternative communication network design. INFORMS Journal on Computing, 4(2):192–205,
1992.

8 Judit Bar-Ilan, Guy Kortsarz, and David Peleg. Generalized submodular cover problems and
applications. Theor. Comput. Sci., 250(1-2):179–200, 2001.

9 Marshall Bern and Paul Plassmann. The steiner problem with edge lengths 1 and 2. Information
Processing Letters, 32(4), 1989.

10 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

11 Paz Carmi, Lilach Chaitman-Yerushalmi, and Ohad Trabelsi. Bounded-hop communication
networks. Algorithmica, 80(11):3050–3077, 2018.

12 Markus Chimani, Petra Mutzel, and Bernd Zey. Improved steiner tree algorithms for bounded
treewidth. Journal of Discrete Algorithms, 16:67–78, 2012.

13 Markus Chimani and Joachim Spoerhase. Network Design Problems with Bounded Distances
via Shallow-Light Steiner Trees. In 32nd International Symposium on Theoretical Aspects of
Computer Science (STACS 2015), volume 30, pages 238–248, 2015.

14 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Treewidth. In Parameterized algorithms,
chapter 7, pages 151–244. Springer, Cham, 2015. doi:10.1007/978-3-319-21275-3_7.

15 Geir Dahl, Luís Gouveia, and Cristina Requejo. On formulations and methods for the hop-
constrained minimum spanning tree problem. In Mauricio G. C. Resende and Panos M.
Pardalos, editors, Handbook of Optimization in Telecommunications, pages 493–515. Springer,
Boston, MA, 2006.

16 Michael Elkin and Shay Solomon. Narrow-shallow-low-light trees with and without steiner
points. SIAM Journal on Discrete Mathematics, 25(1):181–210, 2011.

17 Andreas Emil Feldmann, Wai Shing Fung, Jochen Könemann, and Ian Post. A (1+ε)-
embedding of low highway dimension graphs into bounded treewidth graphs. SIAM Journal
on Computing, 47(4):1667–1704, 2018.

18 Luis Gouveia. Using the miller-tucker-zemlin constraints to formulate a minimal spanning
tree problem with hop constraints. Comput. Oper. Res., 22(9):959–970, 1995.

19 Luis Gouveia, Luidi Simonetti, and Eduardo Uchoa. Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as steiner tree problems over layered graphs.
Math. Program., 128(1-2):123–148, 2011.

https://doi.org/10.1007/978-3-319-21275-3_7

M. Böhm, R. Hoeksma, N. Megow, L. Nölke, and B. Simon 18:15

20 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.
Journal of Algorithms, 31(1):228–248, 1999.

21 Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and
low-distortion embeddings. In FOCS, pages 534–543. IEEE Computer Society, 2003.

22 Martin Haenggi. Twelve reasons not to route over many short hops. VTC2004-Fall, 5:3130–3134
Vol. 5, 2004.

23 MohammadTaghi Hajiaghayi, Guy Kortsarz, and Mohammad R. Salavatipour. Approximating
buy-at-bulk and shallow-light k-steiner trees. Algorithmica, 53(1):89–103, 2009.

24 Vojtěch Jarník and Miloš Kössler. O minimálních grafech, obsahujících n daných bodů. Časopis
pro pěstování matematiky a fysiky, 63(8):223–235, 1934.

25 Erez Kantor and David Peleg. Approximate hierarchical facility location and applications
to the bounded depth steiner tree and range assignment problems. J. Discrete Algorithms,
7(3):341–362, 2009.

26 Bernhard Korte and Jaroslav Nešetřil. Vojtěch Jarník’s work in combinatorial optimization.
Discrete Mathematics, 235(1-3):1–17, 2001.

27 Guy Kortsarz and David Peleg. Approximating shallow-light trees. In Proceedings of the
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, page 103–110, 1997.

28 Sören Laue and Domagoj Matijević. Approximating k-hop minimum spanning trees in euclidean
metrics. Inf. Process. Lett., 107(3-4):96–101, 2008.

29 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.
Information and Computation, 222:45–58, 2013.

30 Prabhu Manyem and Matthias FM Stallmann. Some approximation results in multicasting.
Technical report, North Carolina State University at Raleigh, USA, 1996.

31 Vikram Raj Saksena. Topological analysis of packet networks. IEEE Journal on Selected
Areas in Communications, 7(8):1243–1252, 1989.

32 Stefan Voß. The steiner tree problem with hop constraints. Annals OR, 86:321–345, 1999.

MFCS 2020

	Introduction
	Preliminaries
	The k-hop MŠT Problem in Path Metrics
	The k-hop MŠT Problem in Tree Metrics
	Metrics of Bounded Treewidth
	The k-hop MŠT Problem in Metrics of Bounded Highway Dimension

