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ABSTRACT
Activities performed by humans can be recognized by the sound
they emit while being performed, hence, researchers have proposed
methods that use sound to recognize human activities, by detect-
ing the presence of sound events in short time frames. However,
in crowded environments, many sound events overlap making it
impossible to distinguish the individual events and methods of
detection to fail.

To address this issue and make the sound-based model suitable
for crowd activities, this paper proposes to predict the proportion
of activities happening in a speci�c place, by designing two neural
network-based regression models: a CNN-model and a concatenate
model. The CNN-model takes the Mel-bands as the input and is
very popular in single activity recognition problems. Based on the
CNN-model, we also designed a concatenate model which addi-
tionally inputting the global FFT feature to further improve the
performance.

The evaluation of this approach is performed over 3 generated
groups of audio samples, where each group has a di�erent crowded-
level. Both RMSE and coe�cient of determination (R2 score), are
used as evaluation metrics. The experiments show that the concate-
nate model works statistically better throughout the dataset, with a
R2 score of 0.7377. Results show that using the concatenate model
with both short-frame and holistic features provides a better result
than any single-feature based model.

CCS CONCEPTS
• Computing methodologies → Arti�cial intelligence; • Ap-
plied computing → Sound and music computing; • Human-
centered computing→ Ubiquitous and mobile computing theory,
concepts and paradigms.
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1 INTRODUCTION
1.1 Background
Human presence detection and activity recognition constitute a
research topic referred to identify the location, movement and ac-
tions of an individual based on information collected from on-body
or the surrounding sensors. Indoor human activity information is
of particular interest in many real-life human-centric applications,
ranging from health-care, energy-saving to hazardous and anomaly
detection in smart buildings [22].

Apart from the individual-level activity recognition which fo-
cuses on a speci�c person, crowd activity recognition has also
drawn a lot of attention recently especially due to the needs of
privacy [14]. In a crowd activity recognition task, the interactions
and the holistic status of a group of people are of more interest
than the individuals’ activities. In particular, the recognition and
analysis of crowd behaviours can be applied in substantial applica-
tions [29], such as crowd management, surveillance system, public
space design, etc. For example, detection of the anomalous events
in the crowd can help surveillance systems to react and alarm faster.
Modelling of the motion and actions of a crowd can help understand
the interests of customers and provide valuable guidelines to the
space design in retails.

While numerous sensors can be used for activity recognition, the
audio sensors are one of the most pervasive and useful ones, given
the fact that human activities generate distinctive sound events.
Hence, by detecting and recognizing sound events such as talking,
walking, hands clapping, one can identify the context of human
activities in the vicinity [8]. Other methods like computer vision-
based recognition su�er from the line-of-sight problem and raise
more privacy concern than audio sensors[5].

On the other hand, using sound also has disadvantages. One of
the greatest challenges in sound processing are the overlapping
sound events, e.g. when multiple people are activities happen simul-
taneously in a con�ned space or in the scenarios of broadcast audio
sources from a radio or a TV set. Because of the complexity associ-
ated with decomposing the sound information, the performance of
sound-event recognition models drops dramatically in the presence
of multiple simultaneous sound sources [19][7]. Therefore, unlike
computer-vision which is widely researched in crowd behavioural
analysis, most sound-based techniques can only identify human
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activities in a less densely environment where only a few sound
events overlap[26][24]. More speci�cally, very few researches are
conducted using sounds statistical or holistic information to recog-
nize crowd activities.

A common de�nition of ’crowd’ used in many works refers to the
scenario when the population density is su�ciently large to disable
individual tracking and activity recognition. In this case, the tech-
niques of crowd-activity recognition are not the simple extension
of the ones used in individual-activity recognition [13]. In many
computer-vision based researches on crowd behavioural analysis,
the goal is to extract some kind of information from crowded video
footage, which include the directions, velocities and unusual events
such as falling, �ghting [3][25][16], etc.

1.2 Related works
As mentioned above, while sound can also be used for human
activity recognition, it is rarely used in very crowded environments.
Sound-based human activity recognition falls under the category
of ’Environmental Sound Recognition’ (ESR). ESR models aim to
automatically detect and identify audio events from the captured
audio signal, which mainly work in a quiet environment with non-
overlapping events [10][28].

When then environment becomes more crowded and therefore
more noisy, several models can be used to tackle the issue of over-
lapping events, from di�erent perspectives:

I. The �rst method decomposes the mixed signals into the sub-
components based on matrix factorization by reducing a matrix
into its constituent parts [11, 17]. Non-negative matrix factorization
(NMF) is one of the most popular signal decomposition techniques
and has been proved to be very good in decomposing music signals.
However, NMF is an unsupervised model which only decompose
signals according to the similarity of features in time and frequency
domain. In a word, NMF only separates a signal into several com-
ponents but does not know which component belongs to which
sound event.
II. The second method does not decompose the entire signal but

only focus on the local features in the image-like spectrogram from
Short Time Fourier Transformation (STFT) [7, 15]. These local
features are normally called ’keypoints’, which are the small areas
in a spectrogram image with high power density. A keypoint is like
a glimpse of the local spectral information, it needs to be big enough
to characterize the features of a sound event. In the meantime, a
keypoint also needs to be small enough so that it can be easily
separated from a mixed signal. Comparative studies in [15] showed
that spectrogram features and deep learning algorithms could work
well where only two events overlap.
III. The third method extends the neural-network based non-

overlappingmodels for overlapping events through amulti-labelling
output layer with the sigmoid activation function. [20] �rst use
convolutional neural network with a softmax output layer to clas-
sify non-overlapping sound events. In order to classify overlapping
events, [4] replaced the output layer activation function with a sig-
moid function which bounds every output-node value to (0,1). With
a post-processing step which binarize the outputs by thresholding,
this model can identify multiple types of sound events happening
at each time frame.

Although the aforementioned models can tackle the overlapping
events problem to a certain extent, they are designed for recogniz-
ing individual activities but not the crowd as a whole. These models
have not been proved applicable in the crowded environment since
the audio dataset used by these researches have at most two or
three sound events overlapping [23]. Moreover, these models are
all classi�cation models which only tell whether something is hap-
pening but without the magnitude information. In a very crowded
environment, these yes or no results can barely improve our aware-
ness of the environment as some events may occur all the time. In
this scenario, we would rather know more about how many are
walking than if someone is walking.

To �ll in this gap, this paper proposes to estimate the proportion
of di�erent activities from overlapping sound events. The rationale
consists of telling what activities happened at a speci�c time, by
building a regression model that outputs the ratio of each perceived
activity in a relatively long duration. The model is more feasible
than precisely detecting the activities of the individuals, still provid-
ing insights of what is most probably happening in that particular
place and time.

The remainder of this paper is organized as follows: Section 2
explains the methodology used for our crowd activity recognition
and the intuition behind our model. Section 3 describes our dataset
and the performance evaluation of our models and the baseline. We
conclude this paper with our open discussions in Section 4.

2 METHODOLOGY
As aforementioned, our regression model should output the propor-
tion of di�erent sound events from the input audio stream of a short
time. This regression model can infer what are the major activities
of the crowd and whether there are anomalies. Our dataset consists
of 6 di�erent sound events: walking, clapping, talking, door slam,
phones, trolley wheels. All of these sound events are very common
indoor sound and can be used to reveal the human activities.

Mathematically, the output event-proportion is de�ned as the
summed duration of this event over the summed duration of all
events. Figure 1 shows an example of how we calculate this pro-
portion over two di�erent sound events. In this �gure, there is
only one person talking at t1 so that the output is : {Ptalkin� =
1, Pwalkin� = 0}. At t3, two are talking and one is walking so that :
{Ptalkin� = 0.66, Pwalkin� = 0.33}.

In this work, two di�erent neural network models are proposed
and compared in order to �nd the promising method. The �rst
model is a CNN-network with frame-based input features, which
can be deemed as the state-of-the-art method for single-event sound
classi�cation. In general, a CNN-based model is good at detecting
the local characters of a sound spectrogram but falls short for the
global or statistic characters.

However, a CNN-based model can learn and �nd repetitions of
some short and sharp sound fragments all concentrated at 4KHZ 5KHZ
as the ’footsteps’, but can hardly learn the knowledge of ’more low-
frequency sound (300HZ 3KHZ) means more people are speaking’.
In order to learn statistic characters better, we have designed the
second model which additionally takes the global Fast Fourier trans-
form (FFT) bands input based on our �rst model. The details of these
two models are described below.
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Figure 1. Scenario Description: Our model outputs the pro-
portion of sound events

2.1 CNN-based model and Mel-spectrogram
features

This model is a CNN-based model which takes the frame-based
Mel-spectrogram features as the input. This model and feature com-
bination has been used in many sound-processing works, especially
in the non-crowded environment.

Figure 2. The Mel-spectrogram feature (with 60 bands)

TheMel-spectrogram feature is the product of the Mel-�lterbanks
and the Short-time Fourier transform (STFT) spectrogram. The
STFT algorithm �rst divides the audio stream into frames of equal
length and then computes the Fourier transform separately on
each short frame. The Mel-spectrogram is the non-linear transform
on the STFT so that each Mel-band sounds equal in distances to
human listeners. Both STFT and Mel-spectrogram are commonly
used features in audio processing where Mel-spectrogram per-
forms generally better in many machine learning models. The Mel-
spectrogram of an audio stream is a two-dimensional image-like
feature in frame(or time) and frequency axes, as is shown in �gure
2. If we let the frame length to be 100ms and half-overlapped, and
let the Mel-bands number be 60, the Mel-spectrogram feature of a
10 seconds audio stream would be of size 60 ⇥ 200.

After the feature extraction, a CNN-based regression model is
used to learn and predict the proportion of each sound event from
this image-like feature set. This model is depicted in �gure 3 of
which the input features from the top are processed to get the
regression results by the neural network. By convention, CNN_n
stands for the nth CNN-layer and Dense_n stands for the nth full-
connected layer. More details about the neural network layers and
activation functions are speci�cally explained as follows:

Figure 3. The �ow of the CNN-based regression model

(1) Conventional neural network (CNN): Our model begins with
two stacked CNN-layers. A CNN-layer consists of many 2-
dimensional �lters of the same size(i.e. 5 ⇥ 5), which is also
called the �lter-size of a layer. During the forward pass, each
�lter is convolved across the width and height of the input
volume, computing the dot product between the �lter and the
input to produce a 2-dimensional output of that �lter. As a
result, the network learns �lters that activate when it detects
some speci�c shapes (or feature) at any position in the input.
In the output of a CNN-layer, each neuron only receives a
subarea of the input (of the same size as the �lter-size), which
is also called the receptive �eld of the neuron. Therefore, the
receptive area of a CNN-layer is much smaller than the entire
input layer, which greatly reduces the calculation density
than a full-connected layer.
At the beginning, we stacked two CNN-layers together so
that the second layer can detect a larger shape or feature
from the spectrogram. The layer’s parameters mainly consist
of: �lter-number, �lter-size and the strides of the convolution.
For the �rst CNN-layer, a good setting is 80 �lters and a �lter-
size of 58⇥5 with stride 1⇥1. The height of the �lter-size (58)
should be only slightly smaller than the entire frequency-
bands (60) so that the learned feature is not much frequency-
invariant. The intuition of using the ’elongated’ �lter in the
�rst CNN-layer is shown in Figure 4. As a comparison, using
the small CNN �lters (e.g. 5⇥ 5) can only detect the common
shapes at di�erent frequency-bands, which however sounds
very di�erent and makes little sense in classifying sound.
The second CNN-layer could have 80 �lters and the �lter-
size of 1 ⇥ 3 so as to detect a larger size of feature in time
domain than the �rst CNN layer.
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Figure 4. The initial CNN-layer �lters are speci�cally cho-
sen with an elongated rectangular shape in order to detect
frequency non-invariant features

(2) Maxpooling: In neural network, a CNN-layer very commonly
accompanies with a maxpooling-layer. A maxpooling layer
applies a max �lter to (usually) non-overlapping subareas
of the input neurons. This layer can downscale the learned
features from the CNN-layer and help with the over�tting
by suppressing the in�uence of the smaller outputs.
In our model, the maxpooling-layer size in time-axis is ex-
actly the same as that of its previous CNN-layer so that no
important features are lost.

(3) Flatten: A �atten layer does not change the value but only
reshapes the multi-dimensional matrix into a vector. This
makes the data able to feed into a fully connected layer which
is better suitable for the classi�cation or regression task.

(4) Recti�ed Linear Units (ReLU):We use two stacked full-connected
layers with ReLU activation functions for the regression of
the �attened data. ReLU is a non-linear function which is
widely used as the activation function in neural network [6].
The basic ReLU function has the form of:

ReLU (x) =
(
x, if x > 0,
0, otherwise

(1)

Compared to the traditional sigmoid activation function,
ReLU has several advantages such as faster computation,
more e�cient gradient propagation and sparse activation, etc.
Many variants of the ReLU function have also been invented
recently such as the Leaky ReLU, Noisy ReLU, or Parametric
ReLU to solve potential problems [9, 21]. However as many
papers have proposed, the actual di�erences in performance
brought by these variants are very small and they do not
grant better performance than the basic ReLU function [1].
For each of these two layers, the neuron number is always
selected from between its input size and its output size.

(5) Dropout: It is by natural the neural network would likely to
over�t and learn the statistical noise from the training data
while performs poor with the new coming data. Dropout
is an simple yet e�cient technique for reducing over�tting
in neural networks. In the training process, neurons of the
dropout layer would be randomly set to zero at a given ratio
(i.e. 30%) so that it looks like some neurons are dropped.

It has the e�ect of making the training process noisy and
encourages neuron values learned within a layer to be more
sparse. We attached one dropout layer to each ReLU layer
and tested the drop ratio from 20% to 50% in the experiments.

(6) Softmax: The output layer is a full-connected layer with the
Softmax activation function, which is often used by classi-
�cation models. Softmax function can normalize the input
into a probability distribution like output where all values
are positive and sums up to 1:

S(xi ) =
exiÕ
i exi

(2)

With its mathematical properties, Softmax is also suitable
for calculating the proportions.

2.2 The Concatenate Model of two subroutines
As many works have stated, multiple stacked CNN-layers are good
at classifying images through gradually integrate small shapes into
higher-level structures, where each CNN layer inputs the output
of the previous layer. This character makes CNN also popular in
the sound classi�cation task since the spectrogram feature is an
image-like two-dimensional feature. However, our problem is to
calculate the proportion of each event, which is essentially not an
object-classi�cation problem that values local shapes and features
identi�cation. Therefore, using only the CNN-based framework
with the frame-based features may value too much the details while
neglect the statistic features, thus is not fully capable of predicting
the event-proportions. In order to verify this hypothesis, our second
model is a concatenate model using both frame-based STFT and
global FFT features, aiming to solve the problem by looking into
both the local and holistic aspects.

More speci�cally, based on the previous CNN-based model, we
addtionally add a subroutine that consists of multiple full-connected
layers and inputs the FFT bands of the entire signal. In the FFT
bands, only the magnitude part is used so that the feature-length is
half the length of the audio stream.

The model architecture is shown in Figure 5, where the Mel-
bands and FFT features are �rstly extracted from the same audio
stream. Next, each input feature is processed by a separate subrou-
tine in the lower-level layers until the two subroutines concatenate
(or merge) at the last hidden layer. At the output layer, the regres-
sion result is obtained based on the high-level features calculated
from both subroutines.

The architecture of the STFT subroutine before concatenation is
almost the same as the previously described CNN-based model. For
the FFT subroutine, we �rst connect the input with the maxpooling
layer to reduce the dimension of data for less over�tting. Next we
use two ReLU layers to extract the high-level representations for
the �nal regression step.

There are two types of layers speci�cally needed for the network-
concatenation:

(1) Normalization: Normalization is a family of methods that
normalize the output value of the previous layer, i.e. applies
a transformation that maintains the mean close to 0 and
the standard deviation close to 1. This technique is normally
used to for the purpose of improving the speed, performance,
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Figure 5. The �ow of the concatenate model of two subrou-
tines

and stability of arti�cial neural networks. In the implementa-
tion, we use the BatchNormalization layer proposed by [12].
Before the concatenation of the two subroutines, one Batch-
Normalization layer is attached to each side. These normal-
ization layers force the neuron-outputs of both subroutines
subject to the same distribution thus are more balanced in
their contribution to the subsequent concatenation layer.

(2) Concatenate: A concatenate layer can take inputs from mul-
tiple neural-network layers and merged them into a new
vector without changing any neuron values. As an example,
if each subroutine has 50 neurons, the concatenate layer
would simply connect them and output 100 neurons to the
following layer. In neural network, this method makes the
framework more �exible and able to process more compre-
hensive information with a proper design. In one of the
recent works, Ahmed et al. proposed a house price predic-
tion model with both the photos and text-description inputs
[2], which concatenate two subroutines from the bottleneck
layer. Their model achieved much better and stabler results
than the models with either image or text input.

The �nal softmax layer than receives the concatenated neurons and
calculate the �nal regression results for each event type.

3 EXPERIMENTAL EVALUATION
In this section, we present the dataset and the experimental results
of our two models from di�erent aspects. In each experiment, we
split the dataset into 80% training-set and 20% test-set and all results
presented refer to the output of the test-set.

3.1 Dataset
Although there exists some environmental sound dataset for re-
searches, for instance, the urban sound dataset from NYU [23] and
TUT [18], none of them are proposed for the crowded environment.
In a real crowded environment, it is very hard to label the ground-
truth of all things happening around in the real time. Therefore,
we simulated the crowded environment and built the dataset by
ourselves.

Our dataset consists of 6 di�erent sound events: walking, clap-
ping, talking, door slam, phones, trolley wheels. These sound events
are selected since all of them are very commonly heard indoor and
are related to di�erent human activities. To build the appropriate
dataset, we �rst collected the clear sound clips from the famous on-
line sound dataset: www.freesound.org. For each event we collected
100 sound clips and each is between 1 5 seconds long. Meanwhile,
we also converted all the sound �les into a uni�ed form, i.e. 10KHZ
sampling rate, 2 bytes per-sample and normalized amplitude.

With these single-event clips, we next created the crowded sound
samples by the simulation tool ’pyroomacoustics’, which was pro-
posed in [27]. Pyroomacoustics is simulation tool for indoor acous-
tic environment, which can simulate the sounds people hear in
complex environments. Users can customize the room size, place
sound events in the room, and then obtain the mixed sound stream
heard at any location. An example of our data simulation is shown
in �gure 6 where multiple walking, talking and bell sounds are
heard by a microphone in the room centre.

Figure 6. An example of the data simulation by tool ’py-
roomacoustics’

Together we generated three groups of audio samples with dif-
ferent crowded-densities, noted as crowd-4, crowd-6, crowd-8. This
group name refers to the average overlapping rate. Take group
crowd-4 as an example, multiple short sound clips that add up to
40 seconds are mixed into a 10-seconds sample, so that an average
of 4 events overlap in each transient.

We generated 20000 samples for each group and every sample is
10 seconds long. For the balance of data, the total length of each
single event sound subjects to the same uniform distribution.
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Table 1: One of the best hyperparameters of each model
found in experiments

CNN-model Concatenate-model
CNN_0 �lter number 80 CNN_0 �lter number 60
CNN_0 �lter size 57 x 5 CNN_0 �lter size 57 x 4
CNN_1 �lter number 80 CNN_1 �lter number 60
CNN_1 �lter size 1 x 3 CNN_1 �lter size 1 x 3
Dense_1 neuron number 1000 Dense_1 neuron number 200
Dense_1 dropout ratio 0.3 Dense_1 dropout ratio 0.2
Dense_2 neuron number 500 Dense_2 neuron number 50
Dense_2 dropout ratio 0.3 Dense_2 dropout ratio 0.2

Dense_3 neuron number 1000
Dense_3 dropout ratio 0.2
Dense_4 neuron number 50
Dense_4 dropout ratio 0.2

3.2 The hyperparameters

Figure 7. Some of the learned�lters from the�rst CNN-layer

In addition to the model framework, the model hyperparameters
also have a signi�cant impact on the performance. In order to �nd
suitable hyperparameters, we �rst conducted comparative exper-
iments using di�erent sets of values, of which the �lter-numbers
and �lter-size are the most important ones. According to our ex-
periments, one of the best hyperparameters of the two models is
shown in table 1. In this table, all the notations such as CNN_1 and
Dense_1 are consistent with the notations portrait in Figure 3 and
5. As we can see, compared to the CNN-model, the concatenate-
model needs much less parameters in each CNN-layer and also
less dropout ratio. This can be explained by the bene�t of joint
decision making, as each subroutine only needs to extract partial
but not all information. Another important con�guration is that
Dense_2 and Dense_4 should have roughly equal neurons so that

the concatenation does not bias towards either subroutine. For each
experiment, we set the maximum training epochs to 2000 with the
learning rate of 0.001.

For the �rst CNN-layer (CNN_1), there are 80 �lters learned,
which are of the size 57 ⇥ 6. Part of these learned CNN-features
from one of our experiments are shown in the Figure 7, where the
blue points are the features to be suppressed and the red ones are
to be activated. As we can see, the learned features consist of many
small sparse and non-consistent shapes, which makes sense since
each input sample also looks disorganized as it consists of many
di�erent events. As a result, using CNN only would not give us as
accurate results as in the single-sound classi�cation task.

3.3 The results
Table 2 shows the comparison results for each model in di�erent
data groups. For comparison, we also built a control model us-
ing the global FFT-features and full-connected layers, i.e. the FFT
sub-routine of the concatenate-model. In the experiments, this con-
trolled method performs signi�cantly worse than our proposed
models.

We use the root mean square error (RMSE) and R2 score as the
metrics of evaluating the regression results. The RMSE is the square
root of the mean square error of all events. If the real proportion is
ti and the prediction is pi for each event i (i = 1, 2, ..,N , N equals
to 6 in our case), we calculate the RMSE as:

RMSE =

vut
(
N’
i=1

pi � ti )2/N

R2 or R-squared score is known as explained-variation versus
total-variation and is commonly used for measuring the di�erences
between the real values and the predictions of a set of digits. R2
score can be explained as:

R2(t,p) = 1 �
Õ
i (ti � pi )2Õ
i (ti � t)2

(3)

, where r and p refer to the real values and the predictions respec-
tively. i is the index and r is the mean value of all r . The best possible
R2 score is 1.0 when all the predictions and real values are equal
and R2 can also be negative (because the model can be arbitrarily
worse). A constant model that always predicts with the mean value
of r , disregarding the input features, would get a R2 score of 0. In
evaluating the regression results, R2 score provides a more intu-
itional sense than RMSE since its value range is independent of the
dataset itself.

In all the three groups, the concatenate-model has shown sig-
ni�cantly better performance than the CNN-model. Compared to
MSE, R2 score can present the regression results more intuitively
as its output range is regardless of the input range.

In order to reveal the impact of input audio length, we also tested
the three models on shorter audio clips. In these experiments, we
use the same audio content but cut each of the 10-seconds clips
into 5-seconds and 3-seconds segments and tested with the same
models and hyperparameters. Figure 8 shows that 10-seconds audio
clips perform slightly better and more stable than 5-seconds and 3-
seconds clips, proved that longer inputs can basically predict better.
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Table 2: Overall results of crowd-activity prediction with di�erent data-groups

(data-groups) crowd-4 crowd-6 crowd-8
RMSE* R2* RMSE R2 RMSE R2

Concatenate-model 0.0306 0.7377 0.0378 0.6237 0.0451 0.4594
CNN-model 0.0334 0.7011 0.0418 0.4996 0.0512 0.303
Control-model* 0.0469 0.4191 0.0485 0.4095 0.0490 0.4029
*RMSE and R2 refer to the average value of all event class
*The control-model refers to the simple full-connected model with global-FFT feature inputs

Furthermore, the performance of all three models can drop very
dramatically when the audio-clips become too short (i.e. 3 seconds).

Figure 8. R2 score of each model using inputs with di�erent
audio-length

Figure 9. Per-event regression errors of crowd-4 with the
concatenate-model

The per-event results of the concatenate-model is shown in Fig-
ure 9 using boxplot. In this �gure, the per-event RMSE is calculated
using the crowd-4 data. In our experimental results, the speech or
speech sound has the largest error, while the bell or door sound is
most accurately predicted.

Inaccurate predictions of speech sound in a crowd are reasonable
because human speech is mainly concentrated in 300HZ-3KHZ
and overlaps with the spectrograms of all other sound events. In
addition, the noise in the environment is mainly concentrated in the
low frequency band, which further makes it di�cult to distinguish
the speech.

The inaccurate prediction of speech sound in the crowd is rea-
sonable because the human speech sound mainly concentrates in
the low frequency bands (300HZ - 3KHZ), which can easily overlap
with other sound events. Further more, the noise in the environ-
ment also mainly concentrate in the low frequency bands which
makes the speech sound more di�cult to be identi�ed.

4 OPEN DISCUSSION
In this work, we have proposed a system to estimate the propor-
tion of di�erent sound events in the crowded environment. This
work can be used to monitor the crowd activities in a new per-
spective, as most up-to-date proposed crowd-activity recognition
systems are based on images. Our methodology is largely based on
a CNN-based model with the spectrogram feature, which has been
proved outstanding in classifying the single-event sound. However,
although our problem is in many aspects similar to single-event
sound classi�cation, there is also a signi�cant di�erence. Firstly, we
used a regression model which outputs the proportion of each type
of event instead of a classi�cation model. This is because the sound
of crowd which consists of many di�erent overlapping events is
di�cult to be separated and classi�ed. Secondly, we proposed a con-
catenate model using both the framely spectrogram feature and the
global FFT features as the input. We believe the global FFT features
could help improving the performance since it re�ects the holistic
characters and is a complement to the short framely features. This
has also been proved by our results where the concatenate-model
performs better than the CNN-model statistically. Furthermore, the
concatenate-model actually needs less weights than the CNN-model
and also allows less complexity and help with the over�tting.

Our evaluation dataset is created from the tool ’pyroomacoustics’,
which can simulate indoor sound in the real acoustic environment.
In our experiments, the per-event results show that the bell sound
and the talking sound are the best and worst of all to predict. This
result matches the common sense since the power of bell sound
all concentrate in a short frequency bands and time. Regarding
the input length, our experiments also shows that the input sound
should not be less than 3 seconds, otherwise the accuracy would
drop dramatically. This may partly be caused by the truncation of
the sound events since many audio events longer than 3 seconds,
so that the model could fail to catch the entire signal. In the dataset

132



PETRA ’20, June 30-July 3, 2020, Corfu, Greece Wei Wang, Fatjon Seraj, and Paul J.M. Havinga

simulation, we assume every sound event has the similar intensity
so that each single-event sound used for generating the crowd
sound is normalized in magnitude. This could also bring one issue
to our research, i.e. the volume of each sound event in the real
environment may di�er a lot, e.g. some are talking very loudly
while some are whispering. In this sense, our model would re�ect
the proportion of the ’event power’ more than the ’event number’
in the real life applications.
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