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Nico, tijdens het schrijven van mijn bachelor thesis heb ik je een beetje leren
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hebt gedaan, moet ook jij wat hebben geleerd van mijn promotie, want van alle
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wil ik je ook bedanken voor de betrokkenheid en de feedback op alles wat ik je heb
toegezonden.

Richard, ook jou wil ik graag bedanken voor het in mij gestelde vertrouwen. Ik
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in de epidemiologie, en ik denk dat mijn proefschrift sterker is geworden door jouw
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epidemiologische blik.

| would also like to thank all my committee members, Hans van den Berg, John
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CHAPTER 1

Introduction

1.1 A short history of blood donation and transfusion

The first blood transfusion - receiving blood - and the first blood donation - giving
blood, were performed on dogs by dr. Richard Lower in 1665. Blood was directly
transferred from one dog to another. In the following year, similar experiments were
performed with different animals, including transfusions between different species of
animals. Although most of these experiments were successful, i.e. the receiving
animal remained or became healthy, people at the time still largely thought the
qualities of humans were determined by their blood, so transfusions between humans
were still out of the question.

However, this did not rule out transfusions with human recipients. The first
transfusions with human recipients of blood were even founded in the same belief
that blood determines one's qualities. These transfusions were aimed at curing mental
ilinesses, and not, as might seem obvious, as a cure for excessive bleeding. The first
transfusion with a human recipient was carried out in 1667, by Jean-Baptiste Denis
in Paris, transfusing blood of lambs and calves. Later the same year, dr. Lower
transfused a 22-year old student in Cambridge with the blood of a sheep. Although
both these patients reportedly survived their transfusions, multiple other patients
died, and the practice of transfusions soon fell out of favor for approximately 150
years.

In 1818, the first human to human blood transfusion was reported. James Blundell
transfused blood to women suffering from “postpartum hemorrhage”, i.e. bleeding
after childbirth. He also suggested to only use human blood, as his experiments with
transfusion between different animal species all ended in death for the transfused
animal. Although it was known that blood was not compatible between species, all
of these initial transfusions happened without the knowledge of blood types. Blood
clotting when blood of different species is mixed was described in 1875 by Landois.
Karl Landsteiner first described the same effects when mixing blood of humans in
1901. He discovered the ABO-system (see Table 1.1), for which he was awarded
the Nobel prize. Later, the Rhesus D (often indicated with a + or - after the ABO
indication) and other blood groups were discovered.

Blood transfusions still had to deal with severe limitations. Blood platelets are
activated as soon as blood leaves the human body, and start inducing blood clotting.
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Table 1.1 Compatibility of donors and recipients. ‘v indicates that a transfusion is
possible, ‘X' indicates that a transfusion is very likely to cause clotting of blood, usually
resulting in death.

Blood type recipient
O A B AB
Olv v v V
Blood type A|lXx Vv X V
donor B|x x v V
AB|x x x V

This causes blood to quickly develop fibrinogen clots (turn into some sort of unusable
gel). As long as there was nothing available to stop this process, the amount of blood
that could be transfused was very limited, and blood could not be stored. Alexis Carrel
developed a surgical technique to be able to transfuse more blood, first used in 1908,
for which he too received the Nobel prize. Richard Lewinsohn introduced sodium
citrate as a first anti-clotting solution. Very high, toxic levels of the solution were
already used in laboratories for the same purpose, but he proposed experimenting
with much lower levels to store blood. This blood was only stored for hours, but
the addition of dextrose to the solution made storage for weeks possible. Similar
solutions are still used for the long term storage of blood, up to 42 days.

The introduction of anti-clotting solutions made the introduction of blood banks
possible. Although blood banks are now often tasked with collection, testing, storing
and distribution of blood and derivative products, the first blood banks directed blood
donors to hospitals in need of blood. The first blood bank of this type was established
in London in 1921 by Percy Oliver. (Section based on [87, 129, 186])

1.1.1 The Netherlands

Following the example of Percy Oliver in 1921, Dr. H.C.5.M van Dijk established
the first blood bank in the Netherlands in Rotterdam. Blood banks in The Hague
and Utrecht soon followed. Even in this earliest stage, the conscious decision was
taken that donors in the Netherlands should be voluntary and non-remunerated, a
principle that still stands. During the run-up to the Second World War, the demand
for blood rose, and facilities were opened in Rotterdam and Amsterdam. The facility
in Amsterdam survived the war and developed into the Central Laboratory for Blood
Transfusion Services, or CLB for short.

In 1947 the CLB started producing pharmaceuticals from blood plasma. In the
following years the CLB expanded quickly. A laboratory for blood typing was built,
and diagnostic and scientific research into blood transfusion was started. In 1962,
the amount of scientific research within the CLB had reached a level that a separate
foundation was created, the Karl Landsteiner Foundation. By this time, the CLB
was doing 700,000 tests per year, making it the largest diagnostic facility in the
Netherlands.

The number of blood banks in the Netherlands, responsible for directing donors
to hospitals, had grown to 110 by 1973. With the introduction of centralized storage
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of blood, this number was reduced to 22 in 1982. These new blood banks were all
independent, and were tasked with collection, storage and distribution of blood. In
1998 a new law on blood supply, “Wet inzake bloedvoorziening”, was implemented.
This led to the foundation of Sanquin — from the Latin word for blood: sanguis — by
merging the CLB with these blood banks. At this point, the number of blood banks
was reduced to nine. In 2001, the number of blood banks was again reduced, leaving
four blood banks, still in operation today: North-East, North-West, South-East and
South-West. (Section based on [135])

1.1.2 Sanquin

Sanquin has been established by law as the organization responsible for collection,
production, storage and distribution of all blood and related products in the Nether-
lands. In 2016, Sanquin had 2821 employees, working in over 130 locations. In
total, over 720,000 donations were collected by Sanquin. Currently, 343,112 people
are registered as a blood donor in the Netherlands. In addition to the blood bank,
the largest division, Sanquin has five other divisions. The first is a large facility
fractionating blood products from blood plasma for both national and international
usage. Second, a diagnostics division testing donations and other blood samples. A
third division produces reagents used in blood typing. Fourth, Sanquin operates a
tissue bank that stores bone and other human tissue. Finally, Sanquin also has a
large Research division. This research division mainly does scientific research into
transfusion medicine and immunology. The research presented in this thesis has also
been supported by and has taken place in close collaboration with this division.

The main focus of this thesis, however, is on the blood collection activities of
the Sanquin blood bank. Different types of donations are collected, but two types
form the overwhelming majority of donations. The first is the whole blood donation.
This is the simplest possible donation. A needle is injected, and 500 ml of blood
is transferred into a bag, which contains some anti-clotting solution. Although a
healthy human can easily lose 500 ml of blood, it can take a human body months
to replenish the cells in the whole blood donation. Therefore, at least 56 days have
to pass between two whole blood donations, and maximum number of donations per
year has been set: 3 for females and 5 for males. In 2016, a total of 420,163 whole
blood donations were collected by Sanquin.

The second major type of donation is the plasma donation. Plasma is the fluid
that contains the blood cells. Plasma also contains proteins and other substances that
can be used to produce pharmaceuticals. With a plasma donation, blood is collected
in a centrifuge. The plasma is filtered out, and the remaining cells are passed back
into the donor body. Although this procedure takes longer, it is less invasive in
the long run, as plasma is replenished much quicker than blood cells. Plasma can
therefore be donated every two weeks. In 2016, a total of 306,402 plasma donations
were collected by Sanquin.

Donations at Sanquin blood collection sites still take place on a voluntary, non-
remunerated basis, as recommended by the World Health Organization. This has
multiple reasons, not the least of which that paying for donations might attract
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unwanted donors, and might cause donors to lie about their eligibility to donate.
However, voluntary donors want and deserve the best possible service. An important
aspect of offering the best possible service is the minimization of waiting times that
a donor may experience at a blood collection site.

1.2 Motivation

Every year, approximately four million trauma, oncology, hematology, and obstetric
patients, of all ages, in Europe require blood transfusions. Moreover, several millions
of immune compromised, clotting factor deficient, and other patients are treated
with plasma-derived pharmaceuticals, for which approximately four million kilogram
of plasma needs to be collected every year. The supply of these blood products
depends on blood banks having access to sufficient healthy and motivated donors.

As required for the safety of both the donor and the recipient of the blood
donation, donors receive a limited health check, which could be seen as a small
compensation. Donors also occasionally receive small gifts after some number of
donations. However, this is not at all proportionate to both the advantages gained
by the recipient of the donation and the time and effort put in by donors. Sanquin
and other blood banks therefore rely on altruism of donors. However, if donors have
negative associations with the blood bank, donors might not be willing to make
further donations.

Ferguson [81] has done a literature survey on the return behavior of donors, and
finds that among organizational factors, waiting time at the collection site is the
most consistent negative influence on the return behavior of donors. More recently,
McKeever et al. [132] confirmed the negative association of long waiting times with
the probability that a donor returns for a subsequent donation.

Non-returning donors can cause substantial problems for Sanquin. Recruiting new
donors requires far more effort and is more expensive than inviting an existing donor
back. A potential new donor first has to be convinced to become a blood donor,
a process that requires a time investment at the very least. Before the first actual
donation, the donor visits a collection site and goes through a screening process to
determine eligibility. Additionally, if too many donors have negative associations with
the blood bank, this could cause general goodwill decrease, making both retaining
and recruiting donors much more difficult.

Clearly, Sanquin must be concerned about waiting times experienced by donors
at collection sites. The easiest way to improve waiting times has always been to
expand the capacity. At Sanquin this could imply either more collection sessions,
more collection sites or more capacity during current collection sessions. All of these
solutions would require additional investments by Sanquin, which is not possible given
budget constraints.

The only remaining option to decrease waiting times is to use the existing capacity
of Sanquin’s collection sites more effectively. For this purpose, this thesis presents
a number of approaches to compute, predict and decrease long waiting times at
collection sites, without the need for increased capacity.
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1.3 A blood collection site

Most of the research in this thesis focuses on analyzing and improving the service
and efficiency at blood collection sites in the Netherlands. Here, it is important
to note that collection sites throughout the world have similar layouts, structures
and processes, and the methods can be applied in other countries as well. Blood
collection sites in the Netherlands come in two main varieties: fixed sites and mobile
sites. Fixed collection sites are located in major cities in the Netherlands. These
locations have at least a few sessions every week. Most fixed collection sites collect
both whole blood and plasma donations. Mobile sites are located in towns and small
cities, and are visited by trucks, on average, once a month. The number of visits
can vary between every two weeks and a couple of times per year, depending on
the population in the service area. Upon arrival, the trucks deploy a fully equipped
collection site. Mobile sites only collect whole blood donations.

Opening times and days of Dutch blood collection sites vary between collection
sites. There is consistency though, as opening times are always one or a combination
of the seven different collection sessions shown in Table 1.2. For staff scheduling,
an extra half hour before and a half hour or hour after the session is added to the
shift. This extra time is necessary to set up equipment when starting a collection
session and to clear the collection site and shut down the equipment at the end of
the collection session. A session is usually divided into one to three shifts, with a
shift covering a morning, afternoon or evening. Each shift is covered by 6 to 12
staff members, depending on the size, measured in the number of donations beds
and interview rooms, of the collection site, and to a far lesser extent, the time of
day. This means that the total number of staff members that is present at the
collection site may change during the day. But even for long collection sessions the
total number of staff members present changes only slightly.

Table 1.2 Session types at Sanquin and their opening hours (M=morning, A=afternoon,
E=evening).

session name opening hours

M1 8.00 - 11.00
M2 8.00 - 12.00
MA 8.00 - 15.30
AE 12.30 - 20.00
El 16.00 - 20.00
E2 17.00 - 20.00
MAE 8.00 - 20.00

At collection sites, two main types of staff member are always present: general
staff members and one physician. All tasks described in the description of the col-
lection process below can be executed by general staff members. A physician always
has to be present in case of complications during a donation (e.g. fainting). The
physician also has to be present to answer questions of donors and general staff
members in case the eligibility of a donor is non-trivial. In addition, the physician is
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Figure 1.1 Typical arrival pattern of walk-in whole blood donors for a collection site that
is opened the whole day (MAE session).
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Arrivals per half hour

Time of day

also responsible for the interview of new donors. It is important to note that, in the
Netherlands, the first donation does not involve a donation, and therefore has been
excluded from this thesis.

The number of arriving donors is managed differently for whole blood and plasma
donors. For whole blood donors, Sanquin decides on how many donors to invite to
come in for a donation every week. This is currently a manual decision and is done
by setting a collection goal for every collection site. This goal is based on the current
stock - and by extension the expected stock - of blood products. As the probability of
no-show per collection site is known, the goal is then divided by the probability that
a donors shows up to determine the number of invitations that will be send out to
donors. In this invitation, a specific date and time are not specified, but a two week
period for the donation is mentioned instead. After receiving an invitation, which
does specify a collection site, a donor is free to decide when to donate and whether
to donate at all. A donor is also free to donate at a different collection site than
specified on the invitation. All of these uncertainties result in strongly time-varying
arrivals. However, clear patterns do show up. The arrival patterns differ between
session types. However, even though the absolute number of arrivals change from day
to day, the ratios between hours is largely constant for a session type. An example of
an arrival pattern is shown in Figure 1.1, which shows the average number of arriving
donors for every half hour during an MAE session.

Plasma donors, in contrast, must make an appointment for their donation. This
gives Sanquin much more control in the arrivals of plasma donors to collection site.
Sanquin aims, and mostly succeeds, in spreading these arrivals uniformly throughout
the day.

When a whole blood or plasma donor arrives at a Dutch blood collection site,
the donor will first go to the Registration desk. Depending on the collection site in
question and the time of day, there might be a short queue before the registration
desk. After the possible queue, the arrival of the donor is recorded and the potential
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donor is handed a questionnaire. The donor is asked to fill out this questionnaire,
which mostly includes questions regarding the donor’s health and eligibility to donate
blood. After the questionnaire is filled out, the donor deposits the questionnaire at
the registration desk, and takes a seat in a waiting room.

The donor now has to wait for a staff member to pick up the donor. In this queue,
plasma donors, identified by a different color questionnaire, are serviced with priority.
When the donor is picked up, the staff member takes the donor to an interview room
and discusses the questionnaire with the donor. Subsequently, the staff member
tests the pulse, blood pressure and Hemoglobin (Hb) level of the donor. If neither
the interview, nor the tests, give an indication for ineligibility for a blood donation,
the donor is directed to the donation room, and is again asked to wait to be picked
up by a staff member. On average, the interview and tests take about six minutes.
Note that the interview can be done by a general staff member, except for a first
time visit. The interview stage usually is a bottleneck in the process, as there is only
a limited number of interview rooms. These interview rooms are also used for the
much longer lasting interviews at a first visit. Aside from the priority received by
plasma donors, the interview is the same for whole blood and plasma donors.

When the donor is picked up from the waiting area of the donation room, the
donor is guided to a donation chair. For plasma donations more equipment is required
than for a whole blood donation. For this reason, a fixed collection site usually has a
number of donation chairs that already have the plasma equipment set up, and will
not be used for whole blood donations. Usually, staff members are assigned to either
whole blood or plasma in the donation room, and sometimes the plasma donation
chairs will even be in a different room than the whole blood chairs. This largely
separates the donation stage of the process for whole blood and plasma donors.

Setting up the machine and connecting it to the donor takes more time for
plasma donations than for whole blood. After starting the donation, while the actual
donation is ongoing, no staff member is directly required, unless complications occur.
The donation machine signals the staff members when 500ml of whole blood or 660ml
of plasma has been collected and the donation is finished. The donor then waits for a
staff member to uncouple the donation equipment. On average, the collection process
takes approximately fifteen minutes for a whole blood donation, and 45 minutes for
a plasma donation. After the donation, the donor is offered a refreshment, before
leaving the collection site.

1.4 Literature

Specific literature on blood collection sites is sparse, as confirmed by the literature
review on blood management by Bas et al. [20]. A first aspect of the analysis of
blood collection sites is to determine the arrival pattern of walk-in donors. Bosnes et
al. [32] and Testik et al. [173] both focus on determining and predicting the arrival
pattern of blood donors. Testik et al. also determine the minimal number of required
staff members based on these arrival patterns. Blake and Shimla [29] also determine
minimal staffing requirements for blood collection sites by modeling blood collection
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sites as a series of M/M/c queues.

Simulation models have frequently been used for the actual analysis of blood
collection sites. Pratt and Grindon [154] were the first to use a simulation model
for the analysis of a blood collection site. They tested a few scenarios with respect
to arrivals and scheduling strategies. Brennan et al. [38] developed a simulation
model for the American Red Cross blood collection sessions to reduce waiting times.
The Red Cross was concerned that long waiting times would reduce the willingness
of donors to return for subsequent donations. Several strategies were tested and
are presented in this paper. Michaels et al. [136] use a similar simulation model to
improve donor scheduling at the American Red Cross.

Alfonso et al. [7, 8] also used a simulation model. They described a French blood
collection site as a Petri net, and turned this Petri net formulation into a discrete
event simulation model. The model is used to test several scenarios for the blood
collection site, based on three different arrival patterns.

Bretthauer and C6té [39] developed a method to determine the required capacity
of Health care systems based on a mathematical programming approach. One of the
two test cases included in their paper is based on a blood collection site. De Angelis
et al. [15] studied the allocation of servers at health care systems by combining
simulation and optimization. They also used a blood collection site to demonstrate
the practical application of their method.

Alfonso et al. [6] present a Mixed Integer Non Linear Program to schedule ap-
pointments at blood collection sites. Their method takes waiting at the blood col-
lection site into account based on a Petri net formulation of the blood collection
site. The arrivals of whole blood donors without appointments are combined with
appointment based arrivals for plasma and platelet donors. Alfonso et al. [9] also
study the problem of scheduling donors, this time combined with capacity planning.
They formulate the problem as a mathematical programming model, and evaluate
the results with a simulation model.

1.5 Thesis outline

Following this introduction we introduce the technical method of Uniformization in
Chapter 2. A chapter is devoted to the method because it is one of the underlying
methods for many of the approaches presented in this thesis. Chapters 3, 4, 6 and 7
are based on the method. Chapter 2 discusses the basics of uniformization, as well
as several extensions and applications of the method. each extension is supported by
numerical examples. A broader scope of uniformization is presented in Chapter 2 than
is required for the subsequent chapters. However, it does provide the opportunity
to give an overview of the other possibilities with the method, and insights in the
intuition behind the method.

Part Il: Evaluation, contains two chapters that discuss methods to compute and
evaluate waiting times and queues at blood collection sites. Chapter 3 contains three
main results. First, it provides a closed form expression for the queueing distributions
at blood collection sites in steady state, under an exponential assumption. Second,
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it proves that a standard expression for M/M/c queues can be used to determine the
waiting time distribution at the individual stations of blood collection sites. Third,
a numerical procedure is given to compute the total delay time distribution of all
stations at the collection site combined. Chapter 4 then shows a potential approach
to include time-dependencies into the transient computation of queue length distri-
butions at blood collection sites. The research presented in this chapter strongly
depends on uniformization.

The first three chapters of Part Ill: Optimization, provide structured approaches to
decrease waiting time at blood collection sites. Chapter 5 proposes a staff scheduling
approach that bases required staff levels on expected waiting time at a collection site
throughout the day. Its simultaneous utilization of flexible shift lengths ensures that
no extra staff are required, while fostering waiting time reductions in most cases.
Chapter 6 introduces a Markov Decision Process to reallocate staff members during
a collection session, based on the number of donors present at the collection site.
Chapter 7 shows how appointments can be introduced for whole blood donors to
distribute arrivals of donors more equally over the day, and shows the effects for the
other donors at the collection site.

The final chapter of Part Ill, Chapter 8, proposes a method to improve the
inventory management of red blood cells. In the proposed method, the red blood
cell unit that is used to fulfill a requested unit, is based on both the age and rarity
of the red blood cell units available.

Finally, the thesis will be concluded with a general conclusion in Chapter 10.
This will summarize the results of all chapters combined. Both the opportunities to
implement the results from this thesis, and the opportunities for future research will
be discussed.

11






CHAPTER 2

Uniformization: Basics, extensions and
applications

2.1 Introduction

In this chapter, we will present a computational method to transform continuous time
systems, such as blood collection sites, to discrete time systems: Uniformization. The
method will be used in several chapters in this thesis. This chapter presents the basics
of the method, as well as several extensions and applications. The chapter is meant
as an overview of the method, and not all of the extensions and applications are
related to the remaining thesis.

Continuous-time Markov chains are widely applicable for modelling practical situ-
ations that evolve continuously in time with jumps or changes at specific epochs, with
applications in, e.g., telecommunications, computer systems, manufacturing, mate-
rial handling, inventory theory, maintenance and reliability. Over the last decades,
uniformization introduced in [117] has been shown to be a powerful tool for per-
formance analysis of systems modelled by continuous-time Markov chains, see, e.g.,
[96, 99, 134].

Uniformization, also referred to as randomization, or Jensen’s method, trans-
fers continuous-time Markov chains (CTMCs) into discrete-time Markov chains
(DTMCGs). As a result, for the uniformized chain steady state equations as well
as iterative computation of the transient distribution (from discrete-time point to
the next discrete-time point) can be applied directly in line with standard DTMCs.
For the important case of transient analysis of the CTMC over a finite time horizon,
the uniformization approach transfers the CTMC into a discrete Possionian matrix
expansion. As this expansion allows for an infinite number of Poisson steps, some
form of computational approximation, e.g., by tail or state space truncation, will
necessarily be involved, even when the state space itself is finite. As a result, a large
number of papers on uniformization in literature is devoted to effective computation
of transient performance measures.

The uniformization technique seems to be perceived to be restricted to CTMCs
with (i) time-homogeneous and (ii) uniformly bounded transition rates. The first
condition is justified for steady state situations, but is less realistic for transient
analysis. Transition rates usually remain bounded over finite time intervals, but
the second condition can easily be violated in practical situations, for example, it

13
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already fails for the infinite server queue. In addition, in literature, uniformization
techniques seem, often, to be applied without a formal justification or an explicit
argument for the results to be exact or approximate. This chapter provides an
overview of exact and approximate uniformization results beyond time-homogeneous
and bounded transition rates.

Uniformization is an appealing technique for performance evaluation of CTMCs
as it uses a discrete-time Markov chain to obtain the continuous-time transition
matrix. As will be shown in Section 2.3.2, for a conservative and irreducible CTMC
X; with countable state space S and generator Q = (q(¢,7), 4,7 € S) such that
22 4(1,J) < B < 00, the transition matrix P; with elements P (i, j) = P(X; =
Jj|Xo = ©) can be written as:

P.(i i) — = (tB)* —tBpk(; e ”1
t(ZaJ)_Z K € (Za])a 1,) €0, t>07 ( . )
k=0 ’

where P* is the k-th matrix power of the one-step transition probability matrix
P=1I+ %Q of a DTMC, the so-called uniformized Markov chain. Analysis of a
DTMC, in general, is much less involved than analysis of a CTMC. As a consequence,
uniformization in its standard form (2.1) is often applied to obtain

1. average or stationary results,
2. transient results, and
3. cumulative rewards

for CTMGs.

The uniformized Markov chain has the same transition structure as the CTMC.
Therefore, equivalence of average or stationary results for the uniformized Markov
chain and the CTMC seem to be intuitively obvious. In Section 2.3.3 we will make
this explicit showing that both Markov chains have the same generator. Note that
also for average results uniformization is numerically appealing since we may obtain
these results via iterative computation of P* = PP¥~1 k =1,2,3,..., whereas for
the CTMC we have to solve a possibly large or unbounded system of equations using,
e.g., a Gauss-Seidel method [170].

Obtaining transient results, such as the explicit distribution P(X; = j| X, = 4) at
time t, is, perhaps, the best known application of uniformization. To this end, from
(2.1), we may obtain P(X; = j| X, = i) by iterative computation of P* and observ-
ing that the CTMC makes k steps until time ¢ according to a Poisson process with
rate B of which some steps result in dummy transitions. Interpretation of this result
as thinning of the Poisson process with rate B suggest the generalisation of stan-
dard uniformization to exact uniformization for a CTMC with time-inhomogeneous
transition rates Q; = (q:(i,J) i,7 € S), reflecting, e.g., arrival patterns, or service
speed fluctuations. This generalisation will be presented in Section 2.5.

The uniformized Markov chain may also be used to obtain cumulative rewards.
In Section 2.6 we will first consider the CTMC that incurs reward at rate (i) while
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residing in state ¢. Uniformization then allows evaluation of the total reward W, at
time t via the k-step reward W* of the uniformized Markov chain by analogy with
(2.1). Uniformization for rewards is also most appealing to obtain the average reward
for a CTMC in the stationary regime. In particular, the DTMC directly enables use
of computational bounds, such as the Odoni bounds that are well-known for Markov
decision processes [148]. Uniformization for cumulative rewards may also be extended
to the time-inhomogeneous case, as will be illustrated in Section 2.6.4.

To illustrate uniformization beyond CTMCs with bounded transition rates and
countable state spaces, we also consider approximate uniformization for unbounded
transition rates in Section 2.7 and exact uniformization for continuous state variables
in Section 2.8. The transition rates for the infinite server queue are unbounded. We
show that an approximate uniformization technique that introduces a DTMC by
analogy for the uniformized Markov chain for states 0,..., N and uses the discrete-
time Markov jump chain for states N + 1, N + 2,... yields an approximation that
is asymptotically exact for large N. Section 2.7 presents results indicating that this
approximate uniformization approach is asymptotically exact for large N for general
CTMC with unbounded rates.

Uniformization samples time at Poisson rate and uses a DTMC that makes tran-
sitions at the epochs of the Poisson process to evaluate performance measures for
CTMCs. For a process with a continuous state space we may also consider uni-
formization with respect to the continuous state space. As an illustration, Sec-
tion 2.8 considers a uniformization procedure for stochastic service networks with
non-exponential service times. Note that such processes need the residual or spent
service times to be included in the state description to have the Markov property.
Via the hazard rates of the service times we consider a Poisson process that samples
the service times and consider the transitions of the uniformized model that makes
transitions at the epochs of this Poisson process. We show that the equilibrium dis-
tribution of the uniformized model coincides with that of original process. This result
opens a route to new applications of uniformization to continuous state variables.

This chapter is meant as an expository chapter to provide a basis for uniformiza-
tion and its generalizations, as well as to shed some light on computational issues.
Some remarks on numerical evaluation and comparison between uniformization and
time-discretization are included in Sections 2.3 — 2.7. First, a brief survey of the lit-
erature is included in Section 2.2. In line with literature, Section 2.2 mainly considers
numerical approaches to exact and approximate uniformization. The Poissonian ex-
pression for the transient probabilities (2.1) includes an infinite Poisson summation,
since the number of Poisson epochs in an interval of length ¢ is unbounded. Unless
an analytic form can be found for the k-step transition probabilities P*, for com-
putational purposes a truncation for this Poisson summation is required to evaluate
(2.1). There is a vast literature on its numerical consequences, see Section 2.2.1.
The state space might be infinite, either through a continuous-state description or,
as more common in performance evaluation, through a discrete but enumerable state
space, see Section 2.2.5 that indicates that countable state spaces are mainly ad-
dressed in the setting of Markov decision processes. Other important cases addressed
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in Section 2.2 include unbounded transition rates and steady state detection.

The remainder of this chapter is structured as follows. Standard uniformization
is addressed in Section 2.3 in a self-contained manner, including embedding in the
general setting of continuous-time Markov processes, a formal justification, some in-
tuitive views and different interpretations that form the basis for the generalizations
in subsequent sections. Section 2.4 presents a numerical illustration of standard uni-
formization for a web server application and a comparison with a time-discretization.
Sections 2.5 to 2.8 then provide a number of extensions. These sections are set
up identically and are in parallel, with theoretical results first, followed by numeri-
cal support (excluding Section 2.8). Exact uniformization for time-inhomogeneous
transition rates is introduced in Section 2.5, and Section 2.6 considers exact uni-
formization for reward models. Section 2.7 presents approximate uniformization for
unbounded transition rates, and Section 2.8 extends uniformization in time to exact
uniformization for continuous state variables for non-exponential networks. Although
most of the theoretical results in these sections are not new, the aim of the chapter
is to Introduce the method of uniformization and possibly stimulate further research
into the uniformization method. Finally, Section 2.9 completes the chapter with
some remarks on possible further developments of the uniformization technique both
in theory and applications.

2.2 Literature

This section provides a brief overview of literature on uniformization highlighting the
special cases of uniformization that are addressed in this chapter.

2.2.1 Standard uniformization

Jensen [117] introduced the basic uniformization method, as explained in more detail
in section 2.3, in 1953. Grassmann [95] compares uniformization to Runge-Kutta and
Liou's method for computing transient distributions of Markovian queueing systems
and finds uniformization superior to these methods. Some numerical experiments for
(at the time considered large) queueing systems are shown. An implementation of
uniformization for computing transient distributions is presented in [94] and extended
to compute the waiting time distribution of an M/M/1 queue where the next job to
receive service is randomly selected from the queue. Gross and Miller [99] present
algorithms to compute unifomization results and some additional transient perfor-
mance measures of a Markov process, such as expected sojourn time averages and
the expected number of events. Motivated by the need to compute delay times and
first passage times in queueing networks, Melamed and Jadin [134] discuss a method
to bound the time spent in a specified set of states in a CTMC, before moving to
another specified set of states. The method is then applied to a tandem queueing net-
work, for which the bounds on the sojourn time are computed. Reibman and Trivedi
[157] compare uniformization to both an implicit and explicit numerical solution to
the underlying differential equations. Uniformization is shown to be more accurate
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at lower computational cost, except for very stiff models, i.e., models where states
have out-rates of greatly varying magnitude. For very stiff models, uniformization is
outperformed by implicit differential equation solution algorithm.

For Markov reward processes, Reibman et al. [158] compare several approaches.
Uniformization is considered an efficient algorithm to obtain transient state proba-
bilities for non-stiff models, while for stiff models implicit solutions to the differential
equations are preferred. For the distribution of cumulative rewards, uniformization is
again the method of choice, if the model has a low number of distinct reward rates.

2.2.2 Time-inhomogeneous uniformization

Uniformization is well suited to be applied to time inhomogeneous systems. Schwarz
et al. [164] recently surveyed the literature on performance analysis of time inhomo-
geneous queueing systems including time inhomogeneous uniformization. The survey
mentions that the method has two major advantages: it can be applied to any Marko-
vian queueing system, and it can be used to compute the entire distribution. In a
comparison of uniformization with five other methods for the M (t)/M/s(t) queue
by Ingolfsson et al. [111], uniformization is shown to be almost as accurate as an
exact differential equation solver, but uses less than half of the computational time.
In contrast, some approximations such as the modified offered load approximation
[116] may be much faster, but less accurate. Creemers et al. [54] use uniformiza-
tion to analyze inhomogeneous multi-server queues with phase-type distributed inter
arrival, service and abandonment times. Dormuth et al. [71] compare uniformiza-
tion to the backwards Euler method for a time inhomogeneous single server queue
with phase-type distributed service time and shows that both methods perform well.
Andreychenko et al. [14] introduce a method for the computation of infinite-state
time inhomogeneous CTMCs through uniformization. Their method, similar to an
adaptive uniformization technique, for the next time-step only considers states where
the majority of the probability mass is located.

A theoretically exact method to determine transient distributions for time inho-
mogeneous CTMCs is developed in Van Dijk [64], and discussed in more detail in
Section 2.5. The work is continued and implemented numerically in [141] and [16].
Rindos et al. [162] suggest a method to convert a time inhomogeneous CTMC in a
homogeneous CTMC that may then be analyzed via uniformization.

2.2.3 Steady state detection

Muppala and Trivedi [142] introduce a method to reduce the computational efforts
of uniformization. They suggest the use of steady state distributions instead of
computing all vector-matrix multiplications if the difference between iterations i and
i—m is small enough. The method is demonstrated by applying it to a closed queueing
network based on a computer system. Malhotra et al. [128] compare uniformization
with steady state detection to a third and second order implicit solution method to
the differential equations. The methods are evaluated based on their accuracy and
computational cost when solving stiff CTMCs. For mildly stiff models, uniformization
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is the method of choice as it has lower computational cost. For very stiff models,
the implicit solution method is preferred.

2.2.4 Adaptive uniformization

Adaptive uniformization is introduced by Van Moorsel and Sanders [139]. The uni-
formization rate under adaptive uniformization is based on the states the process may
reach in a particular number of jumps, whereas this rate is based on the complete
state space under standard uniformization. Under adaptive uniformization the uni-
formization rate may be lower, leading to a potential reduction of the computation
time. The main computational savings of adaptive uniformization are in limiting the
size of the space of states the process may reach, and therefore also in the compu-
tational load of the matrix-vector multiplications. Unfortunately, in most cases the
distribution of the number of transitions in intervals is not Poisson. Adaptive uni-
formization is computationally more intricate than standard uniformization. Diener
and Sanders [59] numerically compare different adaptive uniformization methods and
find that so-called layered uniformization gives the lowest roundoff errors. Depend-
ing on the problem and its size, layered uniformization is much faster than standard
uniformization. Didier et al. [58] present a faster, although slightly less accurate,
version of adaptive uniformization that seems especially useful for biochemical reac-
tions. Adaptive uniformization is most useful if the number of states the process can
be in is small, usually a short time after the process started. As this number of states
increases with time, the computation time of adaptive uniformization increases, and
standard uniformization becomes the faster method. [140] suggests using adaptive
uniformization up to some time threshold and then switching to standard uniformiza-
tion to take advantage of both methods.

In addition, as the uniformization rates are based on the states the process may
reach in a finite number of steps, adaptive uniformization may allow to invoke uni-
formization for systems with unbounded rates, as in demonstrated in Section 2.7.

2.2.5 Unbounded Markov decision processes

Guo et al. [101] survey recent developments for Markov decision processes (MDP).
Here uniformization may be invoked to deduce optimal decisions for a CTMC from its
DTMC counterpart. However, this is not directly possible for systems with unbounded
transition rates. Blok et al. [31] discuss unbounded rates both for discrete-time and
continuous-time MDP. Their advised course of action for an continuous-time MDP
with unbounded rates is to apply some perturbation and then apply uniformization.
Bhulai et al. [27] introduce the first general method, Smoothed Rate Truncation
(SRT), for this perturbation that conserves the structural properties of the original
model. SRT is based on linear smoothing of unbounded rates to obtain a finite set
of recurring states. Section 2.6 considers uniformization to evaluate rewards.
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2.3 Standard uniformization

2.3.1 Markov generators

This expository chapter deals with uniformization for continuous-time Markov pro-
cesses. To put this well-known concept in somewhat wider perspective, let us first
briefly present the notion of a generator. Based on the Markovian property of memo-
rylessness, continuous-time Markov processes can be characterized by their infinites-
imal generator A, see, e.g., [75, 89]. With a discrete or continuous state represented
by z, with bounded or unbounded state space S, and X; denoting the state of the
system at time ¢, the infinitesimal generator A is defined as an operator A f for
arbitrary real valued functions f : S — R, by:

d
Af(e) = = [B(f(X:|Xo = 2)) — f(x)]- (22)
As one well-known case, diffusion processes are characterized by:
d 1 d?
Af(@) = ala) 7 f(@) + 50%(w) 7 (@), (2:3)

reflecting a state dependent drift as well as a continuously adjusted Brownian motion
component. Such processes might typically be of interest in performance evaluation
to model highly random varying arrivals (e.g. Levy input) streams or highly fluctuating
service speeds. More common in perfomance modelling - essentially based on an
underlying exponential structure - is the generator of a pure Markov jump process
(see [89]). For arbitrary state space S, the generator of a Markov jump process is
characterized by:

Af(@) = [ alasdn) [7(0) = f(@). (24)
where g(x, dy) represents a transition rate density function for state x:
) 1
q(z;C) = AI%IBO KtP(XAt €eC|Xo=2z), z=z¢C. (2.5)

Mixtures of (2.3) and (2.4) as Markov jump-diffusion processes are also conceivable.
Within queueing theory and the wide application area of performance evaluation, the
Markov jump process usually has a discrete state space and is generally referred to
as a continuous-time Markov chain (CTMC). In this case, with discrete state space
S and real valued functions f : S — R, the operator representation (2.4) reduces to:

Af@) = a6 )G~ F@)], i€s. (2.6)

jeSs
In this chapter, as it is meant to be of main interest for system performance eval-
uation, uniformization will primarily be tailored to the CTMC case (2.6). For the

discrete state space CTMC case the operator A will be identified with the generator
matrix Q.
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2.3.2 Standard uniformization

Consider a continuous-time, conservative and irreducible Markov chain (CTMC) X,
with countable state space S and transition rates

q(i,j), i#7j, 1,5 €S,
for a transition from a state ¢ into another state j and for i € S
1#£i

Let Q be the corresponding matrix of transition rates. We assume these rates to
be uniformly bounded (in literature also referred to as uniformizable), i.e., for some
finite constant B < oo and all ¢ € S

q(i) = q(i,j) < B. (2.7)
i
We define the transition probability matrix P by

q(i,4)/ B, J# i
Pi.j)=901-Y q6,0)/B, =4, (28)
I#i
or
. 2.9
=1+5Q, (2.9)

where B is a uniformization rate that is not required to be equal to the maximum
exit rate from any state ¢, but can be any number satisfying (2.7).

Let P; denote the transition matrix of the CTMC with elements P(i,j) =
P(X; = j|Xo = 1), 7 the steady-state distribution of the CTMC and 74 the steady-
state distribution of the DTMC with one-step transition matrix P. The following
result was first shown by Jensen [117], and can be found in other references, see,
e.g., [96, 99, 134]. It is generally referred to as uniformization or randomization.

Result 3.1 (Standard uniformization) The steady-state distribution 7. of the
CTMC and ©q of the DTMC with one-step transition matrix P coincide:

(i) = mq(i), i€S.
In addition, for all i,5 € S and t > 0:
> (tB)*
P j) =3 UBL -impr; j), (2.10)

k!
k=0

where PF represents the k-th matrix power of the one-step transition probability
matrix P.
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For selfcontainedness, but also as starting point for the generalizations presented
in subsequent sections, below we include proofs for the equivalence of the CTMC
and its uniformized DTMC. The proof for the steady state case uses basic balance
equations. The proof for the transient case uses exponential expansion. We provide
an alternative proof for the transient case that it is based on convergence results for
processes.

Proof

The steady state equivalence of the steady-state distributions . of the original
CTMC and 7y of the discrete-time Markov chain with one-step transition matrix P is
straightforward, noting that the steady state distributions 7. and m, are the unique
solution (up to normalization) of the global balance equations for the continuous-time
and discrete-time Markov chains:

0 = T\,
TeQ (2.11)
T = 7TdP.
Substituted in detail, for j € S:
me(4) > a(ii) =D me(i)q(i. ), (2.12)
i#£] i#j
and
ma(j) = Y ma(i)p(i, )
1 . o1
= ZT"d +7Td( )—Wd(J)ZQ(JJ)§~
i£] i#£j

As the solution of (2.12) is unique up to a multiplicative constant, it must be that
Te = Td-

The result for the transient case (2.10) can be demonstrated via substitution of
(2.9) into the general expression P; = e®Q!, also see Interpretation 3.3 below. To
this end, observe that

P, = oQt — (B(P-Dt

_ oBPt —BIt BPt

b and e—BIt

[which is allowed as e

BIt BPt)*
-S R

commute]

k
B — (BPt)k
> G e
> (—Zt)k Pk,

k

21



Chapter 2. Uniformization

which concludes the proof. O

Proof via the generator for the transient case
Result 3.1 can also be concluded for the transient case invoking general limit theo-
rems, by showing that:

Pai(i,5) — L=y
At

in strong convergent sense (that is, uniformly in all ¢,5) and by applying general
results from literature (cf. [75, 88]) which state that (2.13) uniquely determines
an underlying stochastic process (in the sense of a probability law on the space of
right-continuous sample paths: D([0,oc]). The convergence (2.13) is readily shown
by writing:

—q(i,j) for At—0 (2.13)

Paiinj) = L=y (1— D 0. DAL+ o(Ab) )+
I

(2.14)
Ly (Q(ivj)At + O(At)) + o(At),

where a function f(z) = o(z) if lim,_,¢ f(z)/x = 0. O

Remark 3.1 (Continuous state case) A similar proof for the transient continuous-
state case might be provided by more extended notation. For non-exponential queue-
ing networks, a continuous-state description and corresponding uniformization is pre-
sented in Section 2.7. |

Remark 3.2 (Numerical computation) It is often necessary to restrict the range of
outcomes of the Poisson distribution for which the probability P* (i, j) is calculated.
Some approaches are common in literature. One method, referred to as the Fox-
Glynn method, introduced in [84], provides a stable algorithm to compute Poisson
probabilities. Uniformizaton is the method of choice for the evaluation of the matrix
exponential for transient probabilities in CTMCs for Stochastic Model Checking.

Several tools have been introduced with the aim of automating Stochastic Model
Checking like Prism [124], Interactive Markov Chains [107] and PEPA [108]. See [21]
for a general introduction to model checking. Generally, all these software tools are
focused towards the calculation of probability vectors and use the Fox-Glynn method.

A widely used method is scaling and squaring, see, e.g., [147]. Here we observe
that we can write

Py, = QY = (th) (th) = (Pt)2

and thus calculate P, for some reasonable value of ¢y and calculate P; by successive
squaring for large values of ¢ with a limited number of matrix multiplications. In many
cases the full matrix is not needed and substantial computational savings can then
be obtained using only matrix-vector operations.
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2.3. Standard uniformization

An obvious way to evaluate (2.10) is to truncate the sum:

N
N, .. tB)* _ .
PG )~ Y B oo ),
>

=0

With [| - || the supremum norm [[A[| = sup; . |a;;| for any matrix A = (a;;):

N — (tB)* _
Pe-PiM= 30 e
k=N+1

As a consequence, for any ¢t > 0 this truncation converges to P; as N — oo, but

lim sup ||P, — P{™|| =1,
N—oco t>0

so convergence is not uniform in t. The approximation performs badly for fixed NV
and large enough ¢. If the process has an equilibrium distribution we may use this
distribution ™ = 74 in the approximation, see [117],

N

Py(i,j) ~ P (i) = ma() +
k=0

(tB)"

e PPN ) = ma(i),

with truncation error satisfying

lim sup ||P, — P{™|| =0,
N—o0 t>0

so that the truncation level N can be chosen such that the approximation error has
a specified accuracy for all t > 0. O

2.3.3 Interpretations

The equivalence of the CTMC and the uniformized DTMC has several interpretations
that we present below to provide an intuitive explanation of uniformization and as
basis for some of the generalisations in subsequent sections.

Interpretation 3.1 (Overrelaxation by dummy jumps) One way to interpret (2.8)
is that dummy transitions ¢ — 4 are introduced as possible events, while the holding
times up to a next event (which may include dummy events) have been uniformized
to be the same for all states ¢ to be exponential with uniformization rate B. Given
that an event occurs a transition takes place proportional to the transition rates at
that instant. O

Interpretation 3.2 (Poisson thinning) Another way to look at uniformization is

based on the fact that events generated by a Poisson process can be seen as a series
of times drawn from a continuous uniform distribution of the time horizon. Hence,
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Chapter 2. Uniformization

if k& events have taken place, the epochs of these events are spread according to a
k-fold uniform distribution. Once these epochs are sampled, the conditional jump
probabilities are proportional to the corresponding rates at these epochs. This will
be used in section 2.5. |

Interpretation 3.3 (Same generator — backward and forward equations) A
more technical description considers uniformization as an equivalent approach to
the original CTMC through the generator. As argued in Section 2.3.1, a generator
determines a process. By analogy with the standard exponential function which is
uniquely determined by its exponential coefficient p through its derivative, % [ert] =
w [e*!], the transition probability matrix P; with elements P, (4, j) for transition from
state 4 into state j, over a period of time ¢ is determined by its generator through

P, = Q! (2.15)
or through the backward Kolmogorov equations (see, e.g., [126, p. 311])

d
ZPi=QP,, >0, (2.16)

or in detailed form, for i,j € S,

EPiig) = S a(iDPL), >0 (217)

Introducing a DTMC with transition matrix
P=I+AQ, withA<1/B (2.18)
and regarding A as a time-increment, the discrete-time analog of (2.16) is

[PE+1—PH /A = [P - T P*/A 29 qp*, (219)
which implies that the generator of the CTMC and DTMC, given in (2.16) and
(2.19), are identical and given by Q.

For a uniformizable CTMC the solution P; of the backward Kolmogorov equations

coincides with that of the forward Kolmogorov equations that may also be directly
obtained from the generator (2.15) (see, e.g., [49, Theorem 11.18.3], [126, p. 311]):

d
ZPi=PQ, >0, (2.20)

or in detailed form, for i,j € S,

%Pt(z’,j) = zl:Pt(i, Dq(l,7), t>0. (2.21)
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2.3. Standard uniformization

For the discrete-time analogon of the forward Kolmogorov equations (2.20) consider
a DTMC X, at times ¢t = kA, with one-step transition matrix P and transition
matrix Py over time ¢, then

[Paiin—Pay] [P —PF] PP -1 Py, [P -1 218 P,.Q
A - A A A T Tdts

which implies that the discrete-time analogon also has generator Q. O

Interpretation 3.4 (No order terms — time-discretization) For A sufficiently
small, instead of using the continuous-time transition probabilities

Pa(i,j) = q(i, ))A + o(A), (2.22)

we might simply ignore the order terms in A and only consider the transition terms
directly proportional to the length of time A, i.e., the transition rates ¢(i, ). Ac-
cordingly, as a transition matrix over a fixed time length h < 1/B, we might use:

P=1+hQ. (2.23)

This might be used in a time-discretization approach, with discrete-time analog Xy,
of the continuous-time process X;.

As the generators for the continuous-time and discrete-time processes are equal,
average performance measures should also be equal per unit time. For finite time
or transient measures, however, differences will still appear and accumulate due to
time discrepancies. Results will thus be approximate, as will be illustrated in Sec-
tion 2.4.3.2. O

Interpretation 3.5 (Global balance equations) For computational purposes the
forward Kolmogorov equations (2.21) are more common as they allow for a straight-
forward interpretation as balance equations balancing probability flux into and out of
the states. Recall that if Q is conservative, (2.21) then reads

—Pt = {Pu(i.)q(l,§) — Pu(i,j)a(i, D)}, > 0.
1#]

In particular, the global balance equations are well-known as

> me@)ali ) = me(la(l. )

I#5 I#j

for all 7, independent of initial state 4 at time 0.

The backward Kolmogorov equations have a dynamic programming structure,
and turn out to be most useful to describe rewards. In the following discussion,
we will use the forward Kolmogorov equations to determine state probabilities (see
Sections 2.5 and 2.7) and the backward Kolmogorov equations to determine rewards
(see Section 2.6). O
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Chapter 2. Uniformization

2.4 Example and numerical results

2.4.1 Web server tandem model

Consider the web server tandem model described in [76, 179, 180] depicted in Fig-
ure 2.1. The model is based on requests arriving at a web server. The system is a
two-station tandem queue, where all jobs in service share one common server. Station
i € {1,2} has limit ¢; on the number of jobs that can be in service simultaneously -
these numbers represent the maximum number of so-called threads.

Figure 2.1 The web server tandem model (picture is based on [180]). PS indicates a
processor sharing server. It serves a maximum of ¢; and c2 jobs at the first and second
stations respectively.

O O

O O
O O

Let ®,;(n1,ns) be the proportion of the total service speed attributed to station
i € {1,2} in state (nq,ng). The transition rates are:

A (n,n5) = (n1 +1,n2),
q((n17n2), (nllané)) = ,u1<I>1(n1, n2)> (77/1, 77/2) (TL1 —1,ng + 1)7 (2'24)

pa®z(ny,ng), (ny,ny) = (ni,na — 1),

where )\ is the arrival rate and 1 and ps are the maximum service rates of station 1
and 2, respectively. For ¢; = ¢ = oo the system can be seen as a standard processor
sharing system with

Uz

— . i=1,2
ny + no

®i(ny,n2) = ,
The system can then be shown to have a product form steady state distribution, see,
e.g., [24, 47, 180], with 7(0,0) the normalizing constant:

f + ng 1]
7(ny1,ng) = m(0,0) N1 172 (m ) [} , n1>0,ny>0. (225
(m1,m2) = 7(0,0) 2] mzomzo e
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2.4, Example and numerical results

From this expression we readily compute performance measures of the form

G=Y_ > m(ni,na)g(ni,ny), (2.26)

n1=0mn2=0

where G may represent mean queue lengths, queue length tails, excess probabilities
or the effective service speed of either of the two stations. As an additional appealing
feature, in this particular processor sharing case, this product form can be shown to
be insensitive, i.e., not to depend on the service distributions other than via their
means (e.g. [47, 172]).

For finite numbers of threads c¢; and cs, however, an analytic result is much
harder to obtain. For example, it is shown in [180] that for service sharing specified
by:

min{n;, ¢;}
min{ny, ¢} + min{ng, co}

@i(nl,ng) = (227)

a product form expression cannot be obtained. Numerical computation to evaluate

performance measures is thus of interest, where uniformization will then be very
useful.

2.4.2 Numerical evaluation

Equation (2.10) can be numerically evaluated by truncating the sum at level K. It
can then be used to approximate the queue length distribution as:

K
tB)* .
T = Zﬂ'o%eitBPk, t>0, (2.28)
k=0 )

where 7 is the intial distribution. This, in turn, can be used to compute performance
measures.

The algorithm used in the remainder of this section does not use matrix powers.
First define 7(*) as the queue length distribution after exactly k transitions, and w,ﬁ’“)
as the not normalized queue length distribution if at most k transitions take place

during time t. Initialize these two as follows:

(0)
m, =0,
‘ (2.29)
7T(0) = Tto.
We may now iteratively compute, for £k =1,2,.. .,
7k = pk-Dp, (2.30)
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ng) =T

_ tB)*
= +7( k:') e tBr®) (2.31)

converging to m; for Kk — oo. As this infinite limit is impossible in numerical compu-
tations, the total number of iterations will be limited by K that we have defined as
the smallest K that satisfies:

K
tB)k _
1—2( k!) e B <1076, (2.32)
k=0

2.4.3 Results

This section contains numerical results illustrating the speed of convergence to steady
state and comparison of uniformization and time-discretization. For the numerical
computations, we will set a maximum of N7 and N> to the number of jobs present
in the first and the second station, respectively.

2.4.3.1 Convergence to steady state for varying service rates

For the first computational experiment, the web server tandem model was started
empty. The maximum number of jobs in the first and second station are N = Ny =
99. The maximum number of available threads ¢; and ¢y are set to 5. The arrival
rate A = 1, while the service rate was varied. The transient queue length distribution
was determined until the steady state was reached, where we consider the system
to have reached steady state if the difference between two distributions that are one
time-step apart is sufficiently small:

H’Tf‘tfl - 7Tt|| < 10_6. (233)

This condition was checked after every time-unit, starting with ¢ = 0. The average
number of jobs in the system in steady state is given in Table 2.1, and the time at
which the steady state was reached is shown in Table 2.2. Note that the steady state
for 1 = po = 0.5 was not reached within 10000 time-units, the maximum number
of time-units for this numerical experiment.

In the case that the queue is unstable, the steady state is, of course, determined
by the maximum number of jobs allowed in the system. If queue 1 is unstable, the
second queue might become stable due to the fact that the effective arrival rate to
the second station is the service rate at the first station. This leads to around 100
jobs in the system, as the first station is full and the second station can directly serve
the jobs arriving from the first station. If the second station is unstable, the second
station will become full, and as a result block jobs arriving from the first station,
causing this station to also become full, resulting in around 200 jobs in the system.
The time until the stationary state is reached is the longest if the second queue has
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2.4, Example and numerical results

Table 2.1 Average number of jobs present in the system. * indicates the queue is unstable,
** indicates the queue i is unstable if the other queue j has service speed pu; < 2 and ***
indicates queue 2 is stable if the service speed is 1 < p2.

2

0. 5%**  Rkk kK kkk 3 5 10
0.5% NR 101.48 99.808 99.264 98.788 98.4
1*|196.64 147.87 100.15 98.31 95.706 90.185
2*%*%1107.28 19591 74526 4.8025 2.3028 1.4934

m 31197.45 196.45 5.153 1.9995 1.1414 0.7643
51197.52 196.62 2.3473 1.1437 0.66666 0.42856
10|197.56 196.44 1.5013 0.76481 0.42857 0.25

Table 2.2 Time units until the steady state is reached. * indicates the queue is unstable,
** indicates the queue i is unstable if the other queue j has service speed u; < 2 and ***
indicates queue 2 is stable if the service speed is p1 < po.

M2
05%| NR 249 286 308 330 350
1*| 725 7208 577 828 1352 2504
2%%| 400 692 5579 327 113 65
P 3l 431 956 326 84 38 24
5| 461 1565 113 38 18 11
10| 490 3247 65 24 11 5

an effective in-rate equal to the out-rate, i.e., if u; = ps < 0.5\, In all other cases,
either one of the queues quickly becomes saturated, or the system moves to a stable
steady state.

2.4.3.2 Uniformization and time-discretization

Following Interpretation 3.2, under uniformization the process can be interpreted to
make a Poisson number of steps until time 7" and these steps are uniformly distributed
over the interval (0,7). Following Interpretation 3.3, the distribution can also be
approximated using time-discretization, that splits the time until the time horizon T
into time steps with length h defined as:

1 1
0<h

Sh=gp<5 (2.34)

For this section, assume B = max q(7). At each time step of length h one transition
1€

takes place. However, this can be a dummy transition where the state does not

change. The transition matrix P, for time-discretization is defined as:

P,=1+hQ (2.35)
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and the queue length distribution computed with time-discretization 74, at time ¢
can be initialized and computed as

Ta,0 = To
’ (2.36)
Tdt+h = Ta,tPad.

In a formal sense, time-discretization can be interpreted in either of two ways: i) by
splitting the time period T in fixed intervals of length h or ii) as the distribution after
an Erlang distributed time period with T'/h exponential phases each with rate 1/h.
This gives the Erlang distribution an expected length of T" and a variance of T'h. So,
since limy,_,o Th = 0, time-discretization is an exact method for h — 0.

We have compared time-discretization and uniformization in Table 2.3 for the
web server tandem model starting empty. Similar to the previous section, we have
used arrival rate A = 1 and ¢; = ¢ = 5. For this experiment, the service rates
have been fixed to p1 = pe = 2.5. The maximum number of jobs at both stations
has been set to N7 = Ny = 999. To show the difference between uniformization
and time-discretization, the approaches are compared at 7" = 1. Table 2.3 shows
the Euclidian distance between the queue length distributions 7 and 7(#5¢) and the
average queue length for both methods, for different values of 3, varying between 1
and 100. Table 2.3 also shows the time to compute the distribution at time 7' = 1.

Table 2.3 Uniformization compared to time-discretization.

8 1 2 5 10 20 50 100

||7r(disc) — 7| 10.0433 0.0162 0.0066 0.0033 0.0016 0.0007 0.0003

_ Average queue| 13 7681 (.7547 0.7505 0.7484 0.7471 0.7467
time-discretization
Average queue
uniformization
Computational time
time-discretization
Computational time,
uniformization

0.7462 0.7462 0.7462 0.7462 0.7462 0.7462 0.7462

0.17 026 046 084 168 371 7.06

0.21 021 021 021 021 021 021

As can be seen in Table 2.3, time-discretization is faster for very low values of 3,
but the distance between the distributions is substantial. As 3 increases, the average
queue length of time-discretization converges to the result of uniformization, and
the distance between both queue length distributions converges to 0. However, the
computational cost for high precision of time-discretization is substantial.

2.5 Exact uniformization for time-inhomogeneous
transition rates

Performance measures are often of interest over a finite period of time during which
the system parameters such as arrival rates, service speeds, service availabilities and
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capacities might be varying. The period may represent some specific time interval,
such as a day or a user session, during which arrivals follow some pattern, e.g. a bursty
start or a peaky ending. Rather than using an average parameter estimate, it is more
realistic to use time-inhomogeneous performance estimates. One pragmatic way to
do so would be to simply distinguish different time segments at which parameters are
assumed constant and apply uniformization iteratively over these segments, as will be
illustrated in Section 2.5.2. This section first considers general time-inhomogeneous
uniformization in Section 2.5.1.

2.5.1 General time-inhomogeneous uniformization

Consider a time-inhomogeneous CTMC with transition rates

1
i,7) = lim —P(X =j|Xy =1 i #£1,t>0 2.37
qt(%]) Aiglo At ( t+At J | t 1)7 J 7é17 = Y ( )
where these rates are assumed to be right-continuous in t for any fixed 4, j. Fur-
thermore, for given fixed Z assume that for some constant B < oo, all i € S and
t< Z:

@(i) =Y ali,j) < B. (2.38)
JFi
Let Py .(4,5) = P(X; = j |Xs = i) denote the transition probability to observe the
system in state j at time ¢ given that it was in state i at time s. Furthermore, for
all t < Z define the uniformized transition matrix M; similar to (2.8) by:

Qt(i’j)/B7 j?éZ,
M) =\ 1= i, 0)/B,  j=i. (2.39)
[

The following result can then be proven in line with Interpretation 3.2. The proof is
based on the existence of a unique semigroup that satisfies strong regularity infinitesi-
mal conditions in combination with a so-called minimal construction for Markov jump
processes (cf. [88]).

Result 5.1 (Time-inhomogeneous uniformization) For all s < t < Z and all
1,j €S:

o (t — 5)"B* (=93

Ps,t(i7j) = Z k'
t t t _
/ / .../Mthtz...Mtk<i,j)dH(t17t27...,tk),
s s S

k=0
{t1 <ts<--<ty}
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where dﬁ(tl,tg, ..., tr) is the density of a k-dimensional uniform distribution of
the order statistics t; < to < --- < t3, at [s,t] x [s,t] x --- x [s,t] C RF and
M;,M,, ...M,, is the standard matrix product of the transition matrices from ex-
pression (2.39) at times t1,ta, ..., k.

Proof

Similar to the alternative proof via the generator for the transient case of Result 3.1
for the time-homogeneous case, the proof follows by showing, for both the original
CTMC and the uniformized Markov chain, that

Poipac(i, 7))/ A = qi(i, 5), j#1,
(Pryar(i i) — 1) /At = = > q(i,j),  j=i. (2.41)
i

Original CTMC: By standard construction for CTMCs, the transition probabilities
can be constructed iteratively (the so-called minimal process construction):

PY,(i,§) = Lyj—iy exp [ /: Gu (%) du] (2.42)
P, 5) = /:exp [—/ } Lzsqv (i,m)PE (m, j)| dv,

from which the convergence (2.41) is readily verified.

Uniformized Markov chain: By analogy, we may define the ‘uniformized’
continuous-time Markov chain through transition matrices from time s to time ¢
by the construction:

st Z ] ZU
Us,t(zvj) = ]]-{j:i} exp [_(t - S)B] (243)

U(:;l(i,j)z/ exp [—(v — 5)B] B |3 M, (i, m)U" (m, j) | do,

m

Then, on the one hand, by straightforward calculus we may show that

qs(,4), J# 1
(Ul (i,5) + U} (i,7)) /A - P 2.44
s,5+As\bs ] s,8+As Z?]))/ 5= 1—2(]5(’&7]), ] =1, ( : )
I#1
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while, on the other hand,

t
U, = / e” P ) BM,, UL} do,

v1,t

t t
:/ e Bli= M, {/ 63(7’2_“1)BMU2U5;3dv2 dvq

( t t t '

_ / / [BreB1—9)=Blo—0) o= Blon—vi-1) =Bli—wn)
s Jur VE—1

leMvg . ka] d’l}k . d’U2 d?)l

t t t
= BFe Bt—s) / / o / M, M,, ... M,, dvg ... dvs dvy
s Joup Vg1

k —B(t—s) (t— skt K -
= B"e T Mthtz...Mtde(tl,tQ,...,tk).
. s Jitg th—1
(2.45)

By combining these results, (2.42) and (2.45), with sufficient uniqueness theorems
(cf. [75, 88]), i.e., the uniqueness of a corresponding semigroup of transition proba-
bilities concluded, see [88, p. 347-353, p. 364-366], the proof is completed. O

Remark 5.1 Expression (2.40) can be simplified by substituting

_ k!

dH(t17t27,tk) - Wdtl dtk (246)

The form (2.40), however, directly corresponds to Interpretation 3.2 and the form

(2.10) in the homogeneous case. Clearly, (2.40) reduces to (2.10) if M; = P for all
t. O

(

S{\t]) the truncated

Remark 5.2 (Truncation) By analogy with Remark 3.2, with P

version of (2.40) at level K = N and with ||.|| the standard supremum norm:
N >~ (t—s)BF (t—s)NBN
[P —Posll < D0 e P < e (247)
k=N+1
that may be used for ¢ — s sufficiently small. O

Remark 5.3 (Discrete approximation) Expression (2.40) can be impractical as it
requires storage of a continuum of matrices and to perform integration. A discrete-
grid approximation can be used where we assume that the transition rate matrix
Q: = (q:(4,4)), with diagonal elements —g; (i), satisfies a Lipschitz grid condition:

IQuhiar — Quull < AtK  for all At < h and nh < Z, (2.48)
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where h is some fixed gridsize h < 1/B and K some constant. Let n; = [t;h™!]

where [2] is the integer such that [z] < x < [z]+1, and denote by H(n1,na, ..., ny)
the probability mass function of the order statistics n1 < ny < --- < ng of a k-
dimensional uniform distribution at {n,n + 1,...,m — 1}*¥, where n = [sh~!] and

m = [th™*]. Now let P”, be the discrete-grid approximation matrix defined by

o= (t=9)FBF B
Ps’t—zTe

m—1 m—1 m—1 (2.49)
M, Mon ... My, n] H(ng, ng, oo ng).
ni=nna=n1  np=ng_1
Then
[Ph, — B < bt — 5) K (250)
(Il

Remark 5.4 (Computation by simulation) Monte-Carlo simulation can be used
to evaluate (2.40) as follows. First truncate (2.40) at level L. Next compute the
Poisson probabilities for each & < L. For fixed k£ now do the following:

1. Generate k uniform random numbers z; € [s,t].

2. Take their order statistics t1 = 21 <tg =29 < -+ <t} = T}.

3. Compute (approximate or simulate) the matrix product: M;, My, ... M,
4

. Repeat Step 1 — Step 3 for a prescribed number of times and compute sample
averages. O

2.5.2 Piece-wise constant transition rates

A practical approach to time-inhomogeneous systems is the piece-wise time-
independent approximation, i.e., with transition rates constant over time-intervals
(t1,t2), (t2,t3),. .., (tn—1,tn). In this case, standard uniformization can be applied
to each of these time-intervals (¢;,%;4.1). This approach is the basis for Chapter 4,
and a detailed description of the approach and its application to blood collection
sites can be found in Chapter 4. Here, we will summarize the approach, and show
the application to the web server tandem model.

For every interval (¢;,t,+1), start by computing Py, ;, by (2.8) using the time-
dependent transition rates g, 4, , (i, ). Given some initial distribution 7o, 7, can
be iteratively computed by:

K

X B(tii1— 1 ke _

7th+1 = E ﬂtzpzl?l,tprl%@ B(ti tl), (251)
k=0 ’
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Figure 2.2 Average number of jobs in the web server tandem model (solid line) for chang-
ing arrival rate (dotted line) for different intervals between arrival rate changes.
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where K can be determined through (2.32). For the computation of (2.51), equations
(2.29), (2.30) and (2.31) can again be applied to compute 7, , without the need
for matrix products.

The results of this approach are depicted in Figures 2.2a and 2.2b for the web
server tandem model. The maximum number of threads are set to ¢; = ¢5 = 5, and
the service rates are set to ;1 = o = 4. The maximum number of jobs per station
is set to N1 = Ny = 99. The arrival rate changes over time, and is drawn from a
uniform distribution between 0 and 2. Both queues start empty. For Figure 2.2a, the
arrival rate changes every 10 time units, and for Figure 2.2b the arrival rate changes
every 100 time units. The figures show the average number of jobs in the system
(solid line), and the arrival rate (dotted line).

The system is unstable for \; = 2, but as we are drawing from a continuous
distribution, A\; < 2 for all ¢.

2.6 Exact uniformization for reward models

For applied purposes one is generally interested in, or satisfied with, just one or
a limited number of special performance measures, like a workload, a system or
server utilization, a loss or congestion percentage, another threshold measure or
some idleness or starvation probability, rather than the full probability distribution
at the expense of high computational costs. This is where the concept of expected
rewards emerges. It is to be kept in mind though that a different reward computation
will be required for each different measure.

By using some appropriate reward rate function, the computation of the expected

35



Chapter 2. Uniformization

cumulative reward can be straightforward and far more efficient by just using the
uniformization matrix. In fact, as shown in Section 2.6.4, in its approximate discrete-
time version we can directly incorporate the time-inhomogeneous case. In addition,
for the average case even computational bounds can be kept track of, as will be
shown in Section 2.6.5.1.

But first, as for the inhomogeneous case, let us first respond to the more theo-
retical question whether the principle of uniformization also remains exact for such
measures. Again, as shown in Section 2.6.1, the answer is affirmative.

The preceding sections presented uniformizaton to evaluate the time-dependent
transition matrix with elements P.(i,j) = P(X; = j|Xo = ¢) from which perfor-
mance measures may be obtained. This section presents a direct uniformization
approach to obtain performance measures from a reward structure. We first give a
full description of the time-homogeneous case in Sections 2.6.1 and 2.6.2 followed
by a numerical illustration in Section 2.6.3. Finally, in Sections 2.6.4 and 2.6.5 we
cover the computationally more pragmatic time-discretized and more general time-
inhomogeneous approximation, along with an approximate error bound statement.

2.6.1 Reward structure

Uniformization as presented in Section 2.3.2 may be used, for example, to keep track
of state visits to obtain the average reward or absorption probabilities (see, e.g.,
[96, 99, 134]). For sojourn times or cumulative rewards a more direct uniformization
approach can be followed. By analogy with uniformization for the state distribution
presented in Section 2.3.2, below we present a direct uniformization for rewards.To
this end, let

(i) :be a reward rate in state 7 and
H,f(i) = ZPs(i,j)r(j) :be the expected reward at time s given (2.52)
J
initial state 1.

In this section we consider the expected cumulative reward function W over a finite
time period [0, T, where for all ¢ > 0 the function W is defined by:

W, = / H.rds or more detailed:

/Hsr )ds = E U r(X,) ds| Xo = i

Different cumulative performance measures can be covered such as in the web server
tandem example from Section 2.4, with ¢ = (n1,n2). A number of reward functions
and their resulting performance measure are, for example:

(2.53)
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r(ny,ng) = no the mean queue length at station 2

r(ny,ne) = I(ne > ¢3) the total excess load for station 2

r(ni,n2) = ®y(n1,n2) the effective service rate from station 2

r(ni,ng) = I(ng < cz) the time until the level ¢y is reached in a modified

process that absorbs at no = co

From (2.53) we can represent the total reward function W; by:

d

A way to look at this equation is to consider the extended operator Q:
d

W= QW,, with Qf =7+ Qf (2.55)

The relations (2.53) and (2.55) suggest two possible approaches for computation in
line with Section 2.3. Again, a straightforward one by time-discretization, which will
be approximative, or by an extended version of uniformization, which might be exact.
These will be outlined in the next two subsections.

2.6.2 Uniformization for time-homogeneous reward processes

Let P the uniformization matrix (2.8) and define the discrete-time expectation op-
erator H by, fori € S,

Hf(i) = f(i),

H(i) :ZP(i,j)f(j), (2.56)

H" (i) = ZP’“(Lj)f(j),

Let W™ (i) represent the expected cumulative reward for the uniformized Markov
chain over n steps, each of time length 1/B, with one-step rewards r(j)/B if the
system is in state j. Hence, W° = 0 and W™ is given by:

n—1
W"(i) = % > HFr(i), ieS. (2.57)
k=0

The following result, taken from [62], is the analogue of Result 3.1 and presents
an exact uniformized expression for the cumulative reward. Result 6.1 is closely
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related to relations for hitting probabilities and sojourn times in [93, 134, 158].

Result 6.1 (Reward uniformization) For all i € s and t > 0:

©© k
W, (i) = Ze*w%wk(i) (2.58)

Proof
For notational convenience, define p(k,v) = e v¥/k!. Starting with (2.53) and
then using (2.52), (2.10), (2.56), the Gamma-Possion relation fot Ap(m—1,As)ds =

o0
> p(k,At) and (2.57), for all i € S and ¢ > 0:
k=m

W, (i) = /Ot Hsr(i)ds_/OtZPS(i,j)r(])ds
= /ZZpksBszj :/ZpksBHk()d

i k=0 0 k=0
- z[ S Lot tm)| W) = 3 s tm)W ),
k=0 Lm=k+1 m=1
which completes the proof. O

Remark 6.1 (Numerical computation) As in the standard uniformization case in
Section 2.3, expression (2.58) is exact. However, similar to Remark 3.2, for actual
computation the Poisson tail approximation and possibly a state space truncation
may be used.

2.6.3 Numerical illustration: sojourn time and hitting probabil-
ity for a set of states

Let us illustrate the reward uniformization approach by keeping track of the total
time that the system will be in a set of states S’ C S within a time-interval of length
t. To this end, first define vector r with elements r(¢) as follows:

1, €8
) = ’ ’ 2.59
(i) {O, g (2:59)

and introduce ng) and W) analogous to (2.29) in Section 2.4.2 as the cumulative
reward after at most k transitions and reward after exactly k transitions respectively,
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2.6. Exact uniformization for reward models

Figure 2.3 Average time spent in S’ when the system is empty.
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and initialize these as follows:

w = o,

2.60

WO =, ( )
By (2.58), we can then compute the time spent in S’ before time t. This is shown
in Figure 2.3 for the web server tandem model with p; = us = 2.5, ¢; = ¢ = 5,
N1 = Ny = 100 and varying A, if the system starts empty for a maximum number
of 5 threads at either station, i.e.,

S"={(n1,n2) € NJny > ¢y orng > c} C S. (2.61)

As alternative measure of practical interest, we may also compute the probability
to hit a state in S’ at least once before time ¢. To this end, consider the following
iterative procedure, for k =1,2,...,

Wk =y pWE—D, (2.62)
W (i) = max{W*") (4), r(i)}, (2.63)

(tB)*

k k—1
Wit = Wit g

e tBW®H), (2.64)
Here, W(*:*) is introduced as a intermediate variable to avoid confusion. As in
Section 2.4.2, ng) converges to W, the probability to hit S” within time ¢ for

k — oo. For numerical computation we will use K as defined in (2.32) to truncate
k.
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Figure 2.4 Probability to hit subset S’ at least once starting in an empty system
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As numerical illustration, consider the web server tandem model with p1 = s =
2.5 and ¢; = ¢ca = 5, and S’ given in (2.61). Figure 2.4 shows the probability to
reach a state in S’ at least once before time ¢ between 0 and 100 under three different
values for the arrival rate \.

2.6.4 Time-discretization approximation

Following the intuitive interpretation of uniformization as sketched in Interpretation
3.4, we can also rewrite the cumulative reward expression as time-discretization with
time length h < 1/B. This can be done by regarding the iterative steps of uniformiza-
tion as a time-increment of arbitrary length h. By expression (2.57) the expected
cumulative reward functions W™ can then also be represented in an iterative manner
as backward Kolmogorov equations:

WL (i) = En: H"r (i)
k=0
=H [Z H" 'y
-
=H [Z r

k=0

(i) + 500

(2.65)

(4) + %r(i)

1
= —r(i) + HW"(3)
B
written as a stochastic dynamic programming relation without actions:

W) = (i) + 0 PLGWG). (266)
J#i
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By this principle and in line with Section 2.5, we can also directly present its more
general time-inhomogeneous form. To this end, for given finite time horizon Z and
all t < Z, let

(2.67)

be the expected reward during the time interval for the time-inhomogeneous CTMC
as given in Section 2.5, given that the system was in state 7 at time ¢. As a time-
inhomogeneous analog of (2.65), choose a large N, such that h = Z/N < 1/B. By
allowing a time-dependence and recalling matrices M,,, defined by (2.39) at times t =

nh, we can now define the discrete-time functions W" for n =0,1,2,...,N—-1,N
by
WY =0
Wn — hr(z) + Z P(’L', l)W"+1 (2.68)
I#i

The following approximation result then applies, as can be concluded from [60] in a
more general controlled setting.

Result 6.2 For arbitrary Z, with h <1/B,

— 1
W™ = Wi|| <hCy < 2Cz. mh<t<(n+1h t<Z. (2.69)

As a special case, for a time-homogeneous CTMC, with W™ as by (2.65) it leads to

1
IW" = Wi|| € £Cz nh<t<(n+Dh t<Z (2.70)

Remark 6.2 (Time-dependent growth) The constant Cz will depend on the length
of the time horizon Z. A first rough estimate of C'z, in line with the exponential or, in
general, semigroup representation as in [75] gives, for some constant C' independent
of Z:

Cy ~ e¢? (2.71)
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A more careful investigation, under fairly general assumptions, among which a uni-
formly bounded reward rate r, could even lead to

Cy ~ C 7> (2.72)

which is in line with [181]. By also studying so-called bias or relative gain terms,
depending on the system and the reward of interest, see, e.g., [67], this can even be
brought down to

Cy~CZ. (2.73)

O

2.6.5 Two applications

2.6.5.1 Average computational bounds

We may also obtain bounds for computing the average reward or performance mea-
sures of a CTMC by application of a well-known result in Markov decision theory,
often referred to as Odoni-bounds from [148], also see, e.g., [174, pp. 191-193],
or [155], for the discrete-time case that just as well apply to uncontrolled DTMCs.
These bounds are attractive to computationally bound convergence speeds. To do
so, for W™ as in (2.66) for the homogeneous case let

my, = min|W"(i) — W"1(4)],
' ) (2.74)
M, = max|W" (i) — W™ (3)|.

By combination of the uniformization Result 3.1 and these Odoni bounds, assuming
existence of the average reward

1
G = lim —Wq(i), forallie S, (2.75)

t—oo t

the following result can be concluded. It makes the Odoni bounds applicable to
CTMCs.

Result 6.3 For arbitrary h < 1/B and bounded reward rate r: m,, is non-decreasing
in n and M, is non-increasing in n. and

h=tm, <G < M,h™". (2.76)
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2.6.5.2 Error bounds

For performance measures of systems that do not have a closed form expression
for the equilibrium distribution we may evaluate these performance measures for an
approximate system and then develop bounds on the approximation error. Such
approximate systems may be obtained through, e.g., state space truncation, relaxing
state space restrictions or modification of the transition rates. We may also use error
bounds when the data for, e.g., the service rates or interarrival times is imprecise.

Based on the uniformization results of this section, error bounds may be developed
by bounding so-called bias-terms [W*(j) — W¥(i)] for the corresponding uniformized
systems. The discrete-time (iterative) reward relation (2.66) may enable an analytical
expression for the bounds on these bias-terms. These, in turn, yield analytical bounds
on the approximation error, for more details see [34, Chapter 9].

2.7 Approximate uniformization for unbounded tran-
sition rates

The uniformization procedure is usually based on uniformly bounded exit rates, ¢(%),
from all states, ¢ € S. Uniformization as presented in the previous sections relies on
over-relaxation of the exit rates from the states. This section shows that the uniform
boundedness condition can be relaxed. To this end, a form of under-relaxation will
be applied via a simple pragmatic adjustment of the one-step transition probabablity
matrix of the uniformized Markov chain. As a price to pay, though, the uniformization
approach will no longer be exact. Section 2.7.1 considers the infinite server queue
to illustrate the approach. Section 2.7.2 presents the general result. The results are
illustrated for the infinite server queue in Section 2.7.3.

2.7.1 Uniformization for the infinite server queue

Consider the infinite-server queue with Poisson arrival rate A\ and exponential service
rate u per server, with transition rates:

. A J=i+1
q(i,j) = { S (2.77)
i, j=1—1.

As the service rates are unbounded, the infinite server queue violates the uniformiz-
ability condition (2.7) for any B so that we cannot define the uniformization matrix
(2.8). We may, however, provide an approximate uniformization approach. To this
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end, consider a fixed large N and define the matrix PV as follows:
A
i
A—'—,N,[L’ j 7/ + b)
fori < N: PWI(4,5) = Aﬁ\m’ j=i—1,
Atip .
_ .y,
N+t Ng J ) (2.78)
A L.
—, J=1+1,
for i > N: P4, j) = A;rﬂw
j=i—1.
A+ip’ J=4

In this transition matrix PIV!, for i < N, the probability of jumping out of state i is

/\’\L(,’L whereas for i > N, this probability is 1.

2.7.2 Approximate uniformization result

The idea from the infinite server example can readily be generalized. Following the
steps for standard uniformization, let B < oo be arbitrarily large, and let

J(i) =min{ 1, Z q(i,§)/B

i

replace (2.7). Define the transition probability matrix P15 by

1- J(Z)a ] = iv
pl] (7’7]) = . q(i’j> . . (279)
J(l) 4;: q(z, l) y J 7é Z

replace (2.8), i.e., with probability J(#) a jump will take place in state ¢ and given
that a jump takes place, the transition probability is proportional to the corresponding
transition rates in that state. The following result is proven in [63]. The proof is
omitted as the details are rather technical and do not provide additional insight into
the result.

For given initial distribution mg, let m; = moP; be the probability distribution of
the original CTMC at time ¢ and

>, (tB)* k
Pl =S %e*“? (P[B]) . >0 (2.80)
k=0 ’

the probability distribution of the approximate uniformized DTMC governed by the
one-step transition matrix PIZl. An approximate result can then be concluded. To
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this end, let u : S — R with u(i) > 1 and p non-decreasing. This function can be
seen as a bounding function. Let a pu-norm be defined by, for f: S — R,

£l = sup [f(2)/p(@)].
1
The following approximation result now applies for finite time-horizon Z.

Result 7.1 (Approximate uniformization with unbounded rates) Let r be a
reward rate such that for some constants B(Zl) and B(ZQ):
Il < By, <2,
lmerll, < BY, t<Z

Then for some constant Cz and allt < Z:

1
| r = mr]] < 507 (2.81)

Proof
The result may be readily obtained from [63] as follows. It essentially shows that
the generator Q of the original CTMC and Q[?! of the approximate Markov chain
satisfy

1
1Q™f = Qfllu ~ Bl

for each f with || f]], < oco. O

Remark 7.1 The constant Cz depends on the time-horizon Z. By analogy with
Remark 6.2 we may find different bounds for Cz. O

Remark 7.2 Note the resemblance between (2.70) and (2.81): the transformation
in the transition rate resulting in (2.81) could be regarded to be of similar order as
the transformation in time resulting in (2.70). O

2.7.3 Bounds for the infinite server queue

For the infinite server queue with reward rate r(n) = n, to evaluate the mean number
of servers utilized, we may use p(n) =1+ n. Result 7.1 then gives

1
™ e = 7]l ~ 5Co.

Using bias-term results provided in [34, Chapter 9], for the infinite server queue we
may also show that

1

[NT,. _ ~
w5 = 7rl o~
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yielding an asymptotic bound for the average reward, i.e., mean queue length, for
N — oo.

2.7.4 Numerical illustration

For the infinite server queue with arrival rate A and service rate p and p = A/, in
steady state, the probability () that i jobs are present in the system is given by:

r(i)=erl ixo0. (2.82)

By comparing expression (2.82) and the numerical solution of the uniformized DTMC
desribed by expression (2.78), the quality of the approximation (2.80) can be eval-
uated. In our numerical experiment, we consider an M /M /oo system with arrival
rate A = 1 and service rate p = 0.1. Table 2.4 shows the difference between the
numerical approximation 7V and the exact solution 7 for different values of N.
For a numerical solution, the state space has to be truncated as well by limiting
the maximum number of jobs in the system. Table 2.4 shows the quality of the
approximation for different values of N and the state-space truncation.

Table 2.4 Difference between exact and approximate uniformized Markov Chain ||7T[B] -
x|
State space N
Truncation 1 2 4 8 16 32 64
1/0.708 0 0 0 0 0 0
2|0.673 0.673 0 0 0 0 0
410.597 0.596 0.592 0 0 0 0
810.336 0.335 0.334 0.327 0 0 0
16|0.036 0.036 0.036 0.029 0.01348 0 0
32/0.034 0.034 0.034 0.029 0.00109 5.36E-09 0
6410.034 0.034 0.034 0.029 0.00109 1.66E-10 5.80E-16
128 0.034 0.034 0.034 0.029 0.00109 1.66E-10 5.81E-16
256 |0.034 0.034 0.034 0.029 0.00109 1.66E-10 5.82E-16
512|0.034 0.034 0.034 0.029 0.00109 1.66E-10 5.85E-16

The main observation from Table 2.4 is that the distance decreases strongly when
N exceeds the point where the effective out-rate is larger than the effective in-rate,
e, Nxpu>A\

2.8 Exact uniformization with continuous state vari-
ables for non-exponential networks

In stochastic service networks, the assumption of exponentially distributed service
times is introduced to allow for a tractable Markovian description of the network.
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non-exponential networks

Generally distributed service times may be included in the Markovian description by
keeping track of residual or spent service times, which, however, will generally lead to
continuous-state differential equations that usually cannot be solved unless special
detailed balance conditions are preserved, see, e.g., [33, 172]. A more pragmatic
approach is to assume that the service times have a phase-type distribution, which
allows a Markovian description of the network and in some cases closed form expres-
sions for the equilibrium distribution, see, e.g., [125], [146]. These results enable
approximate computational results for performance measures. Coxian distributions
and mixtures of Erlang distributions are dense within the class of all distributions
with non-negative support. Invoking additional weak convergence results for the cor-
responding processes, results under the assumption of phase-type distributions then
carry over to those for arbitrary distributions [109].

This section takes an alternative approach for a special but general framework of
stochastic service networks: it considers an extended uniformization procedure that
applies to non-exponential stochastic service networks. As non-exponential times are
involved, the Markovian property, essential to the uniformization approach, is lost
unless the received or residual service times are contained in the state description
resulting in a continuous state space. This section presents an equivalence result
for the stationary distribution of the original model with state-dependent jump rates
and a modified model with state-independent jump rates by analogy with the uni-
formization relation between the state-dependent transition or jump rates and the
uniformized process with constant jump rates as presented in Section 2.3. This result
is of practical interest as it may enable one to reduce the simulation or numerical
computation of a non-exponential complex network to that of a Markov chain. The
result can be interpreted as uniformization for the continuous service time. It is
intuitively appealing and may already have been used by practitioners.

2.8.1 Model

Consider a stochastic network with a fixed number of M jobs (for convenience of
presentation, we restrict the model to a fixed number of jobs as in a closed queueing
network). A state [L,T] with L = (l1,...,lp) and T = (t1,...,tp) denotes for
each job i the current job mark [; of job i with [; € S, where S is a countable space
of possible jobmarks and ¢; the amount of service that job ¢ has received since its
last service completion. For example, in queueing network applications a jobmark [
can be of the form [ = (r,j, p) with r the type number of the job, j the station at
which it is present and p its service position at this queue, while ¢ is the amount of
service that the job has already received at that station.

The law of motion is determined by the characteristics:

Fi(.) : distribution functions
si([L,T]) : service rates (speeds) (2.83)
p:(1|[L, T)) : transition probabilities
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as follows. Whenever a job changes its jobmark to [ it requires a random amount of
service with distribution function Fj, independent of the other jobs and services re-
ceived before. The rate at which jobs are being served, however, is state-dependent:
when the system is in state [L, T, the service rate, i.e., the amount of service per unit
of time provided to job 4, is s;([L,T]), i = 1,..., M. When the system is in state
[L,T] and job i completes its service, its jobmark is changed to I’ with probability
p;(I'|[L,T]). The jobmark of the other jobs thereby remain unchanged. Note that
the transition probabilities and the service rates depend on the amount of service
received by the jobs. The law of motion allows modeling of various service disci-
plines, including Processor Sharing and FCFS, as well as state-dependent transition
probabilities including blocking of jobs due to capacity restrictions at the queues.

Under the following assumptions, the system can be uniformized with respect to
the continuous parameter for the received amount of service of the jobs.

Assumptions

1. For all [, the function F(¢) is absolutely continuous for ¢ € (0, 00) with density
function f;(t). Hence, its failure rate is well defined by f;(t)/[1 — F;(t)] for all
t € (0,00). We introduce the notation

(. 7]) = (.7 240 (284)

2. For some constant D < oo and all [L, T:

d([L,T)) =Y di([L,T)) <D (2.85)

2.8.2 Uniformized stochastic network

The law of motion is now defined as follows. Let B be some finite number with
B > D and assume that at exponential inter arrival times with parameter B a so-
called “jump” occurs. When a jump occurs while the system is in state [L, T], with
probability

di([L, T])pi(V'[[L, T])/ B (2.86)
this state will change to [L/,T"] = [L,T] — (I;,t;) + (I',0) with I, = [; and t}; = t;
for all j # 4 but I} =1’ and ¢} = 0, where i can be any of the jobs i = 1,..., M,
representing the state equal to [L, T, except for job i. With probability

1—d([L,T])/B (2.87)

the state remains unchanged, i.e., is no real transition takes place, such that the
state directly after the jump is still [L,T]. Note that (2.86), summed over all ¢ and
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(2.87) sum up to 1 and thus represent a probability.

Remark 8.1 The formulation (2.86) and (2.87) resemble the standard uniformization
technique when all distributions Fj(.) are exponential, but now uniformized with
respect to the statespace variable t. O

Assume that both the original and uniformized model have a unique stationary density
function at one and the same irreducible set S which we denote by m;(L,T) and
72 (L, T) respectively. We have the following result. This result can be adapted
from a wider setting in [61]. Let us give a short self-contained proof in line with
section 2.3.1 on Markov generators.

Result 8.1

7T1(L,T) = WZ(L’T)7 (L,T) es. (288)

Proof

By carefully working out the infinitesimal characteristics (of the continuous-state
expanded version of (2.13), see, e.g., [33], for a system related to the given stochastic
network description), it can be shown that the infinitesimal generator for both the
origninal description, i.e., (2.84), and for the uniformized description, i.e., (2.86) and
(2.87), are indentical as expressed by, for g : S — R,

Ag([L,TT)

Alir_rioAit [;//PAt([L/’dT/])g([L/aT/D — (L, T])

M
d
3 [w“”” + S pil L, T (L T] — (Ui t) + uco»] .
i=1 ¢ v

The uniqueness of a corresponding transition probability semigroup based on these in-
finitesimal characteristics or generator for arbitrary continuous-time and continuous-
state Markov processes, see [88, 89], then completes the proof. O

Remark 8.2 (Simulation/computation) As continuous distributions are involved,
the actual simulation or computation of the transition probabilities may still lead to
technical complications. In simulation, the rejection method may come in handy. In
computing, a discretization or approximation either by exponential phase-type distri-
butions, or by using discrete-time grids (cf. [60]) for the service times, seems most
natural. O

2.9 Concluding remarks

This chapter has provided a mathematical and intuitive review of uniformization
technique and some of its extensions. The extensions to Markov chains with time-
dependent transition rates and with unbounded transition rates open a wealth of
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possible applications of the uniformization technique. Next to the application of
uniformization to performance measures that can be evaluated via the state distribu-
tion, we have highlighted that uniformization may also be directly applied to Markov
reward processes. Furthermore, we have shown that uniformization might be used
not only for time-discretization, but also for state space discretization.

The basic theory supporting the evaluation of performance measures based on
standard uniformization for CTMCs seems to be well-developed. In contrast, for
the extensions highlighted in this chapter there is ample room for extensions of
the basic theory. For example, uniformization for systems with time-dependent and
unbounded rates, or uniformization both in time and in space may turn out to be of
considerable theoretical and practical interest. As systems studied in practice become
more and more involved, extension of the uniformization technique to facilitate their
performance analysis seems of utmost importance.
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CHAPTER 3

Waiting time computation for blood
collection sites

3.1 Introduction

To analyze the realistic logistical situation at blood collection sites, it is, first of
all, important to be able to compute the waiting times in a reliable and replicable
manner. Although a substantial number of queueing models exist, these methods
first have to be adapted and further developed for application in blood collection
sites. These methods should also be usable to determine the necessary staffing level
before a session starts, and to show how interventions might affect waiting times.
This chapter will provide methods to compute waiting times at blood collections
sites.

The methods are inspired by blood collection sites, but can be extended to more
generic queueing systems. More patricularly to Jackson networks - networks of queues
with probabilistic routing. The model can be applied within a health care setting,
such as within an emergency department or an organ donation system, or even more
general production and service systems.

This chapter will be structured as follows. First, we will discuss the relevant
literature in Section 3.1. We will then introduce the model in more technical detail
(Section 3.3). Next, we will show that a product form expression applies (Sec-
tions 3.4.1 and 3.4.2). This will lead to a waiting time distribution for each of the
separate stations of the intake process (Section 3.4.3). We will then illustrate that
the total delay remains intriguing and non-trivial. A numerical method to compute
the total delay time distribution will be presented (Section 3.5). Both the analytic
results and numerical method will be applied to a test case, based on a real blood
collection site, and different scenarios will be compared (Section 3.6). The chapter
will end with a conclusion (Section 3.7).

3.2 Literature

For an overview of literature on blood collection sites, the reader is referred to Sec-
tion 1.4. The remainder of this section will only discus literature on methods and
models relevant for the methods developed and discussed in this chapter.
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In general, analytic or closed form results for total waiting or delay times in
tandem structures, which is the most realistic structure to model a blood collection
site, appear to be rather limited. Even for the ‘simple’ case of just a tandem queue
with two queues, such results only seem to be available for special situations or under
special assumptions, such as identical servers at both stations, single server cases or
overtaking-free assumptions and infinite capacities; e.g. see the book by Boxma and
Daduna [35] and references therein.

Product form results for queueing networks without finite capacity constraints are
well-known in literature since the pioneering work by Jackson [114] for Jacksonian
networks. In particular, Gordon and Newell [91] have explicitly presented a product
form solution for unlimited serial or tandem structures. Exact product form results for
systems with finite capacity constraints, however, are limited. In Gordon and Newell
[92] only closed tandem structures - with a fixed total number of jobs circulating -
are studied along with finite constraints in specific cases, under the assumption that
these constraints are small or large.

In Jackson [115], an extension of his classical 1957 paper [114], finite capacity
constraints are incorporated by either a total number dependent arrival rate or by
lower limit service rates for each station. As a special case, the product form preser-
vation is also argued by either instantaneous triggering of new arrivals or by service
deletion. However, an upper limit for just one station, as in Section 3.4.2, is not
included.

In Kelly [118] and Pittel [153], the inclusion of finite constraints is only justified by
a specific routing assumption: the product forms remain valid with finite truncations,
provided the system has a so-called reversible routing. A tandem system, like the
application in this chapter, is excluded as its routing structure is strictly not reversible.

Product forms have also been applied to practical situations. Although product
forms have not been applied to or justified for blood collection sites, they have been
applied in health care settings, e.g. see Xie et al.[103] and Yom-Tov [188].

All of these earlier references verify the product form result by the global balance
or Kolmogorov equations. None of these references explicitly mention the more
detailed verifications for each station separately as shown in a straightforward proof
presented in Section 3.8.

As such, the product form result that will be reported in this chapter, at least
from an application point of view, can be regarded as new. To some extent, mainly
focusing on finite limitations in a tandem queue, it is also new from a more technical
point of view. The exact product form result that will be presented for the unlimited
case also leads to a marginal waiting time distribution.

Given the practical and generic character of tandem structures and finite capacity
constraints in assembly line and production systems, the literature has paid consid-
erable attention to approximation methods for infinite and finite tandem systems.
Work on this topic has been reported on in, among others, the book on queueing
networks with blocking by Perros [152], the excellent survey on manufacturing flow
line systems by Dallery and Gerschwin [55], the well-known QNA method by Whitt
[182] and the early, elegant paper by Buzacott [42] to capture interaction based on
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Pollazchek- Khintchine's formula. Without exception, these approximation proce-
dures use some form of decomposition by which the service stations are regarded as
separate with interaction between the stations incorporated by coefficients of vari-
ation. These coefficients link variability in inter-arrival and service times. Some of
these procedures also include a number of iterations for adjustments. In Section 3.4.4
the well-known approximation method QNA (the Queueing Network Analyzer), de-
veloped by Whitt [182], will be briefly presented. All of these approaches, however,
provide approximations for just the mean delay and mean waiting times and not
for complete distributions. This chapter, in contrast, will also provide an algorithm
to numerically compute a total delay distribution, which has not been reported in
literature.

3.3 Model description

Figure 3.1 Schematic representation of a collection site

Donor enters Donor leaves
collection site . . . . collection site
—————— > Registration Interview Donation —m—

The queueing model of a blood collection site that will be used in this chapter is
shown in Figure 3.1. In line with the description given in Section 1.3, we will model
the blood collection site by a tandem queue with three stations: Registration (station
1), Interview and testing (station 2) and Donation (station 3). Donors may have to
wait at each of these stations. We also include the possibility that the total number
of donors present in the collection site may not exceed some limited number M. When
this number has been reached, arriving donors are rejected, i.e. kindly asked to return
in a next session. Clearly, the realistic unlimited case, M = oo, remains included.
We also refer to Section 3.4.2 for the possibility of finite constraints. The parameters
and variables used are listed in Table 3.1. Note that we distinguish between outputs
waiting time W, which does not include service time and Delay time T, which does
include service times.

For analytic purposes, we assume all service times and inter-arrival times to be
exponential. Since donors are free to choose when to donate blood the assumption
of exponential inter-arrival times - an arrival is independent of the time since the last
arrival - for whole blood donations seems justified. Although exponential service times
are a less accurate assumption, the methods discussed in this chapter require this
assumption, along with most exact methods from queueing theory. Most methods not
requiring this assumption only approximate mean delay and waiting times. Even these
non-exponential methods rely on decomposition results - which requires exponential
assumptions - to justify the possible use of decomposition, as will be discussed in
Section 3.4.4. This section introduces one of these approximate methods, that relaxes
the exponential assumption.
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Table 3.1 Parameters, variables and outputs

A Arrival rate at Registration station

tq Service rate at station g

T, Mean service time at station ¢ (= 1/p4)

sq number of staff members at station ¢

pq utilization at station g, = A/sq * p,

M A limitation on the total number of donors in the system
(M = oo is included)

Ny A limitation on the number of donors at station ¢ (N; = oo

is included)

Number of donors at station ¢

Vector: (n1,ng,n3)

Waiting time in the system (W, for station ¢ = 1,2, 3)

Delay time in the system (T} for station ¢ = 1,2, 3)

N=3 3

3.4 Exact Product Form

3.4.1 Product Form

This Section will present a product form expression - also referred to as a separable
network in the situation of unlimited capacities. Roughly speaking, the term product
form reflects that a joint workload or queue length distribution can be obtained for
an entire queueing network by factorizing terms for each individual station, as if these
stations can be seen as independent stations in isolation. A more detailed discussion
of this term can be found in literature, e.g. see Kelly [118], Perros [152], van Dijk
[65].

Theorem 1 shows that a blood collection site, as described in Section 3.3, in-
deed has a product form solution. This specific application of product forms for
blood collection sites has not been reported explicitly in the literature. For explicit
verification of the global balance equations by individual equations for each of the
stations and for the possible inclusion of finite constraints, a direct proof is provided
in Section 3.8.

For presentational simplicity, finite constraints N, are excluded in the theorem.
The implications of including these constraints will be discussed in Section 3.4.2.

Theorem 1. Letn = (n1,n9, ng) withn, the number of donors at stationg = 1,2, 3.
Then the steady state distribution m,, - the probability that the system is in state n,
with o a normalizing constant where 0 = (0,0,0), is given by:

3 A Mg 1 1 [ansq]‘*'
Ty = T — _— [ — . 3.1
Oql;[l <Mq> min{ng, sq}! (5q> (1)

Here [ng — sy)" = max{0,n, — s,}. The normalizing constant of expression (3.1)
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is given by:

o[B8 E G e () e

n170 na= 0 n3g= 0

In the infinite case (M = cc0), we can rewrite expression (3.1) to

3 3 A ng 1 1 [nq—sq]+
n = Tgng = Tq, - — . | — 3.3
ql;[l ! H 0 (l‘q> min{ng, sq}! (Sq) (3:3)

q=1

with my », the marginal distribution - with normalizing constant m, o - of the number
of donors present at station ¢ = 1,2,3. This distribution and normalizing constant
are equal to that for a standard M/M/s queue (e.g. see Cooper [53] and the proof
in Section 3.8).

Theorem 1 shows that the solution can indeed be seen as a factorization of terms
for individual stations. In Section 3.8, we present a straightforward proof of this
theorem by showing balance for each station separately.

From a mathematical point of view and given the system description in Section 3.3
without capacity constraints, the product form in Theorem 1 is not new and it can
already be concluded from the classic literature on Jackson networks (see Jackson
[114, 115]). However, for more restricted cases, such as a finite common constraint
or finite constraints for each station separately, this is less clear.

For a total capacity constraint, the product form has been shown to be applicable
by Jackson [115]. However, this reference is not explicit about balance equations for
each station separately (as we have shown in Section 3.8). A total capacity constraint
can also be concluded from Kelly [118] by using the concept of quasi reversibility.

For the inclusion of capacity limitations on individual stations, references are even
less clear. In Kelly [118] and Pittel [153] the inclusion of such finite constraints is only
justified by a reversible routing assumption. The product remains valid provided the
system has a so-called reversible routing. This implies that if the routing probability
of moving from station g to station ¢’, pye > 0, then necessarily pyq > 0. Tandem
systems clearly do not have a reversible routing.

Nevertheless, as argued in Section 3.4.2, the proof in Section 3.8 can be extended
to included finite limitations on individual stations.

3.4.2 The product form and the extension with finite limitation

The total number of donors at the Donation station could be limited, reflecting a
finite number of beds and a restricted waiting capacity, by including a maximum
N3. If the Donation station is congested, the Interview station will be stopped. To
preserve analytical feasibility, an additional and somewhat artificial assumption is
required, stopping the Registration station and arrivals when the Donation station
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is congested. Under this modification, the product form expression (3.1) remains
valid. This can be seen directly by adding an indicator function 1(,,<x,) in both
the left and right hand side of (3.10.1), (3.10.2) and (3.10.3) in Section 3.8. The
only change occurs in the normalization constant mg. If Ny, No, N3 or M < oo,
this normalizing constant can be computed by restricting the summation to the set
of admissible states:

S={n | ng<Ngni +ny+ns <M} (3.4)

Despite its slightly unrealistic additional assumption, this analytic result might be
quite useful to establish reasonable approximations for queue lengths and possibly a
safe estimate (upper bound) for the congestion probability of the collection site, in
line with the result in Van Dijk and Kortbeek [66].

It is even possible to truncate each station separately by finite numbers N, for
station ¢ € {1,2,3}. The product form (3.1) remains valid if the normalization
constant is restricted to the truncated state space and by artificially assuming that
if a station ¢ becomes congested (i.e. ny, = N,), arrivals are blocked and all other
stations ¢’ # ¢ are stopped. The product form can then again be used and is
justifiable as an approximation.

3.4.3 Marginal waiting times

As a direct consequence of Theorem 1 and for the infinite case (M = o), we
can conclude that the waiting time distribution for each station separately can be
computed as a standard multi server queue as if it were in isolation. The proof of
this Theorem - Theorem 2 below - is presented in Section 3.9.

Theorem 2. For the unlimited (M = o) and exponential case of the system de-
scribed in Section 3.3, the marginal distribution for the waiting time W, for each
station q € {1,2,3} separately is equal to that of an M /M /s, queue as given by:

P(W,) = P(W, > 0)e~(1=Pa)sarat
AN\ 1 o (3.5)
=70 [(,u) '} (1 - pgl L e=(=pq)sqpqt

q Sq-

Remark. These marginal waiting time distributions, particularly those for the Inter-
view station and the Donation station, are of practical interest for blood collection
sites. For example, a frequently encountered perception seems to be that the total
waiting time is primarily influenced by the Interview station. While having to wait
at the Interview station the donor has already been accepted to the system, but
further progress is interrupted and delayed before starting the Donation station. In
Section 3.6.3 we will therefore compare waiting time percentiles for the Interview
station of the test case and different scenarios based on equation (3.5).
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3.4.4 QNA: Approximation of mean waiting time

The product form from Section 3.4.1 shows that a decomposition of the queue length
distribution into the individual stations is fully justified in the case of exponentially
distributed inter-arrival and service times. However, at collection sites service times
are not exponentially distributed. In this Section we will therefore briefly introduce an
approximate method, known as QNA, based on Whitt [182]. Basically, this approxi-
mation relies on a decomposition of the network into independent queues, adjusting
for the non-exponential service and inter-arrival times by:

ng Squared coefficient of variation of the arrivals at station ¢

i

qu Squared coefficient of variation of the service at station ¢

, Squared coefficient of variation of the departures from station ¢

Although the product form (3.1) from Theorem 1 is no longer applicable because
of this non-exponential distributions, it does provide some justification for the de-
composition, as it validates the decomposition for the exponential case. The QNA
method, as well as all related ones discussed in Section 3.2, aim to provide an ap-
proximation for mean waiting times and not for waiting or delay time percentiles,
which will be discussed in Section 3.5. These percentiles are of particular interest for
collection sites.

The method works by linking the squared coefficients of variation between sta-
tions. The squared coefficient of variation for the external arrivals, in our case to the
Registration station, C2, has to be part of the input parameters and could be set to
1 to represent exponential inter-arrival times. For the other stations, ¢ € {1, 2,3},
the squared arrival coefficients ng can be calculated by:

N

q
Va

Now let Epz/nr/s(W,) denote the expected waiting time of a standard M/M/s
queue. Then, with s = s, and by a simplified version of a formula obtained from

Whitt [182], we can approximate the expected waiting time for each station ¢ €
{1,2,3}:

Ciigr) = Cig =1+ (1= p3)(CZ, = 1) (c2,-1) (3.6)

(CZ,+C2)

E(Wq) = 2

Epr/arys(Wy) (3.7)

3.5 Total waiting time distribution

3.5.1 Independent total delay time calculation?

By the product form (3.1) in Section 3.4.1, we have shown that queue lengths are
stochastically independent, as if they are independent queues in isolation; an even
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more intriguing result is concluded considering that the product form is preserved
if we add finite constraints, as argued in Section 3.4.2. Given this product form,
one might also expect that the total waiting and total delay time can be computed
by simply combining waiting time expressions for each of the stations, as if these
stations have stochastically independent waiting time expressions.

However, intuition dictates that queue lengths and waiting times at the consecu-
tive stations are dependent: when an arbitrary donor at the Registration station has
a (substantially) higher waiting time than the expected waiting time at this station
- due to a higher number of donors at the station than usual - this donor will most
likely also experience longer waiting times at the Interview station. As a consequence,
this would lead to dependence of waiting times between the stations. Indeed, the
intuition is correct: the total waiting time distribution of tandem queues cannot be
computed as a convolution of independent waiting time distributions at each queue.
These waiting times in tandem queues are not independent, as already proven by
Reich [159] and Burke [41].

As an illustrative simulation, we will show that assuming independence is indeed
incorrect.

Assume a two-station tandem queue (see Figure 3.2, model A), which exhibits a
product form similar to the one from equation (3.1). Assume an exponential inter-
arrival time, with an average of one job arrival per time unit. Each station has an
exponential service time of 9.4 time units, and 10 servers. This gives an occupancy
rate of 94 % at both stations. The system was run five times, in each of the runs
generating 100,000 jobs. To show that this gives significantly different delay time
distributions than if independence would be assumed, we also simulated the same
costumers, experiencing the same service times, arriving independently to the first
and second station (Figure 3.2, model B).

Figure 3.2 Simulated two-station tandem model (A) and an independent two-station
model (B)

A 1 S
B 1 —
2 —

Figure 3.3 shows the simulated probability density function (pdf) of delay time,
for both systems. The solid line indicates the pdf for the tandem system (Figure 3.2,
A) and the dashed line indicates the pdf for the independent system (Figure 3.2, B).
It is clearly visible that these distributions do not coincide. A Kolmogorov-Smirnov
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test indicates that the Null hypothesis of identical distributions can be rejected with
near certainty (p — value < 0.001). As could be concluded from the papers of Reich
[159] and Burke [41], this numerically shows that we cannot assume that individual
queues in a tandem system to be independent in order to calculate the total delay

time distribution.

A few points of the cumulative distributions function for both systems have been
included in Table 3.2. The maximum difference between these cumulative distribu-
tions functions, which is the input for the Kolmogorov-Smirnov test, can be found

around 25 time units delay.

Figure 3.3 Probability distribution of the simulated tandem queue and the combination

of two independent queues.
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Table 3.2 Cumulative distributions of simulation
Delay time | Cumulative distribution | Cumulative distribution | Difference (%)

tandem (model A) independent (model B)
25 0.239 0.278 0.040 (16.7 %)
50 0.670 0.675 0.005 (0.7 %)
75 0.903 0.887 0.017 (1.9 %)

3.5.2 Numerical computation of the total delay time

Although the delay time distributions are dependent, the product form for queue
Based on this product form - and thus under the exponential

lengths still holds.
assumptions, the distribution of the total delay time T can be computed by using the
PASTA property (Poisson Arrivals See Time Averages, Wolff [185]) and conditioning
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upon the system state upon arrival by

P(T <t)=> mP(T < tn) (3.8)

where 7, can be calculated with the product form expression (3.1).

It is impossible to compute P(T" < ¢|n) by an explicit expression. Standard
equations to derive waiting time or delay expressions such as for M/G/c systems are
no longer available. The waiting time at these stations is not independent (as shown
in Section 3.5.1) and cannot simply be added as a superposition - except for the
expected waiting time and total delay.

In Section 3.10 an algorithm will therefore be presented to numerically compute
the total delay. This algorithm roughly distinguishes three parts. First of all, as we
need to keep track of a tagged donor, the algorithm needs to expand the Continuous
Time Markov Chain (CTMC) from Section 3.4. Next, this CTMC will be approxi-
mated arbitrarily closely by using time-discretization. Last and most essentially, the
algorithm computes the total sojourn time for an arriving job (donor) until it clears
the system. This will be achieved by following the arriving job as a tagged job and by
regarding the system as an absorbing Markov chain in which the tagged job passes
through each of the stations until it leaves the system, i.e. until it completes its
service at the Donation station,

These global steps are worked out and discussed more detailed in Section 3.10.
Remark. To the best of our knowledge, the presented algorithm, based on the
exponential assumption, is new. A non-exponential extension, by using phase-type
distributions, can be thought of and is certainly of interest from a mathematical point
of view. But at this point in time it is likely to become computationally expensive if
not prohibitive. This will remain of interest for future research.

3.6 Measurements and computational results

3.6.1 Test case

In this section, we will provide some numerical results to illustrate the use of our
methods. Data from a real life collection site has been used as a test case. This site
is located in the Dutch city of Zwolle and handles over 30,000 donations annually.
The data, gathered in 2012, leads to the parameter settings shown in Table 3.3. The
service rates can be considered to be representative for collection sites throughout
the Netherlands.

To illustrate the results more effectively, three extra scenarios were compared with
the existing, basic scenario:

1. One extra staff member at the Interview station.

2. One extra staff member at the Donation station.
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Table 3.3 Input data for the test case

Parameter Value

Arrival rate, \ 15.0 donors/hour
Service rate per staff member at the Registration station, x| 30.0 donors/hour
Staff members (servers) at the Registration station, s; 1
Service rate per staff member at the Interview station, pq 10.2 donors/hour
Staff members (servers) at the Interview station, so 2
Service rate per staff member at the Donation station, 1 5.0 donors/hour
Staff members (servers) at the Donation station, s3 4

3. At the Interview station an Hb-test is performed. This test requires roughly 1
minute. We can perform this test directly at the Registration station, changing
w1 to 20, and ps to 12.3.

3.6.2 Real life measurements and product form computations

Using the product form expression (3.1), in combination with Little's well-known law,
we can directly compute the mean delay time by:

L=)\T

3.9
L,=M, qe{1,2,3} (39)

where

A Arrival rate of donors (as mentioned before)
L Mean number of donors in the system (L, for station ¢ € {1,2,3})
T Mean total delay time in the system (7, for station g € {1,2,3})

Note that a similar relation holds for the mean number of donors in the queue
and the mean waiting time. It is also possible to directly calculate the expected
waiting and delay time W, and T, for each station ¢ separately. In Table 3.4, the
waiting times that were calculated with the product form result (Theorem 1) are
shown together with data from internal reports at Sanquin (Van den Toren et al.
[175]). The presented data were collected throughout the Netherlands in 2010.

From Table 3.4 the conclusion can be drawn that the expected waiting times
seem to validate quite well with the product form computation. All of the computed
waiting times fall within the 95% Confidence Interval - and even the 30% Confidence
Interval - of the corresponding real life measurements.

Accordingly, as mentioned in Section 3.3, these results seem to partly justify
the assumption of exponential service times, particularly for comparison purposes.
Results for the three scenarios from Section 3.6.1 are also included, based on the
product form calculations.

The Interview station clearly has more to gain from an extra staff member than
the Donation station. Although scenario 3 increases the total waiting time, it might
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Table 3.4 Expected waiting times for the three stations in minutes

Scenario Registration Interview Donation Total
Real waiting time 1.91 8.29 3.67 13.88
Computed waiting time, 2.00 6.92 6.11 15.04
base scenario

Scenario 1 2.00 0.87 6.11 8.98
Scenario 2 2.00 6.92 1.42 10.34
Scenario 3 9.00 2.89 6.11 18.00

still be interesting. It has been suggested by some people within Sanquin that donors
experience waiting time at the Interview station as longer and more annoying than
at the two other stations, but there seems to be no evidence to support this theory.

Remark. The validation of the computation, based on exponential service times,
seems to be consistent throughout measurements and computations, both at global
collection site level and for individual stations. This validation seems to sufficiently
justify the use of the product form for global production and waiting time computa-
tion.

3.6.3 Computational results of the marginal waiting time dis-
tribution

Using equation (3.5), it is possible to calculate percentiles in waiting times for indi-
vidual stations. In Figure 3.4 we present waiting time percentiles for the Interview
station. The results were calculated for a parameter setting based on the current
situation and scenarios 1 and 3. Both of these scenarios lower the average workload
at the interview station.

Figure 3.4 Percentage of donors that has to wait for the Interview station.
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3.6.4 Results of the numerical procedure for total delay time

In addition to the results for expected total waiting times in Section 3.6.2 and the
exact results in Section 3.6.3 for the marginal waiting times, it is also possible to
compute delay time percentiles by using the computational steps in Section 3.5.2.

To save computational time, the computations just include the Interview and Do-
nation stations. This is justified; as our previous results showed that the Registration
station did not lead to high waiting and delay times. As in Section 3.6.2, results
were computed for the current situation and two of the scenarios from Section 3.6.1.
Scenario 3 was left out as it also concerns the registration station. For calculations
we have used the parameter settings from Section 3.6.1. The parameters «, the
length of a time interval, and K , the total number of time intervals, were set at
twice the maximum of D, the highest rate out of any state, and 150 respectively.
In the ‘current situation (2)' both were set twice as high to illustrate that there was
no considerable effect on any of the outcomes. To keep the computation restricted,
the Interview station was given a maximum capacity of 6 (staff members and queue)
and the Donation station was given a maximum capacity of 8. Though limited, these
values already appeared sufficient to compare the results of the scenarios. For the
test case no percentile measurements were available.

Table 3.5 Results from the numerical procedure

Sojourn time percentile (min)

75th 90th 95th

Current situation| 33 46 55
Current situation (2)| 33 46 56
Scenario1l| 29 41 49

Scenario 2| 30 42 52

Clearly, the inclusion of an extra staff member at one of either stations has a
positive influence on the delay times, especially on the higher percentiles. There is a
slight preference to use the extra staff member at the Interview station.

3.7 Discussion

The research presented in the chapter aimed to make a first step to combine produc-
tion norms for blood collection sites with waiting times on a purely analytical basis.
The expressions provided can be regarded as generic - i.e. applicable for different
collection sites regardless of arrival and service rates, size and staff numbers - and can
also be seen as supportive for approximate methods. In particular, a decomposition
result into separate stations appears to be applicable for computation.

By using the decomposition result, waiting time distributions and percentiles
could be obtained for individual stations by an analytic, direct expression. The
expression is not new, but does not seem to have been justified in a tandem queue
setting. This expression is of particular practical interest for general perceptions on
waiting time experiences during the donation process. The total waiting and delay
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time distribution, however, remains highly intriguing, because the distributions of
separate stations are not independent. This dependence meant that, even for the
'simple’ exponential case, a computational algorithm had to be developed.

A real life test case, based on a Dutch collection site, was evaluated to illustrate
the practical usefulness of both the analytic and computational results to improve the
waiting time performance and its perception. Although our simplified three-station
tandem queueing model does not capture all aspects for a perfect representation of
reality, the results in Section 3.6 seem to support the applicability of the queueing
model described. Reasonable approximations as to compare different scenarios for
practical application are obtained. We have also shown that, although the exponential
assumption on service times is not completely accurate, it does lead to waiting times
that closely match those found in real blood collection sites.

From these results, we draw the conclusion that the expected waiting times seem
to relate quite well with the product form computation. Accordingly, these results
seem to justify the assumption of exponential service times for computational pur-
poses. We emphasize that one of the prime applications for Sanquin is to compare
different scenarios in a generic and replicable manner, as presented in Section 3.6.

Next to this useful step in determining and predicting waiting times at blood
collection sites, the results are motivating for further research as presented in later
chapters of this thesis. An integration and combination with other OR methods,
such integer linear programming (see Chapter 5) and Markov decision processes (see
Chapter 6) are just some of the options.

3.8 Appendix I: Proof of Theorem 1

First let us introduce some notation. The indicator function 1((condition]) 1S defined
as

1 if [condition] is satisfied

1 condition]} — . 47 1 isfi
{[condition]} {0 if [condition] is not satisfied

Also as standard, the unit vector e, denotes a vector with value equal to 1 on
the ¢'" position and value 0 at all other vector positions. E.g. e; = (0,1,0). For
ease of notation also define:

g n<$§
Nq(n){ ! !
HqSq M = Sq

The proof will follow by showing that expression (3.1) satisfies the global balance
equations. For the description of Section 3.3, these are given by equation (3.10)
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below:
wnkl{zzﬂ nq<M}+ Tntestts (N3 + 1) ]1{22:1 nq<M}+ (3.10.1)
T 1 (nl) ]]-{n1>0}+ _ 7rn—81>\]]-{n1>0}+ (3102) (310)
T 2 (n2) ]1{712>O}+ Tnte;—ea M1 (nl + 1) ]1{n2>0}+ (3 103)
Tn 43 (’I’L3) ]1{n3>0} Tn+eq—ez M2 (TLQ + 1) ]l{n3>0} (3104)

More detailed, we will show that every line (3.10.i) is balanced separately by
assuming expression (3.1) to be correct. To show this for (3.10.1) , first note that
the indicator functions in the left and right hand side are identical and therefore
cancel out. Hence, we only need to show that m,A\ = T4, [p3(ns + 1)]. This can
be rewritten to show:

Tn+es o A

T p3(ns + 1)

By substituting expression (3.1) in this equation this equation holds. Similarly, by
again assuming and substituting expression (3.1), we verify this for (3.10.2) , (3.10.3)
and (3.10.4) by:

Tn—e; _ M1 (”1)

T, A
Tn+4e;—ep _ H2 (n2)
Tn ,U,l(’lll —+ 1)
Tntes—es _ M3 (n3)
T pa(ns + 1)

Hence, we have proven expression (3.1) to satisfy equation (3.10).

3.9 Appendix Il: Proof of Theorem 2

Let ﬂ(ﬁnq denote the queue length distribution upon arrival at station ¢, defined

as the probability of encountering n, jobs already present upon arrival at station
g € {1,2,3}. Then,

P(W, >t) = i i P(W, > tin)ms, (3.11)

ng=0n,=0;Vq’ #q
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Using arguments of quasi-reversibility as in Kelly [118], it can be argued that
the distribution upon arrival at a station is equal to that as a time average; this is
similar to the well-known PASTA (Poisson Arrivals See Time Averages, Wolff [185])
property at the Registration station.

Alternatively, this can also be shown directly by using departure rates from one
station to a next one - station ¢ - conditional on the number of donors n,. Clearly,
for ¢ = 1, we directly conclude that wﬁn = T4, due to the well-known PASTA
property. For ¢ € 2,3, these probabilities are obtained as the fraction of all transitions
from station ¢ — 1 to station ¢ that encounter n, jobs at station ¢, i.e.:

Do D TateHg—1(ng—1+1)

q’'#qmn =0

e = (3.12)
> 2 7Tn+eq,uq—1(nq—1+1)
q’:lnq/:O

For notational clarity, first consider ¢ = 2. Based on the factorization m,, = 7 p, -
T2.my T35, aNd by summing over all possible options for ny and ns, expression (3.12)
can then be rewritten as:

o0 o0
Yo T r1pn(n + 1), Do T3,
0

A - ni= n3=0
7T2,n2 - oo e %)

D Mimipi(m +1) Y Ton, D T
n1=0 no=0 n3=0
oo
> Tim+ip(ng +1)

_ n1=0 . T2 ng * 1

X 1-1
> Tim+ip(ng +1)
n1=0

The same reasoning applies for ¢ = 3. Since the waiting time at a station q is
independent of the number of donors at other stations and the product form can be
written in factorizing terms, T, = T n, - T2.n, * T3 n,, €XPression (3.11) can now be
rewritten as:

(oo} oo
P(W, >t) = Z Z P(Wq > ting)mgm, H Mgy

nqg=0n,=0;vq' #q q'#q
o0
= E P(W, > tin)myn,
nqe=0

As donors do not have to wait unless there are at least s, other donors, we can
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change the summation to

oo

Z P(W, > tin)mgn,

Ng=3S8q

:P(Wq > t)e_(l_Pq)Squt

Here the last equality can be argued by considering that the conditional probability
is just a sum of (n, — s,) exponential distributions (i.e. an Erlang ((n, — sq), ftq)
distribution). A more detailed version of its steps can be found in Literature, e.g.
see Cooper [53] (pages 68-69 and 96-97).

3.10 Appendix l1l: Algorithm to compute total delay

3.10.1 Defining an expanded Continuous Time Markov Chain.

To start the procedure we first need to extend the state description and the state
space, in order to keep track of a donor until he/she leaves the system. Therefore,
our new state space is:

S = {(n1,n2,n3,1,p) € N°|0 < n, < N,,q € {1,2,3}; (313)
0<1<30<p< N™™}
where N™2* = max{Ny, Ny, N3}, [ is the location of the donors, i.e. the station
number, and p is the position of the donor in the queue of station [, including donors
in service. Recall that n, and N, denote the number of present donors and the
maximum number of donors that can be present at station ¢ € 1,2,3. Additionally,
we define state (nq, no, ns,0,0), which is reached when the donor being tracked exits
the system, leaving the system in state (n1,ng,n3) after being absorbed.

Since [ is the station where the donor resides, s; is the number of staff members
at the station where the donor is. So, if p > s; then all staff members are busy, and
there are s; donors in service, and there are p — s; — 1 donors in the queue ahead
of the tagged donor. If there are multiple staff members at a station and the donor
being tracked is being served, then multiple states have the same associated system.
For example, the states (3,5,4,2,1) and (3, 5,4, 2,2) both represent that the tracked
donor is in service at the Interview station (assuming the Interview station has at
least 2 staff members).

Hence, we construct an absorbing Continuous-Time Markov Chain to measure
the time that a tagged donor spends in the system. For ease of notation, we extend
the definition of the indicator function 1{(condition)} to include multiple conditions.
The function returns 1 if all conditions are satisfied, and 0 otherwise. For the same
reason, we also define n" = min{n,, sq}.

Let Qn,ns be the corresponding generator matrix for a transition from n =
(n1,n2,ns3,1,p) to n’ = (n},nh,nk, ', p’) for this Markov Chain:
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Qup =
A 1{”1<N1,”2<N2,713<N3} n' = (nl +1ng,na, l7p)
(" = Dpr - Ltz p<sy ma<Namg <Ny} 7 = (n1 = 1,np +1,n3,1,p)
’/lrlnin:ul . ]]-{lzl,p>s1,n2<N2,n3<N3} n' = (nl —Lng+ 17n3’l’p o 1)
nrlninul : ]l{l;él,n2<N2,n3<N3} n' = (nl = Ling+ 1’n3’l’p)
#1 - D=1 p<sy o< Nayng <Ny} n' = (n1—1,na+1,n3,2,n2 + 1)
(nglin — Dpz - 1{l:2,P§82,n1<N1,n3<N3} n' = (n1,m2 —1,n3 + 1,1, p)
nIQHin,uQ ' 1{[:2,p>32,n1<N1,n3<N3} n' = <n17n2 —Lng+1, l’p - 1)
nIQnmNZ : ]1{1752,7L1<N1,7L3<N3} n = (n1,m2 —1,n3+ 1,1, p)
M2 - 1{l:2,p§sz,n1<Nl,n3<N3} n' = (n1,m2 = 1,m5+1,3,n5 + 1)
(n3™ — Vs - L=s p<syny <Ny ma<Ny} 1 = (n1,n2,n3 — 1,1, p)
’/lgnin:u3 ’ ]]‘{1:3,p>33,7l1<N1,n2<N2} n' = (n17n27n3 —Lip- 1)
nénin:U/S . ]l{l#B,n1<N1,n2<N2} ’II, = <n17n27n3 - 1’ l’p)
13 - L1=3,p<ss,ni<Nina<Na} n' (n1,m2,n5 = 1,0,0)

with diagonal elements:

D("lﬂ’bz,nsJ,P) =-1 Z Q(nl7n2,n3,l,p),($1,$2,I37LE4715)

(z1,%2,73,24,25) €S\ (n1,n2,13,1,p)

Clarification of the transition matrix. The first transition represents an arrival.
This can only take place if none of the stations is congested. The new state will have
one extra donor in the Registration station.

The second transition is a completion at the Registration station of an untagged
donor, when the tagged donor is in service at this station. This is only possible if
none of the other stations are congested. The position of the donor has to be lowered
by one, unless he/she is the only donor left at this station. Furthermore there will
be one less donor at the Registration station, and one more at the Interview station.

The third transition is a completion at the Registration station of an untagged
donor, when the tagged donor is at this station, but not in service. Again, this can
only happen if none of the other stations is congested. After this transition there will
be one less donor at the Registration station, one more at the Interview station, and
the position of the tagged donor has to be lowered by one, as he/she has moved up
one place in the queue.

The fourth transition is a completion at the Registration station of an untagged
donor, when the tagged donor is at another station. The same conditions and new
state as the previous transition hold, with the exception that the position of the
tagged donor doesn't need to be lowered as he/she hasn't moved up in his/her
queue.
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The fifth transition is a completion of the tagged donor at the Registration station.
This is only possible if he/she is actually in service at this station. In the new state
the tagged donor will be at the end of the line at the Interview station.

Transitions 6 and 10 are similar to transition 2, transitions 7 and 11 are similar
to transition 3, transitions 8 and 12 are similar to transition 4 and transitions 9 and
13 are similar to transition 5.

Note that N, is conceptually allowed to be infinite. Also note that the last
transition, transition 13, into state (ni,n2,n3 — 1,0,0) represents that the tagged
donor leaves the system. This is to be interpreted as an absorption.

3.10.2 Time-discretization

For computational purposes we now need to transform the continuous-time Markov
Chain (CTMC) into a discrete-time Markov Chain (DTMC). We therefore apply
the well-known method of Time-discretization - for more details on this and related
methods, see Chapter 2. Based on this method, we can then compute the transition
matrix P, for the continuous-time Markov Chain over a time period of length ¢ by:

& k
t
P=> e“"t(aT‘)Pk (3.14)
k=0 ’

where [ is the identity matrix and P is defined by:

P=1+1q (3.15)
(6%

with

a > max —1-Dip, momal
(n1,n2,n3,l,p)ES (n1,n2,n3,L,p)

The interpretation of this DTMC is that each time-step has an exponential du-
ration with parameter «, hence an average duration of 1/a. Let 7" be the corre-
sponding state probability vector of the DTMC after k time-steps.

As the DTMC still involves an infinite matrix in its current description, we restrict
the system and include finite limitations on the number of donors that can be present
in stations 1, 2 and 3 by N1, Ny and Nj respectively. From this exponential DTMC
the total delay time distribution can now be computed with the algorithm below.
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3.10.3 Numerical Algorithm to track a tagged donor.

Step 1. Definitions.
Let S” = {(n1,n2,n3) € N3]0 < n, < N,}. Notice the difference with S from
(3.13)
Let 7%

(n1,m2,m3,l,p)
steps.

be the probability to be in state (ny,n2,n3,!,p) after k time-

Step 2. Initialization.

For all (z,y,z) € S’ (state of the systems at the arrival of the tagged donor):
Set k£ = 0, to indicate no time has passed sice the tagged donor entered.
For k =1 to K (truncation value)

Step 3. lteration.

Compute:
D Y pp (3.16)
jeS

Compute the probability that the donors spends less than or equal to &
time-steps with exponential length (with parameter « in the systems, given that
the donors arrived in state (z,y, 2):

k
P(To <kl(z,y,2) = > 7 o0 (3.17)

(n1,m2,n3)€S’

end of both loops, back to step 2 until all (x,y,z) € S’ have been used

Step 4. Back to continuous time.
For any time ¢, the delay time distribution can be approximated by taking k large
and o = k/t (also see Remark 1)

P < (@,9,2)) ~ BT < bl(23,2) (3.18)

for « large enough

Step 5. Combination with product form.
With 7, 4, -), as given by (3.1), compute the unconditional delay time distribution
using (3.8)

P(T<t)= Y TayP(T <t|(2,y,2)) (3.19)

(@.y,2)€S”

Explanatory notes on the Algorithm. The goal of the algorithm is to find the
delay time distribution of a blood collection site, by keeping track of the number of
time-steps it a tagged donor to pass through the system. The tagged donor arrives

at time 0, in state (z,y, z,l,p). Here (z,y,z) represents the number of donors in
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the stations 1, 2 and 3 respectively. The [(ocation) label reflects the station where
the tagged donor currently resides. The p(osition) label gives the position that the
donor currently occupies in the queue at station [. The donor leaves the system as
soon as these labels become p =1 = 0.

For notational purposes, the first computational step introduces an extra, sec-
ondary state-space which only consists of the first three components of the total
state-space. It also introduces the probability distribution WE?LTLZ”?'J;P) of the DTMC
after k time-steps.

The second computational step is an initialization step, and sets up the main,
iterating step. This has to be run for every initial state (x,y,z) in the secondary
state-space S’. First, the index and the probability distribution are initialized. At
the start of the algorithm the tagged donor arrives at the system, which is in state
(z,y, z). Therefore the probability of being in state (z,y, z) with the tagged donor
at the end of the queue in the Registration station is 1, while all other states have
probability 0.

In the third computational step, the initial probability distribution 77((2)177&7”3’%1))
is multiplied with the transition probability matrix from (3.15). This leads to

((711)1’”2’713,[7}7), the probability distribution after 1 time-step. After this time-step
is completed it is possible to sum over all states that have [ = p = 0. This summa-
tion gives the probability that the tagged donor has left the system in this time-step
or earlier. This one-step procedure is repeated until some maximum number of K
time-steps has been reached. Then the algorithm will move on to the next initial
state (z,y,2), and again start with step 2. In the fourth computational step the
probability of leaving the system in k or less time-steps is converted to leaving the
system within k/« time units, conditional on arriving in state (x, y, z). Finally, in
step 5, as we know the probability of arriving in state (z,y, z) from the product form
expression (3.1), and by using PASTA, the conditional expression can be summed
over all initial states (z,y, z). We thereby obtain the unconditional total delay time
distribution.

Remark 1. By (3.17) we have exactly computed the delay time distribution expressed
in k exponential phases with parameter a.. The corresponding Erlang distribution with
k phases and parameter o has an expectation of k/a and variance k/a?. Hence, for t
fixed, k = ta, and « enlarging, the variance will converge to 0 and the expectation will
converge to t. By recalling that a can be chosen arbitrarily large, the approximation
(3.18) will then be exact for & — co. In fact, in Section 3.6.4 we show that doubling
« has no effect on the outcome of the algorithm, so the approximation seems to work
quite well.

Remark 2. In this algorithm, the maximum delay time for which the probability of
absorption is calculated, is Tinax = K /. To get a more accurate approximation, it is
possible to increase o from the given value. When « is increased, it is recommended
to increase K by the same factor to ensure that Ti,,x remains the same.
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CHAPTER 4

Queue length computation of time
dependent queueing networks

4.1 Introduction

Service systems with free walk-in arrivals rarely have a steady number of arrivals dur-
ing business hours. Some time intervals will have a high average number of arrivals,
and others a low number of arrivals. This happens because people - in general,
customers - usually have preferences for certain time intervals. These preferences
usually depend on the type of system. Systems with a short service and sojourn
time often experience peaks in arrivals just before or after standard office working
hours and during lunchtime (e.g. checkout at supermarkets). Systems with longer
service and sojourn times usually see preferences for certain days of the week (e.g.
hospitals). Due to breaks and part-time employees (servers), service capacities might
also not be uniform throughout the day. When standard queueing theory is applied
to these kinds of situations, often general queueing expressions are used like Little's
law, M/M/s expressions and product forms. However, these methods generally as-
sume a steady-state situation. l.e., these expressions rely on averages over an infinite
time-horizon situation. A time-dependent system will usually tend to this average,
which is the reason a steady-state approach is well justified in systems that are time-
dependent, but only change very slowly. However, if system changes occur relatively
often compared to process events - arrivals and service completions - steady-state
approaches can give results that do not match reality.

There are several ways to address these steady-state issues. Time-dependent
queues have frequently been addressed in literature, as shown in the review paper by
Schwarz et al. [164]. Most of the papers that work with time-dependent queues are
of a technical nature. These papers generally deal with a single queue, often with
just one server. In reality, however, service systems will consist of multiple stations,
each handling part of the total demanded service. In addition, each of these stations
might have multiple servers. In this chapter, we will show the application of one of
the more common methods to deal with transient - i.e. over a finite time horizon
- continuous time systems or time-dependent queues: uniformization. As outlined
in Chapter 2, uniformization is a method that can be used to analyze a continuous
time Markov chain by transforming it into a discrete time Markov chain. As well as
being one of the most frequently used methods, uniformization is also considered one
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of the methods performing best in literature. An extensive discussion of the theory
behind uniformization, and a number of other extensions can be found in Chapter 2.
In contrast to the more theoretical and numerical approach in Chapter 2, this chapter
will not go into the theory, but focus on the practical application of the method in a
time-dependent setting.

The approach presented in this chapter is widely applicable. In this chapter,
we will focus on the application that is central to this thesis: the donation process
at blood collection sites. A comprehensive description of the process can be found
in Section 1.3 in Chapter 1. A large portion of the blood donations, particularly
whole blood donations, occurs on a free walk-in basis, and donors prefer certain
times during the day for a blood donation, as can be seen in Figure 4.1. Peaks
in arrivals are evident early in the morning (around 8.30 am) and during lunchtime
(around 12.30 pm). The largest peak in arrivals is after standard office working
hours, between 6 pm and 7.30 pm. The difference between the highest and lowest
arrival rates can easily reach a factor of 2.5. This clearly indicates that steady-state
methods will not be reliable in estimating queue lengths and a transient computation
will thus be preferable.

We will start by discussing the relevant literature in Section 4.2, followed by the
introduction of the model we will use in Section 4.3. We will then present the steps of
the computational method for time-dependent systems in Section 4.4. The technical
details of the method will be included in Section 4.7. The results in Section 4.5
are split into two parts. Section 4.5.1 shows an extensive comparison of the time-
dependent method and a steady-state approach to demonstrate the benefit of a
time-dependent approach. The second part of the results in Section 4.5.2 uses the
time-dependent method to analyze several scenarios that aim to decrease queues at
blood collections sites. The chapter will be concluded with a discussion in Section 4.6.

4.2 Literature

The study of time-dependent queueing systems is not a new research field. Its
first appearance goes back to 1931, in a paper by Kolmogorov [122]. Since then, a
large number of papers have appeared, as shown by an extensive and recent literature
review by Schwarz et al. [164]. There are two aspects in which papers discussed in the
review might be related to our research: the application area and the computational
methods.

Blood collection sites have been studied before, as can be seen in [8, 29, 38,
39, 154, 173]. A detailed discussion of these papers can be found in Section 1.4
in Chapter 1. Most of these papers describe a setting that is inherently time de-
pendent. Nevertheless, none of these papers deal with time-dependent aspects of
blood collection sites, let alone use uniformization. Therefore, we will first discuss
related papers with an application to health care settings in general. Nine papers
dealing with time-dependent queues in health care settings are included in the review
by Schwarz et al. [2, 26, 36, 40, 52, 90, 167, 176, 189]. None of these papers use
uniformization, but two papers [26, 36] use a related approach developed by Brahimi
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and Worthington [37]. Their approach also uses a probabilistic one step transition
mechanism. However, the method is based on discrete-valued service times, and the
transition probabilities are calculated differently. The other health care related papers
use a variety of different, less related methods in their time-dependent computations.

The second aspect in which some papers are related, is the method used: uni-
formization. Jensen [117] introduced uniformization in 1953. Since then, countless
papers have used, applied and improved the method (e.g. [139, 157]). The review by
Schwarz et al. mentions six papers contributing to the development of uniformization
for time-dependent queueing systems. The first of these six papers, by Grassmann
[94], looks at the transient behavior of an M/M/1 queue, but allows for constant pa-
rameters only. The other five papers [16, 54, 64, 77, 99] all consider time-dependent
parameters. [64, 99] provide exact solution methods, but do not include numerical
computations, while [16, 54, 77] include approximative computations. Our com-
putational implementation of the algorithm is roughly based on one of these, the
paper by Arns et al. [16]. Ingolfsson et al. [111] compare uniformization to six other
methods, including an exact one. It is concluded that uniformization is consistently
closest to the exact method and often nearly indistinguishable. In most of their ex-
amples, though, it is also the slowest approximation method. For our application,
and probably many more applications, this is not a major problem. Our Matlab im-
plementation is able to compute results in a couple of seconds (for more information
on computational times, see Section 4.4).

There are quite a few papers that apply methods similar to the method described
by Brahimi and Worthington [37] - that is, related to uniformization - for real-
world problems. However, there only seem to be two papers [112, 138] that use
uniformization in a real-world, time-dependent context. Both of these focus on a
single-queue call center, in contrast to the multiple station queueing network covered
in this chapter.

4.3 Model

4.3.1 The blood collection site as a test case

In the remainder of this chapter we will only consider whole blood donations. The
most important reason to exclude plasma donations is the appointment system for
this kind of donations. This means that the arrival patterns - which are the most
important reason for the time-dependent approach - are far less pronounced or even
non-existent for plasma donations. The remaining arrival process of whole blood
donors is highly time dependent, as can be seen in Figure 4.1. This makes the
process of whole blood donation at Dutch blood collection sites a good application
of time-dependent queue computation.

As well as being a good test case to show why time-dependent queue estimation
is sometimes beneficial, blood collection sites also provide an opportunity to show the
effects of several scenarios. Because the process has multiple stations and most staff
members are trained to execute all of the different tasks in these stations, there are
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Figure 4.1 Average arrival pattern of whole blood donors for a full day's blood collection
session in the Netherlands. Arrival rates per half hour are shown.

Arrival intensity
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. TN o 7 e 1 0 Time of day (hours)

several options for changing the allocation of staff. This will even further increase the
time-dependent nature, but will also level the work load and in most cases decrease
waiting times. We will, among other scenarios, show the consequences of changing
staff allocation just after opening in Section 4.5.2.1, and towards closing time in
Section 4.5.2.2. The changes proposed in these sections are quite obvious, but using
our method, we can show and predict the effects these changes have on queue length
distributions at the blood collection site, while taking time-dependent aspects into
account. We will also show the effects of applying the staff scheduling algorithm
developed for blood collection sites, and presented in Chapter 5.

In all results in Section 4.5 the arrival rate follows Figure 4.1 - unless mentioned
otherwise. This comes down to an average arrival rate of 15 donors per hour. Note
that Figure 4.1 shows the arrival rate per half hour. Nine staff members are available
throughout the day, one being allocated to the first station, three to the second
station and five to the third station. For all results in Section 4.5 we have limited the
number of donors who can be present at any of the stations to twelve. This has been
done to limit the state-space, a necessity to be able to compute results. Although a
limit is necessary, it can easily be increased or decreased.

4.3.2 Technical model

The computational method that will be described in Section 4.4 works for any Jackson
network, the well-known type of queueing network introduced by Jackson [114].
A Jackson network contains a number of service stations, each containing a fixed
number of servers. Every station can have an outside arrival stream, and arrivals
from any other station. When a customer- in this case a donor - completes service at
one of the stations, it will instantaneously be routed to a next station by some fixed
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Figure 4.2 Model of the blood collection site used throughout the chapter.

Donor enters Donor leaves
collection site . . . . collection site
————— > Registration Interview Donation ——

probability distribution, independent of the current network state. This next station
can be any other station and the “outside world”. If the customer selects the outside
world, it means that the customer will leave the network.

We will assume all arrival rates and service rates to be Poisson, as is standard
in queueing theory. This means that the number of events (either arrivals or service
completions) in a given time interval is Poisson distributed. This leads to exponen-
tially distributed times between events, so both the time between two arrivals and
the time it takes for one customer to receive service at a station are exponentially
distributed. An exponential time between two arrivals leads to memoryless arrivals,
meaning that the distribution of the time until the next arrival at any point in time
is independent of the time since the last arrival. This is a natural assumption for free
walk-in arrivals, as it means that the previous arrival has no influence on the next
arrival, i.e. arrivals are independent.

Exponential service times have a similar memoryless property, though interpreted
differently. For services the memoryless property means that the time since service
began does not influence the probability of completion of service. In most cases
this assumption for services does not fully reflect reality, but it is imperative for
computational methods like the one presented in this chapter to remain feasible.
In most cases the exponential service time assumption leads to an overestimation
of waiting and sojourn times, which means that the computations based on these
models are usually conservative, i.e. on the safe side. Using this approach, it is also
possible to use Erlang distributions or even more general phase-type distributions - a
combination of exponential distributions, see Erlang [79] - but this would affect the
computational time of the algorithm.

To model the blood donation process, we use a simplified model of a blood
collection site. In this model, we distinguish the three main stations of the donation
process: the Registration station, the Interview station and the Donation station.
The model is visualized in Figure 4.2. This model has been shown to effectively
represent a blood collection site in the Netherlands in Chapter 3. Each of the three
stations has its own queue. Donors arrive only at the first station, they go sequentially
to the second and third stations before leaving the system.

4.4 Methods

As previously mentioned, we present an approach that is based on uniformization,
also referred to as randomization, as extensively discussed in Chapter 2. The ap-
proach starts by splitting the entire continuous time period in short time intervals
during which the system parameters are assumed to be constant. The subsequent
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algorithm can be split into two main stages. The first stage of the algorithm, ex-
plained in Section 4.4.1, uses uniformization to compute the queueing distribution of
the individual intervals. The second stage connects the intervals, and is explained in
Section 4.4.2. The technical details of the algorithm can be found in Section 4.7.

4.4.1 Constant intervals

Although it is possible, or even likely, that the system is changing continuously over
time, it is usually impossible to estimate arrival and service rates for a single point
without some approximation. In contrast, it will usually be possible to get these
estimates for a time interval directly from data. The time that has to be evaluated
will therefore first be divided into short intervals. These intervals can be arbitrarily
short and we will assume that the system is homogeneous during these intervals.

To start the algorithm, we first need an initial vector that contains the probabilities
of being in a state - the probability vector - of the system. The state of the system
in this case is a combination of all the numbers of people at the different stations.
The initial probability vector might be a probability of 1 for an empty system, or any
other probability vector based on historical data. As can be seen in Section 4.5.2.1,
it is also possible to run instances with different initial vectors.

The algorithm then proceeds to the first interval. For this interval, a so-called
generator matrix will be computed. This matrix contains the rates at which the
system changes from one state to another, for all possible initial and subsequent
states. Of course most of these rates will be 0. With this generator matrix, we can
discretize the process. By using the steps described in Section 4.7, we can build a
transition matrix from the generator matrix. This matrix contains the probability that
the system will end up in some state after one transition, given the previous state.
This means that if we multiply the probability vector with this transition matrix, we
will end up with a probability vector after one event. If we multiply the vector by
the matrix two times, we get the state vector after two events. We can continue this
process to get the probability vector after k transitions.

Since we assumed all rates to be Poisson, and the sum of Poisson rates is again a
Poisson rate, we know that the number of events k£ during a given time interval t is
Poisson distributed. This means that both the probability of k transitions in a time
interval and the probability vector after k transitions are known. If the probability of
k events and the probability vector after k events are multiplied, and then summed
over all possible k, the probability vector after the time interval ¢ can be calculated.
This will work perfectly in theory, but there is one problem in practice. The Poisson
distribution gives a non-zero probability for every positive integer value of k, implying
that an infinite sum should be used. The probabilities for a very large number
of events are very small, so we truncate this sum at some point, i.e. ignoring all
numbers of iterations bigger than some K number of events during time interval
t. This truncation point has been set such that the Poisson distribution mass that
gets ignored is at most 10719, After these steps, the algorithm has computed the
probability vector after one time-step, with a stochastic number of transitions during
this time interval.
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4.4.2 Interconnected intervals

As long as the system parameters do not change, the time interval described in
Section 4.4.1 can be made as long as desired, without losing precision. However, as
soon as the system parameters do change, the method runs into problems, as the
time at which an event takes place starts to influence the probabilities of ending up in
different states. To solve this, we stop the iteration of the uniformization algorithm
as soon as one of the system parameters changes. This can be caused by a change
in the number of servers, which is usually known in advance, or a change in the rates
at which changes occur, which can be derived from historical data.

If the algorithm completes one iteration, it has computed the probability vector
after this iteration. This result can be used as an initial probability vector for a new
iteration of the uniformization algorithm, with a new generator matrix. At this point,
the algorithm described in Section 4.4.1 can start over again. This process of starting
a new iteration can be continued until the algorithm reaches the end of the opening
hours, or another ending condition occurs. After the algorithm terminates, the queue
length distribution can be calculated at the start and end of every uniformization
iteration.

4.4.3 Steady-state comparison and numerical implementation

To show the benefit of the time-dependent method, we will compare it to a steady
state method. The steady steady state method that will be used is based on the
product form expression in Chapter 3. The product form expression solves the birth
death equations of a time-homogeneous version of the blood collection site. To
compute the results in Section 4.5.1, the system parameters for every interval have
been used to compute the steady state for these parameters.

The time-dependent algorithm and the product form have been implemented
in both Mathematica 9.0 and Matlab R2015b. Both implementations of the time-
dependent algorithm were run on a machine with an Intel Core i5-3437U processor and
8GB of RAM. The Mathematica implementation takes a little less than 10 minutes
to compute the queue lengths for a blood collection session of an entire day, if the
interval for which calculations are done is set to half an hour. This might be too
long for practical purposes. However, the Matlab implementation can do the same
computation in a few seconds, making it a very useful tool for a practical application.

4.5 Results

We will first illustrate the benefit of a time-dependent computational queueing
method, supported by an example for blood collection sites. Subsequently, based
on this application, we will apply the computations to a number of possible improve-
ment scenarios.
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Figure 4.3 Difference between the time-dependent method (solid black line) and the
steady-state method (dashed black line) for a full collection session. Both methods show
the average total number of donors in the collection site. Total in this case means that the
number of donors at all of the three stations are added up. The arrival rate is displayed in
the background (gray)
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4.5.1 Comparison with steady-state method

To show the benefit of time-dependent queueing methods, we will compare the com-
putational method described in Section 4.4 with a steady-state computation. This
steady-state computation is based on an exact product form result, shown in Chap-
ter 3.

The output of the computational method described in Section 4.4 is a full prob-
ability distribution over all possible states of the system. This means that there is
a wide range of performance metrics that could be calculated using this method,
such as the probability of exceeding a certain number of people in the system, the
probability of exceeding a certain number of people at a particular station, the most
likely number of people in the system, etc. To keep the results in this section simple
we have chosen to show just the average total number of people in the system, in
some cases supplemented with the average number of people at some station of the
process.

Figure 4.3 shows the average total number of donors for a typical Dutch blood
collection site that has a collection session lasting an entire day. The number of
donors is estimated with both the time-dependent method - shown with the solid
line - and the steady-state computation - shown with the dashed line. The steady-
state value is computed by taking the arrival rate for a specific half hour and assuming
this to be constant. In the background, the arrival pattern is shown in gray. Arrivals
are allowed from 8 am until 8 pm, after which the collection site operates for one more
hour to make sure all donors can donate. It is clearly visible that the methods do not
match. If the arrival rate is increasing the steady-state method usually overestimates
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the number of people present - e.g. from 8 am till 10.30 am, while when the arrival
rate is decreasing, the steady-state method underestimates the total number of people
- e.g. from 11 am till 12.30 pm. In general, the steady-state method rarely computes
the number of people accurately.

4.5.1.1 Process speed

If both the arrival rate and the service rate are multiplied by a positive number z,
the total number of customers present will not change in a steady-state method. So,
for a steady-state method, the speed of the services does not influence the number
of people present as long as arrivals are adjusted in the same way. In other words:
time is scalable.

Suppose we compare two systems. The first system has an arrival rate of 4
customers an hour and a service rate of 5 customers an hour. The second system
has an arrival rate of 8 customers an hour and a service rate of 10 customers an
hour. In terms of number of people present, these two systems are identical for a
steady-state method. In reality, however, the first system will take twice as long to
realize the same number of people in the system, if both systems start from the same
situation - e.g. empty. With a time-dependent method, this longer 'transition time'
will be taken into account.

4.5.1.2 System overload

With a fast changing system, it is likely that at some point in time, the system will
get overloaded, i.e. the total arrival rate exceeds the service rate at at least one of
the stations in the system. If this happens when a steady-state method is used, two
things might happen depending on the other parameters. Results for systems that
have some upper bound on the number of people that can be in the system, will
become extremely dependent on this upper bound. If the upper bound is increased,
the computed average number of people present will increase by a similar percentage.
If the system does not have an upper bound, the result for the number of people
in the system will simply become infinite. Both of these cases are not an accurate
depiction of reality, as the number of people that enter the system during the time
it is overloaded, is limited due to time constraints.

The time-dependent method described in this chapter mostly solves this issue by
actually tracking the probability that a certain number of people enter the system
during the time that the system is overloaded. It does, however, have to include some
maximum number of people that can be in the system. Although this will influence
results if the system is overloaded for an extended period of time, service systems
usually also have a physical limitation on the number of people that can be present
in the system, which might make this assumption realistic.

4.5.1.3 System start up

A lot of service systems do not have a continuous period in which service to customers
is offered. Most systems will have some down time. This can be during the night,
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during the weekend or during holidays. When a system starts up, it is obvious that a
sudden change in the system occurs. Before the system starts, there are no services
and arrivals will be substantially lower or even non-existent. There are few things
that might happen in this situation. Some service systems might have a queue of
customers waiting as the system starts, and some might start with empty queues and
wait for customers to start coming in.

A steady-state method, however, will assume that the system is in a equilibrium
situation right away. This is highly unlikely in systems with arrivals to every queue
in the system. If a system contains queues that can only be reached through other
queues, and if we assume that the system started empty, it is impossible that the
system starts in an equilibrium situation.

The blood collection site always starts empty, although it is possible for donors to
line up outside the collection site before it opens. Figure 4.4a shows the average total
number of donors in the collection site during the first two hours after the collection
site opens. It shows the results for both the steady-state method (dashed line) and
the time-dependent uniformization method (solid line). Section 4.5.2.1 discusses a
scenario when there are people lined up outside the collection site.

4.5.1.4 System close

When a system closes down, there are multiple actions that can be taken. There are
two possible actions on the extreme ends, and some possible combined actions can
be thought of. The first of the two extremes is that the arrivals are stopped and the
services continue until the system is empty. The other option is to stop both arrivals
and services. In this case, usually all customers that were in the queue will leave the
system immediately. In this last case, time-dependent methods are less beneficial,
because the behavior of the system after it stops can be predicted with absolute
certainty. For the case that services continue until the system is empty, however,
time-dependent methods are required to predict the behavior of the system after
closing. As soon as arrivals stop, a steady-state method would show no more queues.
In effect, the difference between both options - to stop all services or continue services
- disappears when a steady-state method is used.

In manufacturing systems the extra possibility exists of stopping all arrivals and
services and leaving all the queues filled. As customers in service systems are usually
people, this option often does not exist in physical service systems.

At blood collection sites, the first option - to continue services until the system
is empty - is used, because Sanquin feels the donors should be serviced if they have
arrived within opening hours. Figure 4.4b shows the arrival pattern and the average
total number of donors in the collection site during the last two hours of the working
shift. During the second of these two hours there are no more arrivals.

4.5.1.5 Changing arrival rate

Although the biggest changes in arrival intensity are undoubtedly the opening and
closing of a service system, fast changes might also occur during opening hours. On
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a very short timescale, changes in arrivals might occur due to the arrival of some
form of public transport; a train or a subway. On a slightly longer timescale, changes
might occur during lunchtime or after standard working hours. These last type of
changes can be predicted easily, and can therefore be used in the prediction of queue
lengths. A steady-state method will assume that every change incurs an instant
change in queue lengths and number of people present. A time-dependent method
will be better able to predict the impact of changes in arrivals

For the blood collection site, changes due to working hours and lunch breaks,
are clearly visible in the arrival pattern. Figure 4.4c shows the arrivals from 16.30 to
19.00 hours. During this time, the arrivals to a blood collection site change rapidly.
First because people come to the collection site straight from work, then the arrivals
go down, most likely due to dinner time, and then go up after dinner time. The
steady-state method (dashed line) clearly overestimates the time-dependent method
(solid black line) with respect to the number of donors that are in the queues during
the busy times, and underestimates during the quiet period from 17.30 till 18.00.

4.5.1.6 Changing number of employees

Most of the cases that need time-dependent queueing estimation relate to changes in
the arrival rate. However, service rates might also change. On top of the fact that the
actual service rate per employee might change due to fatigue or other circumstances,
the most obvious change to the service rate is a change in the number of employees
that is scheduled. As in previously mentioned situations, a steady-state method
would immediately change the number of people at the station where the number
of staff members is changed. However, an additional effect might also occur at
the subsequent stations of the system. When an extra employee is added to some
station, the station starts working through its queue faster, resulting in a short time
increase at the subsequent queue. This secondary effect would not happen at all
with steady-state estimation.

Changing staff numbers is a common occurrence at blood collection sites. Sec-
tion 4.5.2.3 shows the result of an algorithm that was developed to optimally change
staff numbers throughout the day.

4.5.1.7 Remarks on the difference between steady-state and time-dependent
methods

As Figure 4.4 shows, the difference between the time-dependent and steady-state
methods can get big enough to cause problems, e.g. if these predictions are used
for planning appointments or staff capacity. To emphasize this difference, Table 4.1
shows the difference between the time-dependent and the steady-state method as a
percentage of the time-dependent method for two of the three situations in Figure 4.4
- starting the system (opening) and the fast changing arrival rate (changing arrivals).
For each of these two instances, the parameters are kept exactly equal to those used
for Figure 4.4. Therefore the total time compared for each of the instances is 2 and
2.5 hours respectively. As a table allows for somewhat more details, we not only
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Figure 4.4 Difference between the time-dependent method (solid black line) and the
steady-state method (dashed black line) for specific times of the day. These figures highlight
parts of the results shown in Figure 4.3. For these figures a computational interval of 6
minutes is used to show smoother lines. Both methods show the average total number of
donors in the collection site. Total in this case means that the numbers of donors at all of
the three stations are added up. The arrival rate is displayed in the background (gray).
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include the difference between both methods for the total number of people present,
but also the differences for each of the three stations of the donation process.

The closing instance could also have been included in Table 4.1, but this would
give misleading results. As the steady-state method gives an empty queue as soon
as arrivals stop, it would always have a 100 % deviation from the time-dependent
method. We have therefore decided to not include these in Table 4.1

For each of the stations and each of the instances, the table shows the difference
between both methods as percentages of the time-dependent result. This has been
done for three time-points, immediately after a change in the process (start), in the
middle of a homogeneous time interval (mid), and just before the next change in
the system (end). As the time-dependent queueing method slowly converges to the
steady-state estimation, the difference will usually decrease over these three time-
points. The results are the absolute differences between the steady-state method
and the time-dependent method, as a percentage of the time-dependent method,
averaged over the time intervals considered. (i.e. both underestimations and overes-
timations were counted as positive differences.) For the opening instance the start
difference does not include the first time interval, as the time-dependent estimation
is 0, and computing the percentage for this time interval would include dividing by
0.

Table 4.1 clearly shows that, as station 1 is the fastest working process, it is
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Table 4.1 Differences in total number of donors present between steady-state and the time-
dependent method as a percentage of the time-dependent method in different instances.

Instance

Opening Changing arrivals

start| 20.1% 70.6%

Station 1 mid 5.2% 21.1%
end 1.3% 10.3%

start| 16.4% 43.9%

Station 2 mid 12.0% 25.0%
end 3.2% 14.8%

start| 29.9% 33.9%

Station 3 mid 52.9% 28.4%
end 14.6% 19.9%

start| 23.8% 43.2%

Total mid 26.8% 25.6%
end 8.7% 16.1%

fastest to converge to the steady-state estimation, during the three time-points.
Conversely, station 3 converges the slowest of each of the stations. It is also visible
that the average total difference is always lower than the maximum of the effects for
any of the stations. This means that even though the effects are clearly visible in
Figure 4.4, the differences for the individual stations might even be bigger. Due to the
relatively minor changes in the period after opening - not including the opening itself
- and therefore the time-dependent method has time to converge to the steady-state
method, resulting in the lowest differences of any of the instances shown.

4.5.2 Scenarios for the blood collection site

As well as being able to evaluate current performance, the time-dependent method
also gives an opportunity to evaluate other scenarios that may improve service. In the
next paragraphs we have included some of these scenarios to improve service at blood
collection sites, without increasing total capacity. All of the scenarios increase the
time-dependent variability of the system, and therefore a time-dependent queueing
computation is highly beneficial for the evaluation of these scenarios.

4.5.2.1 Scenario A: Changing allocation after opening

Most staff members at blood collection sites are multi skilled, i.e. they can be allo-
cated to all stations of the donation process. However, in most cases employees will
be allocated to just one station for an entire shift. At some times during the day
it might be useful to take advantage of the multi skilled employees by changing the
allocation of the available employees. Just after opening the collection site is one
of these moments, as the second and third stations will be empty until donors have
come through the first or the second station respectively.

In the figures and tables shown so far, we have assumed that all queues are empty
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Figure 4.5 Average number of people at the different stations of the process. In all figures,
the dashed line represents the average number of people for the fixed allocation, while the
solid line represents the average for the changed allocation.
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when the collection site opens. However, at some collection sites, donors might line
up for the Registration station before the collection site opens. In this case it is
even more useful to change the allocation, to be able to quickly get these initial
donors flowing through the donation process. To illustrate this, Figure 4.5 shows the
result of changing the allocation of the staff just after opening (solid line), compared
to a fixed allocation (dashed line). In both cases, we assumed that ten donors were
waiting when the collection site opens. For the fixed allocation, we take the allocation
mentioned in Section 4.3.1: one employee at the first station, three at the second
station and five at the third station. For the improved scenario, the allocation was
changed for the first 15 minutes. During the first 7.5 minutes, two employees were
reallocated from the third to the first station, resulting in three employees for the
first station, three for the second station, and three for the last station. During the
second 7.5 minutes, the two employees are allocated to the second station, resulting
in one employee at the first station, five at the second station and three at the third
station. We note that the changes proposed might not always be feasible due to
equipment constraints and collection site design. After the first 15 minutes, the
allocation is the same as for the fixed staff allocation.

A clear effect of this relatively minor change is visible in Figure 4.5. The average
total number of donors in the system shows a reduction of up two donors, and an
average decrease of 11.4% during the first two hours. It is important to stress that
this improvement is reached without increasing the total staff capacity.
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Figure 4.6 Average total number of people at the different stations of the process at
the end of the day, compared between a fixed and a changed allocation. The dashed line
represents the average average total number of people for the fixed allocation, while the
solid line represents the average for the changed allocation.
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4.5.2.2 Scenario B: Changing allocation after closing

The same thing that happens after opening, also happens after closing, but this time
in reverse. After some time, the first station is empty with a very high probability.
At this time, it may be very useful to move this employee to a later station of the
process. The same happens with employees at the second station of the process
somewhat later. If all these employees are moved to the last station of the process,
donors will wait less at the last station and leave the system more quickly. This
leaves not just the donors better off, with less waiting time, but also the employees,
who can close the collection site a little earlier at the end of the day. Although this
sounds reasonable, it will be shown that it is much harder to decrease queue lengths
in this manner than it is at the start of the day.

As at the start of the day, there are two time-points at which the allocation of
the staff members changes. 15 minutes after closing, one employee changes from the
second to the third station, resulting in one employee at the first station, two at the
second station and six at the last station. 30 minutes after closing, two employees
will move to the Donation station, one from the first station and one from the second
station. Although it is likely that the queue at the first station is empty long before
the 30 minutes after closing mark, it is possible that there is still a donor at the
Registration station. If the employee is moved earlier, this donor would never receive
service.

A very minor change can be seen in Figure 4.6, but this is negligible. The
probabilistic nature at the end of the day that makes it impossible to quickly remove
the employee from the first station, and is also the reason that the improvement

89



Chapter 4. Queue length computation of time dependent queueing networks

Figure 4.7 Number of staff members available using stationary shifts (dashed line) com-
pared with the number of staff members available with optimal shifts (solid line)
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is not nearly as high as for the opening of the site. At opening, it is certain that
the station where the number of employees is decreased, is empty. This does not
exist at the end of the day. To get bigger savings, a dynamic allocation that assigns
employees based on the current state of the process, instead of the expected state,
would be necessary.

4.5.2.3 Scenario C: Number of staff members

In a Chapter 5, we have developed a methodology to determine the optimal shift
schedule for staff members, with regards to arrival patterns. The method mainly
focuses on the savings on the number of staff hours required. However, the algorithm
can also be used to keep the same number of staff members, and schedule the shifts
more efficiently. The goal of the rearrangement of the shifts would then be to reduce
and balance queue lengths. Rearranging the shifts would, like the other improvement
scenarios mentioned, increase the time-dependent variability of the blood collection
process.

Using the algorithm, we found a set of shifts that on average uses nine employees.
This will be compared to a stationary scheduling of nine employees throughout the
day. The total number of staff members who are working at any point in time is
visualized in Figure 4.7. Although peaks in the number of available staff members
may only last half an hour, the minimum shift length was set to three hours. Currently,
shifts are often shorter than an entire session, but an ending shifts is immediately
replaced with another shift.

Figure 4.8 shows the results for the stationary scheduled shifts (dashed line)
compared to the optimal shifts from the mentioned algorithm (solid line). For the
stationary shifts, the average total number of people present varies greatly during
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Figure 4.8 Average total number of people at the different stations of the process. Com-
parison between stationary shifts (dashed line) and an optimized shift schedule (solid line)
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the day. This can be expected when the same number of employees is used to handle
varying numbers of arriving donors. Clearly, the algorithm decreases the number of
donors present during busy hours. It pays a small price at moments where fewer
donors arrive, because fewer employees are available to help donors.

4.6 Discussion

The results in Section 4.5.1 clearly show that ignoring the time-dependent nature
of a system results in large discrepancies with reality for queue length and workload
computations. Not dealing with time-dependent aspects at all by simply aggregating
all arrivals and services throughout the day, and use a steady-state method to compute
the queue lengths based on the average rates over the day is clearly very imprecise.
But even by computing queue length distributions or averages with some steady-
state method for every differentiated time interval clearly leads to incorrect queue
estimations.

Uniformization is often mentioned as one of the most accurate methods to com-
pute transient queue length distributions (e.g. Ingolfsson et al [111]), both for sta-
tionary and for time-dependent queueing systems. But it is often disregarded because
it takes too much computational time. We have shown that for at least some practical
situations, such as a blood collection site, it is possible to compute queue length dis-
tributions in a matter of seconds. The blood collection site shows that this statement
even holds if instead of just a single queue, a small network of queues is considered.

To be able to use uniformization, a few assumptions are required. The assumption
of exponential service times is probably the most unrealistic assumption. It is possible
to use Erlang or more general phase-type distributions for the service time, but this
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comes at a significant computational cost. Another, even more technical and formal
option would be to use a stochastic comparison approach. This has been shown for
a network somewhat similar to the blood collection site, containing two stations, by
van Dijk and Kortbeek [66]. For the queueing network based on the blood collection
site, the details would be even more complex. However, most realistic service time
distributions will have a coefficients of variation lower than the coefficient of one of
the exponential distribution. Therefore, realistic queue lengths can be expected to
be lower than the ones computed with exponential service time distributions.

In this chapter, we assumed one staff member can service one donor at the time.
However, using uniformization, it is also possible to use some other service discipline,
e.g. processor sharing. The total service rate can be any nonlinear function of the
number of staff members and donors, as long as the total transition rate remains
limited and the generator matrix can be defined. If we were to assume that processor
sharing is applied if more donors are present at the Donation station than there are
staff members, all results would even remain the same, as this would not influence
the transition rates.

In literature, some papers focus on continuously changing parameters in com-
bination with the uniformization method. These run into problems, because the
discretized process, and thereby the transition matrix, is continuously changing. The
method described in this chapter works with systems for which parameters are as-
sumed to be more or less constant during short time intervals. Although this makes
computations easier, it is also motivated by practice. In general, it is not possible
to get data on continuous changes in a system, since this would require an infinite
set of data points with infinite precision. Usually, one has to estimate the changes
of the system by using time intervals, and estimating transition rates based on the
historical number of transitions during these time intervals. The more data, given
that the data is precise enough, the shorter time intervals can be. Instead of esti-
mating a continuous function from these time intervals, we have decided to use the
time intervals to our advantage by assuming the system parameters to be constant
during a given time interval.

The model also limits the number of donors that can be present at each of the
stations of the queueing system. Although this can be considered to be a restriction,
most realistic queueing systems, especially service systems, will have a limit on the
queue size as well. This is usually a physical limitation - i.e. there is a limited amount
of space for the queue to form. It has the added effect that it prevents excessive
waiting times, by not allowing too many people to get into the queue.

The results in Section 4.5.1 mainly show that time-dependent queueing methods
are beneficial for the analysis of some queueing systems. Section 4.5.2 shows some
scenarios that aim to improve service at Dutch blood collection sites. Scenarios A
and B reallocate staff members either just after opening or just after closing the
collection site. It is interesting to note that whilst the first of these shows clear im-
provements, the second shows no significant reductions of the total number of people
present. Scenario C is based on work presented in Chapter 5. This work focuses on
rearranging shifts of staff members based on the arrival pattern of donors. As ex-
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pected, this scenario reduces excessive queues and balances the queues throughout
the day. Although the number of people present is slightly more balanced, not much
is changed during the first hours of the day. However, at the end of the day, the bus-
iest period at blood collection sites, rearranging the shifts shows a clear improvement
of service by a significant reduction of the total number of donors present. In all,
applying time-dependent queueing methods produced better, more realistic results
than the steady-state methods.

The lack of improvement at scenario B - the reallocation of staff at the end of
the day - points to an interesting topic for further research. The most likely cause of
the lack of improvement is the absence of state dependent reallocation. At the start
of the day, the state of the system is known. It is therefore easy to rearrange the staff
accordingly. However, at the end of the day, the state of the system is uncertain, and
only given by a probability distribution. To get improvements, such as for the total
queue length and delays, a state dependent allocation will therefore be required. Off
course, the remainder of the day, especially the times during which the arrivals vary
most strongly, could also benefit from state-dependent dynamic staff allocation. An
extension of the model to incorporate this option might be an interesting topic for
further research.

4.7 Appendix: Computational algorithm

The algorithm used for the calculations in this chapter is based on the concept of
uniformization. The first thing that we need for the uniformization algorithm is a
generator matrix. The generator matrix () needs to contain all transition rates from
one state to another. For ease of notation, we will define the state to be the three
dimensional vector

n= (n17n27n3)

with n, the number of donors at station g. Before formulating the generator matrix
for the blood collection site, we first define the function Q*:

A ny < Ny, nf =n1+1, ny =ng, ny=ng
ny-pr Ny <81, n2<Nay,nj=ny—1, nb=nay+1 nf=ng
S1+f1 My >81, ne <N, nj=ny—1, nhb=na+1 ns=ng
Ng - e Mg < S2, ng < N3, nj =ny, nhb=ny—1, nf=ng+1
So-pi2 M2 >S2, N3 < Nz, nf=ni, nf=ny—1, nf=nz+1
n3 - psz n3y < Sz, n) =ny1, nh=ng, nf=ng—1

i / /
S3- 3 M3 > 83, Ny = N1, Ny =ng, N3 =n3 — 1

0 else

Here X is the arrival rate of donors at station 1, and p, and s, are the service
rate and the number of staff members at station ¢ respectively. Let N, be the
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maximum number of donors at station g. For the results based on the collection site
in Section 4.5, N, is set to twelve for ¢ = 1,2,3. The generator matrix should be
two-dimensional, instead of the six dimensions of the function Q*. We will use the
following formulas to relabel the states:

ni(i) = {(NB, +i1)_(11\72 + 1)J

,— 1
no(i) = mod®N2+1) L\ng - 1J

n3(i) = mod ™+ (; — 1)

where mod® is the modulo with divisor z. Using these formulas and Q*, we define
the generator matrix Q:

Q" (n1(i),m2(7),n3(4), n1(4), n2(5), n3(4)) i#j

Qi = I, . . . o
T L X QF (i), ma(i), na (i), na (1), e (D), na (1) i=j
=1
Here I is the total number of states, equal to (N7 + 1)(No + 1)(N3 + 1). Let « be
the maximum of the absolute values of the diagonal elements:

a=max(—1*Q;;)
3

Now, using a and the generator matrix (), we can get a transition matrix P for
1 transition of the process:

1
P=-Q+1I
(0%

The next step in the algorithm is to compute the state probability vector 7(t)
after some time ¢, given the start vector w(0). Because all the transition rates are
assumed to be Poisson, and the sum of Poisson rates is also a Poisson rate, the
number of transitions k£ in a time interval of length ¢ is Poisson distributed. This
can be multiplied by the probability vector after k transitions. This in turn can be
summed over all possible values for k. This gives to following expression for 7(t):

m(t) = Z W(O)Pk%e_at

k=0

As long as the transition matrix P does not change, this will work for any t¢.
However, since this chapter studies a time-dependent queueing system, the transi-
tion matrix P does change over time. Despite the existence of a theoretical exact

94



4.7. Appendix: Computational algorithm

Poissonian expression, as in van Dijk [64], we will assume that the transition matrix
is not continuously changing for computational purposes. Instead, we will assume
that it is piecewise constant during short time intervals [t;, ¢;11). Therefore we will
add a subscript (¢;,%;+1) to the transition matrix, indicating the stationary transition
matrix between times ¢; and ¢;4.1. With the distribution at time ¢; already computed,
and using this transition matrix P, , the probability vector at time €41, 7(t141),
can be computed from 7(l;) by:

tiga]

o0 k
m(ti41) = Zﬂ—(tl)P[];z,tHl] (a(tlJr}{;! tl))*eia(tHl*tl)
k=0
As explained in Section 2.4.2 in Chapter 2, there is a practical limitation: it is
impossible to compute an infinite sum numerically. So, for the numerical results in
Section 4.5, the sum will be computed for k£ up to some K. This results in the
following practically usable function:

K

(altisr = t)* _aitres—
m(tiy1) = Zﬂ(tl)p[§l7tl+1]+e (tiy1—t1)
k=0 ’

A suitable K can be found by using a sufficiently small tail of the Poisson distri-
bution. We have used to following truncation:

K
1= 30 (ot =0 i g

k!
k=0

All results in Section 4.5 have been generated using the implementation of these
formulas in Mathematica 9.0 and Matlab R2015b.
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CHAPTER 5

Waiting time based staff capacity and shift
planning

5.1 Introduction

Sanquin currently focuses her collection sites and intake sessions on production.
For every session and every hour worked by a staff member the required number
of donations has been set in advance, and staff members are scheduled based on
these requirements. Waiting times are not consistently taken into account in these
scheduling methods. Some managers of collection sites schedule an extra staff mem-
ber during peak hours to counteract long waiting or sojourn times, but most staff
members are scheduled for an entire day or intake session.

Even though whole blood donors can walk in without an appointment, the arrival
process is not as random as one might think. Clear patterns show up in the arrival
times of donors, and these are mostly independent of day and location (see Van den
Toren et al. [175]). Peaks in arrival intensity clearly show up early in the morning,
around lunch time, and around dinner time. Additionally, plasma donors make ap-
pointments for their donation, which makes the arrival times of these donors more
predictable. Much can be gained, both in leveling work pressure and in decreasing
waiting times, by adjusting the number of staff members based on the expected ar-
rival pattern of donors. With many part-time employees, as is the case at Sanquin, it
might well be possible to combine short and longer shifts to improve the effectiveness
of the staff scheduling.

In this chapter we will develop a method using queueing theory and an ILP
formulation for this purpose, to take advantage of the patterns in arrival intensities.
The proposed method determines starting times and durations of all shifts such that
the total number of worked hours is minimized, with certain restrictions on shift
lengths. At the same time, the method takes a waiting time restriction into account.
A number of ways of implementing these waiting time restrictions are possible. We
will propose two methods; the first one is based on sojourn time percentiles (e.g. 95
% of donors should spend less than 60 minutes in the collection site) and the second
one is based on an average waiting time, calculated by a slightly more complex, yet
also more realistic queueing model. Finally, we use numerical results to show that
this method can be implemented without increasing the total number of working
hours.
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Figure 5.1 A typical arrival pattern for a collection site that is opened the whole day.
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5.1.1 Process description

A comprehensive description of the process at a blood collection site can be found
in Section 1.3. In this section we only highlight the aspects of the blood donation
process that specifically apply to this Chapter.

From a process point of view, there are two differences between whole blood
and plasma donations. The first difference regards the arrivals. Before arriving at
a collection site, plasma donors make an appointment. Sanquin aims, and mostly
succeeds, to spread out plasma donations over the day. For whole blood donations,
there is no appointment system. To be able to control the number of arrivals of
whole blood donors, Sanquin sends out invitations to a selection of whole blood
donors by post card once a week. Although donors are encouraged to wait for an
invitation and to come at their earliest convenience after receiving the invitation,
neither is required. Donors may walk in and donate whenever they like, provided
they are eligible to donate at that particular time. Arriving whole blood donors also
show clear preferences for certain times of the day, as can be seen in figure 5.1.
Some days of the week are more popular than others, but the time preferences do
not depend on the day of the week. The peaks in arrivals do depend on the opening
hours of the collection site. The second major difference between plasma and whole
blood donations is the donation itself. All three elements of the donation - starting
the donation, collection, and ending the donation - require much more time and
equipment for plasma donations, compared to whole blood donations.

Two types of staff members can be distinguished at collection sites: general staff
members and physicians. All standard tasks at the collection site are handled by
general staff members. The physician has to be present in case of a complication
during the donation. The physicians also handle the first interview with a new donor.
For these tasks, a collection site always has exactly one physician present. Therefore,
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Figure 5.2 Schematic model of a collection site. Every station is modeled as a M/M/s
queue.

Donor enters Donor leaves
collection site . . . . collection site
———Registration Interview Donation ———

the described method only focuses on scheduling general staff members.

For this chapter, as in Chapters 3 and 4, we model the collection site by a tandem
queue with three stations, as visualized in Figure 5.2: the Registration station, the
Interview station and the Donation station. The stations are assumed to have an
average service time of 2 minutes, 6 minutes and 12 minutes respectively. So, the
combined three stations have a mean service time of 20 minutes for whole blood
donors. This would in theory imply that a collection site can handle three donors per
staff member per hour. To ensure that waiting time remains acceptable, Sanquin
has committed herself to the target that, at every collection site, 85 % of all whole
blood donors spend less than 45 minutes in the blood donation process. However,
this service level has only implicitly been taken into account when scheduling staff
members. Staff is scheduled on the basis that every staff member should help at
least two donors per hour. As every staff member could help three donors per hour
if they were working at full capacity, Sanquin reckons that waiting times and breaks
have been taken into account by using the lower capacity. This, however, has never
been formalized. The model in this chapter combines waiting time computation with
staff scheduling.

5.1.2 Theoretical background and modeling

From a theoretical perspective, this chapter will combine two different disciplines from
the field of Operations Research: Mathematical programming to optimally schedule
the staff shifts, and queueing theory to include waiting time targets when scheduling
these shifts. This will result in a two-step approach, in line with the terminology used
in the extensive review on staff scheduling for service systems by Defraeye and Van
Nieuwenhuyse [57].

When faced with an arrival pattern, such as in Figure 5.1, a number of options
can be thought of to determine the shifts for staff. The first option is to simply
ignore the existence of a pattern, and to ensure that enough staff is available at
the peak of the arrival intensity, and scheduling this number of staff members the
entire day. This way, excess capacity is available during the remainder of the day.
This is common practice at Sanquin. The second option is to break up the day in a
few shifts. This way, extra staff can be scheduled only for the peak arrival intensity
during a shift, thereby reducing excess capacity. If the intervals are made shorter,
the over-capacity is reduced even further.

A combination of overlapping shifts and varying starting times could reduce excess
capacity, while preserving viable shift lengths. For example, if we have 3 intervals,
and the staff requirements are 1,2,1 respectively, we would be able to cover this with
two shifts, both spanning two intervals, one starting the first interval and another
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starting the second interval. As this eliminates excess capacity, we can guarantee that
this is the optimal solution, where the shortest shift length remains two intervals.
However, for large instances, such as the one at Sanquin, it is extremely hard to
come up with a solution by hand. And, since there is no way to avoid excess capacity
completely, there is no way of knowing how good the solution is. Using mathematical
programming, this problem can be formulated as an Integer Linear Program (ILP).
Using commercially available solvers, ILP models can usually be solved to optimality.

Before the ILP can be used, the required number of staff members first has to be
determined. This can be done in several ways. The most simple is the one currently
in use at Sanquin. This computation is based on the presumed number of donors
that a staff member should help in an hour. In recent years, Sanquin has set this
number to 2.0. This means that for every staff member present, a collection site
should collect 2.0 donations per hour. However, even if the staff shifts perfectly
match the number of required staff members, waiting times will inevitably occur due
to random variations in arrivals and service times. In queueing theory, it is well known
that working at full capacity will result in extremely long waiting times. By using
queueing theory, the minimum number of staff members can be determined taking
waiting times into account, to meet waiting time targets. This will generally increase
the required number of working hours, as it will prevent the system from working at
full capacity.

Summarizing, there are two competing effects on the total number of working
hours. On one hand, the inclusion of flexible staffing could result in a decrease of
the number of working hours. The inclusion of waiting times, on the other hand,
may require an increase of the number of working hours. This raises the following
question: What will happen when both flexible staffing and queueing theory are
combined at blood collection sites? The proposed two-step approach in this chapter
will be employed to answer this question.

The chapter will be structured as follows. We will start with a literature discussion
in section 5.2. A more detailed and technical discussion of the mentioned methods
will then be given in section 5.3. Finally, we will provide numerical results for a
general approach, in which data from multiple collection sites is combined to give
an impression of the average potential of the described method. The chapter will be
concluded with a discussion.

5.2 Literature

Although no other literature on staff scheduling at blood collection sites currently
exists, the literature on staff scheduling in general is very extensive, as can be seen in
the review by Ernst et al. [80]. Most of the papers in the staff scheduling literature
cover the same two basic steps used in this chapter: first determine staff requirements
within given time intervals, and subsequently determine the optimal shifts to cover
these requirements.

The review by Defraeye and Van Nieuwenhuyse [57] focuses on staff scheduling for
non-stationary systems. From a technical point of view, that is exactly what we are
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trying to achieve for blood collection sites. This review describes a total of 62 papers.
Most of these papers use a single queue to calculate their performance indicators.
Of the 62 papers, only six use a network of queues. All of these use simulation, while
three papers also use an analytical approximation [85, 113, 191]. From a technical
point of view, the paper by lzady and Worthington [113] is most closely related to
this chapter, as they use similar performance indicators: sojourn time percentiles
and average waiting times. The other three papers that use a network of queues
[4, 45, 168] only use simulation for performance evaluation. Two of these papers,
the papers by Ahmed and Alkhamis [4] and by Centeno et al. [45], use a sojourn
time percentile for performance evaluation, similar to this chapter.

None of the papers discussed in the review by Defraeye and Van Nieuwenhuyse
[57] cover blood collection sites or blood banks in general, but eight papers discuss a
health care setting. Of those papers, seven are applied to an emergency department
[4, 45, 56, 98, 113, 168, 191] and one is applied to ambulance services [78]. The
paper by Defraeye and Van Nieuwenhuyse uses a similar performance metric as this
chapter - the expected waiting time. However, it does not use a network of queues.
Although they evaluate the average waiting time, it is not included in the performance
goals. The only paper that does use a network of queues, but which is not applied to
health care, is the paper by Fukunaga et al. [85]. This paper is based on a call center.
Although call centers seem by far the most frequent application of time dependent
staff scheduling methods in literature, these systems mostly use a single queue for
performance evaluation.

As can be seen in the mentioned papers, most recent papers surrounding staff
scheduling have used simulation as a tool to estimate waiting times. This has the
advantage that it can handle very large and complex systems, but because our system
is limited in size, an analytic model is a faster and more consistent way to calculate
waiting times.

Some papers have been written on other logistical issues at blood collection sites.
For a detailed discussion of these papers, please see Section 1.4. We will, however,
highlight one of the papers here. From a practical point of view, the paper by Blake
and Shimla [29] is closely related to the research contained in this chapter. In the
paper, a blood collection site is modeled as a flow shop, and then the results for the
required number of staff members for each station are adjusted for uncertainty by
describing every station as an M / M / s queueing model. The minimum number
of required staff members is then computed by setting a waiting time restriction for
each of the stations. This is close to how we will model the blood collection site.

The main contribution of the research presented in this chapter is the combination
of exact methods from two fields of research in Operations Research - queueing theory
and Integer Linear Programming (ILP) - to incorporate waiting time estimation in
the determination and planning of staff capacity at blood collection sites. First, we
expand the waiting time estimation of Blake and Shimla [29] to be able to include
waiting and sojourn time restrictions on the total blood collection process. Different
queueing computations will be used for this purpose. Second, to actually minimize
the number of staff working hours, we will use an ILP model to schedule shifts based
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on the required number of staff members. These required numbers can either be
based on a production standard (as currently used in practice) or on these waiting
time restrictions. The ILP is able to incorporate fluctuating arrivals to the blood
collection site by allowing shorter and more flexible shifts.

We note that the methods to compute the waiting time and to determine the
optimal shifts are not new methods from a mathematical perspective (e.g. see the
review by Defraeye and Van Nieuwenhuyse [57]). However, the combination of the
methods at blood collection sites, or even health care systems in general, has not
been reported on before. Additionally, in Chapter 3, we have shown that modeling
the blood collection site as a tandem queue gives a good approximation of the waiting
times. The combination of this queueing model and a small ILP model, results in a
fast computation of good shift options for practical purposes.

5.3 Queueing methods

In this section three methods to calculate the minimum number of required staff
members will be discussed. These methods will be used for the first step in the
two-step procedure. In contrast to the first method - a production standard - from
section 5.3.1, the second two methods will take waiting time into account by using
queueing theory. Like the production standard, these methods will determine the
minimum number of staff members required for every half hour during the opening
hours of the collection site.

For both queueing theory methods discussed in this section, we will assume ex-
ponential distributions for both inter-arrival times and service times.For arrivals, this
seems like a natural assumption, as it implies that arrivals are independent, a likely
situation because there are no appointments. For services, we have also assumed
exponential times. There are two justifications for this. The first is a lack of reliable
data on service times. The second, more important, reason is that exponential service
times reasonably predict waiting times in Dutch blood collection sites, as shown in
Chapter 3. Nevertheless, for theoretical purpose, a method without the exponential
requirement will also be included in Section 5.3.3.

Before discussing the specific methods, it is important to note the difference
between:

— A production standard 7 (used for the production standard method, section 5.3.1).
The production standard entails the number of donors that should at least be
served by a staff member every hour.

— A service capacity p (used for the methods M/M/s and network model, sec-
tions 5.3.2 and 5.3.3 respectively). A service capacity entails the number of
donors that could be helped by a staff member every hour, assuming continuous
production.
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5.3.1 Current situation: Production standard

Currently Sanquin uses a production standard when scheduling their staff. This means
that for every staff member, a fixed number of donations 7 should be completed
every hour. Currently 7 is set at 2.0. From a utilization standpoint it can be argued
that this production standard can be increased, as the average time a staff member
is needed during the donation process is less than 30 minutes. However, we can
conclude from basic queueing theory that increasing the production standard would
undoubtedly lead to longer waiting times. This argument is also used against a
production standard of 2.5 or even 3.0; numbers that imply an average service time
closer to the actual average service time of 20 minutes. Although this argument is
valid, the exact implications of increasing the production standard are unknown, as
this method does not include waiting time estimation.

To model time dependent arrivals, an arrival pattern has been included, an ex-
ample of which is shown in Figure 5.1. The arrival pattern is based on van Mechelen
and Zonneveld [133]. This arrival pattern specifies the arrivals expected in each half
hour interval. This implies that the minimum number of staff members will also be
calculated for every half hour during the opening hours of the system. A uniform
and user specified arrival pattern are also included in the tool for collection sites.

With \p, the arrival rate in half hour A, the minimal required number of staff
member to be present By, can be calculated by

By, using a Production Standard

B _ Pﬂ (5.1)

This will be used as a basedline input for the ILP model, to allow for the opti-
mization of staff shifts, as outlined in Section 5.4.

5.3.2 M/M/s model

As a first simple option, we could model the collection site as a standard M/M/s
multi server system, with a service time equal to the sum of the service times of the
individual stations of the process. This can be justified if it is assumed that a staff
member follows the donor throughout the system. Although this is not applied at
Dutch blood collection sites, it is used in blood collection. This practice is commonly
referred to as “go with the flow.”

Exact formulas are known to calculate the average waiting time, the average delay
and even the waiting time and the delay distribution (e.g. Winston [183, Chapter
20]). As previously mentioned, the official Sanquin policy is that 85 % of the whole
blood donors should spend less than 45 minutes in the collection site. This means
that the 85th percentile of the delay distribution should be lower than 45 minutes.
By using equation 5.2, we can check this, and possibly other, service goals for a given
staff level.
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The main drawback of this model is that it is not possible to take the system's
multiple stations into account. The model simply takes an average occupancy for the
entire system. This is a problem because the relation between occupancy and queue
lengths is not linear. In reality the process steps are interrupted and not all stations
have the same service time or number of staff members. Therefore, the occupancy
will not be the same for each of the stations. If the variations in occupancy between
stations are large, the M/M/s model might give approximations for the waiting time
that are too optimistic.

The most appealing feature of the M/M/s computation is the option to base
decisions on a percentile in the waiting time distribution. When a percentage « of
the donors has to have a delay lower than ¢ hours, the minimal required number of
staff members By, can be calculated using equation 5.2.

By, by M/M/s computation:

Bf(f) = minimize s
subject to (5.2)
1 — e Ht(s—1=sp) '
e M <1+]P’(j >s) ) <l—-«
s—1—sp

Here p = A/(s * u) with A and p the arrival rate and service rate respectively.
A and g should use the same time unit as t. P (j > s) represents the probability
that there are as many or more donors than there are staff members available. This
probability can be calculated using standard M/M/s formulas.

5.3.3 Network model

The second, more complicated, but also more realistic modeling option, could be to
use some form of a queueing network. These kind of models incorporate the fact
that the system has multiple stations and multiple servers working at each station.
This allows us to use the full model, as depicted in Figure 5.2. Although it is still
possible to calculate sojourn time distributions, as shown in Chapter 3, this is a very
time-consuming process. Therefore, for network models this chapter will only deal
with the average waiting time.

The Queuing Network Analyzer (QNA) [182] will be used to calculate average
waiting times in a queueing network. QNA is based on a set of approximative ex-
pressions using the coefficients of variation of the external arrivals and coefficients of
variation of preceding stations. Due to the serial nature of the system at the Dutch
blood bank, the original expressions can be slightly simplified. The expression below
describes how the coefficients of variations of departures depend on the coefficients
of variation of the arrivals and services, and the parameters of the station in question.
Since there is no splitting and superposition of donor flows in a collection site, the
coefficients of variation of the departures are the same as the coefficients of variation
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Table 5.1 Parameters and variables used

Parameters

n  Production standard

7  Total expected service time

T4 Expected service time at station i

i Service rate (=1/7)

lq Service rate at station i (=1/7,)

A Arrival rate

sq  Number of servers at station i

pq  Occupancy, = A1y/sq

C?. Squared coefficient of variation of services at
station q

C(%q Squared coefficient of variation of departures
at station g

C?_ Squared coefficient of variation of arrivals at
station q

Variables
W Total waiting time
W, Wiaiting time at station q
T
1q

Total sojourn time (delay)
Delay at station i

of the arrivals at the next station. The description of the parameters and variables
used can be found in Table 5.1.

02
Catgrn) = Cig =1+ (1= pg)(Coy — 1) + —E(C5, — D).

V3q

Further, let Enz/nz/s,(W,) denote the expected waiting time for an M/M/s,
queue. This can be computed standardly by:

s Sq
Enryaeys,(Wq) = (4p4)
< Z (qu'q ((lg_qz(;;s‘:'> (1 _ pq)28

Then E, (W) for the non-exponential case can be calculated by:

Cz,+Cz?
E,, (Wy) = 72 = Enrynss,(We)-

Note that for the exponential case, i.e. if all coefficients of variation are equal to
1, the computation by QNA is equal to the exact expressions that are available for
the exponential case.
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Because a donor can only visit a station once, the expected delay E(7) at station
q can be calculated by:

Es, (T,) = Es, (Wy) + 74
For an average total delay less than t minutes, By can be computed by solving

equation 5.3.

By, for QNA method:

3
B,(Lg) = minimize qu
" (5:3)
subject to ZEsq(Tq) <t
qg=1

This is an integer, non-linear optimization problem, so in general it is very hard to
solve. But, since there are only a finite number of configurations of the staff in each
half hour interval - for a typical blood donor center this could be 1 or 2 staff members
at the registration station, between 2 and 4 staff members at the interview station
and 3 to 6 staff members at the donation station, we could solve this by applying
brute force, i.e. checking every possible combination of staff members between some
lower bound and upper bound. It is possible to do this for every interval that has
to be scheduled, and then these numbers can be used as input for the ILP model of
section 5.4.

QNA also allows the use of coefficients of variation of the inter arrival times
and service times, meaning that these are not required to be exponential. Although
this is very useful in most systems, for the numerical results in this chapter, these
coefficients are set to 1 for the blood collection site, resulting in exponential service
times, as discussed previously.

5.4 ILP model

The second step is the use of an Integer Linear Program (ILP) to schedule shifts.

Once the minimum number of staff members B,(f) has been determined by either
eq. (5.1), (5.2) or (5.3), an ILP model can be formulated to determine optimal shifts
lengths and starting times. This ILP model is given in Box 1. The parameters and
variables are explained in Table 5.2.

Each of the restrictions in the ILP model in Box 1 has their own interpretation,
as specified below:
Interpretation of restrictions

1. This restriction ensures that there are at least as many staff members present
as the restrictions calculated by any of the three options discussed in sections
5.3.1,5.3.2 and 5.3.3.
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Table 5.2 Parameters and variables for the ILP model

\ Indices |
h, h" Half hours

t Shift length

\ Parameters \
ky Cost of a staff member for shift duration t

B,(f) Required number of staff members
present at half hour h (calculated by method i)
mnp  Minimum number of staff members at
half hour h
qenp 1if b <h' <t+ h and a shift of length t, starting
at half hour h is allowed, 0 otherwise

\ Variables |
x¢p  Starting shifts at half hour h of length t of
Yh Staff members present at half hour h

Zt.h,ny Number of breaks at half hour h' of a staff
member that has (a shift length t and
started at half hour h)

Box 1: The ILP model

Minimize
Z Z Ty ki
T h
Subject to:
18 ,
(1) Y — D D Zn > B;(f) V(h)
e B from equation (i)
18
(2) Yh — D D Zthn > Mny V(h)
t=12 0’
(3) D22 Tth Qb = Y Y(R')
T h
htt—1
(4) Ten <D Zohw V(h),t > 12
h'=h+1
() xn €N V(t, h)
(6) Zt,h,h €N Y(t,h,h)

2. This restriction ensures that there are at least as many staff members present
as the minimum number required. This is not a value that has been calculated,
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Table 5.3 The costs associated with the various shift lengths

Shift duration Costs
2 2

3
3.99
4.99
5.98
6.98
7.97
8.97

© 0 ~NO O~ W

but some value that has been set as an absolute minimum by the user of the
algorithm. This is to ensure that some minimum number of staff members
is always present. E.g. the M/M/s model is based on a single station, which
could require only one staff member. However, all stations have to be manned
at all times, requiring at least three staff members.

3. This restriction converts x; p, the starting shifts for staff members, to yj,, the
number of staff members present. It also makes sure that shift lengths that
are not allowed, do not convert to staff members that are working.

4. This restriction ensures that there is enough slack in the schedule to give
everyone who is entitled to a break can get a break.

5. This restriction ensures that the solution is integer, i.e. no fractions of staff
members.

6. This restriction ensures that the solution is integer, i.e. no fractions of breaks.

The costs k; can be seen in Table 5.3. The costs are set such that the model will
always select one longer shift rather than a combination of two sequential shorter
shifts, by making a longer shift slightly cheaper than the combined cost of two
shorter shifts. The difference is small enough that longer shifts will not be selected
if a combination of two shorter shifts results in fewer working hours.

Given the calculated minimum staff levels and the ILP model, we will use commer-
cially available packages to compute the optimal solution. We have used modeling
tool AIMMS 4.5.2 to build the ILP model and its restrictions and have used CPLEX
12.6.1 to solve the ILP. Even for the largest Sanquin cases - collection sessions of 12
hours, the CPLEX reaches the optimal solution within a second.

5.5 Results

5.5.1 Current situation (base scenario)

The exact method that Sanquin uses to schedule staff has not been formalized. Based
on discussions with employees and team leaders, we may conclude that the method
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Table 5.4 Session types at Sanquin and their opening hours

Session name Opening hours
M1 8.00 - 11.00
M2 8.00 - 12.00
MA 8.00 - 15.30
AE 12.30 - 20.00
El 16.00 - 20.00
E2 17.00 - 20.00
MAE 8.00 - 20.00

Table 5.5 Average changes in staff hours based on all session types and multiple collection
site sizes, compared to the current situation (*). The methods in the first column are based
on sections 5.3.1, 5.3.2 and 5.3.3 respectively. In case a result shows NP, it is not possible
to meet the waiting time restriction with this service capacity, irrespective of the capacity
used. ® Note that in the case of a production standard method the production standard is
equal to the service capacity

Possible Waiting time Service capacity 2
shifts restriction 2.0 2.5 3.0
Production Session shifts N/A * -18.6% -32.0%
Standard  Flexible shifts N/A -26.2% -40.1% -49.5%
P(T > 45 min ) < 0.12 NP NP -10.2 %
Session shifts P(T > 45 min ) < 0.15 NP NP -17.8 %
MM/ P(T > 60 min ) < 0.15| 27.4% -7.9% -23.9%
P(T > 45 min ) < 0.12 NP NP -29.5 %
Flexible shifts P(T > 45 min ) < 0.15 NP NP -36.3 %
P(T > 60 min ) < 0.15| -1.8% -29.5% -42.0%
E(W) < 5 min 433% 17.9%  3.2%
Session shifts E(WW) < 10 min 31.6% 8.4% -6.6%
Network E(W) < 15 min 26.6% 3.9% -11.5%
Model E(W) <5 min 12.6% -6.1% -18.5%
Flexible shifts E(WW) < 10 min 2.8% -15.4% -27.4%
E(W) < 15 min -2.0% -19.8% -31.6%

that is closest to reality - which will therefore be used as a base scenario in this
section - is the production standard method that has been presented in section 5.3.1.
A production standard of 2.0 is used to determine the minimum required number of
staff members.

Staff members are scheduled for an entire session, except for long sessions, which
are split into two shifts, but these two shifts usually have the same number of assigned
staff members. This means that Sanquin will usually staff the number of employees
that are required during peak hours for the entire day. Employees will get a shift
length equal to either the total or half of the session length plus some additional
time before opening and after closing the collection site. This extra time is required
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to set up and shut down equipment respectively !. In table 5.5 this method of shift
planning will be called “session shifts”. As it is closest to the current situation, it will
be referred to and used as the base scenario, indicated with * in table 5.5.

5.5.2 Alternative scenarios

Table 5.5 shows the three different methods to calculate the minimum number of
required staff members, By, that were presented in this chapter: production standard,
M/M/s and network modeling. The last two are accompanied by a waiting time
restriction. For M/M/s this is the probability that the delay time, i.e. the total
time spent in the system, will exceed a certain threshold. For the network model
this is a restriction on the total mean waiting time. These restrictions should hold
for every half hour, meaning that a busy period with long waiting times can not
be compensated for by a quiet period with very short waiting times. Note that the
individual restrictions of the M/M/s and network models are not linked. E.g. we do
not claim that an expected waiting time below 5 minutes implies that less than 12 %
of donors spend longer than 45 minutes at the collection site.

Table 5.5 also includes a distinction between scenarios that only allow session
shifts, as explained in section 5.5.1 and scenarios that allow “flexible shifts". Flexible
shifts, in this case, allows for shifts that start at any half hour during the day (e.g.
9.00, 9.30, 10.00 etc.) and last a whole number of hours between 3 and 9 hours.
Finally, Table 5.5 includes results for a production standard/service capacity of 2.0,
2.5 and 3.0. It is important again to note the difference between the production
standard (used for the production standard method) and the service capacity (used
for the M/M/s model and network model). This means that a service capacity of
3.0 seems reasonable, as the total process has a service time of approximately 20
minutes, but a production standard of 3.0 results in extremely long waiting times.

To get an impression of the results that can be achieved by the proposed combi-
nation of queueing and ILP, 35 instances will be used for every scenario. Table 5.5
shows the average result of all these instances for every scenario. The instances are a
combination of 5 arrival rates for all of the 7 session types that Sanquin distinguishes.
These 7 session types are shown in Table 5.4. The average donor arrival rates per
hour that were used range from 12 to 20, with increments of 2.

Some scenarios for the M/M /s computation are shown to be not possible (NP). In
these cases the tail of the service time distribution exceeds the required probabilities.
This means that even without any waiting time, the delay time restriction still cannot
be met due to the assumed stochasticity of the exponential service times. This cannot
happen with the network model, as it places a restriction on the waiting time. The
waiting time can be arbitrarily close to 0 if enough staff is added.

As a first observation, it can be seen that a waiting time restriction increases
the required staff hours. By just introducing a waiting time restriction, while still
assuming a service capacity of 2.0, staff hours increase by up to 43.3% if waiting

Las this extra time is required, it is included in all scenarios for employees that work the first or
last shift.
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times are only allowed to be 5 minutes. However, it is safe to assume a higher service
capacity for these queueing methods. Even a very safe service capacity increase to 2.5
decreases the extra staff hours required to at most 17.9%, and is able to completely
negate the increase for the M/M/s method for the P(T" > 60 min ) < 0.15 case.
However, the lower waiting time restrictions are still impossible. When increasing the
service capacity to a realistic 3.0, all but one scenario show a decrease in the number
of staff hours.

The second main observation is, as expected, that flexible staffing results in
significant savings on staff hours. By just introducing flexible staffing, i.e. comparing
session shifts and flexible scenarios with the same further settings, savings are around
20 %, ranging from 20.4 % for the network model with a waiting time restriction of 5
minutes and a service capacity of 2.5 to 26.5 % for the production standard method
with a production standard of 2.0.

Figure 5.3 Effects of adding extra shift length possibilities on number of working hours for
the MAE session (see Table 5.4. Required number of staff members based on the network
model. Results are in number of working hours as a percentage of session shifts and are
based on an average of the 9 different scenarios for the network model included in Table 5.5.

120%
110%
100%
90%
80%
70%
60%
50%

9h 8h-9h  7h-9h 6h-9h 5h-9h 4h-9h 3h-9h 2h-9h

The benefits of flexible shifts are again shown in Figure 5.3. This shows the effect
of additional shift length options. It is based on an average of the 9 scenarios for
the network model from Table 5.5, and results are expressed as a percentage of the
session shift option. The first data point is the number of hours that are needed to
staff the collection site if only 9 hour shifts are allowed, the second data point adds
shifts of 8 hours, etc. Only the data from MAE sessions (see table 5.4) was taken into
account, because the other sessions are not opened for 9 hours, making the 9 hour
shifts redundant in these sessions. If only 9 hour shifts are allowed, flexible shifts are
worse than session shifts. This has to do with the fact that two 9 hour shifts cover
more that the total session, while one is not enough. A combination of 8 and 9 hour
shifts still shows the same effect, but it is significantly reduced. Also note that the
marginal effect decreases; the additional effect of adding 6 hour shifts is much larger
that the additional effect of adding 2 hour shifts. This means that a large portion
of the beneficial effects of flexible shifts can already be achieved without very short
shifts.

Finally, a combination of flexible staffing and a waiting time restriction almost
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exclusively results in savings of staff hours. Even for a safe service capacity assump-
tion of 2.5, savings are substantial for all included waiting time requirements. For a
realistic service capacity assumption of 3.0, savings are at least 18.5% compared to
the current situation, and savings go as high as 42.0%, while still guaranteeing that
85% of all donors spend at most 60 minutes at the collection site.

5.6 Discussion

With the presented combined approach, savings on personnel are a possibility - as-
suming the results can be followed exactly with regard to employment contracts. At
the same time, by aligning employee shifts and arrival patterns, it is possible to in-
clude waiting or delay time restrictions. Generally, three observations can be obtained
from the results in section 5.5:

1. By including waiting time restrictions, an increase in staff working hours will
be required.

2. By using flexible shift planning, substantial savings on working hours by staff
members can be obtained.

3. By combining flexible shift planning and waiting time restrictions, no extra staff
is needed, and generally a small saving on staff hours remains a possibility.

Most of these savings originate from a more flexible way of scheduling the shifts
of staff members, in which shorter shifts are possible. In the flexible staffing in
our Results section we allowed for all shifts lengths from 3 to 9 hours, but other
shift possibilities and restrictions can easily be incorporated, depending on specific
requirements from certain blood collection sites.

If we recall from section 5.1.1 that the production standard of 2.0 was set to
include waiting times, it is worthwhile to compare the production standard of 2.0
with some of the waiting time restrictions with the realistic service capacity of 3.0,
while maintaining the session shift assumption. We then observe that the result
closest to a 0 % increase is for an expected waiting time restriction of 5 minutes,
with all other restrictions resulting in a decrease of the number of staff hours. This
means that the 2.0 production standard is probably quite low in most cases, and that
an increase would most likely be possible in these cases. However, it is important to
note that this might not hold for all collection sites. Especially small centers might
still see a sharp increase in waiting and delay times if the production standard is
increased.

Clearly, more advanced approximate results for queueing networks could be ben-
eficial to the method described in this chapter. However, these results would most
likely require more computational time, which might affect the applicability of the
method in practice.

If the approach were to be applied at Sanquin collection sites, two issues can be
thought of that could cause a difference between the computational results and the
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results in reality after implementation. First, as the method does not take actual,
individual employment contracts into account, and does not assign employees to
shifts, realistic savings would probably be a bit lower. However, the savings would
still be expected to be substantial enough to implement the approach, especially for
long sessions. A second possible discrepancy might be caused by the waiting time
computation. Although a large difference between the results from the model and
reality is unlikely, especially for the network model, some differences might still occur.
Some methods exist that would likely lead to smaller differences between reality and
the model, but these methods come with their own downsides. Simulation could be
an alternative method to give a more realistic approximation. However, this would
most likely slow down calculations substantially and it would eliminate the possibility
for an exact answer. Most importantly, though, simulation would not be generic and
it would require adapting the simulation model to each individual collection site.

Since we can combine significant savings with waiting time guarantees and fast
calculations - individual cases are solved in a matter of (milli)seconds, Sanquin inves-
tigated practical consequences of implementing the proposed approach with favorable
results. The next step will be to actually apply the approach.

115






CHAPTER 6

Dynamic staff allocation

6.1 Introduction

A Sanquin blood collection site, like most other blood collection sites, has three
stations that require staff members: Registration, Interview and testing, and the
Donation. Staff members of collection sites are trained to do work at any of these
stations. Currently, staff members generally work at just one of these stations for an
entire shift or session. This means that there is a considerable amount of flexibility
that is not being utilized, even though the arrival process of donors is highly time-
dependent, as shown in Chapter 4. Staff members could change stations every time
they finish a task or, if this is not desirable due to the number of changes this might
cause, a few times during a shift. This would lead to more staff members working
at stations where donors are available, thereby decreasing waiting times and leveling
work pressure. This chapter will present an algorithm to optimize the reallocation of
these staff members, based on a Markov Decision Process (MDP).

In Chapter 4, we have shown a computational method to compute and evaluate
queueing distributions of time dependent queueing networks. Some of the presented
numerical examples in Chapter 4 concern the allocation of staff members. The
reallocations covered in Chapter 4 were all pre-determined, i.e. they are not state
dependent. Nevertheless, some of these already showed decreasing queue lengths.
Further improvements might be expected if state dependence is taken into account.
To be able to use the full potential of reallocating the staff members, we further
developed the model from chapter 4 into an MDP. Given the number of staff members
that are working, the MDP is able to compute the optimal staff allocation of the
staff members. This allocation is both state-dependent and time-dependent.

This chapter we will present this MDP model, which is able to compute the staff
allocation that optimizes the expected number of waiting donors, present donors,
or some other function based on the state of the collection site. We are able to
numerically solve the presented MDP for a realistic, time-dependent problem size in
reasonable time. Since the MDP requires some assumptions that might not fully
reflect reality, we will also include a simulation to test the solutions computed by the
MDP. The simulation will offer the opportunity to verify that the results computed
by the MDP can be achieved in an even more realistic setting.
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6.2 Literature

The problem studied in this chapter is often referred to as the server assignment
problem. Early work mainly focuses on the static version of this problem. Papers that
discuss this problem are generally concerned with designing an optimal production
line, by changing buffer sizes and server assignments. After this design phase, the
production line cannot be easily changed. The work by Yamazaki et al. [187] and the
references therein show early examples of this work. More recent examples of this
work can be found in van Woensel et al. [184].

More recently, there has also been work on the dynamic server assignment prob-
lem. The first paper discussing dynamic server assignment, seems to be by Ostolaza
et al. [150]. Although this paper was unavailable to us, a continuation of the research
is discussed by McClain et al. [130]. Both discuss a version of the dynamic assign-
ment problem in which a server at a station can help the server at the next station if
this server has fallen behind on its work. Gel et al. [86] expand this work by including
the system architecture in their model and using an MDP to solve the problem. Ahn
and Righter [5] study the dynamic server assignment problem if servers are trained in
a subset of consecutive tasks. They show that often either a /ast buffer first served or
a first buffer first served policy is optimal. Kirkizlar et al. [119] study the robustness
of dynamic assignment policies for systems with non-exponential service time distri-
butions and finite buffers. The paper also includes a heuristic policy that preforms
near-optimal for these non-exponential systems. This work has inspired many papers
that focus on throughput maximization; some examples of this work can be found in
[10, 11, 13, 17, 18, 48, 106, 120, 177].

Zavadlav et al. [190] uses the work of Ostolaza et al. for a so-called Toyota Sewn-
Products Management System (TSS). This is a system in which the server moves
downstream with the job until it is handed of to another server, at which point the
server moves upstream to pick up another job. Bischak [28] compares the TSS system
to a static approach where every server handles one station. Bartholdi and Eisenstein
[22] show an optimal sequence of the servers for a TSS system. Bartholdi et al. [23]
show that this optimal sequence also works in a stochastic setting. McClain et al.
[131] evaluate TSS and related techniques in a wider variety of situations.

Duenyas et al. [74] study the server assignment problem in a tandem queueing
system with one server and setup time. The problem of what job to work on next is
described as an MDP, and both an exact and a heuristic policy are tested with simu-
lation. Sennott et al. [165] study a system in which every station has its own server,
with one additional server that can change between stations. Next to setup time,
their work also includes setup cost and holding cost. Andradottir et al. [12] study
the dynamic server assignment problem in a system with two sequential stations, two
servers and setup cost.

Our work differs from this research in a number of important ways. Most research
that formulates the server assignment problem as an MDP either have difficulties
getting a numerical solution for larger systems or do not include a numerical study
at all. These papers focus on analytical results instead. Generally, these rely on
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average reward results over an infinite horizon and are limited to a fixed number of
servers. In this chapter, in contrast, we formulate the problem as an MDP, allow for a
generic number of servers and are able to numerically compute the optimal policy for
a time-dependent system in reasonable time. These numerical policies show similar
performance if we simulate the realistic setting, as shown in section 6.6.

Moreover, earlier research of the server assignment problem is exclusively applied
to production systems. The application at a blood collection site requires several dif-
ferences in modeling. First of all, jobs in production systems are inanimate objects,
which validates the focus on throughput taken by previous research. At blood collec-
tion sites, in contrast, we deal with donors and accordingly also deal with perceptions
of delays and waiting times by these “jobs". Therefore, our objective is to minimize
queue lengths. A blood collection site also forces us to work with a number of factors
that have never been combined for the server assignment problem. Firstly, as a blood
collection site is only open for a specific interval, the problem is intrinsically finite
time. In addition, the arrivals are generally non homogeneous. A blood collection
site therefore has to be modeled as a time-dependent, multi-server, tandem queue.
All of these three factors - time-dependent, multi-server and tandem queues - have
been studied before separately, but have never been combined.

There is only paper that considers flexible assignment of staff members at col-
lection sites, by Brennan et al. [38]. The paper uses a simulation model to study
a blood collection site and test several strategies to improve service. Among their
tested strategies is the idea to use a 'floater’, a staff member who can help at multiple
stations. They, however, do not optimize the use of this floater, and don't allow all
staff members to change their assignment. As the remainder of literature on blood
collection sites does not specifically apply to this chapter, the reader is referred to
section 1.4 for a discussion of the this literature.

To cover all aspects of the blood collection site, we model the assignment problem
at the blood collection site as a Markov Decision Process. For an extensive description
of Markov Decision Processes, the reader is refered to [155].

6.3 Queueing model

Figure 6.1 Schematic representation of queueing model of the collection site

Donor enters Donor leaves
collection site . . ) 90% ) collection site
—————Registration Interview Donation ——

10%

An extensive description of a blood donation from a process point of view can
be found in Section 1.3. For the queueing model, the complexity of the described
process has been reduced down to just three stations: the Registration station, the
Interview station and the Donation station, as is schematically shown in Figure 6.1.
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All of these queues will be modelled as an M/M/s queue. After the Interview station,
approximately 10% of the donors leave the system due to inelegebility at that visit.
The average service times that will be used throughout the chapter are 2 minutes, 6
minutes and 12 minutes for the three stations respectively. In this queueing model, we
will assume that all service times and inter-arrival times are exponentially distributed.
This assumption is required for numerical experiments. As a consequence, the total
state of the system can be described by just the number of people at the stations.
This keeps the state-space small enough for the MDP to be numerically solvable.
Although this model does not completely describe the reality of a blood collection
site, this relatively simple queueing model can be used to compute quite accurate
waiting times and queue lengths, as is shown in Chapter 3.

The combination of this model with an MDP formulation to compute the opti-
mal staff allocation, requires two additional assumptions. The first assumption is a
maximum number of donors that can be present at any of the stations, such that
the state-space is finite. If we do not limit the state-space by imposing a maximum
number of donors, the MDP model would be required to compute an optimal decision
for an infinite number of states, which is numerically infeasible.

The second assumption is that decisions about reallocations are taken at fixed
time points with regular intervals, at which point services are preempted when a staff
member is reallocated. If this assumption had not been included, a decision would
have to be taken every time a staff member finishes his task, which could be any
time during the day, as exponential distributions are continuous. But, since we deal
with a finite-horizon time dependent system, this would mean that the time would
have to be included in the state, which would again lead to an infinite size of the
state-space. With these two additional assumptions, the queueing model can be
used to describe an MDP model that determines the optimal allocation of the staff
members throughout the day.

These assumptions make the model less realistic, but are required for the MDP
model to be numerically tractable. Although it has been shown in Chapter 3 that
this model is able to predict waiting times and queue lengths reasonably accurately,
we will test the results of the MDP model with a simulation. The simulation will not
require most unrealistic assumptions such as exponential service times, preemption
and a maximum number of donors. The simulation will also include actions such
as filling out the questionnaire and splits the Donation station in three separated
stations. The simulation model will be described in detail in section 6.6, followed by
results form the simulation model.

6.4 Method: Markov Decision Process

We will model the staff allocation decision as a Markov Decision Process (MDP).
There is no collection site that is continuously opened, so the decision problem has
a natural, finite horizon. The time dependent aspects of the collection site cause
two parameters of the MDP to change during a collection session. The possibly
changing number of available staff members induces a changing action-space. When
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Figure 6.2 Arrival pattern of whole blood donors for a full day blood collection session in
the Netherlands.

15

10

Arrivals per half hour

Time of day

this is combined with the arrival pattern from Figure 6.2, it also induces transition
matrices that change over time. These time dependent parameters force us to solve
the problem as an MDP model that changes over time.

6.4.1 Structure of the Markov decision process

An MDP is generally defined by five aspects: the states, the actions, the transition
probabilities, the costs (or rewards) and the optimization criterion. Since the col-
lection site will be modeled using a finite horizon MDP, we will also include horizon
cost K. Whenever a superscript k is included, the parameter is dependent on the
time step k.

6.4.1.1 States

The states are the first of the five aspects that define an MDP. The state for our
MDP is defined as (n1,n2,n3), where ng, is the number of donors at station g. To
limit the size of the state-space, the maximum number of donors that can be present
at station ¢ is limited by N,. The realistic state-space is therefore defined as:

S" = {(n1,n2,n3) €N} [ 0<ny < N30 <mp < Noj0<nz <Nz} (6.1)

Using this definition, the state-space would have 3 dimensions. To make compu-
tations easier, we have chosen to convert this to a one-dimensional state-space. The
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Table 6.1 Parameters, variables and functions used in the MDP.

‘ Parameters

t Duration of a time step in hours

T Duration of the collection session in hours
K Number of time steps in T: K =T/t
A

k Set of possible actions at time step k
af Action taken in state i at time step k
a Vector of length I containing al's
AF Arrival rate at time step k&
A Average arrival rate of donors
Hq Service rate of donors at station ¢
Ny Maximum number of donors at station g
o Maximum number of staff members at station ¢
Cc* Number of staff members working at time step k&
S state-space {1,2...(Ny + 1)(N2 + 1)(N3 + 1)}
I Size of the state-space |S| = (N1 4+ 1)(Na + 1)(N5 + 1)
pf’j,af, Transition probability from state i to state j at time step k when action
L al is taken
Pf,c I x I transition matrix containing pf,j7a?'s
rl(la)k Costs based on total donors in state i when action a” is selected
Rfﬁj Vector of length I containing r;la)?'s

k

r.”,  Costs based on waiting donors in state ¢ when action a; is selected

R(Q,S Vector of length I containing r?

ak iak 's
Wy Weight for cost of having a queué at station ¢
h* Horizon cost at the end of time-step k&
\ Functions
n1(i) Number of donors at the Registration station in state 4
n2(i) Number of donors at the Interview station in state i
n3(i) Number of donors at the Donation station in state 4
cq(a¥) Element q of a¥, i.e. the number of staff members at station g when
action a¥ in taken.
‘ Variables \
aiF Optimal action in state i at time step k
a**  Vector of length I containing a}*'s
vk Value vector for the start of time-step k&
7k Distribution of donors present after time step &

M* Average number of staff members reallocated after time step &

formulas to convert this one-dimensional state-space back to three dimensions can
be found in section 6.8.1. The state-space that will be used for computations is:

S={1,2,3,...., (N1 +1)(N2 + 1)(N3 + 1)} (6.2)
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6.4.1.2 Actions

The second aspect of an MDP are the actions. An action is given by a tuple
(A1, Az, As), where A, is the number of staff members that is allocated to sta-
tion ¢q. To make sure that the staff allocation is feasible in a real collection site, two
restrictions apply to the actions that are allowed. The first is that all staff members
have to be allocated to one of the stations. Secondly, there is a restriction on the
maximum number of staff members that can be allocated to one station. In reality,
this would mean that there is a physical capacity constraint. For the Interview sta-
tion this could for example be a finite number of interview rooms. Since an interview
room can only be used by one staff member, allocating more staff members to the
interview station than there are interview rooms is not allowed. This means that the
action-space A* at time step k is defined by:

Ak = {(A17A27A3) S I\13| 0 S Al S Cl,o S AQ SCQ,O S A3 g CSa

6.3
Ay + Ay + A3 = CF} (63)

6.4.1.3 Transitions

The third aspect of an MDP are the transition probabilities from state ¢ to state
j given by pfij’ak. These are dependent on the selected action a?. The transition
probabilities are combined in transition matrices Pfk dependent on the vector of
actions a* = {a¥,ak, af...ak}. To compute the transition matrices, we have used
the method described in chapter 4. This method is based on the concept of uni-
formization, as described in Chapter 2. This requires exponential times between
events and uniformly bounded transition rates. Uniformization converts the contin-
uous time Markov chain (CTMC) to a discrete time Markov chain (DTMC) by first
converting the generator matrix of a CTMC to a one step transition matrix. This can
be combined with a Poisson distribution which determines the number of transitions
in a time period to get a transition matrix for one time-step. The technical details of
the method can be found in Chapter 4, and a detailed description of uniformization
can be found in Chapter 2.

6.4.1.4 Cost

The fourth aspect of an MDP are the cost R,. The cost in our model is based on
the number of donors that are currently in the collection site. The number of donors
is used as a cost, instead of waiting time, as the number of donors in the system or
in queues can directly be deduced from the state combined with the action. We have
defined two different cost structures, both have been defined as a function below.
The function in equation 6.4 infers cost for every donor that is in the collection site,
whether in service or waiting. The second cost structure, defined in equation 6.5,
only infers a cost for every donor that is waiting for their service. Both structures
will be used for numerical results in section 6.5.
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Figure 6.3 The difference between time, time-steps and the direction of optimization of
the dynamic program.
Time-steps ---» k= 1 2 3 4 K
N N N Y N
Time ---» 0 1t 2t 3t T

Optimization direction

For the number of present donors:
3
T’fla)k = Z wq - ng(7) (6.4)
o
For the number of waiting donors:
> +
2 .
rZ =" wg - [ng (i) = cqlaf)] (6.5)
P
where 27 = max(z, 0).

6.4.1.5 Optimization criterion

This definition of the costs also relates to the fifth aspect of an MDP, the optimization
criterion. The costs are based on the number of donors in the system. Since we want
to minimize the total time that donors have spent either in the system or the time
they have spent waiting, and the process has a clear end time, we will use a finite
horizon MDP minimizing the total cost. The discount factor has been set to 1.

6.4.2 Solving the Markov decision process

The MDP description from section 6.4.1 does not include the time-dependent nature
of the collection site. However, as we will use dynamic programming to solve the
finite horizon MDP, it is possible to change the parameters for different time-steps of
the MDP. Figure 6.3 shows the difference between time, time-steps and the direction
of optimization. The last time-step K will be the only one where the horizon cost
are not pre-defined. To make sure the MDP does its best to clear the system, a large
cost should be incurred if donors are left in the collection site after closing time.
Therefore, for every donor still in the collection site, a cost will be incurred that is
equal to having the donor wait for an hour at the end of the time horizon. If ¢ is the
step length in hours, this can be defined using the cost function from equation (6.4):

1
hE = . RS}Q (6.6)
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6.4. Method: Markov Decision Process

Note that rila),?, and therefore R((l?, is independent of a®. With these horizon cost,

and the othér ‘MDP parameters given in section 6.4.1, we will solve the MDP back-
wards for k = K — 1, K — 2,... by iteratively solving the following two equations:

I

k _ : (b) k k+1

Vit = iz, Ti,a'.«*sz‘,j,a;“ Y (6.7)
a; € j=1

I

sk __ . @) k yhtl 6.8

;" = ArgMIN AT o+ ) Pijak Y (6.8)
LL?EA’C * j=1 i

Here, b € {1,2} represents the cost function that is chosen. The algorithm will keep
decreasing k by 1 until it terminates as soon as k = 0. At this point, the algorithm
has computed the optimal value V;* and optimal allocation of staff members at any
time-step k and state i.

6.4.3 Number of staff reallocations

The probability distribution 7% over the states after every time-step k can be com-
puted using the decisions and transition matrices described in the previous sections.
The starting distribution 70 has to be given as well. It is most natural to assume
the collection site is empty when it opens, but it is also possible to use some other
distribution, to reflect a possible initial queue when the collection site opens. When
the optimal actions a;* for all of the time steps k and states i have been computed,
the queueing distribution can be computed by iteratively computing

b = gk=1. pk (6.9)

a

Using this, we can compute the average queue length at the starting times of all
decision intervals. Additionally, by using the Pfk of some strategy, it is possible to
compute the queue length distribution and average queue length for any strategy.

An important factor in the applicability of the model, is the number of staff
members that have to change their position when a new decision interval starts.
By using the 7*'s, the average number of staff changes per decision interval can
be computed. The number of reallocations between time step k£ and k + 1 can be
computed by:



Chapter 6. Dynamic staff allocation

Note that by using this equation we assume that only the minimally required number
of changes occurs, i.e. staff members only change position if they are superfluous at
their current station, and directly move to the station that should have more staff
members than it currently has. In case of shift changes, some extra assumptions
apply. As we do not include shifts in our model, two consecutive shifts by different
staff members cannot be distinguished, and will be regarded as one staff member for
reallocations. When the start or end of a shift induces a change in the number of
staff members present, this will not be counted as a reallocation.

6.5 Numerical results

6.5.1 Implementation and computational times

We have implemented the approach from section 6.4 in Matlab R2015b. This ap-
plication has been chosen for two reasons. First, because it is known for its speed
with matrix computations. The second reason was the existence of the Markov De-
cision Process toolbox, which has been used to compute the optimal decision for the
individual MDPs.

The total computational time is dependent on the parameter settings. For most
parameters the direction of this dependency can be easily predicted - e.g. if N, or C,
increases, respectively the state-space or the action-space increases, and therefore the
computational time will increase. However, the relation with the number of decision
intervals is intriguing. If the number of decision intervals increases, the length of
a time-step decreases, which makes the transition matrices easier to compute. At
the same time, if the number of decision intervals increases, the number of optimal
decisions that have to be computed also increases.

Figure 6.4 shows the computational time of the MDP algorithm for different
numbers of decision intervals. The horizontal axis shows the number of decision
intervals per half hour. The Figure shows the normalized computational times for
different numbers of N, (N1 = N2 = N3), ranging from 7 to 12, as shown in the
legend. For every scenario in the Figure - i.e. every distinct number of N, and
number of decision intervals - the optimal allocation has been computed for an MAE
session. The computational times have been normalized by setting the computational
time for 1 decision interval to 1, so the graphs for the different numbers of N, can be
compared. For completeness, the total computational time in seconds for 1 decision
interval per half hour are included in 6.8.2.

Figure 6.4 clearly and consistently shows that the computational times follow a
convex structure. The relative computational times of different values for N, are
indistinguishable, and do not differ much between 4 and 100 decision intervals per
half hour. For 100 decision intervals, the optimal decision is computed for every 18
seconds. This is low relative to the service times, so there is no need for higher settings
of this parameter. On the other end, four time intervals correspond to a decision
interval of 7.5 minutes, which is in the same order of magnitude as the service times,
and therefore an interesting setting to use for the results in section 6.5.2.
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6.5. Numerical results

Figure 6.4 Relationship between the number of decision intervals and the normalized
computational time (one decision interval = 1, absolute times can be found in 6.8.2). The
different lines correspond to different values for Ny (N1 = N2 = N3) that were used (as
shown in the legend). The normalized computational time is lowest and not changing very
much between the dashed lines at 4 and 100 decision intervals.
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## Decision intervals per half hour

6.5.2 Queue length reductions

Currently, staff members do not change their allocation throughout the day. To
measure the improvement of the MDP method described in this chapter, we will
use two outcome measures, both of which measure the improvement compared to
the best possible current situation. For the results in this chapter, we have chosen
to show the reductions for eight, nine and ten staff members. The best possible
static allocation of these staff members is shown in Table 6.2. Table 6.4 shows the
reduction of the expected number of donors that are present at the collection site if
the method is used, and Table 6.5 shows the reductions of the expected number of
waiting donors at the collection site.

Table 6.2 Best possible static allocation of staff members. These allocations have been
used as baseline for the results in Tables 6.4 and 6.5

Number of staff Number allocated to

members available | station 1 station 2 station 3
8 1 2 5
9 1 3 5
10 1 3 6

We have included a variety of parameters settings. Next to three values for the
number of staff members, three values will also be used for the length of the decision
interval: 450 seconds, 90 seconds and 36 seconds. This corresponds to 4, 20 and 50
decision intervals per half hour respectively, all of which are in the range mentioned
in Section 6.5.1. For the average arrival rate 5 values will be used: the average
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number of donors arriving at the collection site will be varied between 12.5 and 22.5,
with increments of 2.5. The average arrival rate has been multiplied with the arrival
pattern shown in Figure 6.2.

Table 6.3 Scenarios for optimization and evaluation in Tables 6.4 and 6.5.

Optimized for:
Donors present  Donors waiting
(cost function 1) (cost function 2)
Columns with L Columns with L,

Donors present

Evaluated in Table 6.4 in Table 6.4
valuated for Donors waiting | columns with L - Columns with L,
onors WattiNg | i Table 6.5 in Table 6.5

We have also used two different cost functions for the optimization in the MDP
algorithm. The first cost function is based on the total number of donors at the
collection site - indicated with L in Tables 6.4 and 6.5. The second cost function
is based on the number of donors waiting - indicated with L, in Tables 6.4 and
6.5. Staff members are scheduled for up to one hour after closing time to clean
the equipment and help donors arriving shortly before closing time. All donors that
are present one hour after closing time will incur a cost equivalent to one hour of
waiting or being present for the first and second cost functions respectively. Note that
this means that there are four possibilities for the combination of optimization and
evaluation, as shown in Table 6.3. Also note that the difference between optimizing
for the number of present donors and the number of waiting donors is very small, so
the differences are expected to be small. However, the improvement should be larger
if the optimization and evaluation are both based on the same cost function.

A number of things stand out in Tables 6.4 and 6.5. First, and above all, the
possible improvements are very large. For most scenarios, a reduction of over 50%
of the expected number of waiting donors seems achievable, and in the best scenario
that was included in the numerical experiments, a reduction of 83.4% in the expected
number of waiting donors was achieved. For the total number of donors present at the
collection site, the reductions are naturally lower since time spent in service cannot
be reduced with the methods in this chapter. The lowest reduction of the expected
number of donors present is 8.0%, but this already includes a reduction of 50.5% of
waiting donors. From this, we can conclude that the maximum possible reduction of
the expected number of donors present for this scenario is around 16%.

We can also see that the differences between optimizing for the expected number
of waiting donors and the expected number of donors present is very small. This is to
be expected. It is possible to use the method to get more people into service, which
leads to a reduction of the expected number of waiting donors. However, to get to
the optimal allocation, the best strategy to both decrease the expected number of
waiting donors and donors present, is to get the donors to exit the collection site as
fast as possible. With long reallocation intervals, the optimization of waiting donors
might choose to guarantee that during the interval as many donors as possible are
in service. However, for shorter intervals, both methods will do essentially the same.
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Table 6.4 Reductions on the expected number of present donors compared to the static
allocation of staff members. Results directly from the MDP model.

8 staff members | 9 staff members | 10 staff members
Arrival  Decision optimized for optimized for optimized for
rate interval L L, L L, L L,
450 seconds [-18.6% -18.3%| -8.2% -8.0%| -8.6% -8.6%
A =12.5 90 seconds |-22.1% -22.1% |-10.4% -10.4%| -9.7% -9.7%
36 seconds |-22.7% -22.7%|-10.8% -10.8% | -9.8% -9.8%
450 seconds | -24.5% -24.3%|-10.8% -10.6% |-11.4% -11.3%
A=15 90 seconds |-28.9% -28.9% |-14.1% -14.1%|-13.1% -13.1%
36 seconds |[-29.8% -29.8%|-14.7% -14.7%|-13.3% -13.3%
450 seconds | -28.6% -28.4%(-13.0% -12.8%|-13.8% -13.7%
A =17.5 90 seconds |-33.6% -33.6% |-17.3% -17.3%|-16.1% -16.1%
36 seconds |-34.6% -34.6%|-18.1% -18.1%|-16.5% -16.5%
450 seconds | -30.8% -30.6% |-14.3% -14.2% |-15.2% -15.1%
90 seconds |[-36.0% -36.0%(-19.3% -19.3%|-18.1% -18.0%
36 seconds |-37.1% -37.1%(-20.3% -20.3% |-18.6% -18.5%
450 seconds [-30.7% -30.5% [-15.2% -15.0%[-15.6% -15.5%
A =225 90 seconds |-36.0% -35.9% |-20.5% -20.4% |-18.8% -18.8%
36 seconds |-37.1% -37.1%(-21.6% -21.5%|-19.4% -19.4%

>1
Il
o
S

Table 6.5 Reductions on the expected number of waiting donors compared to the static
allocation of staff members. Results directly from the MDP model.

8 staff members | 9 staff members | 10 staff members
Arrival  Decision optimized for optimized for optimized for
rate interval L L, L L, L L,
450 seconds [-62.0% -62.8% |-49.4% -50.5% |-65.6% -66.0%
A =125 90 seconds |-79.7% -79.8% |-73.1% -73.2%|-78.6% -78.6%
36 seconds |-83.4% -83.4%|-77.7% -77.7%|-80.7% -80.7%
450 seconds [-60.1% -60.6% |-44.5% -45.2%-59.3% -59.6%
A=15 90 seconds |-75.3% -75.4% |-66.4% -66.5% |-72.5% -72.6%
36 seconds |-78.6% -78.6%|-70.9% -70.9% |-74.9% -75.0%
450 seconds |-57.4% -57.8% |-40.0% -40.5% |-53.4% -53.7%
A =175 90 seconds |-70.5% -70.5% |-59.6% -59.7%|-66.2% -66.2%
36 seconds |-73.3% -73.3% |-63.8% -63.8% |-68.6% -68.7%
450 seconds | -54.3% -54.6% |-35.7% -36.1% |-47.3% -47.6%
90 seconds |-65.6% -65.7% |-53.0% -53.1%|-59.3% -59.4%
36 seconds |-68.1% -68.2%|-56.7% -56.8% |-61.7% -61.8%
450 seconds [-50.0% -50.5% [-32.2% -32.5%|-41.5% -41.8%
A =225 90 seconds |-60.2% -60.4% |-47.3% -47.5% |-52.5% -52.7%
36 seconds |-62.4% -62.7% |-50.6% -50.8% |-54.8% -55.0%

>1
I
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If all three stations are merged, there is a service capacity of 3 donors per staff
member per hour. So, the total average load on the system p = \/(3C), where
C is the number of staff members. The average load of the scenarios included in
the numerical experiments is between 0.42 and 0.94. However, since the number of
arrivals is not constant, but instead follows the structure of Figure 6.2, the arrival
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rate varies between 69.7% and 165.9% of the average arrival rate. This causes nine
out of fifteen scenarios to contain at least one half hour period where the system
is ‘unstable’, i.e. the arrival rate is higher than the maximum service rate. For an
arrival rate of 22.5 and 8 staff members, 6 half hour periods have a load on the
system larger than 1. Since the model contains a restriction on the total number
of donors that can be present, one could assume that the difference between the
static and flexible allocation would decrease. But even in these scenarios, the MDP
performs very well.

Reductions are always higher when a shorter decision interval is used. This should
be the case, as by definition it introduces more flexibility. It is also visible that the
difference between 450 and 90 seconds is much larger that the difference between
90 and 36 seconds because the situation at the blood collection site cannot change
very much in 90 seconds, let alone 36 seconds. This makes the additional flexibility
largely redundant.

The reductions for eight staff members are larger than those of nine and ten staff
members. This is mainly caused by the inefficiency of the static allocation for eight
staff members. There is only a small difference between allocating the last available
staff member to the Interview or Donation station. With the flexible allocation, the
staff member can alternate between the Interview and Donation station. The results
in section 6.5.3 support this, as the expected number of staff reallocations for eight
staff members is significantly higher than for nine and ten staff members.

A noticeable difference between Tables 6.4 and 6.5 can be found when the average
arrival rate X is increased. The reductions in Table 6.4 are consistently larger for a
higher arrival rate, while the reductions in Table 6.5 are decreasing. As the arrival
rate increases, both the expected number of waiting donors and the expected number
of donors present increase. With very few waiting donors, for the low arrival rates, the
flexibility offered by the reallocations can almost entirely eliminate waiting donors,
especially with frequent reallocations. However, the savings on the total number of
present donors are clearly limited by the fact that only the number of waiting donors
can be reduced, not the number of donors in service. When the collection site gets
busier, the MDP can effectively do more with the offered flexibility, as shown in the
reductions of the expected number of present donors. However, the method cannot
completely negate the increase in the expected number of waiting donors, which
leads to decreasing relative savings on the expected number of waiting donors. The
decreasing gap between the reductions on the expected number of waiting donors and
present donors also shows that the expected number of waiting donors is increasing.

Summarizing, the MDP model can accomplish significant reductions on numbers
of waiting donors and numbers of donors present. Compared to the current static
allocation, the best results are achieved for 8 staff members. The MDP profits from
a modest number of reallocation intervals, but the difference between reallocating
every 90 and every 36 seconds is very small.
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6.5.3 Reallocated staff members

A major factor in the possible implementation of the described method will be the
number of reallocations that are actually necessary. If staff members have to change
every few minutes, the method will not be adopted, as staff members and their
superiors will not cooperate with the implementation. The time a reallocation takes
has not been included in the MDP optimization. For a low number of reallocations,
the time a reallocation takes is negligible, and can be safely excluded from the model.
However, if the number of reallocations increases, the time a reallocation takes starts
to add up. We have therefore kept track of the average number of reallocations
the optimal strategy requires. To do this, we have used the method described in
section 6.4.3. The results are shown in Table 6.6 per half hour and Table 6.7 per
decision interval. The structure of these is the same as for Tables 6.4 and 6.5,
and the same scenarios have been included. It shows both the average number of
reallocations.

Table 6.6 Total number of staff reallocations per half hour. Results directly from the
MDP model.

8 staff members | 9 staff members | 10 staff members
Arrival  Decision optimized for optimized for optimized for
rate interval L L, L L, L L,
450 seconds| 1.6 16| 1.3 1.3 1.1 1.1
X =125 90 seconds | 7.0 72| 7.0 7.1] 6.3 6.3
36 seconds |18.8 18.7|17.8 17.7121.6 17.3
450 seconds| 2.2 21| 1.8 1.7| 1.4 1.5
A=15 90 seconds 9.9 10.1| 9.6 9.7 8.2 8.2
36 seconds |25.9 25.8(24.3 2421243 22.3
450 seconds | 2.9 27| 2.3 21| 1.8 1.8
A =17.5 90 seconds |13.2 13.212.2 12.2| 9.9 9.9
36 seconds |33.8 33.3/30.9 30.5(27.1 26.9
450 seconds| 3.5 34| 27 26| 2.1 2.1
A=20 90 seconds |16.5 16.4|14.5 146(11.3 11.3
36 seconds |41.4 41.0(36.7 36.4|30.9 30.6
450 seconds | 4.2 40| 3.1 3.0|] 23 2.3
A =22.5 90 seconds |19.7 19.4|16.6 16.7|12.7 12.6
36 seconds |48.5 48.5(42.1 41.8|34.3 33.8

Table 6.7 shows that the expected number of reallocations per decision interval
does not seem to change very much. In general there are more reallocations if the
arrival rate increases and if there are less staff members. Essentially, this is the same
effect, as both of these increase the load on the system. The intuition behind this
is most likely as follows: as the load increases, the average number of donors at
the collection site also increases. This means that there is a higher probability that
all staff members are currently working, which in turn increases the total number
of events influencing the state of the system - arrivals and service completions. As
a consequence the optimal allocation also changes at a higher rate, which induces
more staff changes. The lack of an obvious optimal static strategy for eight staff
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Table 6.7 Total number of staff reallocations per decision interval. Results directly from
the MDP model.

8 staff members | 9 staff members | 10 staff members
Arrival  Decision optimized for optimized for optimized for
rate interval L L, L Ly L L,
450 seconds | 0.40 0.40|0.33 0.3210.27 0.28
A =12.5 90 seconds |0.35 0.36|0.35 0.36|0.31 0.31
36 seconds |0.38 0.37)0.35 0.35(0.43 0.35
450 seconds | 0.55 0.52]0.45 0.43]0.36 0.37
A=15 90 seconds |0.49 0.50 | 0.48 0.48|0.41 0.41
36 seconds |0.52 0.52]0.49 0.4810.49 0.45
450 seconds | 0.72 0.68 | 0.56 0.54|0.44 0.45
A =17.5 90 seconds |0.66 0.66|0.61 0.61|0.50 0.50
36 seconds |0.68 0.67 | 0.62 0.61|0.54 0.54
450 seconds | 0.89 0.85|0.67 0.65|0.52 0.52
A=20 90 seconds |0.83 0.82|0.73 0.73(0.57 0.57
36 seconds |0.83 0.82|0.73 0.73(0.62 0.61
450 seconds | 1.04 1.01(0.77 0.76 [ 0.58 0.58
X =22.5 90 seconds |0.98 0.97]0.83 0.83]0.63 0.63
36 seconds |0.97 0.97]0.84 0.84|0.69 0.68

members, as mentioned in section 6.5.2, also plays a role in the higher number of
reallocations for eight staff members.

Although not very surprising, it is important to note the difference between 90
and 36 second intervals. The expected number of reallocations per decision interval
is almost identical. Thus, the total number of reallocations per half hour is higher
for the 36 second intervals. Combined with the fact that this does not cause a large
decrease in the expected number of donors that are either waiting or present in the
collection site, the 36 second option does not seem very appealing. However, most
of these changes will likely include a preemption, so the simulation results will be
required to get a more realistic indication of the expected number of reallocations.

Finally, it is important to note that for the 450 second intervals, the expected
number of reallocations is reasonable. The expected number of reallocations for eight
staff members and 450 second intervals is between 1.6 and 4.2 per half hour. This
means that every staff member would, even in the worst case, only change its station
every hour on average.

6.6 Simulation

6.6.1 Outline of the simulation model

The queueing model is a very useful way to model the system, as it allows for the use
of methods like an MDP to optimize the allocation of staff members. However, it
does require assumptions not completely reflecting reality. To assess the performance
of the optimal allocation, a simulation model has been developed. The simulation
model can be used to test the impact of the new allocation in a setting closer to
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reality. It is important to note that the simulation will not be used to search for a
better allocation, but only to evaluate the optimized policy computed by the MDP.
The simulation model was built in Arena Simulation Software version 14.70.

Table 6.8 Schematic overview of the difference between the simulation model and the
queueing model used for the MDP.

Queueing model Simulation model
Distribution Value/ (o) | Distribution Value/ pu(o)
(minutes) (minutes)
Arrivals Markov process See Figure 6.2 | Markov process See Figure 6.2
Registration Exponential 2 Lognormal 2 (2.53)
Questionnaire Assumed to be done while | Lognormal 3.5(1)
waiting for Interview

Interview Exponential 6 Lognormal 6 (2.91)
Deferral Bernoulli 0.1 Bernoulli 0.1
Donation start Lognormal 7 (4.19)
Donation idle } Exponential 12 Lognormal 8 (1)
Donation end Lognormal 5 (4.19)
State restriction | Maximum of 12 donors can No state restriction
(INy) be present at each stations
Staff restriction Maximum of 2, 4 and 6 staff members can work at the
(Cy) Registration, Interview and Donation station respectively.

The detailed differences between the simulation model and the queueing model on
which the MDP was based can be found in Table 6.8. These differences can roughly
be separated into four categories. The first entails the service time distributions. The
queueing model has to use exponential distributions to remain numerically solvable.
In the simulation model, however, we can use a more realistic service time distribution.
After testing on data from Sanquin, a lognormal distribution resulted in the best fit
for the service time distributions, so these will be used in the simulation.

The second and third major category of differences between the queueing model
and the simulation model are the number of stations and the number of donors
allowed to be at any of these stations. These variables determine the size of the
state-space. This size is directly related to the numerical complexity of the MDP,
and is therefore limited in the queueing model. There is no practical limit on the
number of donors that can be present in the simulation model. In the case that there
are more than twelve donors at one of the stations in the simulation model, we will
use the optimal decision that is associated with twelve donors at this station, since
the MDP has only computed the optimal decision for up to twelve donors per station.

The number of stations in the simulation model is also increased from the queue-
ing model. The Donation station of the queueing model is split into three different
stations in the simulation model. The first is the start of the donation. This is the
moment when a staff member starts the donation by setting up the equipment and
placing the needle. The second station of the donation - in Table 6.8 referred to
as the 'donation idle’ station - is the time when the blood is drawn from the donor.
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Generally, no staff member is strictly required for this station, although staff members
will check on the donor regularly in between tasks. The final station of the donation
- the 'donation end’ station in Table 6.8 - is the station where the staff member
ends the donation. Note that the time where a staff member is required during the
donation in the simulation model is equal to the total time required for the donation
in the queueing model. The simulation model also includes the time spent by donors
to complete their questionnaire. Like the donation idle station, this does not require
staff members, and is therefore not included in the queueing model.

The fourth and last major difference between the queueing and the simulation
model does not show up in Table 6.8 and has to do with preemption. The MDP
model from section 6.4 reallocates all staff members after a time interval, including
staff members that are currently servicing a donor at one of the stations. Although
this might be a 'dummy reallocation’ - i.e. they are allocated to the same station
they are currently working at, it is also possible that they are allocated to a different
station. In the queueing model, the staff member will then stop working on its current
task, and immediately switch to its new task. The simulation model doesn't require
this assumption.

6.6.2 Results from simulation evaluation

6.6.2.1 Queue length reductions

With the simulation, we acquired the same results as in section 6.5.2, and have also
used the same structure for the Tables 6.9 and 6.10. So, for a detailed description
of the structure of these tables, see the first paragraphs of section 6.5.2.

To get the results for Tables 6.9 and 6.10, we have used the simulation model
to simulate 100 collection sessions for each scenario. After the 100 runs, the seed
was reset, such that all scenarios with the same arrival intensity have dealt with
exactly the same donors - i.e., we have used common random numbers. Wherever
significance is mentioned, a 5% significance level is used.

The first thing to note in Tables 6.9 and 6.10, is that all but one scenario still
show a significant improvement over the static allocation. The only scenario that
does not show a significant result, both in the expected number of waiting donors
and the expected number of present donors, is the scenario with A = 225 36
second decision interval, 9 staff members and optimized for number present. The
reductions are the highest for 8 staff members, followed by 10 staff members and 9
staff members. This effect is also visible with the numerical experiments, and has
been explained in section 6.5.2, but it stands out more in the simulated results.

There are of course a few differences. It is interesting to note that although the
results for a decision interval of 450 seconds look similar to the results of the MDP
model in section 6.5.2, the results generally deteriorate for 90 and 36 seconds. For
these short decision intervals, the MDP model assumes an amount of flexibility that
does not exist in reality. The MDP only looks forward 36 or 90 seconds, and assumes
the staff member can be reallocated after this time. In reality, the staff member will
be fixed to the station he or she was sent to until he or she finishes at least one
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Table 6.9 Reductions on the expected number of present donors compared to the static
allocation of staff members. Results from the simulation.

8 staff members | 9 staff members | 10 staff members
Arrival  Decision optimized for optimized for optimized for
rate interval L L, L L, L L,
450 seconds |[-11.8% -11.2% |-6.4% -5.8%| -7.1% -6.6%
A =125 90 seconds |-11.2% -11.3% |-6.6% -6.7%| -7.3% -7.3%
36 seconds |-10.5% -11.0% |-6.4% -6.5%| -7.4% -7.4%
450 seconds |-16.7% -16.5% |-8.0% -7.6%| -9.1% -8.7%
A=15 90 seconds |-14.8% -15.3%|-8.0%  -8.1%| -95%  -9.6%
36 seconds |-13.6% -14.3%|-7.6% -7.8%| -9.5% -9.6%
450 seconds |-21.1% -21.3%|-8.9% -8.8%(-11.1% -10.8%
A =175 90 seconds |-17.9% -18.9% |-8.5% -8.7%(-11.5% -11.8%
36 seconds |-16.3% -17.0% |-7.9% -8.3%|-11.5% -11.6%
450 seconds |-25.3% -26.3% |-8.5% -9.0% (-12.2% -12.2%
90 seconds |-20.4% -22.3%|-7.4% -8.0% |-12.8% -13.4%
36 seconds |-17.9% -19.0% |-6.6% -7.4%|-12.8% -13.2%
450 seconds [-29.6% -32.5% |-6.2% T1.7%(-12.9% -13.6%
X =225 90 seconds |-23.5% -26.6% |-4.4% -5.6%(-13.6% -14.5%
36 seconds |-18.2% -20.1%(-3.2% -4.6%(-13.6% -14.2%
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Table 6.10 Reductions on the expected number of waiting donors compared to the static
allocation of staff members. Results from the simulation.

8 staff members | 9 staff members | 10 staff members
Arrival  Decision optimized for optimized for optimized for
rate interval L L, L L, L L,
450 seconds | -66.7% -63.0% |-63.2% -57.6% |-76.1% -71.0%
X =125 90 seconds |-63.5% -64.2%|-65.1% -65.7%|-79.0% -79.0%
36 seconds |-59.1% -62.5% |-63.2% -64.4%|-79.3% -79.2%
450 seconds |-63.8% -63.1% |-55.7% -53.3%|-71.0% -67.7%
A=15 90 seconds |-56.7% -58.6% |-56.2% -56.8% |-74.1% -74.4%
36 seconds |-52.0% -54.7% |-53.2% -54.9% |-74.1% -74.2%
450 seconds | -59.4% -59.9% |-43.9% -43.5%|-61.4% -59.5%
A=17.5 90 seconds |-50.5% -53.2% |-41.9% -43.0%|-63.4% -65.0%
36 seconds |-45.9% -47.9%(-39.0% -40.9% |-63.2% -64.1%
450 seconds | -54.4% -56.7% |-31.4% -33.3%|-50.4% -50.8%
90 seconds |-43.8% -48.0% |-27.4% -29.7% |-53.1% -55.4%
36 seconds |-38.3% -41.0%|-24.1% -27.4%|-52.9% -54.6%
450 seconds | -49.8% -55.2% [-17.0% -21.6%|-41.2% -43.6%
A =225 90 seconds |-39.2% -44.9% |-11.4% -15.2% |-43.6% -46.5%
36 seconds |[-30.2% -33.9%| -8.0% -12.2% |-43.5% -45.4%
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service at this station, which almost always takes longer than 90 seconds. The fact
that the only exceptions to this are scenarios with a very low load confirms this. If
the load is very low, staff members have a lot more idle time where the staff member
can be reallocated after 36 or 90 seconds.

Summarizing, the results from the simulation support the MDP results. Although
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results are not identical, which is to be expected as the simulated model is much closer
to reality, both show a large potential for improvement, with the highest reductions
for 8 staff members.

6.6.2.2 Reallocated staff members

We have also used the simulation model to check the expected number of realloca-
tions that were determined by the numerical experiments. Table 6.11 has the same
structure as Table 6.6, but reallocations per decision interval are not included. In the
simulation, staff is not reallocated at the start of decision intervals, but only when
a staff member finishes their task. Reallocations per decision interval therefore no
longer have a clear interpretation.

Table 6.11 Number of staff reallocations per half hour. Results from the simulation.

8 staff members | 9 staff members | 10 staff members
Arrival  Decision Optimized for Optimized for Optimized for
rate interval L L, L L, L L,
450 seconds 3.0 2.5 2.3 2.0 1.5 1.3
A =125 90 seconds 3.7 3.7 2.6 2.6 1.6 1.6
36 seconds 3.7 3.7 2.6 2.6 1.6 1.6
450 seconds 4.1 3.4 3.2 2.8 2.2 1.9
A=15 90 seconds 5.1 5.0 3.7 3.7 2.4 2.4
36 seconds 5.1 5.1 3.6 3.6 2.4 2.4
450 seconds 5.0 4.4 4.1 3.7 2.8 25
X =17.5 90 seconds 6.4 6.3 4.6 46 3.1 3.1
36 seconds 6.4 6.4 4.5 4.6 3.0 3.1
450 seconds 5.8 5.2 4.7 4.4 3.2 3.0
A =20 90 seconds 7.4 7.3 5.3 5.3 35 3.5
36 seconds 7.3 7.4 5.3 5.3 3.4 3.5
450 seconds 6.2 5.9 53 5.1 3.4 3.3
A =22.5 90 seconds 8.0 8.1 5.8 5.9 3.7 3.8
36 seconds 7.9 8.3 5.8 5.9 3.7 3.7

The expected number of reallocations for decision intervals of 450 seconds are in
the same order of magnitude as the same results from the numerical experiments,
although the expected number of reallocations is slightly higher for the simulation.
This confirms that for this decision interval, the simulation is able to reasonably
closely follow the optimal decisions of the MDP model, which also results in similar
results for the expected number of waiting and present donors, as can be seen in
Tables 6.9 and 6.10.

In contrast, the expected number of reallocations for decision intervals of 90
and 36 seconds are much lower than the corresponding results from the numerical
experiments. This also matches with the conclusions in section 6.6.2.1: the MDP
uses flexibility that does not exist in reality. To reach the reductions of waiting and
present donors that are shown by the numerical results, the much higher number of
reallocations that go along with these savings turn out to be really necessary.
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Table 6.11 shows that the expected number of reallocations for the decision
intervals of 90 and 36 seconds are almost identical. Although these similarities are
not as clear for the expected number of donors, the reductions shown for 90 and 36
seconds in Tables 6.9 and 6.10 are often not significant as well.

6.7 Discussion

The flexibility offered by the possible reallocation of staff members can be utilized
effectively by using the MDP model outlined in section 6.4. The numerical results
in section 6.5.2 show substantial reductions of up to 83.4% on the expected number
of waiting donors for a low average arrival rate. A simulation study confirms that
large, but slightly lower reductions of around 60% on the expected number of waiting
donors are possible if the optimal policy is used.

The MDP is constructed such that it can reallocate all staff members after a
fixed decision interval. Shortening this interval therefore creates more flexibility for
the MDP method, which should result in more savings on waiting and present donors.
This is indeed supported by larger reductions in the numerical experiments of sec-
tion 6.5. However, the simulations in section 6.6.2 show that this greater flexibility
does not actually reduce numbers of waiting and present donors. The flexibility that
is assumed by the MDP, namely that staff members can be reallocated extremely
quickly, is not actually present in reality, where staff members first have to finish their
task before switching. The longer decision interval, which has to take more future
changes into account with its decision, performs better in the simulation. This effect
is strengthened if the load on the system increases, because more staff members are
fixed to their current station performing service. Due to this effect, the largest reduc-
tions suggested by the numerical results are not achievable in practice, but reductions
of approximately 60% seem plausible.

If a staff member changes its allocation, this will require some time. Some
equipment might have to be shut down, and physically changing to another position
in the system will also require some time. Although adding these setup times to
the MDP model would make it more realistic, it would also require an expansion of
the state-space, making the problem harder, if not impossible to solve. Additionally,
the expected number of reallocations is low for longer decision intervals and in the
simulation model, it is safe to assume that the addition of these setup times will not
significantly influence the results.

As could have been expected, the savings on the expected number of waiting and
present donors are higher if the best static allocation of the staff members is less
obvious. This is supported by both the numerical experiments and the simulation,
where the reductions for eight staff members are clearly superior to the reductions
for nine and ten staff members.

Numerical results from the MDP model show that the expected number of times
a staff member has to reallocate during a session greatly increases if the decision
interval shortens. The numerical results even show that the expected number of
reallocations per decision interval is more or less constant for a given arrival rate and
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number of staff members. This implies that the expected number of reallocations
between a decision interval of 450 seconds and one of 90 seconds differs by approxi-
mately a factor 5. The simulation does not show this result. Although the expected
number of reallocations for 90 and 36 second decision intervals are somewhat higher
than those of 450 second intervals, the differences are not nearly as large as for the
numerical results. However, given the results on the reductions of waiting and present
donors, it still seems advisable to use a decision interval of 450 seconds.

The main challenge remaining is the implementation of a reallocation policy.
Roughly, two directions can be taken for the implementation. The first option is to
deduce simple rules from the extensive optimal strategies, such that staff members
can use these as a rule of thumb on when to reallocate. The second option is to
develop a digital system which keeps track of donors at the collection site and notifies
staff members on when to change their allocation. In this case, the entire optimal
strategy from the MDP can be used.

Summarizing, the MDP based model is able to significantly reduce waiting in
systems with a number of sequential servers. In some cases queue lengths can be
reduced by over 60%. For the blood collection site, a further indication of these
reductions are given in sections 6.5 and 6.6.2. Although for other similar systems,
more detailed studies might be necessary to validate the presented model, these
indicated results are highly promising.

6.8 Appendix

6.8.1 Appendix I: Formulas to compute three dimensional state

, i—1
6= | T o) (6.11)
_ | i1
na(i) = mod N2 +Y) L\@,HJ (6.12)
n3(i) = mod ™+ (i — 1) (6.13)

6.8.2 Appendix Il: Absolute computational times for Figure 6.4

Table 6.12 Computational times in seconds for the MAE session with a decision every
half hour

Maximum donors per station ‘ 7 8 9 10 11 12
computational time (seconds) | 184.2 349.3 636.9 1097.0 1825.6 2995.1
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CHAPTER 7

Combining appointments and walk in donors

7.1 Introduction

Previous chapters discussed methods to compute and decrease waiting times by
using the available capacity at the collection site as efficiently as possible. Chapter 5
specifically dealt with the problem of assigning staff such that the number of available
staff members matches the number of expected arrivals. This chapter will address
essentially the same problem, but will do this by altering the arrival process instead
of the service process.

By introducing appointments, it is possible to direct arrivals of donors to times
when more staff capacity is available. However, a substantial number of whole blood
donors prefer the flexibility of walk-in arrivals. Sanquin therefore plans to introduce
appointments as an option for whole blood donors, while donors that prefer walk-in
will not be forced to plan appointments. This chapter will deal with planning these
appointments, while taking the plasma appointments and walk-in appointments into
account. The eventual goal of Sanquin is for 80% of whole blood arrivals to have an
appointment. The underlying notion exists that these appointments smoothen the
arrival process and thereby reduce waiting times. This is to be investigated in this
chapter.

Arriving donors first enter a queue at the registration desk, where the type of donor
is not yet known. In the remainder of the collection process, plasma donors receive
priority over whole blood donors at the collection site. To encourage donors to make
appointments, a new priority level will be introduced for whole blood appointments.
Whole blood donors with an appointment will have priority over whole blood donors
without one, but will still have lower priority than plasma donors.

These priorities are set by Sanquin management, but it is worth noting that they
are not always strictly followed in practice. Staff members might sometimes choose
to serve a whole blood donor that has been waiting for a while, even if a plasma
donor is present in the same queue. As this is dependent on staff members, location
and other factors, and the exact situation of queues is not kept track off, it is not
possible to take this into account. For this reason, the remainder of the chapter will
use strict priority rules.

Although the computational model and planning approach introduced in this
chapter is based on blood collection sites, processes with a registration desk and
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priority rules after this initial queue, exist in many more situations. As examples one
might think of an outpatient phlebotomy laboratory, where the priority is based on
urgency of patients, a bank office, or a city hall. For several of these situations,
similar models would be applicable.

We will start this chapter by discussing the relevant literature on appointment
scheduling in Section 7.2 and the contribution of this paper to the literature. As
an extensive survey of the literature on blood collection sites can already be found
in Section 1.4, this will not be repeated here. Subsequently, we will discuss the
method developed for the scheduling of appointments in Section 7.3. We will then
introduce the test case for the approach based on the blood collection site in the city
of Enschede in the Netherlands in Section 7.4.1. Based on some numbers from this
collection site, random arrival patterns will be generated, and the approach will also
be tested on these patterns. Results from these random arrival patterns are discussed
in Section 7.4.3. The chapter will then be concluded with a discussion in Section 7.5

7.2 Literature

Although appointment scheduling at blood collection sites has rarely been studied,
extensive research has been done on appointment scheduling in a broader healthcare
setting. Reviews of this literature can be found in the surveys by Cayirli and Veral
[43], Gupta and Denton [102], Hulshof et al. [110] and Ahmadi-Javid et al. [3]. We
will refer the reader to these papers for a full overview of appointment scheduling in
Healthcare. As our main goal is to limit waiting times by combining appointments
with walk-ins, we will elaborate on this area of research.

7.2.1 Appointment scheduling in combination with walk-in

Reilly et al. [161] propose a method called “delay scheduling” by which walk-in
patients to a clinic can be assigned a delay time, i.e. invited to return at a later time,
if the clinic is very busy.

Su and Shih [171] study an outpatient clinic with a very high number of walk-
in patients. They use a simulation model to test several appointment scheduling
policies. Some of these policies significantly improve service.

Green et al. [97] use a dynamic programming approach to schedule outpatient
appointments for diagnostic facilities, while taking walk-in inpatients and urgent
patients into account. Their dynamic program simultaneously provides priority rules
for admitting new patients into service.

Sickinger and Klisch [166] present an extension of the Bailey-Welch rule combined
with a neighborhood search to schedule outpatient appointments. Their aim is to
maximize the total reward, which incorporates costs for waiting patients.

Dobson et al. [70] study the effects of reserving appointment slots for urgent
patients in primary care.

Koeleman and Koole [121] study the scheduling of non-emergency patients when
arrivals of emergency patients are time-dependent. Their objective is to balance
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waiting times, idle times and overtime. Using a local search algorithm, they are able
to show significant improvements.

Luo et al. [127] study an outpatient clinic, for which a framework is developed to
schedule outpatients. A balance has to be found between waiting times and server
utilization, while taking unscheduled emergency patients into account.

Peng et al. [151] present a hybrid simulation and genetic algorithm to develop
scheduling templates for clinics, if walk-in patients are also allowed. Their method is
able to reduce cost significantly.

Kortbeek et al. [123] use an iterative procedure consisting of an access time model
and a waiting time model to plan appointments for a CT scanner. The method is used
to balance waiting time at the facility and access time by planning the appointment
during times when a low number of walk-in patients is expected.

In most of this research, walk-in patients are emergency or urgent patients, whom
are given priority over scheduled patients. In the situation at the blood collection
site, however, these priorities are reversed. This may result in different decisions.

Compared with the most closely related paper in the existing literature, the one
by Alfonso et al. [6], our method has important advantages, especially for the Dutch
situation. First of all, our method takes transient behavior into account, compared to
the steady state performance of the petri net model used in Alfonso et al. Transient
analysis is important both in the case that the previous appointments have not yet
cleared the system as new appointment donors arrive, and as the arrival process of
the donors without appointment is random and continuously changing. Both of these
imply that the system never reaches a steady state situation. The presented model
can easily be extended to incorporate changing numbers of staff members throughout
the day, which would increase the necessity for a transient analysis even more.

Secondly, our model includes priorities. In reality, donors with appointments
receive priority over donors without appointments, and plasma donors receive priority
over whole blood donors. Ignoring these priorities would vastly underestimate the
queues for donors without appointments, which in turn could lead to losing these
donors for future donations.

Finally, a third aspect of our contribution in this chapter is the combination of
donors with and without appointments. Although healthcare systems often have to
deal with patients without an appointment (e.g. urgent patients), only a limited
number of papers (17) appear in the most recent literature review [3] that include
walk-in patients.

7.3 Method

In this section, we present a description of the proposed approach for the computation
and evaluation of appointment schedules for whole blood donors. First, Section 7.3.1
presents the modeling of a blood collection site including plasma donors and three
required priority classes. Section 7.3.2 then present the corresponding transition
structure and probabilities for computation of queueing distributions of this model
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of a blood collection site. Finally, section 7.3.3 presents how appointment schedules
are generated and improved.

7.3.1 Model

We will model the blood collection site as a tandem queue with priorities, as shown
in Figure 7.1. Donors first enter the queue for the registration station. At this
station, no priority rules apply, as the type of donor is not yet known in reality at this
point. After having received service at the registration station, the donors move on
to one of the queues for the interview station, depending on their type. Similarly to
reality, we will distinguish three types of donors: plasma donors, whole blood donors
with appointment and whole blood donors without appointment. From this point in
the system, plasma donors are in the highest priority class, followed by whole blood
donors with an appointment and then whole blood donors without an appointment.
We assume that 10 % of donors are rejected for a donation at that visit and leave the
system after the interview station, which corresponds to data obtained from Sanquin.
The plasma donors are also discraded in the model after the interview station, as
their donation station is seperated and will not be considered in this model. The
whole blood donors move on to the donation station, again seperated based on their
type. After the donation station, the remaining donors also leave the system.

Figure 7.1 Schematic representation of the model.
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Inter-arrival times will be exponential for whole blood donors without appoint-
ments, which is a natural assumption for walk-in arrivals. However, the exponential
distribution for the inter-arrival times can easily be replaced by some other discrete
distribution (see Section 7.3.2.3). Appointment arrivals are assumed to either not
show up with probability p("$) or to show up exactly at the time of their appoint-
ment, at which time they will join the queue of the registration desk. Services at
the registration station have a deterministic service time of 2 minutes. Services at
the registration desk do not have a great variance, which justifies this assumption.
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However the most important reason for choosing a deterministic service time is the
possibility to track which donor is in what spot in the line for the registration desk,
without having to include it in the state. To keep the problem tractable, services at
the interview and donation station have exponentially distributed service times with
an average of 6 and 12 minutes respectively.

To be able to keep the problem tractable, we need two additional assumptions.
First, services at the interview and donation station will be preempted if a higher
priority donor comes to the station. l.e. a plasma donor can preempt any whole
blood donor in service, and a whole blood donor with an appointment can preempt
a donor without an appointment.

Second, we will limit the number of donors that can be present in the registration
station by N, the interview station by N5 and at the donation station by N3. This
results in the following state-space:

S = {(n1,n21,n22, N23,n31,n32) € NG |

7.1
n1 < Ni,n91 + nag + nag < No,ngi + nga < N}, (7-1)

where ny is the number of donors at the Registration station. mno; refers to the
number of plasma donors at the interview station, nog and nsg refer to the number
of whole blood donors with and without appointments at the Interview station re-
spectively. n3; and ngy refer to the number of whole blood donors with and without
appointment at the donation station respectively. This is also visualized in Figure 7.1.
For notational convenience, we will use 7 and j to represent states in this state-space:

i = (n1,n21, N22, N3, N31,N32) € S 75
Y A / ’ / / S ( : )
J = (n],n91,n59, N3, n31,N35) €5,

where 7 will refer to the current state, and j to the next state.

7.3.2 Transitions

The time between the start and end of the donation session will be divided into short
time-steps. Each of these time-steps will have length 7, the constant, deterministic
service time at the registration desk. The queueing distribution will be computed
in a forward manner. We therefore assume that the queueing distribution 7, at
time step t is known. During every time-step, four different transition types will
be distinguished. With these the queueing distribution ;, , will be computed.
Methodologically, the first transitions to take place are the arrivals of appointments.
Then, services take place at the second and third station, directly followed by the
arrivals of walk-in donors. Lastly, at most one service is completed at the first station.
We will distinguish four different types of transitions: Arrivals of donors with an
appointment in Section 7.3.2.1, services at the Interview and Donations stations in
Section 7.3.2.2, Walk-in arrivals of donors in Section 7.3.2.3, and finally services at
the Registration station in Section 7.3.2.4. Section 7.3.2.5 will then briefly outline
how the four transition types are combined.
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7.3.2.1 Appointment arrivals

The first of the transitions to occur during a time-step are the appointment arrivals.
We will deal with these arrivals one by one. With p(") the no-show probability of a
donor with appointment, i.e. the probability that a donor with an appointment does
not show up to the collection site, the one-step transition matrix for these arrivals is
given by:

1—p™)) j=i+e,n <N

(ns) S N
G =17 Jhms (73)
’ 1 j=1i,n =N
0 else.

After the first queue, appointment donors get priority over other donors. However,
if we were to explicitly track these donors, the state space would become very large.
Therefore, we will track the location of appointment donors independently of the state
space. Let agz) = (aig?l,...,at(z?Nl) be a vector with elements oﬁz?nl containing
the probability that a plasma donor is in the queue at the registration station, with

n1 — 1 other donors waiting before this plasma donor, and let Ut(ka) with elements

at(:'_’l:zl be the same vector for whole blood donors.

Let agz) and ag‘:b) be the number of plasma and whole blood appointments
scheduled for time ¢, respectively. We will use 7, to indicate the temporary queueing
distributions that track progress in between 7y, and m;,,, and 7 to indicate the

queueing distribution aggregated for all stations except for station 1.

(wb)
wb wb * Qg ns
o) = o) ke e (1=p™), =12, N
Qg+ ay, (7.4)
(p) '
* a’tﬂ, n
O’t(z?nl = O‘igs?nl +7Tt1k,n171 (Wb) : (p) (1 _p( S))7 nl = 1)27"'1N1'
Gy~ Qg

We will use 77, to store the intermediate queueing distribution. Before the first step,
this is initialized as 7}, = m;, . We then update 7;_by:

Ty = ﬂ'ka(aa). (7.5)

(p) (wb)
k

To compute the queue location vectors oy,” and o, * and the queueing distribution

(p) +a(wb)

th ¢, times.

after the arrival of appointments, iterate equations (7.4) and (7.5) a

7.3.2.2 Services at Interview and Donation stations

The second transition type to take place, will be the services at the interview and
donation station. These services will be computed based on uniformization (as ex-
tensively described in Chapter 2). To use uniformization, we first have to specify
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the transition rates from service completions at the Interview and Donation stations.
These are given by:

GQij,t, =
min{sz, 7121} © U2 j =1 — €2
min{max{sy — na1,0}, nao} - o j=1—e3+e5n3 < N3
min{max{sy — ng; — nao,0},n93} - o j =1 —eq + eg,n3 < N3 (7.6)
min{sg, ng1} - 3 j=1—es
min{max{53 — Nn31, 0}, n32} - 13 j =1 — €6
0 else,

where n3 = n3; + n3s and e; is a vector with all zeros except for a one in position
i. These transition rates form the generator matrix, total rates:

Qi t, = Zqz',j,tk- (7.7)
jes
Let the maximum of the total rates be a;, = masx Git,- 1he one step transition
ic

matrix for the services at the second and third station is given by:

pE23) _ {Ch,j,tk/atk JFi (78)

0,0tk s
1- Qi,tk/atk J =1

With these definitions, the transitions can be computed similar to Section 2.4.2
from Chapter 2. To this end, initialize the queueing distribution 7(!) after exactly I
transitions. We then start rebuilding the intermediate queueing distribution 7} by
adding the queueing distribution after 0 transitions 7(°) multiplied by the probability
of 0 transitions.

70 = o
o _ (g1 — tk)atk)oef(tk_'_lftk)atkﬂ(()) (7.9)
b 0! '

We may now iteratively compute the queueing distribution after [ = 1,2,... transi-
tions and update the intermediate distribution 7 by:

7) = 7 (=1 ps29) (7.10)

l
. ((trt1 ;'tk)atk) o~ (teri—ti)as, (1) (7.11)
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Note that := indicates a variable gets updated. In equation (7.11), = would only
hold if everything after the plus sign equals zero. This iterative computation is exact
for I — oo, as explained in Chapter 2. However, as this is numerically infeasible, the
iteration will be terminated if

l /
((trg1 — t) * ) ) _
B g et < 1076, (7.12)

7.3.2.3 Walk in arrivals

The third transition type to occur are the walk-in donors. For the walk-in donors,
an exponential inter-arrival time will be assumed. The number of arrivals in a fixed
time period will therefore be Poisson distributed, resulting in the following transition
matrix:

(aw) _
i,
At)!
00 -,
. = ()" —(At) j=i+l-e,m+l<nN, (713)
]]-{l=N1—n1} Z Te
U=14+1
0 else,

where t = t;41 — tr. Here, we recall that ¢ and j represent state vectors from
expression (7.2). As the maximum number of present donors at the registration
station is limited by Ny, the tail of the Poisson distribution is added to the maximum
number of allowed arrivals, assuming the remainder of the possible arrivals to be
blocked. Then, 7}, is updated by:

7721 = W:kP(aW). (7.14)

7.3.2.4 Services at station 1

The final transition to take place is exactly one service at the Registration station, if
at least one donor is present here. As stated, the length of a time-interval is based
on the service time at this station, and the service time at the first station is assumed
to be deterministic. The transition matrix for the services at the first station is given
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by:
(s1) _
P =
0§5)1/(1*7Tf,€,0) j=1i—e1+ezny <Ngn >0
g:/bl)/u* Tie0) Jj=i—e1+e3na<Ngyn >0 (7.15)
L= (o) +0lP)/(1 —xltg) j=i—erteany < Nom >0
1 j=i7n2<N2,n1:O
1 ] = i7n2 = N2
0 else.
where ny = noj +nga+n23Since o,(l )tk and an t)k contain the unconditional probabil-

ities that a plasma or whole blood appointment donor respectively stands at position
np in the queue at the registration station, we need to divide by (1 — 7rtk o) to get
the probability that a plasma or whole blood donor stands at position n1, given that
at least one donor is in this queue.

The queueing distribution after all transitions, the distribution at time t;41 can
now be computed by:

Ty o= WtkP(Sl) (7.16)

After this transition, update the probabilities of appointment donors being in position
ny in the queue, for ny =1,2,..., Ny,

wb wb wb *
Tt = T (1= mik) + o (7 ) 717)
U7(lp1)7tk+1 = 07(L1)+1 tr (1 - 7T ) + 0-574':;)7tk (ﬂ-tQ:,Nz)

7.3.2.5 Combining the transitions

The computations outlined in Sections 7.3.2.1 until 7.3.2.4 are applied in this se-
quence to get from m;, to 7y, ,. The time between these two distributions is exactly
equal to the constant, deterministic service time at the Registration station. This is
required to be able to track which donor is in which position in the queue for the
Registration station. The assumption of a constant service time at the Registration
station is not very unrealistic, as the registration consists of a few actions that do
not contain a lot of stochasticity.

Summarizing, the queueing distribution 7, ., at the start of time step t51, is
computed by:

[ wb
ay, Tat,

7rt;€+1 = ﬂ-tk H [Paa] F)523"“Zjaa]:)aa7 (718)

m=1
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where

oo l
Ps23* _ Z ((tk’-‘rl — tk)atk) e*(t“*l*tk‘)o‘tk Ps23l. (719)

I
1=0

7.3.3 Finding a schedule through binary search

Section 7.3.2 describes how 7y, , , is determined from 7, . Now, we would like to find
an optimal schedule for the whole blood appointments. Optimal, in this case, could
be with respect to multiple criteria or goal functions. We are interested in delivering
the best possible service to the donors, given the structure of the process and the
restrictions on the capacity of the service stations. The goal functions f(m, ) used in
this chapter will therefore be aimed at minimizing the queues at the collection site.

However, finding an optimal schedule without extreme computational cost does
not seem possible. Although the described process is close to a process that could be
optimized by a Markov Decision Process (MDP), like the problem solved in Chapter 6,
this is not possible because of the dependency on a,g;:'b). Since a,(:l”f’t)k is dependent
on the decision that have to be made, which makes that the problem can not be
solved backwards, as would be required for a time-dependent, finite horizon MDP.
So, to find a good schedule, we have to use heuristics. The heuristic that will be
used is based on binary search.

First, we will have to determine when appointments can be planned. The length
of a time step is equal to the mean service time at the registration station. As this
is most likely a very short, it is likely that appointments should not be planned every
time step, but in a subset of the time-steps. For this purpose, introduce the set of
time-steps where appointments can be planned ¢,

¢ = {tx|appointments can be planned at time t;}.

Next, introduce a vector with thresholds L. Without loss of generality, assume the
goal function, queue lengths in this chapter, should be minimized. In this case, the
values in L should be be non-increasing. At every time step t; € ¢, we plan as many
appointments as there are thresholds above the current value of the goal function
f(m,). For a goal function that should be maximized, we plan as many appointments
as there are thresholds lower than the current value of the goal function. E.g., if
f(my,) < Ls and f(m,) > Ly, we plan 3 appointments in time-slot #.

With this method, whole blood appointments can be planned for the entire day or
collection session. Binary search can then be applied to find the appropriate levels of
the thresholds to plan the required number of appointments. Note that this required
number of appointments could also be a range in which the planned number of
appointments should lie.

The following procedure was used as an implementation of binary search. Af-
ter the iteration, with some vector L, it is possible that the required number of
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appointments, is planned. In this case the procedure can immediately be stopped.
Otherwise, the number of planned appointments is either too high, in which case we
add some vector C, or the number of planned appointments is too low, in which case
we subtract the same vector C.

too many appointments: Lyew = Log + C (7.20)
too few appointments: Lpew = Lo — C, '

where C' should have the same non-increasing property as the threshold vector L.
If after the iteration both an upper and a lower bound on the thresholds have been
found, divide C' by half. Now apply the new vector L to find a new schedule until a
schedule has been found with the appropriate number of appointments.

Figure 7.2 shows an example of the binary search method. Figure 7.2a shows
the initial values for the thresholds, and the resulting expected number of present
donors, which will be used as the goal function. These thresholds do not plan enough
appointments, so the thresholds are increased in Figure 7.2b, and then decreased
twice in Figures 7.2c and 7.2d to reach the required number of appointments.

The initial values of C' and L of course influence the schedule that is found at the
end of the procedure. Although more and less appropriate values can be thought of,
the authors do not believe ‘correct’ initial values exist. These depend on preferences
on the required schedule, and some trial and error might be involved in finding the
most appropriate values.

7.4 Results

In this section, we will show some results of the proposed approach. We will first
introduce our test case, based on the collection site in the Dutch city of Enschede,
and show the application of the method to this collection site. Subsequently, we will
also apply the method to some randomly generated arrival patterns.

All results in this Section are based on the model presented in Section 7.3.1. The
total number of donors at the Registration station, Interview station and Donation
station has been limited to 10 per station. This already results in 207,636 possible
states for the system. The mean service time at the stations is 2 minutes, 6 minutes
and 12 minutes respectively. All results were computed using Matlab 2015b, run on
a laptop with an Intel Core i5-3437U CPU and 8GB of Ram.

7.4.1 Test case: Enschede

We were supplied with the arrival data from the collection site in the Dutch city of
Enschede for 2015. This is a small fixed collection site. We have chosen to show the
application of our approach with collection sessions lasting an entire day, from 8.00
AM until 8.00 PM. This session has the largest variation in arrivals, which makes it
a case where improvements can be achieved, while also being a non-trivial case. The
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Figure 7.2 Example for the binary search algorithm. thresholds are dashed, the number of
planned appointments are dotted and the resulting expected number of donors, as computed
by Section 7.3.2, is shown as the solid line.
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collection site in Enschede had one of these sessions per week, on Mondays. The
average arrivals for all Monday sessions in Enschede in 2015 is shown in Figure 7.3.

The utilization at the collection site is relatively low. With 6 staff members, the
current assignment including plasma donotations at the collection site, the average
utilization throughout the day at the busiest station is 0.56, with a maximum utiliza-
tion of 0.89 in the evening. To also show the application of the approach for larger
centers and higher occupancies, we have created three main test cases. The first is
based on the current collection site in Enschede, with 6 staff members. Additionally,
we have also multiplied the arrivals by a factor of 2.5 (i.e. an increase of 150%)
and 3.5 (i.e. an increase of 250%) for the second and third test case respectively.
The second and third test case will have 9 staff members. These two test cases are
included to replicate the situation at larger collection sites.

Appointments for plasma donors in Enschede, similarly to the rest of the Nether-
lands, can be planned every 10 minutes. Currently, on average 0.67 plasma appoint-
ments arrive during every 10 minute interval. Combined with the knowledge of a
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Figure 7.3 Arrival pattern for Enschede. Average number of arriving whole blood donors,
in number of donors per hour. The average number of arriving donors is shown per 10
minute interval, based on data from 2015.
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current no-show probability of approximately 20%, we have chosen to include one
plasma appointment during every 10 minute interval for all scenarios. For the new
whole blood appointments the same 10 minutes interval will be used. The same
20% no-show probability will also be used. A better estimation than the no-show
probability for plasma donors is not available, as the whole blood appointments are
not introduced yet.

We will start by highlighting one test case. We have chosen to include the test
case with 150% increased arrivals, as the utilization in the base test case is too low to
show clear effects. Figure 7.4 shows the situation without whole blood appointments
and with 1 plasma appointment per 10 minutes. The dashed line shows the arrival
rate in arriving donors per 10 minutes - Note that this is different from Figure 7.3,
which shows the arrivals in arriving donors per hour. The solid line shows the average
total number of donors present, computed by the approach from Section 7.3.2. The
average total number of donors present is the average number of donors present,
summed over all six (sub)stations.

Before looking at the results in more detail, we would first like to make a note
about small variations visible in Figure 7.4. At the beginning of a 10 minute interval,
the average number of donors present goes up, to then slowly decrease untill the start
of the next interval. This zigzag behaviour is caused by the arrival of appoinment
donors - plasma donors and in subsequent figures also whole blood donors, whom we
assumed to always arrive exactly on time. In reality, this behaviour would most likely
be drowned out as donors are early or late by at least a few minutes.

Figure 7.4 also shows the effect we want to counteract with the proposed ap-
proach. During prolonged high arrival rates, in this case during the evening, we can
clearly see that the total number of donors in the collection site grows strongly, and
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Figure 7.4 Expected number of donors at the collection site (solid line) and the arrival
pattern in arrivals per 10 minutes (dotted line) for the collection site in Enschede without
whole blood appointments. 150% extra arrivals test case.
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in sharp contrast to the remainder of the day. By introducing appointments arrivals
should be spread out over the day. As a result, peaks could be decreased or even
removed.

Figure 7.5 shows the effects of introducing appointments. For every Figure, a
different percentage of whole blood arrivals is transferred from walk-in to appoint-
ments, varying from 20% to 100%. We assumed that all arrival rates are reduced by
the applicable percentage, thereby retaining the same arrival pattern for whole blood
donors. The number of appointments that has to be planned has been determined
by first taking the expected reduction in walk-in arrivals. This is then divided by the
no-show percentage, to take into account that not every appointment donor will show
up. The approach then starts searching for the thresholds described in Section 7.3.3
that plan this number of appointments, plus or minus two appointments.

If 20% of arrivals are transferred to appointments, the peak during the evening
is significantly reduced, but still visible. The graphs for the expected number of
present donors with 50% or 80% show very little difference. If the number of arrivals
that is transferred is increased to 100%, the expected number of present donors is
significantly reduced. This can easily be explained by the fact that most queues are
caused by variability in the system, and appointment arrivals remove a lot of the
variability in the arrival process.

To be able to combine results from far more cases we will show 7 main perfor-
mance metrics in the remaining results. The first three performance metrics deal
with the number of donors in the collection site: the expected number of donors
present, the expected number of queued donors and the difference between the low-
est number of present donors and the highest number of present donors throughout
the day. These three performance metrics are shown in Table 7.1. This last per-
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Figure 7.5 Expected number of donors at the collection site (solid line) and the planned
number of appointments (dotted line) for the collection site in Enschede for indicated
percentage of whole blood arrivals with an appointment. 150% extra arrivals test case.
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(c) 80% appointments.

(d) 100% appointments.

formance metric is included to give an indication of fluctuations and possible peaks
present in the system. As the earlier described zigzag behavior will be present in all
of our results, we have created two subsets of measurements: the highs - just after
the arrival of appointments, and the lows - just before the arrival of appointments.
The collection site always starts empty, so the first few measurements will also not
give an accurate representation of the results. We have therefore excluded the first
hour after opening from all results. Summarizing: For every session, we have results
for 11 hours, all containing 6 intervals: a total of 66 measurements per session per
subset. The results in Table 7.1 are shown based on these to subsets, and based on
all measurements in a session.

Additionally, we have tracked a few blocking probabilities. The first of these
probabilities is the probability that an arrival is blocked due to N; present donors
in the first queue, and is shown in Table 7.2. This is tracked to make sure all
appointment scenarios, from 0% to 100% appointment arrivals are compared fairly,
with the same expected number of donors going through the collection site. We
have also tracked the probability that a type of donor is being blocked from service,
i.e. that all staff members are working for higher priority classes at the station in
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Table 7.1 Expected number of present donors, queued donors and the difference between
the highest and lowest number of present donors throughout the day respectively. For all
three performance indicators, the average has been taken of all low measurements (just
before arrival of appointments), all measurements, and all high measurements (just after
the arrival of appointments).
Expected present | Expected queued | Maximum difference
lows all highs |lows all highs [lows all highs

0% |5.47 5.76 6.12 |0.91 1.00 1.09 |[9.03 9.66 9.14

20%|5.78 6.25 6.78 |0.87 1.03 1.16 |4.45 5.12 3.60

50%|6.44 7.18 7.97 |1.04 1.34 158 |2.52 3.26 1.03

80%|6.33 7.32 8.33 [0.92 1.33 1.76 |1.37 3.04 0.84
100% |4.33 5.53 6.73 |0.23 0.63 1.31 |0.62 3.06 0.59

sjuswiuloddyy

question. These probabilities are shown in Table 7.3, and are included to track if all
priority classes receive enough service. For all of these probabilities, for figures will be
shown: the average blocking probability over all arrival scenarios! and time-intervals,
the average of the maximum blocking probabilities in every arrival scenario and the
maximum blocking probability over all time-intervals and arrival scenarios. All of
these 7 performance metrics can be directly computed from the results computed by
Section 7.3.2.

Table 7.2 Probability of blocking an arrival for the arrival pattern of the collection site in
Enschede with 150% increased arrivals. Columns indicate respectively: average probability,
average of maximum probability per arrival scenario, maximum probability over all arrival
scenarios.

Avg Avg Max Max
0% 0.000 0.002 0.002
20% | 0.000 0.000 0.000
50% | 0.000 0.000 0.000
80% | 0.000 0.000 0.000

100% | 0.000 0.000 0.000

sjuswiuloddy

It is important to note that the probability that arrivals to the Registration station
are blocked due to capacity limit Ny is negligible. The probabilities is Table 7.3 do
give an indication of a potential problem. Although the introduction of appointments
is able to decrease the peak in the number of present donors, as is visible in Table 7.1,
the probability that donors without an appointment will have to wait does increase
significantly. Especially if 50% or more of the whole blood arrivals are transferred
to appointments, the probability that none of the whole blood donors without an
appointment is receiving service at the Interview station is high. The other two
probabilities shown in Table 7.3 will most likely not cause issues at the collection
site.

I This section only considers one arrival scenario. However, in Section 7.4.3, multiple arrival
scenarios will be considered. Therefore, the tables shown already allow for the analysis of multiple
arrival scenarios, even though it is not relevant for this section.
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Table 7.3 Probability that all staff members at the indicated station are occupied by
donors with a higher priority class than the one indicated, for the arrival pattern at the
collection site of Enschede, with arrivals increased by 150%. For all three combinations of
station and priority class, the following columns are included: average probability, average
of maximum probability per arrival scenario, maximum probability over all arrival scenarios.
Station 2 Station 2 Station 3

with appointment without appointment | without appointment
Avg Avg Max Max |Avg Avg Max Max |Avg Avg Max Max

0% | 0.005 0.025 0.025|0.005 0.025 0.0250.000 0.000 0.000
20% | 0.007 0.031 0.0310.072 0.556 0.5560.000 0.005 0.005
50% |0.010 0.029 0.029|0.215 0.564 0.564|0.006 0.048 0.048
80% |0.011 0.026 0.026|0.369 0.712 0.7120.032 0.114 0.114
100% | 0.012 0.025 0.025 - - - - - -

sjuswiuloddy

7.4.2 Generating random arrival patterns

Besides the results based on the collection site in Enschede, random arrival patterns
were generated to test the approach. Like the arrival patterns previously discussed
and shown in Figure 7.3, these patterns are 12 hours long, with a different arrival rate
every 10 minutes. The easiest way to generate these new arrival patterns would be
to simply estimate a normal distribution based on the 72 arrival rates of the arrival
pattern of Enschede. New arrival patterns could then be generated by drawing
72 arrival rates from this estimated distribution. However, this would result in a
arrival pattern were subsequent arrival rates are unconnected, and the probability for
prolonged periods with high or low arrival rates is low. If high arrival rates only last
a few intervals, the system can always recover from high arrival rates quickly, and a
problem with large queues never appears. This makes the problem fairly easy.

Therefore, we have decided to generate the arrival patterns based on a random
walk, with a drift towards the average arrival rate. To do this, we have first computed
the average arrival rate ), and the standard deviation of the difference between
subsequent arrival rates o). The service time at the registration station, by definition
the time length of a time-step, is 2 minutes. The arrival rate - changing every 10
minutes - therefore changes every 5 time-steps. If the arrival rate for a time step A,
is known, the subsequent arrival rate is drawn from a normal distribution by:

Mers ~ NWA+ (1 —v) Ay, 03) (7.21)

The average of the normal distribution is a weighted average between the current
arrival rate and the average arrival rate. For v = 0, the arrival pattern is a random
walk without a drift, and for v = 1, the subsequent arrival rates are independent.
A drift has to be included, as a pure random walk could result in very high arrival
rates, resulting in extreme queue lengths. These cases, with occupancies much higher
than 1, are not interesting, as no substantial improvement can be achieved without
increasing capacity. After some trials with different values of v, v = 0.2 has been
used for the results in Section 7.4.3. If a value lower than 0 is drawn, A;, = 0 is used
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instead, as negative arrival rates are not possible.

7.4.3 Results from random arrival patterns

For the results in this section, 100 arrival scenarios are generated using the method
described in Section 7.4.2. The arrival scenarios are then multiplied by 2.5 and 3.5
to create a total of 300 arrival scenarios, similar to the three test cases based on the
collection site in Enschede. Appointments will be planned based on all of the arrival
scenarios. These will be combined with the arrival scenario of Enschede for a total
of 101 arrival scenarios per arrival rate level.

Table 7.4 Summary of the generated arrival patterns, compared to the base test case of
Enschede. St. dev. = standard deviation.

Base  150% extra 250% extra

arrivals arrivals arrivals
Staff members Registration 1 1 1
Staff members Interview 2 3 3
Staff members Donation 3 5 5
Average utilization (Enschede) 0.558 0.630 0.804
St. dev. utilization (Enschede) 0.097 0.162 0.234
Maximum utilization (Enschede) 0.887 1.178 1.643
Average utilization (all) 0.560 0.634 0.808
Average st. dev. utilization (all) 0.115 0.191 0.272
Maximum st. dev. utilization (all)| 0.163 0.273 0.397
Average maximum utilization (all) | 0.834 1.093 1.493
Maximum utilization (all) 1.031 1.463 2.048

Table 7.4 shows some summarizing numbers of the arrival scenarios that were
generated. All of the figures are based on the utilization. However, all parameters
influencing the utilization except for the arrival rate are constant within an arrival
rate level, so these values also give a direct indication of the generated arrival rates.
Note that all values are based on the scenario without appointments. The standard
deviations in Table 7.4 show that the generated arrival patterns have a bit more
fluctuation than the Enschede case, but the average utilization of all scenarios is
almost identical to the Enschede case.

7.4.3.1 Base level arrivals

The average blocking probabilities of an arrival shown in Table 7.5 are negligible, so
all appointment scenarios had to deal with approximately the same expected number
of arriving donors, the only variation coming from the small range allowed for the
number of appointments that had to be scheduled.

As can be expected with a very low utilization, the average expected number of
donors present and average expected number of donors in queue shown in Table 7.6
are very low. Depending on the measurement, the numbers of donors is the highest
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Table 7.5 Probability of blocking an arrival, as an average over the 101 arrival scenarios
without increased arrivals (100 random arrival patterns + Enschede). Columns indicate
respectively: average probability, average of maximum probability per arrival scenario, max-
imum probability over all arrival scenarios.

Avg  Avg Max Max
Z  0%]0.000 0.000 0.000
3 20% |0.000 0.000 0.000
% 50% | 0.000 0.000 0.000
2 80% |0.000 0.000 0.000
@ 100% |0.000 0.000 0.000

Table 7.6 Expected number of present donors, queued donors and the difference between
the highest and lowest number of present donors throughout the day respectively, all as
an average over the 101 arrival scenarios, without increased arrivals. For all three perfor-
mance indicators, the average has been taken of all low measurements (just before arrival
of appointments), all measurements, and all high measurements (just after the arrival of
appointments).

Expected present

Expected queued

Maximum difference

lows all highs [lows all highs [lows all highs
Z 0%[2.31 261 3.02 |0.11 0.14 0.17 |3.15 3.82 3.06
8 20%(2.39 2.76 3.23 |0.10 0.14 0.18 |1.72 2.41 1.31
§* 50% |2.55 3.03 3.59 |0.11 0.18 0.22 |1.20 2.04 0.84
2 80%|2.43 3.02 3.68 |0.08 0.15 0.18 |0.86 2.07 0.80
@ 100%|1.91 2,59 3.31 |0.02 0.07 0.11 |0.57 1.99 0.63

for the appointment scenario with 50% or 80% appointments, but the differences are
miniscule. The maximum difference, also shown in Table 7.6, shows a clear reduction
going from 0% to 100% appointments, but all average differences are small enough
not to be problematic.

The blocking probability of a donor with appointment at the Interview station, as
shown in Table 7.7 is very small. It does show an increasing trend in the appointment

Table 7.7 Probability that all staff members at the indicated station are occupied by
donors with a higher priority class than the one indicated, as an average over the 101 arrival
scenarios without increased arrivals. For all three combinations of station and priority class,
the following columns are included: average probability, average of maximum probability
per arrival scenario, maximum probability over all arrival scenarios.

Station 2 Station 2

with appointment without appointment
Avg Avg Max Max |Avg Avg Max Max

Station 3
without appointment
Avg  Avg Max Max

Z  0%0.062 0.147 0.1490.062 0.147 0.1490.000 0.000 0.000
8 20%(0.068 0.179 0.1840.157 0.692 0.841{0.002 0.027 0.083
gr 50% | 0.079 0.184 0.192]0.284 0.761 0.841|0.011 0.055 0.142
2 80%|0.090 0.188 0.201|0.391 0.774 0.887|0.038 0.080 0.208
@ 100% | 0.095 0.192 0.207 - - - - - -
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scenarios that can partly be explained by increasing number of present donors, but
can not be completely explained by intuition. The trend is not clearly visible with
150% and 250% extra arrivals, and might therefore be a coincidence. The blocking
probability of a donor without an appointment in Table 7.7 is, even for the low
utilization in this arrival rate level, rising to problematic levels, especially for the 50%
and 80% appointment scenarios. The blocking probability at the Donation station
is also increasing, but remains acceptable. The increasing trend of both can simply
be explained by the fact that the number of donors with appointment, whom have
priority, is increasing.

7.4.3.2 150% extra arrivals

The arrival blocking probabilities in Table 7.8 are decreasing with the introduction
of appointments. This makes sense as the method distributes arrivals over the day,
and thereby decreases peaks that can cause arrivals to be blocked. However, the
probabilities are still negligible and can safely be ignored with the analysis of the
remaining results.

Table 7.8 Probability of blocking an arrival, as an average over the 101 arrival scenarios
with arrivals increased by 150%. Columns indicate respectively: average probability, average
of maximum probability per arrival scenario, maximum probability over all arrival scenarios.

Avg  Avg Max Max
0% | 0.000 0.002 0.013
20% | 0.000 0.000 0.003
50% | 0.000 0.000 0.001
80% | 0.000 0.000 0.001

100% | 0.000 0.000 0.000

sjuswiuloddy

Table 7.9 Expected number of present donors, queued donors and the difference between
the highest and lowest number of present donors throughout the day respectively, all as
an average over the 101 arrival scenarios, with arrivals increased by 150%. For all three
performance indicators, the average has been taken of all low measurements (just before
arrival of appointments), all measurements, and all high measurements (just after the arrival
of appointments).
Expected present | Expected queued | Maximum difference
lows all highs |lows all highs |lows all highs

0%|5.61 591 6.30 [1.09 1.19 1.30 |9.11 9.68 8.87

20%|5.76 6.24 6.79 [0.91 1.07 1.22 |4.11 4.74 2.99

50%|6.36 7.11 7.90 |1.07 1.36 1.63 |2.13 3.13 1.12

80% |6.47 7.48 851 |1.05 1.48 1.95 |1.36 3.18 0.91
100% | 4.40 5.60 6.81 |0.29 0.70 1.38 |0.58 3.00 0.58

sjuswiuloddy

The expected number of present donors in Table 7.9 is again highest for the
50% and 80% appointment scenarios, but differences are small. The number of
queued donors increases from 0% to 80% appointments. It is however, intresting
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Table 7.10 Probability that all staff members at the indicated station are occupied by
donors with a higher priority class than the one indicated, as an average over the 101
arrival scenarios with arrivals increased by 150%. For all three combinations of station and
priority class, the following columns are included: average probability, average of maximum
probability per arrival scenario, maximum probability over all arrival scenarios.
Station 2 Station 2 Station 3

with appointment without appointment | without appointment
Avg Avg Max Max |Avg Avg Max Max |Avg Avg Max Max

0% | 0.006 0.022 0.0400.006 0.022 0.0400.000 0.000 0.000
20% | 0.008 0.026 0.0350.080 0.544 0.5890.001 0.010 0.053
50% |0.010 0.029 0.034|0.215 0.581 0.710]0.007 0.044 0.154
80% |0.011 0.027 0.0350.377 0.707 0.830(0.039 0.112 0.315
100% | 0.012 0.025 0.028 - - - - - -

sjuswiuloddy

to note that both the expected number of present and the expected number of
queued donors is lowest for a scenario with 100% appointments. The main goal of
introducing the appointments, decreasing peaks in the number of present donors, is
clearly succesfull if we look at the maximum difference in Table 7.9. The relatively
high difference if all measurements are considered is caused by simultanious arrival
of multiple appointments, causing the number of present donors to immediately go
up.

Although a high percentage of appointments seems a good idea if only Table 7.9
is considered, Table 7.10 might very well weaken this position. The probability that a
donor without an appointment is blocked at the Interview station is again high, with
an average highest blocking probability of 0.707, and a scenario where the probability
even increases to 0.830. The other two blocking probabilities shown in Table 7.10
are low enough not to cause a problem, and show not further interesting behavior.

7.4.3.3 250% extra arrivals

With 250% aditional arrivals, the blocking probabilities are still negligible, but do
start to be visible. Table 7.11 does not show a clear pattern, and seems to be
independent of the appointment scenario.

Table 7.11 Probability of blocking an arrival, as an average over the 101 arrival scenarios
with arrivals increased by 250%. Columns indicate respectively: average probability, average
of maximum probability per arrival scenario, maximum probability over all arrival scenarios.
Avg  Avg Max Max
0% | 0.002 0.014 0.036
20% | 0.001 0.005 0.023
50% | 0.000 0.001 0.009
80% | 0.001 0.004 0.035
100% | 0.000 0.002 0.019

sjuswiuloddy

Although the values for the average expected number of present donors, the
average expected number of queued donors and the maximum differences are higher,
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Table 7.12 Expected number of present donors, queued donors and the difference between
the highest and lowest number of present donors throughout the day respectively, all as
an average over the 101 arrival scenarios, with arrivals increased by 250%. For all three
performance indicators, the average has been taken of all low measurements (just before
arrival of appointments), all measurements, and all high measurements (just after the arrival
of appointments).
Expected present | Expected queued | Maximum difference
lows all highs [lows all highs | lows all highs

0% | 9.13 9.43 9.78 |3.22 3.37 3.54 |14.14 1456 13.72
20%| 9.07 9.61 10.19|2.73 3.01 3.30 6.97 7.53 5.25
50% | 9.68 10.59 11.52|2.92 3.45 4.00 296 397 1.37
80%|10.31 11.59 12.86|3.34 4.13 5.01 1.71 393 1.10
100%| 7.03 8.57 10.10|1.40 2.22 3.38 0.82 3.88 0.82

sjuswiuloddy

Table 7.13 Probability that all staff members at the indicated station are occupied by
donors with a higher priority class than the one indicated, as an average over the 101
arrival scenarios with arrivals increased by 250%. For all three combinations of station and
priority class, the following columns are included: average probability, average of maximum
probability per arrival scenario, maximum probability over all arrival scenarios.
Station 2 Station 2 Station 3

with appointment without appointment | without appointment
Avg Avg Max Max |Avg Avg Max Max |Avg Avg Max Max

0% | 0.009 0.037 0.0810.009 0.037 0.0810.000 0.000 0.000
20%0.011 0.030 0.0590.126 0.590 0.808|0.003 0.040 0.196
50%0.012 0.027 0.037(0.335 0.678 0.874|0.028 0.114 0.288
80% | 0.012 0.023 0.032|0.576 0.785 0.948|0.130 0.253 0.517
100% | 0.013 0.022 0.028 - - - - - -

sjuswiuloddy

the same general trends can be seen in Table 7.12 that were visible in Table 7.9 for
150% extra arrivals. Increasing the percentage of appointments from 0% to 80% will
increase the number of present and to a lesser extent queued donors, but the drastic
decrease of the maximum difference seems to be the more important result.

The blocking probabilities in Table 7.13 also show similar trends to the 150% extra
arrivals case. The blocking probability for a donor without an appointment at the
Interview station is now even higher, as can be expected with the higher utilization.
The blocking probability for the same donor without an appointment now also starts
to be noticable at the Donation station.

7.5 Discussion

The proposed approach to plan appointments for whole blood donors at Sanquin
blood collection sites is able to accomplish its goal. Even with just a small fraction of
the arrivals having an appointment, the highest queues during the day can be reduced
substantially. If 50% or more of the whole blood arrivals have an appointment, the
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queues become almost equally spread and constant during the day. The average
number of donors at the collection site does increase slightly, but this will most likely
not cause any problems.

The probability that the donors without an appointment do not receive service
will cause problems. Over all scenarios, the average maximum probability is almost
0.8 in the scenario with the highest utilization. On average, over half the time no
donor without an appointment is receiving service at the Interview station if 80% of
whole blood arrivals have an appointment, the percentage that Sanquin strives for.

The priority rules as currently proposed by Sanquin, might very well introduce
problems if they are implemented in this way. The priority rules were intended to
tempt donors to make an appointment. This will certainly work for a portion of the
donors, but the donors without an appointment will get such a disadvantage that
they might not be willing to remain blood donors. As losing a substantial part of
the donors might be disastrous for Sanquin, careful consideration is required before
implementing these priority rules.

On a more technical note, the queueing model in Section 7.3.1 seems to work quite
well. Even for over 200,000 states, the distribution over all these states, for every
2 minutes during the collection session, can still be computed in approximately 30
seconds. Although some of the exponential assumptions and the preemptive priorities
might not give a completely accurate representation of reality, similar models have
performed well in Chapters 3 and 6.

Although using a binary search approach for the scheduling of appointments
might seem fairly simple, it does perform very well. However, no guarantees for
optimality can be made. The approach can easily be extended by some local search
that shifts an appointment slot to another time. We have chosen not to include this
for two reasons. First of all, the schedules resulting directly from the binary search
initial schedule already accomplish the goal of this research. Secondarily, although
30 seconds per iteration is no problem for the binary search approach, computing the
queueing distribution for hundreds or thousands of alternative schedules would take
too long for practical purposes.

Summarizing, the proposed approach to schedule appointments appears to be
very effective at reducing peak loads on the system. However, the priority rules
suggested by Sanquin require serious reconsideration. These might cause donors
without an appointment to experience excessive waiting times. A possible solution
would be to create one priority class for all whole blood donors, without a distinction
for donors with an appointment. Although this will have a significant influence on
the blocking probabilities, it is unlikely that the results with respect to total number
of donors present and queue lengths will change.
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CHAPTER 8

Blood type specific issuing policies to
improve inventory management

8.1 Introduction

Hospitals in the Netherlands use approximately 420,000 red blood cell (RBC) units
every year [163]. These units are donated by voluntary non-remunerated donors
at collection sites of the Dutch blood supplier, Sanquin, throughout the country.
After collection, the donated blood units are processed, typed for more than fifteen
different antigens, tested for several infectious diseases and finally stored in one of
the distribution centers until they are requested by hospitals. Although describing the
process as such makes it sound trivial, several complications arise, making inventory
management of RBC units an important and interesting topic for research.

First of all, RBC units are used during major surgeries or as a treatment for
leukemia, anemia, and blood disorders. Not being able to satisfy requests from
hospitals comes at a very high cost, since this may lead to delays and therefore poses
transfusion recipients at risk. Hence, an adequate and timely availability of RBC
units is essential.

Second, RBCs are perishable products. After 35 days of storage, the unit has to
be discarded. In the inventory management for perishable products, always a balance
has to be found between the probability of outdating and the probability of shortage,
as decreasing one usually increases the other. RBCs are produced from donations by
voluntary, non-remunerated donors. Donors are substantially motivated by the fact
that their blood donation is necessary and saves lives. Increasing outdating would
affect the motivation by donors and, additionally, is ethically undesirable. So, for
RBCs and other blood products, both outdating and shortages should be minimized
at the least, and preferably totally prevented.

Minimizing outdating and shortages simultaneously is a challenge by itself, but
different blood-types pose another challenge. The ABO blood-types are relatively
known, but many more blood-types exist. A request for a unit of RBCs is always
accompanied by a requested blood type. This consists of the antigens for which the
bag of blood should be typed negative. Such a request can be fulfilled by any unit
that is negative for at least these antigens. If a unit is not tested for certain antigens,
it has to be regarded as positive for these antigens. Although compatible issuing can

163



Chapter 8. Blood type specific issuing policies for inventory management

be done, identical issuing is preferred, as compatible issuing can cause a shortages
of rare blood types. If the recipient is positive for some antigen, it does not matter
if the RBC unit is positive or negative for this antigen. However, the reverse is not
true. If the recipient is negative, a positive unit can not be used for this recipient.
Besides minimizing outdating and shortages, we will also take the rarity of an issued
unit of RBCs into account, and try to increase the percentage of exact matches.
To be clear, in this paper we only focus on the issuing of RBC units stored in the
general RBC inventory. For extremely rare blood types there exists a separate frozen
inventory.

Finally, inventory management of blood products has to deal with stochasticicy.
Most inventory management systems deal with stochastic demand. However, the
supply side of blood inventory also contains stochasticity. As donors are donating
voluntarily and are non-remunerated, the probability of a no-show for a donation is
substantial. Additionally, as Sanquin does not use appointments for blood donors,
the lead-time between inviting a donor and the donor showing up is highly uncertain,
ranging from a week up to a month.

These four complications make inventory management of RBCs non-standard an
non-trivial. In this paper, we will present an integrated method for the complete
inventory management of RBCs at Sanquin. The method shows the number of
donors that should be invited to control the supply side of the inventory. Next, it
uses a min-cost max-flow algorithm to determine which units should be issued to
which request. Finally, by simulation, we investigate the successive application of
the matching (ILP) solutions to combine supply and issuing in one approach. In
this way, a much better performance with respect to shortage and outdating can be
achieved.

Medical literature has not reached a consensus on the benefit of using blood
blood that has been stored for a shorter time [46, 82, 137, 178]. From an inventory
management perspective, using a FIFO (first in, first out) policy is preferable, so this
will be the base for our model. We will, however, report the average storage time
before a RBC unit was issued to a hospital.

Let us briefly sketch the outline of this paper. Section 8.2 provides an overview
on the existing relevant literature on the inventory management of blood products in
which we focus on issuing policies. Next, in Section 8.3 we introduce a mathematical
model for the daily allocation of the RBC inventory. In this model we assume that
the supply and demand of RBCs is deterministic. To incorporate the stochasticity
in the demand and supply of RBCs we develop in section 8.4 a simulation model.
We will then discuss the data that was used to run the model and the simulation
experiments in Section 8.5, followed by Section 8.6, which discusses the results from
the simulation. The paper will be concluded with a discussion of the method and
results, and will indicate fertile directions for further research.
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8.2 Literature review

The inventory management of perishable products is an important topic in Opera-
tions Research. [144], [145] gave a review of the available literature with respect to
this topic. A part of this literature consists of the inventory management of blood
products. The management of these specific products also garners much attention
itself. [25] and [149] are two recent review papers. Belién and Forcé [25] classified
the papers according to the blood component under study: platelets, RBCs, plasma,
whole blood, frozen blood, other/unclear. Whereas we are interested in the inventory
management of perishable products we focus on the literature about platelets and
RBCs. The most important difference with respect to the inventory management of
these two blood components is their maximum shelf life. Platelets are considered to
be expired after 7 days and RBCs after 35 days.

In Section 8.2.1 we will review the recent literature on the inventory management
of platelets, and continue afterwards with the literature on the inventory management
of RBC in Section 8.2.2. Finally, in Section 8.2.3 we will discuss the extension of our
research on the existing literature.

8.2.1 Platelets

Whereas platelets expire after 7 days most papers about platelet inventory manage-
ment consider the percentage of outdated units as main performance measure and
apply a FIFO issuing policy [169], [143], [83]. Though, the inventory size should be
sufficiently large to prevented or maintain shortages. One way to maintain shortages
is by using a predetermined maximum shortage level [72]. Another way to maintain
both outdating and shortages is by including both performance measures into the
objective function [1], [51].

A FIFO issuing policy seemed to be the optimal issuing policy with respect to the
inventory management of platelets. However, for some patient groups fresh platelets
increase survival rates [104], [68] and therefore some papers use different issuing
policies. One way to this is to make a difference between 'young' and 'old’/’any’
platelets [50], [100]. Moreover, whereas Gunpinar and Centeno [100] looked at the
inventory management of hospitals they incorporated a cross-match-to-transfusion
ratio and the cross-match release period in their models. Civelek et al. [51] shortened
the maximum shelf life of the platelets to three days and classified them as 'young’,
'mature’, and 'old. Moreover, they included protection levels and substitution costs
to limit the amount of 'young' platelets issued to satisfy requests where the age of
the platelets did not matter.

With respect to replenishment policies Duan and Liao [72] considered an old
inventory ratio policy to avoid shortages. This policy states that if the proportion
of old units in stock exceeded a certain threshold, making it likely that some units
get outdated, then some extra donors should be invited. A similarly approach was
proposed by Haijema et al. [104], [105]. They investigated 1D and 2D order-up-to-
rules, where in the 2D order-up-to-rule donors where invited based on both, the total
amount of platelet units in stock and the amount of young platelet units in stock.
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Recently, [156] analyzed several ordering policies for platelets based on hospital size
and demand variation.

8.2.2 Red blood cells

Also for the inventory management of RBCs the percentage outdating and shortage
remain important performance measures. Though, some papers suggest that the
maximum shelf life of 35 days may be reduced without excessive increases of outdating
or shortage rates Blake et al. [30], [73].

[69] developed a two stage inventory control model, where in the first stage
decisions about the review period and order-up-to-levels are made and in the second
stage decision about the daily operation of the system are considered. Moreover, they
investigate the difference between an exact issuing policy and a compatible issuing
policy with respect to ABO, RhD compatibility.

Atkinson et al. [19] apply a single threshold policy in which blood younger than
the threshold is issued according to an FIFO-policy and blood older than the threshold
is issued according to a LIFO policy. For a threshold of 14 days they show that the
mean age of transfused blood decreases by 10 to 20 days.

8.2.3 Literature extension

So far, the existing literature on the inventory management of blood products only
considers the eight common ABO-RhD blood groups. However, since the beginning
of the 21th century, hospitals are extending their matching strategies for some patient
categories [44]. As a result, transfusion recipients belonging to one of these patient
categories are not only matched for the standard ABO-RhD blood groups, but also for
some additional blood groups. The extensive matching strategies therefore lead to a
growing demand for more specific blood types. To support real world decision making
better, it is necessary to include these extended blood types into the mathematical
models.

Clearly, by including more antigen both the diversity among the blood units in
inventory and the diversity among the blood units requested increases. Hence, the
likelihood of finding an exact match between a unit requested and a unit issued
decreases. Therefore, we extend the existing performing measures such as outdating,
shortage, and issuing age by a fourth performance measure: the quality of a match.

In the primary objective of the (mathematical) model that will be presented in this
paper we aim to prioritize between the quality of a match and the age of an issued unit
(FIFO). Whereas maximizing the quality of a match will correspond to saving rare
units to prevent shortages and applying a FIFO policy corresponds to the prevention
of outdating, these performance measures are not included in the objective of the
mathematic model. However, the simulation that evaluates the quality of a match
and age of issued units over time, also keeps track of these performance measures.
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8.3 Daily inventory allocation problem

First, in order to achieve an optimal issuing policy, which prioritizes between the
rarity and age of the RBC units in stock, we show that the daily inventory allocation
problem can be modeled as a transportation problem. Second, to investigate the
impact of these daily decisions in the long run (i.e., the composition of the inventory,
the average issuing age of particular blood types, the number of outdated units,
and the number of units short) a simulation study is conducted (see Section 8.4).
This simulation study does not only evaluate the proposed issuing policy, but also
incorporates the stochasticity in the supply and demand of red blood cells.

The inventory allocation problem is in essence equivalent to a transportation
problem. Therefore, we will first mathematically describe transportation problem
in Section 8.3.1 and demonstrate how it can be solved by reformulating it as a
circulation flow problem (CFP). Next, in Section 8.3.2, we show how the vertex and
edge set of the transportation problem should be modified to make the translation to
blood inventory management. Finally, in Section 8.3.3, we will incorporate the age
of blood units by extending the vertex set.

8.3.1 Circulation flow problem

Let G = (V, F) be a directed bipartite graph with vertex set V = VUV, (ViNV, = 0)
and edge set E, such that e = {4, j} € Eis an edge from i € V; to j € V, (see Figure
8.1). Interpret the set V7 as a set of sources and the set V5 as a set of destinations.
Each vertex ¢ € V1 has a non-positive demand d; < 0, which can be interpreted as
the supply of source 7. Similarly, each vertex j € V5 has a non-negative demand
d; > 0, which is the demand of destination j. An edge e = {i, j} between vertices i
and j implies that source ¢ can be used to satisfy the demand of destination j. The
maximum flow that can be transported over this edge is equal to the minimum of the
amount supplied by ¢ and the amount demanded by j. Therefore, we say that the
capacity of edge e is equal to u. = min{—d;, d;}. Define the set of decision variables,
xz. € Ng (e = {i,4}), as the amount distributed from source i to destination j. The
transportation cost for distributing one unit over edge e is given by the parameter
ce. So, the total distribution cost are equal to ZeEE Cele.

To find the maximum flow that can be transported over G we convert this graph to
a flow graph Gs; = (Vi, Est), which can be used to solve a circulation flow problem.
First, the vertex set of (G is extended with a source node s and a sink node ¢. Second,
two new edge sets are introduced: E and E;. Es = {{s,i} : i € V1 } consists of the
edges from s to all vertices in V1. The edges e € E, have capacity u, = —d; and
cost c. = 0. E; = {{j,t} : j € Va} consists of the edges from all vertices in V5 to
t. The edges e € E; have capacity u. = d; and cost ¢, = 0. Third, an edge {t,s}
from the sink to the source is constructed. This edge has infinite capacity, but for
computational convenience the capacity of this edge can be restricted by the total

flow leaving s: u; sy = — > ;cy, di- The cost of edge {t, s} should obtain a value,
such that every cycle s—i—j—t—s (i € V1, j € V3) has negative cost. This implies
that the cost of edge {t, s} could be equal to c{; ;3 = —max.ecp{cc}—1. Hence, the
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Figure 8.1 Flow graph G = (Vit, Est) with vertex set Vi, = s U Vi U Vo Ut and edge
set Ess = Es UE U E, U {t,s}. The edges e € Es; have capacity u. and costs ce.

Gst

G

Es Vi E Vs Ey

flow graph G5y = (Vi, Es;), depicted in Figure 8.1, has vertex set Vy; = {s}UV U{¢}
and edge set Fy; = E; U EU E;y U {t, s}.

To find a solution to the transportation problem the following LP-formulation of
the circulation flow problem could be solved:

Circulation flow problem

min Z CeTe (8.1)

e€Fs¢

s.t. >ome— > we=0  VieVy (8.2)
e={i,j}: jEVa e={j,i}: JEVar
0<z. <ue Ve € By (8.3)

The objective function (8.1) minimizes the total distribution costs. Constraints
(8.2) are called the flow balance equations and state that the amount of flow that
enters a vertex i € Vy; should be equal to the amount of flow that leaves this vertex.
Finally, constraints (8.3) restrict the total flow that can be send over an edge e € E;.

Finding a maximum flow with minimal cost for the transportation problem is
equivalent to solving the corresponding circulation flow problem. The maximum flow
is ensured, because of the negative cost cycles in the circulation flow problem. Let z
be the optimal solution of the circulation problem with objective value f(z). Then
x* ={x} =Z. : e € E} is the optimal solution of the transportation problem with
objective value f(z*) = > cpcexy.
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8.3.2 Blood inventory model

Let A be the set of antigens taken into consideration (|A| = n). Let B be the
set of different blood types (|B] = m), where a blood type is defined as a unique
combination of antigens that are either present or absent on the surface of an RBC.
An individual with blood type i € B is called a-positive if antigens a € A are present
on the individuals RBCs and a-negative if the antigens are absent. For computational
convenience we will represent a blood type i € B by a binary vector b(4), where b is
a bijective function that maps B to {0,1}™:

by = {1 if an individual is a-positive Va e A (8.4)

0 if an individual is a-negative ’

For the sake of simplicity we use in the remainder of the paper that B = {0,1}",
implying that i € B is equal to b(i) € {0,1}".

An important aspect of the issuance of blood units is the concept of compatibility.
This concept states which blood types ¢ € B can be issued to fulfill a request for
blood type j. If a hospital requests a blood unit they indicate for which antigens
a € A’ C A the issued unit should be negative, i.e. i, = 0 for all a € A’. However,
they do not indicate whether the other antigens should be positive or negative. Hence,
iq could be either 0 or 1 for all a € A\ A’. Suppose we define j as follows: j, = 0
for all a € A" and j, = 1 for all a € A\ A’. Then, all blood types i that could
be issued to fulfill a request for blood type j, satisfy the relation ¢ < j. We say
that blood type i is a compatible substitution for j if ¢ < j. Therefore, we define
the compatibility matrix C' € {0,1}™™, which indicates whether blood type i is a
compatible substitution for j, in the following way:

1 ifi<j ..
Cii = - s Vi,j€B 8.5
! {0 otherwise “J (8.5)

Let V7 and V5, previously interpreted as the sets of sources and destinations,
consist of all possible combinations of blood types, i.e. V4 = {i : i € B} and
Vo={j : j € B}. The verticesi € V; and j € V; have demand d; <0 and d; > 0
respectively. d; represents the inventory level of blood type i in a blood distribution
center and d; shows the total demand for blood type j at the time the decision is
taken. We say that there exists an edge e = {i,j} € E between i € V; and j € V;
if blood type i is a compatible substitution for blood type 7, i.e. Cj; = 1.

In practice, it turns out that the frequency at which different blood types occur
in the inventory is not equal. This frequency depends on two factors, namely the
distribution of antigens in the donor population and the fraction of donors typed for
particular antigens. Suppose that coverage rate of a blood type i € BB is equal to p;.
Define the cumulative coverage rate as p; = ZJ—EB Cijp;. Then the costs for using
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blood type i to fulfill a request for blood type j equals:

ce=1-="  e={ijl€EicV,je . (8.6)
J

In this paragraph the daily allocation of a blood inventory is described as a
transportation problem. The best allocation, with respect to the rarity of particular
blood types, could be found by solving a circulation problem as described in Section
8.3.1. Though, it may happen that the inventory levels are not sufficient to meet all
requests, leading to shortages for particular blood types. A shortage for blood type
j is defined as the difference between the amount demand for this particular blood
type and the amount issued:

si=dj— >z, VjeB. (8.7)

e€E: e={i,j}

8.3.3 Blood inventory model with residual shelf lives

A special feature of issuing policies for perishable product is that often old items have
to be issued first to maintain outdating, a so-called first-in-first-out (FIFO). To add
this feature to blood inventory model some adaptions have to be made. However,
first a clear overview of the different sets, indices, parameters, and variables is given.

Sets
A — Set of antigens, |A| =n

B — Set of blood types, |B| =2" =m
R — Set of residual shelf lives, |R| = Rmax

Indices
a — Antigen,a € A

i" — Blood type, i € B with residual shelf life » € R (in inventory)
j — Blood type, j € B (demand)
r — Residual shelf life of an item on stock, r € R

Parameters
d; = Number of units with a residual shelf life of » € R days and blood type

i € B in stock
d; — Number of units with blood type j € B demanded

I” — Residual shelf life of an an item in stock
s; — Number of units with blood type j € B short
0; — Number of units with blood type i € B outdated

C;; — Binary compatibility matrix with C;; = 1 if blood type ¢ € B can be
substituted to satisfy demand for blood type j € B
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Variables
zj; — Quantity of blood type i € B with residual shelf life r € R that is used to

satisfy the demand of blood type j € B

Adaptations made to the flow graph are:

— the vertex set V; is extended by adding to every blood type a residual shelf life
rVi={i" : ieVi,r € R}.

— the demand of each vertex i" € V[ is equal to dj <0, such that ) . dj = d;.

— theedge set E7 = {{s,i"} : " € V]"} consists of the edges from s to all vertices
in V", where an edge e € E? has capacity u. = —d] and cost ¢, = 0.

— the edge set E" = {{i",j} : i" € V", j € Va}, which implies that blood type
i is a compatible substitution for blood type j. An edge e € E" has capacity
ue =min{—d},d;} and cost c. =1 — p;/p;.

In this way the flow graph Gy, is transformed into the flow graph G%, = (V};, E7,)
with vertex set V7, = {s} UV UVo U {t} and edge set E7, = ET UE" U E; U{t, s}.

To add the FIFQ issuing policies to LP-formulation of the circulation problem an
extra term is added to the objective function:

By Iz, (8.8)

ecE"

Second, constraints (8.3) of the LP formulation have to be adapted. This leading to
the following LP-formulation of the circulation flow model, which incorporates the
FIFO policy:

Circulation flow problem FIFO

min > (e + Bl (8.9)
ecE"

st. ome— > =0 VieVy, (8.10)
e={ij}: JEV, e={jit: JEVY,
0 <z <ue Ve € E7, (8.11)

8.4 Simulation

In the previous section we have seen that the decisions about which units to issue to
satisfy requests is based on three aspects. The first aspect is a hard constraint and
states that a blood type issued should be compatible with a blood type requested.
The second aspect is the age of the issued unit. To reduce wastage, old units should
be issued first. Finally, the third aspect states that the rarity of the blood type issued
should be relatively close to the rarity of the blood type requested. However, with
respect to the second and third aspect some trade-off should be made. Dependent
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on the value of the parameter 5 more weight is put on the second or third aspect.
To investigate the impact of this weight as well as the impact of other parameters,
such as the average age of the inventory, we apply a simulation study.

The goal of the simulation study is to mimic the inventory management of a
blood bank. The daily decisions about which units to issue are made by the linear
programming model discussed in the previous section. It could be that there are
multiple decision moment (DMom) in a day, which means that the inventory is
allocated multiple times per day. For each day the demand is simulated based on
historical data (see Section 8.4.1). The supply of RBC units is a bit more complicated,
so we will first look at and discuss a small example in which only one blood type is
considered. Thereafter, we extend the example to multiple blood types.

8.4.1 Simulating the supply of blood units

To explain the supply side of the simulation model we will first look at a small
example. Suppose that we have a single blood type, which has an expiration date of
three days. The daily demand (D) for this blood type follows discrete distribution
with expectation E[D] = 2. The supply side of the simulation model can be controlled
by inviting donors to donate their blood. Whether a donor does or does not responds
on an invitation is modeled by a Bernoulli variable Y, which has expectation E[Y] =
p. If a donor responds to an invitation (Y = 1) then there is a fixed lead time
(Lys) of one day and a variable lead time (L,) of one or two days, both occurring
with probability 0.5. Finally, to avoid stockouts a safety stock of four units is kept
(5SS =4).

In this example we do not start with an empty system. At the end of day ¢t =0
the inventory on hand has the following composition I§ = (3,1,0), which means
that 3 units have age 1, 1 unit has age 2, and 0 units have age 3. Furthermore,
the expected number of donors that will show up after respectively 1, 2, and 3 days
equals E[Z}] = 1.5, E[Z2] = 1, and E[Z3] = 0.5.

At time t = 1 it turns out that Z} = 2, which implies that the inventory at the
beginning of the day is equal to I{ = (2,3,1). During the day the blood supplier
receives two requests (D; = 2). Since this blood supplier issues the blood units
according to a FIFO-policy the composition of the inventory at the end of the day
becomes I¢ = (2,2,0). At the end of the day the blood supplier has to decide about
the number of donors that should be invited to donate A; (the so-called reorder
quantity). This number depends on the safety stock (SS), the expected demand
during lead time (E[Dy] = E[D] - E[L]), the inventory on-hand (I{), the inventory
in transit (E[Z3] + E[Z3]), and the expected attendance rate (p):

4 {SSﬂLE[DL]—Zf—lUf(i))—(E[Z(?H]E[ZS’]W
p
~ |44+2-15-4—(1405)
B 0.5 W

= 3’

172



8.4. Simulation

where |.] means that the number between these brackets is rounded to the nearest
integer. Finally, the expected number of donors that will show up after 1, 2, or 3 days
have to be updated: E[Z}] = E[Z3] = 1, E[Z?] = E[Z3]+P[L = 2]-E[p]-A; = 1.25,
and E[Z}] = P[L = 3] - E[p] - A1 = 0.75. Note that there was no wastage or
shortage this day, because W7, = max {0,1;(3) — D1} = max{0,1 -2} = 0 and
Si = max {o, Dy -3, If(i)} = max {0,2 — 6} = 0.

In Table 8.1 for a time period of five days a possible realization of the variables
on the demand and supply side of the simulation model is given (In the table the
realization of the variable is shown in jtalics). Moreover, we computed the number
of donors that should to be invited every period.

Table 8.1 Different values of the parameters for the small example to explain how the
supply side of the simulation model works. Realizations of uncertain variables are shown in
italics

Time (t) 0 1 2 3 4 5
1) - 2 1 0 3 4
Inventory begin (I?) 2/- 3 2 1 0 1
3] - 1 2 0 0 O
Demand (D;) - 2 4 2 2 2
113 2 1 0 1 3
Inventory end (I7) 21 2 0 0 0 O
310 0 0 0 0 O
Invited (A;) - 3 10 6 4 2
1115 1 125325 4 25
Expected Supply (E[Z;]) 2| 1 1.25 325 4 25 15
310507 25 15 1 05
112 1 0 3 4 2
Supply 211 0 3 4 2 2
310 2 2 1 2 1
Wastage (W) - 0 0 o0 0 O
Shortage (.5;) - 0 0 1 0 O

In the example we considered a single blood type and donors were invited based
on the safety stock, the inventory on hand and the inventory in transit. In practice
however, donors are invited based on their ABO, RhD blood type. The intuition in the
example still holds if we look at the entire inventory as eight sub-inventories, namely
one for each blood type. Each sub-inventory has its own safety stock, inventory on
hand, and inventory in transit. Given that Rax is the maximal shelf life the amount
of donors with ABO, RhD blood type j that should be invited to donate at time t is
equal to

| 850) + EIDL] - S (17G7) — Sis EIZ{G)]

A7) p(J)

(8.12)
Here SS(j) is the safety stock for ABO, RhD blood type j. This safety stock depends
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on the expected demand during lead time and the input parameter k. This parameter
states what the ideal average shelf life is of the items in stock. To prevent outdating
the value of k should be smaller than half of the maximum shelf life (k < fizx).

Note that we can control the supply of the ABO, RhD blood types by inviting
donors accordingly. However, the supply for the extended blood types can only be
controlled indirectly via the ABO, RhD blood types and the percentage of donors
typed for different antigens. Hence, a donor is invited based on its ABO, RhD blood
group, but not based on its entire extended blood type. The replenishment of the
inventory is based on three factor 1) the ABO, RhD blood groups of the donors
invited 2) The distribution of non- ABO, RhD antigens in the donor population [160]
and 3) the percentage of donors typed for these antigens.

8.5 Data acquisition

The simulation model discussed in the previous section incorporates random data
streams concerning the demand for and supply of RBC units. The distributions re-
garding the requests for particular blood types, the lead time of donors, and the
percentage of donors responding to an invitation were estimated based on data gath-
ered from Sanquin. This section discusses how these data were were transformed
and incorporated :

1. data about the requests for particular blood types,
data about the percentage of donors responding to an invitation,
data about the lead time of donors,

data about the percentage of donors typed for particular antigens,

A R

data about the distribution of antigens in the donor population.

These data streams were obtained from the central software system of Sanquin.

8.5.1 Demand data

We extracted data about the demand for RBC units (01-01-2014 up to 04-12-2017)
from E-Progesa, a database containing information about all RBC units requested
by hospitals. A record in this database contains information about the date of the
request, the number of units requested, the number of units delivered, and the typing
of the requested units. We excluded records for which no ABO-RhD blood group
was known (1.31%), records containing requests for biologically impossible typings
(0.02%), and records that were requested during holidays or maintenance of the
database system (1.29%).

Dependent on the antigens that were taken into consideration the remaining
records (97.28%) were divided into groups based on the requested typing and the
day of the week (i.e. Monday, Tuesday, ..., Sunday). Subsequently, within each
group, all units requested on the same date were aggregated.
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To investigate whether the data of two groups (where these groups had an iden-
tical typing but different weekday) were drawn from different distributions we applied
log rank test. Finally, for each combination of typing and weekday a negative binomial
distribution was fitted.

8.5.2 Supply data

Donors are invited to donate blood based on their ABO, RhD blood group. We ex-
tracted data from E-Progesa (01-01-2014 up to 31-03-2017) and investigated whether
the distribution of ABO, RhD blood groups of the invited donors were in line with
population numbers (see Figure 8.2a). It turns out that if a donor has blood group O
and/or RhD-neg the donor is more likely to be invited. Moreover, we also investigated
the attendance rate of donors. It turns out that the probability a donor responds on
an invitation is 0.3778. We investigate whether there was a difference in respond
rate between ABO, RhD blood groups by computing 95% confidence intervals. It
turned out that if we look at the daily response rate the differences are negligible
(see Figure 8.2b).

We also collected data about the leadtime of a donor. We excluded donation
during weekend days (0.03%), as collection sites are not opened on weekend days.
Based on the day the invitation was send we estimated a leadtime distribution.

8.5.3 Typing data

To be able to issue extensively typed blood products, we have to look at the proba-
bility that a particular typing will occur in our inventory. This probability depends on
several factors including the distribution of antigen profiles in the donor population,
the inviting policy (currently donor are invited based on their ABO,RhD blood group),
the amount of donors typed for different antigens. For estimating the distribution of
antigens in the donor population we used the Bloodgroup Antigen Factbook [160].
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Figure 8.2 Donor-data figures.
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(a) The left columns show the percentage of individuals with a specific ABO, RhD blood
group in the population. The right columns show the percentage of individuals with a
specific ABO, RhD blood group that are invited to donate and the percentage of donors
that show up after receiving an invitation.
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(b) Show up probability p based on the (c) Lead time distribution.
data for particular ABO, RhD blood groups.

Based on these numbers a daily show up

probability is computed.

8.6 Computational experiments and results

To compare the proposed approach to the current issuing policy, and compare dif-
ferent parameter settings, several simulations have been run. Every simulation run
is one year (365 days) long. This is preceded by 56 days to warm up the model. At
the start of the warm up, it always starts with a uniformly distributed inventory from
0 days to 2k days old, where k is the average shelf life parameter. For the first and
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second antigen sets, 100 runs will be used to compute the average performance and
the confidence intervals, for the third antigen set, 10 runs will be used to reduce com-
putational complexity. This results from the fact that thousands of decisions have
to be taken, the decision at one decision moment, as would be required in practice,
still only requires a few seconds.

For the main parameters of the model, results will be shown for three different
values. The number of decision moments per day DMom is one, three or five.
Currently, every time a request comes in from a hospital, RBC units are assigned to
this request, but it is not unreasonable to save up requests and assign the units a
few times per day, as most requests are not shipped immediately. For the average
shelf life k, on which the order up to quantity depends, the values 5, 10 and 15 have
been used. For (3, the parameter indicating the trade off between age and rarity of
blood products, values .1, 1 and 10 have been used. Finally, we have also used three
different antigen sets (see Table 8.3 for all antigens and their system). The first
series of simulations for antigen set .4; only include the ABO system and RhD, the
second antigen set A5 also includes the remainder of the Rhesus system and K. The
third, most extended set A3 also includes S, s and the Duffy and Kidd systems.

Shortage and out-dating are very small in all scenarios. There is no shortage
for all runs with antigen sets A; and A5. For the runs with antigen set A3 there is
some shortage, but this is at most 0.1%. Interestingly, shortage is independent of the
average shelf life k, even for k = 5, problems do not occur with the antigen sets A;
and As. Out-dating is dependent on k, but is very low. For k = 5 or k = 10 outdating
is non-existent, and for k = 15, out-dating is at most 0.15%. With current policies,
out-dating is approximately 2%, so even 0.15% is a significant improvement. It is
hard to compare shortages with current values, as it is not registered when insufficient
inventory levels are the reason to not supply a hospital with a requested RBC unit.

Table 8.2 shows the percentage of requests that can be supplied with an exactly
matching unit instead of a compatible unit. For the first antigen set A;, the per-
centages are shown in table 8.2a. Although differences can be observed between
parameter settings, some of them also significant, all fractions are extremely high. If
all further antigens are dropped, volumes are very high, and reaching almost 100%
exact matches is not very hard with a smart issuing policy. If 5 is increased, a little
more weight is given to the age of products, and it makes sense that the number of
exact matches slightly decreases. The effects of increasing the number of decision
moments is negligible. The same holds for the average shelf life k when the number
of exact matches is concerned.

Tables 8.2b and 8.2c show the fraction of exact matches for the second and third
antigen set respectively. Note that requests for all standard ABO and RhD typed
blood have been excluded from these results. Most donors in the Netherlands have
been typed for a number of extra antigens, making a donor that is only negative
for ABO RhD antigens very rare. On the other hand, the number of requests for
these types is very high. So, if these requests would be included, results would
be very distorted, and reaching high exact matching fractions would be impossible.
Comparing Tables 8.2b and 8.2c to Table 8.2a therefore does not make sense.
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Table 8.2 Percentage of blood units issued that were an exact match between the blood
type issued and the blood type supplied.

(a) Antigen set Aj;.

DMom | k& B=0.1 B=1 B =10
5 [0.995 (0.993, 0.996) 0.990 (0.987, 0.992) 0.990 (0.987, 0.992)

1 [10]0.994 (0.992, 0.996) 0.990 (0.988, 0.993) 0.990 (0.988, 0.993)
15(0.994 (0.992, 0.996) 0.991 (0.988, 0.993) 0.991 (0.988, 0.993)

5 [0.993 (0.990, 0.995) 0.987 (0.984, 0.989) 0.987 (0.984, 0.989)
3 |10]0.993 (0.991, 0.996) 0.988 (0.985, 0.991) 0.988 (0.985, 0.991)
15(0.993 (0.991, 0.995) 0.988 (0.986, 0.991) 0.988 (0.986, 0.991)

( ) ( ) (

( ) ( ) (

( ) ( ) (

510.992
5 10/0.993
15/0.993

0.990, 0.995) 0.987 0.987 (0.984, 0.990)
0.991, 0.995) 0.988 0.988 (0.985, 0.991)
0.990, 0.995) 0.989 0.989 (0.986, 0.991)

0.984, 0.990
0.985, 0.991
0.986, 0.991

(b) Antigen set A, standard ABO-D blood types excluded.

DMom | & B=0.1 B=1 B =10
5 |0.902 (0.896, 0.908) 0.894 (0.889, 0.901) 0.894 (0.889, 0.901)

1 |10/0.899 (0.894, 0.904) 0.891 (0.885, 0.897) 0.891 (0.885, 0.897)
15/0.901 (0.896, 0.906) 0.893 (0.887, 0.900) 0.893 (0.887, 0.900)

5 |0.850 (0.845, 0.856) 0.823 (0.815, 0.830) 0.823 (0.815, 0.830)
3 |10]0.850 (0.843, 0.856) 0.820 (0.814, 0.827) 0.820 (0.814, 0.827)

) ( )

) ( )

) ( )

) ( )

15]0.850 (0.844, 0.856) 0.822 (0.816, 0.829) 0.822 (0.816, 0.829)
5 10.836 (0.830, 0.841) 0.798 (0.792, 0.806) 0.798 (0.792, 0.806)
5 10{0.835 (0.830, 0.842) 0.797 (0.791, 0.804) 0.797 (0.791, 0.804)
15/0.836 (0.828, 0.843) 0.799 0.799 (0.792, 0.805)

—_ |~ |~
o~ o~~~ o~~~ o~

0.792, 0.805

(c) Antigen set As, standard ABO-D blood types excluded.

DMom | & B=0.1 B=1 B=10
5 |0.876 (0.873, 0.878) 0.863 (0.858, 0.866) 0.863 (0.858, 0.866)

1 [10]0.869 (0.866, 0.875) 0.863 (0.857, 0.866) 0.863 (0.857, 0.866)
15(0.874 (0.872, 0.878) 0.860 (0.856, 0.867) 0.860 (0.856, 0.867)

5 0.798 (0.796, 0.801) 0.733 (0.726, 0.742) 0.733 (0.726, 0.742)
3 |10[0.798 (0.796, 0.801) 0.728 (0.725, 0.736) 0.728 (0.725, 0.736)

) ( )

) ( )

) ( )

) ( )

15/0.800 (0.797, 0.804) 0.731 (0.724, 0.738) 0.731 (0.724, 0.738)
5 10.776 (0.770, 0.782) 0.671 (0.664, 0.677) 0.671 (0.664, 0.677)
5 10/0.777 (0.771, 0.784) 0.670 (0.662, 0.677) 0.670 (0.662, 0.677)
15(0.778 (0.772, 0.781) 0.674 (0.666, 0.680) 0.674 (0.666, 0.680)

—_~ |~~~
o~~~ ~ o~ o~~~

In Table 8.2b differences between the scenarios are slightly higher than for the
first antigen set, so a few more observations can be made. The number of decision
moments is now significantly influencing results. This is not surprising, as increasing
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Figure 8.3 Scatter plot of the average issuing age and percentage of exact matches for
all scenarios considered.
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the number of decision moment directly increases the difficulty level of the problem.
It is important to note that only having one decision moment per day would most
likely increase delivery time to hospitals too much. Differences for different values of
k are still negligible.

The fraction of exact matches with the third antigen set A3 shown in Table 8.2¢c
are off course lower than those in Table 8.2b, as increasing the number of included
antigens decrease the probability of an exact match significantly. With this in mind,
the ratio of exact matches that can be achieved with this approach is very high.
Table 8.2¢ further shows similar results to those that can be found in Table 8.2b.

Results from 5 = 1 are equal to 8 = 10, indicating that decisions and results
most likely will not change for any value of g > 1. It is also interesting to note
that different values for k£ never result in significant results, and it therefore seems
that the value for k£ can be based on other factors, without the need to take the
percentage of exact matches into account.

As Table 8.2 includes a lot of scenarios, we have included Figure 8.3 to visualize
some of the results. Every point represents the average issuing age (on the vertical
axis) and the average fraction of exact matches (on the horizontal axis) of one of the
scenarios in Table 8.2. Ignoring very small (non significant) differences, the average
issuing age is completely dependent on the value chosen for k. As also shown in
Table 8.2, the fraction of exact matches depends on most major parameters of the
approach, except for k. this can be nicely seen as every point corresponds to two
other points below or above it, as if on a vertical line.

8.7 Discussion

A blood type is defined by the antigens for which someone is negative. If a blood
type is requested by a hospital, Sanquin can supply the hospital with blood that is
negative for an antigen that is positive in the request, but not the other way around.
Blood that is negative for a large number of antigens is rare, and a well-designed
inventory management system for blood collection sites should incorporate as many
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antigens as possible. However all models presented for this purpose in literature
only incorporate the 3 ABO-RhD antigens, resulting in 8 blood types. The model
presented in this paper is generalized, and can incorporate any antigen. The most
extensive numerical study included in the paper includes 14 antigens, resulting in
16384 different blood types.

The model does not take a decision every time a request comes in, but instead
batches the requests, and takes a decision a few times a day. This decision than allo-
cates a unit of RBCs from the inventory to all requests that have been batched. Even
for the most extensive numerical study with 16384 different blood types and 35 days
maximal storage time U all days of which are distinguished as different products by
the model, an average laptop computer is able to take this decision in approximately
5 seconds. This is well within the requirements for practical implementation.

By incorporating a lot of different blood types, we deal with (very) rare blood
types. It is not possible to supply a hospital with a unit less rare than the requested
unit, making it important to keep rare units in our inventory. In the ideal situation,
therefore, we would be supplying every request with a unit of RBCs that exactly
matches the requested unit. So, one of the most important performance measures
for our model, is the percentage of requests that were supplied with an exactly
matching unit of RBCs. This performance measure has also not been reported before
in literature, as this gets less important if less antigens are incorporated in the model.

Currently, issuing units of RBCs is a manual process. This has serious disadvan-
tages, as the inventory of RBCs is far too large and complex for a human to keep
track of. This inability without a doubt leads to inefficiencies in the issuing of RBC
units.

Using our model, a very high percentage of requests can be fulfilled with an
exactly matching unit of RBCs. This is combined with a significant reduction in the
percentage of units outdated, and a very low shortage. The percentage of exact
matches and shortage seem independent on the average shelf life of blood products
within the range tested in our numerical experiments. Outdating is dependent on the
average shelf life, as outdating is only present for an average shelf life of 15 days, and
not for 10 and 5 days. A short average shelf life therefore seems recommendable.
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Appendix

Table 8.3 Binary representation of the blood groups and their prevalence in the Caucasian,
African, and Asian population [160].

Blood group Special Binary % .
system Name r:)ame representation | Caucasian % Blacks % Asian
AB (1,1) 4 4 5
B- A (1,0 43 27 27
ABO A- B (0,1) 9 20 25
A B- |O (0,0 44 49 43
R1R2 (1,1,1,1,1) 13.3 4.0 30.0
e- RaoR, (1,1,1,1,0) 0.1 rare 0.4
E- Rir (1,1,1,0,1) 34.9 21.0 8.5
c- RiR. (1,1,0,1,1) 0.2 rare 1.4
c-, e- R.R. (1,1,0,1,0) rare rare rare
c-, E- R1R1 (1,1,0,0,1) 18.5 2.0 51.8
C- Rar (1,0,1,1,1) 11.8 18.6 2.5
C e R:Rz | (1,0,1,1,0) 23 0.2 4.4
C-, E- Ror 1,0,1,0,1 2.1 45.8 0.3
Rhesus D- r're” §0,1,1,1,1; rare rare rare
D-, E- r'rY (0,1,1,1,0) rare rare rare
D-, e r'r (0,1,1,0,1) 08 05 0.1
D-, c- r'rY (0,1,0,1,1) rare rare rare
D-, c-, e- | r¥r¥ (0,1,0,1,0) rare rare rare
D-, c-, E- [r'r (0,1,0,0,1) rare rare 0.1
D-, C- r'r (0,0,1,1,1) 0.9 rare rare
D-, C-, e- | ' (0,0,1,1,0) rare rare rare
D-, C-, E- | rr (0,0,1,0,1) 15.1 6.8 0.1
(1,1) 8.8 2 *
k- (1,0) 0.2 rare *
Kell K- (0.1) 01 08 *
K-, k- (0,0) rare rare rare
(11) 503 4038 491
Kidd Jke- (1,0) 26.3 51.1 23.2
Jk®- (0,1) 23.4 8.1 26.8
Jke-, Jkb- (0,0) rare rare 0.9
(1.1 49 1 8.9
Fya- (1,0) 22 9 90.8
Duffy Fyb- (0,1) 34 22 03
Fy®-, Fyb- (0,0) rare 68 0
(1,110 24 13 *
s- (1,1,1,0) 4 2 *
S- (1,1,0,1) 22 33 *
S s (1,1,0,0) 0 0.4 *
N- (1,0,1,1) 14 7 *
N-, s- (1,0,1,0) 6 2 *
MNS N-, S- (1,0,0,1) 8 16 *
N-, S-, s (1,0,0,0) 0 0.4 *
M- (0,1,1,1) 6 5 *
M-, s (0,1,1,0) 1 2 *
M-, S- (0,1,0,1) 15 19 *
M-, S-, s (0,1,0,0) 0 0.7 *
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Practice and QOutlook

Chapter 9
S.P.J. van Brummelen, N.M. van Dijk, W.L. de Kort and K. van den Hurk. Combining
optimal shift scheduling and reallocation policies at Dutch blood collection sites. In

preparation.

183






CHAPTER 9

Application of staff scheduling and
reallocation: Case studies

9.1 Introduction

Blood services across the world have to deal with pressure to reduce health care
costs, while many also face another challenge: the decreasing demand for blood (e.g.
see the annual reports of Sanquin [163]). As the cost of staff and other resources at
blood collection sites are a major part of the cost of blood, the efficient use of these
resources is important and requires research.

Blood donors value their time and long waiting times are an important rea-
son to stop donating (Mckeever et al. [132]). Simple methods to decrease waiting
times without increasing the number of staff members do not exist, as, in general,
the amount of unused capacity in the system is inversely related to waiting times.
The most simple M|M|1 queueing model already shows a direct relation between
unused capacity (1 — occupancy) and the total expected time spent in the system
(sojourn time). If, for explanatory purposes, we were to assume that an M|M|1 model
can describe a blood collection site, the total expected time a donor spends in this
collection site can be estimated by (e.g. see Winston [183, Chapter 20]):

1
Sojourn time = —————————— x Mean service time (9.1)
1 — occupancy

Here, the occupancy is the fraction of the capacity that is required to service all
incoming clients. Although simply adding more staff is not an option, we can change
the allocation of capacity. This can both be done by changing working times of
staff members, or by changing the task that is performed by a staff member. In this
way, so to speak, additional capacity can be created where it is necessary, by shifting
this capacity from moments where it is not required. The first of these options,
changing the working times, has already been adressed for other service systems
(e.g. see the review by Defraeye and Van Nieuwenhuyse [57]), but has never been
applied to a blood collection site. Changing the allocation of staff members has never
been studied in a process as stochastic as a blood collection site. This stochasticity
originates in time-dependent random arrivals and several random service times.
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In the Netherlands, every year approximately 800,000 blood donation attempts are
made, and similar systems exist throughout the world. In spite of this high volume,
research into the logistics of blood collection sites apprears to be scarce (Bas et
al. [20]). The first study to investigate the logistics of blood collection sites was
done by Pratt et al. [154]. In this study, a simulation model was used to investigate
queues at blood collection sites, and investigate improvements with respect to arrivals
of donors. As can be predicted, they find that equally spread arrivals result in less
queues than uneven arrivals, and that staff utilization is optimal if the system is at or
near to its maximal capacity. The most interesting suggestion is that, as donations
by men are quicker, scheduling more men at the start of a session can be beneficial.
Subsequently, simulation studies have also been performed by Brennan et al. [38],
De Angelis et al. [15] and Alfonso et al. [8]. In essence, simulation is a tool that can
be used for evaluation of scenarios and to achieve better performance by choosing
the best scenario. However, no guarantees can be made that the chosen scenario
is optimal or even near optimal. Another disadvantage of simulation is that it has
to be adapted for each specific set-up of a blood collection site. Although some
general conclusions can be drawn from these papers, such as to use staff as flexible
as possible and that service can be increased with an increased budget, more specific
results only apply to the collection site that has been simulated.

Another option to study waiting times and efficiency at blood collection sites, is
the use of analytical methods. Although some assumptions are usually required, these
methods produce exact and replicable results, in contrast to simulation. Bretthauer
and Coté [39] were the first to apply such methods to a blood collection site. Their
paper first presents a general framework to determine required resources for a new
or redesigned health care system. Subsequently, they apply their method to a blood
collection site. Based on expected arrivals and a required service level, they compute
the number of required staff members and equipment. This model is aimed at a
longer time frame, and is not built for staff scheduling or other short term decisions
at day, session or hourly level.

Chapters 3 and 4 show multiple results for the analytical computation of expected
waiting times, waiting time distributions and queue length distributions at blood
collection sites. Blake and Shimla [29] also use an analytical queueing model. Their
paper describes the use of a relatively standard queueing model to determine the
required number of simultaneously working staff members for a blood collection site,
depending on the number of expected donor arrivals. Testik et al. [173] use data
mining to determine arrival patterns and then use methods similar to those of Blake
and Shimla to determine the required number of staff members.

Although it is useful to know the required number of staff members, this number
might fluctuate wildly throughout the day as at many blood collection sites donors
do not come to the collection site uniformly throughout the day. In Chapter 5 we
have shown that an Integer Linear Program (ILP) can be used to compute optimal
shifts for staff members based on the required number of staff members, given arrival
patterns of donors and the size of the specific blood collection site.

Subsequently, we will use the results from this model by computing the optimal
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Figure 9.1 Model of a blood collection site. The first station is the Registration, the
second is the Interview station and the third is the Donation station.

Donor enters Donor leaves
collection site . . ) 90% ) collection site
————Registration Interview Donation ———

10%

allocations and reallocations of the staff members to the different stations during
a collection session at a blood collection site to minimize waiting time. This is of
course dependent on the number of queueing donors at the different stations of the
donation process. Chapter 6 provides a Markov Decision Process (MDP) that can
be used for this purpose.

In this chapter, we combine the ILP technique for optimal shift planning from
Chapter 5 and the MDP technique for optimal staff allocation from Chapter 6 during
a collection session to use the capacity as effectively as possible. We will apply
the two techniques to data from three blood collection sites of different sizes. By
allocating staff members optimally both in time and location, we will decrease waiting
times without increasing cost.

9.2 Methods

The combined approach used for the results in this paper is based on two distinct
approaches:

— Shift scheduling with an ILP based on arrival patterns, presented in Chapter 5
and shortly explained in Section 9.2.2.

— Staff reallocation based on an MDP formulation, presented in Chapter 6 and
shoftly explained in Section 9.2.3.

0.2.1 Model

An extensive description of the processes at a blood collection site can be found in
Section 1.3 in Chapter 1. As in previous chapters, we will model a blood collection
site as three sequential queues, as shown in figure 9.1. The stations are Registration,
Interview and Donation respectively. Staff members are always assigned to one of
these three stations for a period of time, and each of the stations always has at
least one staff member present. The only exception is that, after the collection site
has closed, a station can be abandoned if there are no more donors that have to go
through this station.

All service times are assumed to be exponentially distributed. We will assume
the average average service times to be 2 minutes for the Registration station, 6
minutes for the Interview station and 12 minutes for the Donation station. These
values are based on data gathered throughout the Netherlands and model validation
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in Chapter 3. The time between two arrivals is also assumed to be exponentially
distributed. The arrivals are based on the arrivals of whole blood donors for one day
of the week at a collection site. We have chosen to include the Wednesday session
of the location in Nijmegen, the Thursday session of the location in Leiden and the
Thursday session of the mobile location in Almelo. For every half hour during the
selected sessions, the average number of donors in 2015 has been used to establish
an arrival pattern.

9.2.2 Shift scheduling: ILP

The shift scheduling algorithm is used to compute the shifts that minimize the number
of worked hours, given that enough staff members are present at any time. The
approach is based work presented in Chapter 5. The method consists of two basic
steps. The first step is to determine the minimum required number of staff members
for every half hour. This can be done by a variety of ways, and in this chapter,
we will use a M|M|c model (e.g. see Winston [183, Chapter 20]). By using this
model, we compute the required number of staff members for a time interval based
on the arrivals that are expected for this interval, total service time for a donor and
some sojourn time requirement. This method does not distinguish between the three
stations, but models one station, with one queue and a total service time of 20
minutes.

The second step is to use the minima from the first step to compute the optimal
shifts. This is done by minimizing the number of worked hours, with two basic
restrictions: 1) At any time, at least the computed minimum number of staff members
have to be present and 2) shifts can only have a duration of 3, 4, 5, 6, 7, 8 or 9
hours. This second step is solved with a so-called Integer Linear Program (ILP) (e.g.
see Winston [183, Chapter 9]).

9.2.3 Staff allocation and reallocation: MDP

The staff (re)allocation algorithm is used to determine the optimal assignment of
staff members to the three stations of the blood donation process: Registration,
Interview, and Donation. The approach is based on work presented in Chapter 6.
The algorithm uses a Markov Decision Process (MDP, e.g. see Puterman [155]),
which is used to compute the optimal staff allocation at fixed intervals. The number
of present donors, their location in the process, and the expected number of arrivals
are all taken into account to compute the optimal allocation of each staff member
at each interval.

9.3 Results

To compute the minimum number of staff members with the M|M|s model, we have
used the requirement that at most 12% of donors should have a sojourn time of
more than 45 minutes. Note that, as the aggregate station does not accurately
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reflect reality, this requirement is not automatically satisfied if only the minimum
number of staff members is scheduled. This minimum number of staff members has
been computed for every half hour, and then the ILP has been used to compute
shifts using the minimum total number of staff members. The average number of
staff members scheduled is shown in the first column (first three rows) of Table 9.1.

This scenario is compared with two other scenarios: One where we schedule
the (rounded up) average number from the ILP the entire day, and one where we
schedule the peak number scheduled by the ILP for the entire day. The first of these
has slightly more staff members, scheduled less efficiently, and the third has a lot
more staff members. The first of these, the “mean ILP rounded up” scenario, will be
used as a reference. Currently, the number of present staff members rarely changes
during the day. As this scenario will use slightly more but a comparable number of
staff hours, it is fairest to use this as a comparison to show the improvements from
the ILP model.

In the first three rows, we have assumed that a staff member can help 3 donors
per hour (1 = 60 minutes/20 minutes per donor), corresponding to the 20 minutes
total service time mentioned in Section 9.2.1. For rows 4-6, ;1 has been set to 3.5,
and for rows 7-9, u has been set to 4. The remaining procedure is equal to that
previously described.

Table 9.1 Average number of working staff members per blood collection site per half
hour. For the first column the M|M|s method has been used to compute the required
number of staff members, and then the staff scheduling algorithm has been run. For
the second column, the average number of present staff members from the ILP has been
rounded up and scheduled every time interval, for the third column, the highest number of
staff members scheduled in some time interval by the ILP has been scheduled the entire
day. p is the number of serviced donors per staff member per hour.
Mean ILP
ILP rounded up Max ILP
Nijmegen | 7.06 8 10
w=3 Leiden | 5.60
Almelo | 8.71
Nijmegen | 5.35
©w=3.5 Leiden | 4.20
Almelo | 6.41
Nijmegen | 4.76
uw=4 Leiden | 3.64
Almelo | 5.53

S P O1N 01T OO O
0 B~ N[O O1 O 0o

After determining the number of staff members, we used the MDP to compute
the optimal staff allocation. For every staff schedule, we ran the MDP 4 times.
The first time, the MDP reallocated staff members every 7.5 minutes, the second
time every 15 minutes and the third time every 30 minutes. The fourth time, the
MDP modeled a fixed allocation of staff members. The reallocations do not imply
that all staff members had to be reassigned every time interval, just that some staff
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members might have to change their allocation. The output of the MDP is a complete
distribution over all possible states, i.e. numbers of donors at each of the stations,
at all times. Given the assumptions, this is an exact computation, and is not subject
to confidence intervals. From this, the expected number of present and waiting
donors was computed for every half hour. Table 9.2a shows the average expected
and the highest expected (in parentheses) number of donors present during the day
in Nijmegen. Table 9.2b shows the average and highest expected (in parentheses)
number of waiting donors during the day in Nijmegen. Table 9.3 shows the same
results for Leiden, and Table 9.4 shows the results for Almelo.

Tables 9.2, 9.3 and 9.4 show that the ILP results in negligible reductions when it
comes to average expected number of present and waiting donors compared to just
scheduling the mean number of staff members the entire day. It should be noted
that the “mean ILP" column always has more total staff hours, and often quite a lot
more, than the ILP scenario. However, the main goal of the ILP is not to decrease
the average number of present or waiting donors, but to reduce the peaks of these
variables by scheduling more staff at peak arrival times. Compared to scheduling the
mean number of staff members the entire day, the schedule from the ILP is able to
decrease the maximum expected number of donors present and waiting at the blood
collection site in almost all cases. A notable exception is the collection site in Leiden,
when = 3.5 or p = 4 is used. The collection site in Leiden has quite evenly spread
out arrivals, resulting in the (rounded up) average number of staff members being
equal to the maximum number of staff members. In this case, the ILP will always
perform worse in terms of waiting times than the other two scenarios, as the ILP
always has equal or less staff members available.

The MDP method decreases both the average and the maximum of both the
number of present and the number of waiting donors. The reductions on the number
of waiting donors are higher. The reductions also increase if the interval in which the
allocations are changed decreases. As the intervals decrease, the flexibility increases,
so it makes sense that this influences the performance of the algorithm. This of course
has to be weighted with the number of times a staff member has to reallocate, as
shown in Table 9.5.

9.4 Discussion

We can conclude that combining the ILP model to compute optimal shifts for staff
members with the MDP model to allocate and reallocate the staff members to the
three stations at a blood collection site is effective in decreasing queues at equal or
lower costs. The ILP distributes the staff members to the periods of the day where
they are most necessary. The implicit goal of this approach is to reduce the peak
queues at blood collection sites, a goal that is achieved in the numerical experiments.

Additionally, the MDP is constantly optimizing the allocation of staff members
to the three stations to reduce the average number of queued donors. By doing this,
both the peak queues and the average queues are decreased. This of course comes
at the cost of staff members having to change their assignment a few times per day,
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Table 9.2 The number of donors present (Table 9.2a) and waiting (Table 9.2b) at the
collection site in Nijmegen. The average expected number of donors present/waiting in the
collection site and the highest expected number of donors present/waiting (in parentheses)
are shown for a number of scenarios. Rows correspond to a combination of number of
serviced donors per staff member per hour, p = 3, p = 3.5 or p = 4 and the MDP that
can change the allocation of the staff members every 7.5 minutes, 15 minutes, 30 minutes
or not at all. The columns correspond to those in Table 9.1. Columns and rows indicated
with * are closest the the current practice at Sanquin, and should be considered as reference
values.

Mean ILP
ILP rounded up* Max ILP
MDP 7.5 minutes|3.18 (5.53) 3.11 (5.87) 2.97 (5.53)
_ 5 MDP 15 minutes| 3.27 (5.28) 3.19 (5.82) 2.9 (5.28)
H=2 MDP 30 minutes |3.35 (5.94) 3.27 (6.32) 3.02 (5.94)
No reallocations* | 3.39 (6.39) 3.44 (6.79) 3.02 (6.39)
MDP 7.5 minutes [4.26 (5.87) 3.74 (6.74) 3.1 (5.87)
_ 4. MDP 15 minutes| 4.49 (5.82) 3.95 (7.20) 3.19 (5.82)
H=29 MDP 30 minutes |4.78 (6.53) 4.18 (7.79) 3.27 (6.32)
No reallocations* | 5.22 (7.71) 4.08 (8.06) 3.44 (6.79)
MDP 7.5 minutes |5.47 (7.57) 4.95 (8.73) 3.30 (6.20)
_ 4 MDP 15 minutes| 5.78 (8.00) 5.6 (8.98) 3.43 (6.28)
#=2%" MDP 30 minutes |6.15 (9.08) 5.68 (9.93) 3.60 (6.64)
No reallocations* | 6.33 (9.94) 9.34 (13.44) 3.55 (6.95)
(a) Present donors at the collection site.
Mean ILP
ILP rounded up* Max ILP
MDP 7.5 minutes | 0.23 (0.55) 0.16 (0.78) 0.05 (0.37)
_3 MDP 15 minutes | 0.33 (0.67) 0.25 (1.02) 0.08 (0.45)
H=2  MDP 30 minutes|0.44 (0.83) 0.36 (1.19) 0.12 (0.55)
No reallocations*a | 0.70 (1.57) 0.74 (2.37) 0.30 (1.42)
MDP 7.5 minutes | 1.26 (2.40) 0.74 (2.34) 0.16 (0.78)
_ 55 MDP 15 minutes| 149 (2.68) 0.99 (2.84) 025 (1.02)
H=29" MDP 30 minutes |1.82 (3.11) 1.25 (3.40) 0.36 (1.19)
No reallocations* | 2.70 (3.89) 1.40 (3.68) 0.74 (2.37)
MDP 7.5 minutes | 2.48 (5.44) 1.93 (4.78) 0.33 (1.23)
_, MDP 15 minutes| 277 (5.41) 2.23 (5.24) 047 (1.51)
=% MDP 30 minutes |3.20 (5.41) 2.67 (5.82) 0.66 (1.90)
No reallocations* | 3.96 (6.60) 6.98 (10.00) 0.86 (2.47)

(b) Waiting donors at the collection site.

but as the number of reallocations is at most 1 staff member per half hour, this
seems realistically feasible.

The initial parameter settings (11 = 3) of the M|M|s method to compute the
required number of staff members clearly scheduled more staff members than neces-
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Table 9.3 The number of donors present (Table 9.3a) and waiting (Table 9.3b) at the
collection site in Leiden. The average expected number of donors present/waiting in the
collection site and the highest expected number of donors present/waiting (in parentheses)
Rows correspond to a combination of number of
serviced donors per staff member per hour, 4 = 3, p = 3.5 or p = 4 and the MDP that
can change the allocation of the staff members every 7.5 minutes, 15 minutes, 30 minutes
or not at all. The columns correspond to those in Table 9.1. Columns and rows indicated
with * are closest the the current practice at Sanquin, and should be considered as reference

are shown for a number of scenarios.

values.

Mean ILP
ILP rounded up* Max ILP
MDP 7.5 minutes| 2.75 (3.66) 2.68 (3.73) 2.46 (3.35)
_ MDP 15 minutes| 2.87 (3.88) 2.79 (3.88) 2.49 (3.42)
H=2 MDP 30 minutes| 2.96 (4.18) 2.85 (4.18) 2.53 (3.63)
No reallocations* | 3.03 (4.21) 2.76 (4.21) 2.56 (3.84)
MDP 7.5 minutes| 3.97 (5.14) 3.10 (4.28) 3.10 (4.28)
_ 4. MDP 15 minutes| 4.20 (5.56) 3.6 (4.55) 3.26 (4.55)
K= MDP 30 minutes| 4.50 (6.25) 3.43 (5.12) 3.43 (5.12)
No reallocations* | 5.49 (8.29) 5.00 (8.19) 5.00 (8.19)
MDP 7.5 minutes| 6.13 (8.63) 4.85 (7.35) 4.85 (7.35)
_, MDP 15 minutes | 6.43 (9.29) 5.15 (7.58) 5.15 (7.58)
H=% MDP 30 minutes | 6.68 (10.47) 5.52 (8.64) 5.52 (8.64)
No reallocations* | 6.80 (11.45) 5.92 (9.90) 5.92 (9.90)
(a) Present donors at the collection site.
Mean ILP
ILP rounded up* Max ILP
MDP 7.5 minutes | 0.30 (0.83) 0.23 (0.56) 0.04 (0.13)
_; MDP 15 minutes| 0.41 (1.00) 0.36 (0.80) 0.08 (0.20)
H=2 MDP 30 minutes |0.54 (1.21) 0.46 (0.97) 0.12 (0.29)
No reallocations* | 0.79 (1.63) 0.48 (1.00) 0.28 (0.60)
MDP 7.5 minutes | 1.50 (2.63) 0.62 (1.33) 0.62 (1.33)
_ 35 MDP 15 minutes| 1.70 (2.86) 0.76 (1.57) 0.76 (1.57)
H=2" MDP 30 minutes |2.02 (3.13) 0.97 (1.89) 0.97 (1.89)
No reallocations* | 3.42 (5.62) 2.90 (5.22) 2.90 (5.22)
MDP 7.5 minutes |3.75 (7.08) 2.41 (4.51) 2.41 (4.51)
_, MDP 15 minutes| 3.96 (7.20) 2.64 (4.90) 2.64 (4.90)
=% MDP 30 minutes |4.28 (7.69) 3.05 (5.59) 3.05 (5.59)
No reallocations* | 4.89 (9.21) 3.90 (6.96) 3.90 (6.96)

(b) Waiting donors at the collection site.

sary. If the proposed approach would be implemented in some other blood collection
site or even another process entirely, it therefore remains important to calibrate the

approach for the specific application.

The ILP model can schedule different numbers of staff members per half hour,
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Table 9.4 The number of donors present (Table 9.4a) and waiting (Table 9.4b) at the
collection site in Almelo. The average expected number of donors present/waiting in the
collection site and the highest expected number of donors present/waiting (in parentheses)
are shown for a number of scenarios. Rows correspond to a combination of number of
serviced donors per staff member per hour, p = 3, p = 3.5 or p = 4 and the MDP that
can change the allocation of the staff members every 7.5 minutes, 15 minutes, 30 minutes
or not at all. The columns correspond to those in Table 9.1. Columns and rows indicated
with * are closest the the current practice at Sanquin, and should be considered as reference
values.

Mean ILP
ILP rounded up* Max ILP
MDP 7.5 minutes | 4.1 (6.84) 4.12 (7.27) 3.90 (6.84)
_; MDP 15 minutes| 4.21(6.53) 4.3 (7.26) 3.91(653)
H=2 " MDP 30 minutes| 4.31 (7.18) 4.35 (7.67) 3.92 (7.18)
No reallocations*3 | 4.41 (7.86) 4.30 (8.08) 4.02 (7.86)
MDP 7.5 minutes | 5.10 (7.33) 4.87 (8.13) 4.12 (7.27)
_ 4 MDP 15 minutes| 542 (7.81) 515 (8.51) 423 (7.26)
H=29" MDP 30 minutes| 5.76 (8.52) 5.52 (9.27) 4.35 (7.67)
No reallocations* | 6.26 (9.95) 5.59 (9.93) 4.30 (8.08)
MDP 7.5 minutes| 7.03 (10.7) 6.04 (9.62) 4.37 (7.61)
_, MDP 15 minutes | 753 (11.49) 6.48 (10.21) 455 (7.79)
H=%" MDP 30 minutes|8.04 (12.79) 7.06 (11.11) 4.74 (8.01)
No reallocations* |9.43 (15.09) 7.13 (11.58) 5.26 (9.47)
(a) Present donors at the collection site.
Mean ILP
ILP rounded up* Max ILP
MDP 7.5 minutes| 0.25 (0.73) 0.25 (1.06) 0.09 (0.55)
_3 MDP 15 minutes| 0.36 (1.00) 0.38 (1.33) 0.10 (0.57)
H=2 MDP 30 minutes| 0.49 (1.27) 0.54 (1.66) 0.12 (0.61)
No reallocations* | 0.89 (1.93) 0.75 (2.49) 0.47 (1.93)
MDP 7.5 minutes | 1.18 (2.64) 0.94 (2.61) 0.25 (1.06)
_ 35 MDP 15 minutes| 1.51(3.22) 124 (3.08) 0.33 (1.33)
H=29 MDP 30 minutes| 1.95 (3.87) 1.62 (3.74) 0.54 (1.66)
No reallocations* | 2.95 (5.24) 2.10 (4.71) 0.75 (2.49)
MDP 7.5 minutes | 3.15 (6.60) 2.09 (4.71) 0.47 (1.56)
_, MDP 15 minutes| 3.61(7.33) 2.54 (5.33) 0.66 (1.94)
H=2% MDP 30 minutes| 4.26 (8.45) 3.20 (6.13) 0.90 (2.33)
No reallocations* | 6.48 (11.01) 3.67 (6.60) 1.77 (4.14)

(b) Waiting donors at the collection site.

which will almost always result in an average number of staff members that is not a
whole number. It is therefore hard to compare to a situation with the same average
number of staff members scheduled throughout the day, as it is impossible to schedule
a non-whole number of staff members. If the ILP works well, it schedules just enough
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Table 9.5 The average number of reallocations of staff members per half hour, with the
total number of working staff members between parentheses as a reference, for all three
collection sites. Rows correspond to a combination of number of serviced donors per staff
member per hour, =3, p = 3.5 or p = 4 and the MDP that can change the allocation
of the staff members every 7.5 minutes, 15 minutes or 30 minutes. Columns correspond to

those in Table 9.1

Mean ILP
ILP rounded up Max ILP
MDP 7.5 minutes|0.81 (7.06) 1.17 (8) 0.89 (10)
w =3 MDP 15 minutes|0.55 (7.06)  0.59 (8) 0.58 (10)
MDP 30 minutes |0.12 (7.06)  0.04 (8) 0.13 (10)
MDP 7.5 minutes | 0.70 (5.35) 0.40 (6) 1.17 (8)
=35 MDP 15 minutes|0.33 (5.35)  0.09 (6) 0.59 (8)
MDP 30 minutes |0.02 (5.35)  0.09 (6) 0.04 (8)
MDP 7.5 minutes|0.77 (4.76) 0.10 (5) 1.35(7)
w=4 MDP 15 minutes |0.16 (4.76) 0.09 (5) 0.15 (7)
MDP 30 minutes|0.02 (4.76)  0.04 (5) 0.06 (7)
(a) Reallocations For Nijmegen
Mean ILP
ILP rounded up Max ILP
MDP 7.5 minutes | 0.29 (5.60)  0.19 (6) 0.70 (8)
4 =3 MDP 15 minutes|0.07 (5.60)  0.05 (6) 0.30 (8)
MDP 30 minutes | 0.00 (5.60)  0.00 (6) 0.00 (8)
MDP 7.5 minutes | 0.07 (4.20)  0.05 (5) 0.05 (5)
4 =3.5 MDP 15 minutes|0.03 (4.20)  0.04 (5) 0.04 (5)
MDP 30 minutes | 0.00 (4.20)  0.00 (5) 0 (5)
MDP 7.5 minutes | 0.02 (3.64)  0.08 (4) 0.08 (4)
=4 MDP 15 minutes|0.01 (3.64)  0.02 (4) 0.02 (4)
MDP 30 minutes | 0.00 (3.64)  0.00 (4) 0.00 (4)
(b) Reallocations For Leiden
Mean ILP
ILP rounded up Max ILP
MDP 7.5 minutes | 1.14 (8.71) _ 0.93 (9) 0.40 (12)
=3 MDP 15 minutes |0.61 (8.71) 0.49 (9) 0.16 (12)
MDP 30 minutes | 0.36 (8.71) 0.06 (9) 0.08 (12)
MDP 7.5 minutes | 0.81 (6.41)  0.72 (7) 0.93 (9)
@ =35 MDP 15 minutes|0.24 (6.41) 0.13(7) 0.49 (9)
MDP 30 minutes | 0.02 (6.41) 0.10 (7) 0.06 (9)
MDP 7.5 minutes | 0.86 (5.53)  1.14 (6) 1.79 (8)
w=4 MDP 15 minutes | 0.21 (5.53) 0.10 (6) 0.47 (8)
MDP 30 minutes | 0.02 (5.53) 0.10 (6) 0.04 (8)

(c) Reallocations For Almelo
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9.4. Discussion

staff members. Scheduling less staff members could result in excessive queues. We
have therefore chosen to round up the number of staff members for the comparison
scenario “rounded up mean”. Even though this does mean that this comparison
scenario often has an advantage, the maximum queue is lower with the ILP in most
cases, combined with lower personnel cost.

The other comparison scenario is based on the maximum number of staff members
scheduled by the ILP, which results in a lot more scheduled staff members. It is
clearly visible that the queue lengths do not decrease proportionally, and scheduling
this many staff members seems pointless.

In summary, it seems possible to decrease queues without increasing the hours
worked by staff, by combining optimal shift planning with flexible staff allocation at
blood collection site stations.
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CHAPTER 10

Conclusion and outlook

As donors donate blood voluntarily and are non-remunerated (i.e. not compensated
with money), the natural intuition is to give donors the best possible service. Ad-
ditionally, there is a financial incentive for a high quality of service to donors, as
donations by returning donors are less costly than recruiting new donors. A fre-
quently mentioned reason for blood donors to stop donating is the experience of or
at least perception of excessive waiting times at collection sites. This is supported by
scientific research showing a negative association between return behavior of donors
and waiting times [81, 132]. This thesis presents a number of approaches, based on
methods from the field of Operations Research, to compute and decrease waiting
times at blood collections sites, without the need for additional capacity.

Modeling blood collection sites with mathematical methods has only been ad-
dressed by a small number of references. Structured methods to analyze potential
improvements are still of considerable interest. Part Il of this thesis aims to provide
methods for this purpose. Chapter 3 is focused on distributions of waiting time and
delay time. A closed form expression is provided for the waiting time distribution
of each individual station of the process, while a numerical approach is provided to
compute the delay time for the entire process. The total delay time computation
could be of interest for optimization approaches, but is too slow for this purpose.
Chapter 4, therefore, provides an iterative approach, based on uniformization, to ef-
ficiently compute queueing distributions for blood collection sites. As this approach
is much faster, it is used for the optimization approaches in subsequent chapters.

One of the main problems at Dutch blood collection sites, is the misalignment of
staff and the expected arrivals of donors. As shown in our test cases, the number of
available staff members is more or less uniform throughout the day, while donors show
clear preferences for particular periods, sometimes resulting in a 150% higher arrival
rate during the busiest periods compared to the quietest. This misalignment leads to
a considerable amount wasted capacity. Simply lowering the staff capacity without a
thorough look at the problem may cause waiting times to explode. Attempts can be
made to tackle this problem using different approaches. One way is to use flexible
shifts to align shifts of staff members such that these fit the arrival pattern, as is
done in Chapter 5. Another option could be to strive for spreading the arrivals of
donors over the day. This is done in Chapter 7, by proposing the introduction of
appointments for whole blood donors. Both approaches are able to accomplish less
waiting times without adding more staff. However the current proposal by Sanquin
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for the priorities of appointments might cause serious problems.

If service to donors is the main concern of Sanquin, forcing its donors into a
new, appointment based, arrival system might not be a desirable option, and might
even lose Sanquin some of its donors. A combination of appointments and more
effective shift planning is another an option. In Chapter 7, the number of slots that
is made available is equal to the number of donations that is wanted for plus some
percentage of no-shows. An interesting scenario for further research is the option to
make more slots available, such that even the last donor to make an appointment
has a choice for the time of his/her appointment, and is not forced into the last
available slot. Subsequently, methods like the one proposed in Chapter 5 could be
used to fit the shifts of staff members to the appointments that have been made.
This might improve the results of the staff scheduling, as it will then be based on
a far more fixed arrival pattern. A disadvantage will be that staff members should
then be scheduled after most, or all, appointments have been made.

While Chapters 5 and 7 are both focused on optimizing the blood collection
process before it takes place, on the tactical to off-line operational level, Chapter 6
discusses an approach to optimize the assignment of staff during the collection pro-
cess, on the on-line operational level. Based on the actual number of present donors,
the algorithm presented in Chapter 6 may determine that it is optimal to change the
allocation of one or more staff members during a session. Although the algorithm
is based on exponential and preemptive assumptions, simulation results of a blood
collection site show similar results: reductions of up to 70% on queue lengths.

Chapter 8 follows the route of blood products from donor to recipient one step
further to the inventory management. Chapter 8 discusses an entirely new way
of allocating blood products in the inventory of the blood bank to requests from
hospitals. Based on the rarity and age of a unit of red blood cells, an artificial
cost is determined for the match between units of red blood cells and the request.
A subsequent min-cost-max-flow algorithm determines the matches between units
of cells and requests. The approach is able to significantly improve the ratio of
requests that is given an exact match, while simultaneously decreasing out-dating
and shortages. As the algorithm also determines the donors that should be sent a
request to donate, this comes back to the process at the blood collection site.

Chapter 9 concludes the research based chapters of this thesis by the application
and combination of the approaches discussed in Chapters 5 and 6. The approaches
were applied to data from three collection sites in the Netherlands: the fixed collection
sites in Leiden and Nijmegen, and the mobile collection site in Almelo. The numerical
experiments with this data show that the approach from Chapter 5 is able to reduce
the peak queues at blood collection sites, while the method from Chapter 6 decreases
both the average and maximum queue lengths at blood collection sites.

Most approaches in this thesis assume exponential inter-arrival and service times.
While exponential inter-arrival times are not disputed, exponential service times do
not fully represent reality, as realistic service times are closer to a log-normal dis-
tribution. Although a direct insertion of log-normal distributions in the presented
methods is impossible, such distributions could be approximated by phase-type dis-
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tributions, which can be inserted into the methods. However, this would come at
very high computational costs. The methods in Part Il of this thesis are fast enough
to be implemented in practice. This would not remain the case with the inclusion of
phase-type distributions, unless significant improvements are made to CPU speeds
or optimization algorithms. Additionally, the simulation in Chapter 6 shows that the
exponential assumption does not seem to have a large effect on the results in terms
of queue reductions.

In all chapters of this thesis, the demand of blood products from hospitals is
taken as a given, and some of the methods need to be adapted slightly if the demand
suddenly rises or falls. The demand will always remain stochastic, but it can be partly
predicted. Taking a demand prediction into account could improve the approaches
presented in this thesis, most notably the inventory management and staff scheduling.

The research in this thesis focused on the operational and tactical levels. Next
to the major challenge of implementation, the long term strategic level also offers
opportunities for further research. The demand for red blood cells is decreasing,
while the demand for plasma is increasing. This shift in demand requires Sanquin
to adapt to new circumstances, most importantly because plasma can currently not
be collected in mobile collection sites. Issues like the optimal location of collection
sites and opening times of collection sites will likely be affected by this shift in
demand, and have not been studied in this thesis. Some neighboring countries have
created specialized plasma collection centers, another option that could be studied
by Sanquin.

Entirely different fields of research can even be used for the issues studied in
this thesis. There are motivations for donors to visit a blood collection site at at a
particular time are not well understood. This thesis may have speculated at times to
what these motivations might be, but they are essentially unknown. The motivations
might even be influenced, resulting in more favorable arrival patterns. Studying the
reasons behind the arrival patterns could be very interesting, and remains an open
question for psychologists and statisticians to study.

In summary, this thesis provides a number of approaches to compute and de-
crease queues at blood collection sites. The chapters in Part Il first develop methods
to evaluate waiting times and queues, followed by optimization and improvement
techniques in Part IlIl. The approaches in this final part could all be implemented
at blood collection sites, although the required effort differs. The staff scheduling
is already done centrally, and could therefore easily be improved by the approach
in Chapter 5. On the other side, the reallocation of staff members from Chapter 6
would require real-time tracking of donors in the process, which will require substan-
tial investment. Supported by the final results in Chapter 9, this thesis shows that
substantial reductions of queues are possible without additional capacity or staff.
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Summary

This thesis consists of four parts: The first part contains an introduction, the second
presents approaches for the evalutation of waiting times at blood collecction sites, the
third uses these to present approaches that improve waiting times at blood collection
sites. The final part shows the application of two of the approaches to data from
real blood collection sites, followed by the conclusions that can be drawn from this
thesis.

Part I: Introduction, contains two chapters. Chapter 1 introduces the context
for this thesis: blood banks in general, the Dutch blood bank Sanquin and blood
collection sites. The chapter sketches some of the challenges faced with respect to
blood collection sites. As blood donors are voluntary and non-remunerated, delays
and waiting times within blood collection sites should be kept at acceptable levels.
However, waiting times are currently not incorporated in staff planning or in other
decisions with respect to blood collection sites. These blood collection sites will be
the primary focus of this thesis. This thesis provides methods that do take waiting
times into account, aiming to decrease waiting times at blood collection sites and
leveling work pressure for staff members, without the need for additional staff.

Chapter 2 then presents a technical methods that will be used most of the
chapters in this thesis: uniformization. Uniformization can be used to transform
Continuous Time Markov Chains (CTMCs) — that are very hard to analyze — into
Discrete Time Markov Chains (DTMCs) — that are much easier to analyze. The
chapter shows how the method works, provides an extensive overview of the literature
related to the method, the (technical) intuition behind the method as well as several
extensions and applications. Although not all of the extensions and applications are
necessary for this thesis, it does provide an overview of one of the most valuable
methods for this thesis.

Part II: Evaluation, contains two chapters that propose and adapt several meth-
ods to compute waiting times and queues at blood collection sites. A blood collection
site is best modeled as a time-dependent queueing network, requiring non-standard
approaches.

Chapter 3 considers a stationary, i.e. not time-dependent model of blood col-
lection sites as a first step. A blood collection site consists of three main stations:
Registration, Interview and Donation. All three of the stations can have their own
queue. This means that even the stationary model is non-trivial for some com-
putations. However, for the stationary model, an analytic so-called product form
expression is derived. Based on this product form, two more results are shown. The
first result is that the standard waiting time distributions from M|M|s queues are
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applicable, as if the queue is in isolation. It is then concluded that no closed form
expression exist for the total waiting or delay time distribution, as the distributions of
the three stations in tandem are not independent. Therefore a numerical approach is
presented to compute the total delay time distribution of a collection site. All of the
results are supported by numerical examples based on a Dutch blood collection site.
The approach for the computation of the total delay time distribution can also be
combined with the approach from Chapter 4 for an extension to a time-dependent
setting.

Chapter 4 shows an approach to deal with these time-dependent aspects in
queueing systems, as often experienced by blood collection sites and other service
systems, typically due to time-dependent arrivals and capacities. Easy and quick to
use queueing expressions generally do not apply to time-dependent situations. A
large number of computational papers has been written about queue length distri-
butions for time-dependent queues, but these are mostly theoretical and based on
single queues. This chapter aims to combine computational methods with more real-
istic time-dependent queueing networks, with an approach based on uniformization.
Although uniformization is generally perceived to be too computationally prohibitive,
we show that our method is very effective for practical instances, as shown with an
example of a Dutch blood collection site. The objective of the results is twofold:
to show that a time-dependent queueing network approach can be beneficial and
to evaluate possible improvements for Dutch blood collection sites that can only be
properly assessed with a time-dependent queueing method.

Part I1l: Optimization, contains four chapters that aim to improve service levels
at Sanquin. The first three chapters focus on three different methods to decrease
queues at blood collection sites. Chapters 5 and 6 focus on improving the service
by optimizing staff allocation to shifts and stations. Chapter 7 focuses on improving
the arrival process with the same goal. Chapter 8 is focused at improving inventory
management of red blood cells.

Donors do not arrive to blood collection sites uniformly throughout the day, but
show clear preferences for certain times of the day. However, the arrival patterns
that are shown by historical data, are not used for scheduling staff members at blood
collection sites. As a first significant step to shorten waiting times we can align staff
capacity and shifts with walk-in arrivals. Chapter 5 aims to optimize shift scheduling
for blood collection sites. The chapter proposes a two-step procedure. First, the
arrival patterns and methods from queueing theory are used to determine the required
number of staff members for every half hour. Second, an integer linear program is
used to compute optimal shift lengths and starting times, based on the required
number of staff members. The chapter is concluded with numerical experiments
that show, depending on the scenario, a reduction of waiting times, a reduction of
staff members or a combination of both.

At a blood collection site three stations (Registration, Interview and Donation)
can roughly be distinguished. Staff members at Dutch blood collection sites are
often trained to work at any of these stations, but are usually allocated to one of the
stations for large fractions of a shift. If staff members change their allocation this is
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based on an ad hoc decision. Chapter 6 aims to take advantage of this mostly unused
allocation flexibility to reduce queues at blood collection sites. As a collection site
is a highly stochastic process, both in arrivals and services, an optimal allocation of
staff members to the three stations is unknown, constantly changing and a challenge
to determine. Chapter 6 provides and applies a so-called Markov Decision Process
(MDP) to compute optimal staff assignments. Extensive numerical and simulation
experiments show the potential reductions of queues when the reallocation algorithm
would be implemented. Based on Dutch blood collection sites, reductions of 40 to
80% on the number of waiting donors seem attainable, depending on the scenario.

Chapter 7 also aims to align the arrival of donors with scheduled staff, similarly
to Chapter 5. Chapter 7 tries to achieve this by changing the arrivals of donors. By
introducing appointments for an additional part of donors, arrivals can be redirected
from the busiest times of the day to quiet times. An extended numerical queueing
model with priorities is introduced for blood collection sites, as Sanquin wants to
incentive donors to make appointments by prioritizing donors with appointments
over donors without appointments. Appointment slots are added if the average queue
drops below certain limits. The correct values for these limits, i.e. the values that plan
the correct number of appointments, are then determined by binary search. Numerical
results show that the method succeeds in decreasing excessive queues. However, the
proposed priorities might result in unacceptably high waiting times for donors without
appointments, and caution is therefore required before implementation.

Although this thesis mainly focuses on blood collection sites, many more logistical
challenges are present at a blood bank. One of these challenges arises from the
expectation that Sanquin can supply hospitals with extensively typed red blood cell
units directly from stock. Chapter 8 deals with this challenge. Currently, all units are
issued according to the first-in-first-out principle, irrespective of their specific typing.
These kind of issuing policies lead to shortages for rare blood units. Shortages for
rare units could be avoided by keeping them in stock for longer, but this could also
lead to unnecessary wastage. Therefore, to avoid both wastage and shortages, a
trade-off between the age and rarity of a specific unit in stock should be made.
For this purpose, we modeled the allocation of the inventory as a circulation flow
problem, in which decisions about which units to issue are based on both the age
and rarity of the units in stock. We evaluated the model for several settings of the
input parameters. It turns out that, especially if only a few donors are typed for some
combinations of antigens, shortages can be avoided by saving rare blood products.
Moreover, the average issuing age remains unchanged.

Part IV: Practice and Outlook concludes this thesis. The first of two chapters
in this part shows the combined application of two approaches from this thesis to
data from three collection sites in the Netherlands. The final chapter of this thesis
presents the conclusions that can be drawn from this thesis and discusses an outlook
for further research.

Chapter 9 shows the combined application of the methods in Chapters 5 and
6 to three real collection sites in Dutch cities: Nijmegen, Leiden and Almelo. The
collection sites in Nijmegen and Leiden are both large fixed collection sites. The
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collection site in Almelo is a mobile collection site. The application of each one
of the methods individually reduce waiting times significantly, and the combined
application of the methods reduces waiting times even further. Simultaneously, small
reductions in the number of staff hours are attainable.

The results from Chapter 9 summarize the main message of this thesis: waiting
time for blood donors at blood collection sites can be reduced without the need for
more staff members when the working times of staff members are used more effec-
tively and efficiently, and controlling the arrival process of donors. The approaches
presented in this thesis can be used for this purpose. This is not only beneficial for
blood donors, but will also result in more balanced workload for staff members, as
fluctuations in this workload are reduced significantly.

218



Samenvatting

Dit proefschrift bestaat uit vier delen: het eerste deel is een introductie, het tweede
behandeld methoden om wachttijden te bepalen van bloedafnamelocaties, het derde
behandeld methoden om het proces te verbeteren of optimaliseren. Het laatste deel
laat de toepassing van twee methoden uit deel 3 zien op werkelijke data, gevolgd
door de conclusies die uit dit proefschrift getrokken kunnen worden.

Deel l:Introductie bestaat uit twee hoodstukken. Hoofdstuk 1 beschrijft de
context van dit proefschrift: Bloeddonatie in Nederland; De meeste hoofdstukken
van dit proefschrift gaan over afnamelocaties van Sanquin, de Nederlandse bloed-
bank. Hoofdstuk 1 schetst een aantal van de uitdagingen die Sanquin tegenkomt
bij haar afnamelocaties. Bloeddonoren zijn vrijwillig en krijgen geen geldelijke ver-
goeding voor hun donaties. Wachttijden voor deze donoren moeten daarom zo veel
mogelijk worden beperkt. Wachttijden worden momenteel echter niet of nauwelijks
meegenomen bij onder andere de planning van personeel of andere beslissingen bij
de afnamelocaties. Het verminderen van deze wachttijden, zo mogelijk zonder dat
extra werkuren nodig zijn, zal daarom de primaire focus zijn van dit proefschrift.

Hoofdstuk 2 laat een overzicht zien van een technische methode die in veel
hoofdstukken word gebruikt: Uniformizatie. Univormizatie wordt gebruikt om een
zogenaamde “Continuous Time Markov Chain” (CTMC) - die erg ingewikkeld zijn
om te analyseren - om te zetten in een zogenaamde “Discrete Time Markov Chain”
(DTMC) - die veel eenvoudiger zijn om te analyseren. Het hoofdstuk beschrijft hoe
de methode werkt, laat een uitgebreid overzicht zien van de relevante literatuur,
beschrijft de (technische) intuitie achter de methode en toont enkele uitbreidingen
en toepassingen. Veel van deze uitbreidingen en toepassingen zijn niet benodigd voor
dit proefschrift, maar laten wel de veelzijdigheid zien van Uniformizatie.

Deel |I: Evaluatie bestaat uit twee hoofdstukken die een aantal methoden be-
schrijven aan aanpassen om wachttijden en -rijen te berekenen voor bloedafnamelo-
caties. Deze methoden moesten grotendeels nieuw worden ontwikkeld, omdat een
afnamelocatie enkele kenmerken heeft die standaard methdoen uitsluiten.

Hoofdstuk 3 beschrijft eerst het eenvoudigste model van een afnamelocaties: een
stationair tandem-model met drie stations: Registratie, Interview en Donatie. leder
van deze stations heeft haar eigen wachtrij. Zelfs dit eenvoudigste model is daarmee
niet triviaal. Voor dit model is wel een analytische, zogenaamde “product form”
afgeleid. Van deze product form kan weer expliciete uitdrukking voor de marginale
wachttijdsverdeling van één van de stations worden afgeleid. Vervolgens word in
dit hoofdstuk beargumenteerd waarom een expliciete uitdrukking voor de verdeling
van de totale doorlooptijd niet kan bestaan. Daarom word een numerieke procedure

219



Bloody fast blood collection

getoond om deze totale verdeling te bepalen. Ook deze numerieke procedure is
gebaseerd op de “product form”. De procedure kan worden gecombineerd met het
werk uit hoofdstuk 4 voor een tijdsafhankelijke bepaling van de doorlooptijdverdeling.
Alle resultaten worden ondersteund met numerieke voorbeelden.

Hoofdstuk 4 beschrijft de tijdsafhankelijke versie van het in hoofdstuk 3
geintroduceerde model. Tijdsafhankelijkheid komt voor in veel processen, meestal
door variérende aankomsten en capaciteiten. Eenvoudige methoden om wachttijden
te schatten zijn onder tijdsafhankelijkheid niet meer van toepassing. Verschillende
onderzoeken zijn gedaan naar tijdsafhankelijke wachtrijbepalingen, maar deze zijn
veelal erg theoretisch. Hoofdstuk 4 combineert de methoden uit de theorie met
een realistischere modelering van de praktijk in de vorm van wachtrijnetwerken. Er
wordt een methode beschreven op basis van uniformizatie. Hoewel dit vaak wordt
beschouwd als een methode die te veel rekenkracht nodig heeft, toont het hoofdstuk
dat uniformizatie goed bruikbaar is voor praktische toepassingen zoals een bloedaf-
namelocatie. Numerieke resultaten tonen vervolgens zowel dat een tijdsafhankelijke
bepaling van wachtrijen voordelig is, als het evalueren van verschillende scenario’s
voor bloedafnamelocaties.

Deel Ill: Optimalisatie bestaat uit vier hoofdstukken die service van Sanquin
verbeteren. De eerste drie hoofdstukken beschrijven methoden om wachttijden op
afnamelocaties te verminderen. Hoofdstukken 5 en 6 doen dit door de inzet van me-
dewerkers te optimaliseren. Hoofdstuk 7 beschrijft een methode om de aankomsten
te beinvlioeden met hetzelfde doel. Het vierde hoofdstuk in dit deel, Hoofdstuk 8
focust op het verbeteren van voorraadbeheer van rode bloedcellen.

Donors komen niet gelijkmatig verdeeld over de dag aan bij een afnamelocatie,
maar tonen duidelijke voorkeur voor bepaalde tijden. De hieruit af te leiden patronen
worden echter niet gebruikt bij de planning van medewerkers. Wachttijden van donors
kunnen significant worden verlaagd door de diensten van medewerkers af te stemmen
op verwachtte aankomsten. Hoofdstuk 5 zorgt voor deze afstemming door gebruik
te maken van een twee-staps procedure. De eerste stap bestaat uit het bepalen van
de minimaal benodigde medewerkers per half uur, om de in dat half uur aankomende
donors te kunnen bedienen met een korte wachttijd. Vervolgens word een zogenaamd
“Integer Linear Program” (ILP) gebruikt om diensten voor medewerkers te bepalen.
De diensten worden zodanig bepaald dat aan elk van de eisen wat betref benodigde
medewerkers word voldaan met zo min mogelijk werkuren. Afhankelijk van het sce-
nario laten de resultaten een verlaging van wachttijd, een verlaging van het aantal
gewerkte uren, of een combinatie van beiden zien.

Bij een bloedafnamelocatie kunnen drie stations worden onderscheiden (Regi-
stratie, Interview en Donatie). Medewerkers van Nederlandse afnamelocaties zijn
geschoold om op elk van deze drie stations te werken, maar worden over het alge-
meen toegewezen aan een van de stations voor een groot deel van of een gehele
dienst. Als een medewerker wisselt gebeurd is dit niet op basis van gestructureerde
beslissingen. Hoofdstuk 6 poogt de beslissingen om medewerkers aan stations toe te
wijzen te optimaliseren. Een afnamelocatie is een erg stochastisch proces, zowel door
tijdsafhankelijk aankomsten als ongelijke serviceduren. De optimale toewijzing van
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medewerkers veranderd daarom continu en is een uitdaging om te bepalen. Hoofd-
stuk 6 beschrijft een zogenaamd “Markov Decision Process” (MDP) om de optimale
toewijzing van medewerkers te bepalen met regelmatige intervallen. Numerieke en
simulatie resultaten laten zien dat de wachtrijen bij Nederlandse afnamelocaties kun-
nen worden verkort met 40% tot 80%.

Hoofdstuk 7 richt zich op dezelfde uitdaging als Hoofdstuk 5: het afstemmen van
aankomsten en de aanwezigheid van medewerkers. Hoofdstuk 7 pakt dit echter aan
door de aankomsten van donors te veranderen. Door een deel van de volbloeddonors
een afspraak te laten maken, kunnen de aankomsten worden gestuurd richting tijden
dat het rustig is op de afnamelocatie. Donors worden aangemoedigd een afspraak
te maken door ze met voorrang te bedienen op een afnamelocatie. Een uitgebreid
wachtrijmodel voor de afnamelocatie met voorrangsregels is daarom ontwikkeld om
goede afsprakenschema’s te bepalen. Als in verwachting minder donors aanwezig
zijn dan een nader te bepalen limiet, word een afspraak toegevoegd. De juiste li-
mieten, de limieten die in precies genoeg afspraken resulteren, worden bepaald met
een zoekstrategie die bekend staat als “binary search”. Numerieke resultaten laten
zien dat uitschietende wachtrijen met succes worden verminderd. De voorgestelde
voorrangsregels zouden echter erg slecht kunnen uitpakken voor donors zonder af-
spraak. Voor implementatie zal over deze voorrangsregels dus nog moeten worden
nagedacht.

Hoewel dit proefschrift zich hoofdzakelijk focust op afnamelocaties, zijn er nog
veel meer logistieke uitdagingen bij de bloedbank. Een van deze uitdagingen komt
voort uit de verwachting dat Sanquin uitgebreid getypeerde bloedproducten direct
uit voorraad kan leveren aan ziekenhuizen. Hoofdstuk 8 beschrijft een potenti-
eel nieuw systeem voor voorraadbeheer om hier veel vaker aan te kunnen voldoen.
Op dit moment worden alle rode bloedcellen geleverd volgens het “first-in-first-out”
principe, onafhankelijk van typering. Dit leidt tot tekorten van uitgebreid getypeerde
producten. Door uitgebreid getypeerde producten langer in voorraad te houden zou-
den tekorten teruglopen, maar kan verspilling van deze producten ook toenemen
door een maximale houdbaarheid. Om tekorten en verspilling tegen te gaan, wordt
daarom een afweging gemaakt tussen zeldzaamheid en leeftijd van producten. Het
ontwikkelde systeem maakt deze afweging met behulp van een zogenaamd “circula-
tion flow problem”. Uit gesimuleerde resultaten blijkt dat het nieuwe systeem veel
vaker een product levert dat exact overeenkomt met de vraag, waardoor uitgebreid
getypeerde producten alleen worden uitgegeven wanneer ze benodigd zijn. Tekorten
en verspilling nemen hierbij ook nog eens af.

Deel IV: Praktijk en Conclusies sluit dit proefschrift af met de laatste twee
hoofdstukken. Het eerste hoofdstuk laat de toepassing van twee methoden zien op
data van drie afnamelocaties in Nederland. Het laatste hoofdstuk toont de conclusies
die uit dit proefschrift kunnen worden getrokken en de mogelijkheden voor verder
onderzoek.

Hoofdstuk 9 laat de gezamelijk toepassing van de methoden uit hoofdstukken 5
en 6 zien op data van de afnamelocaties in Nijmegen, Leiden en Almelo. De locaties
in Nijmegen en Leiden zijn beide grote, vaste afnamelocaties, terwijl Almelo wordt
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bezocht door een mobiele afnamelocatie. De afzonderlijke methoden laten verbeterde
prestatie zien met betrekking tot wachtrijen, terwijl een gezamenlijke toepassing de
wachtrijen nog verder verkort. Tegelijkertijd lijkt een kleine verlaging van het aantal
gewerkte uren haalbaar.

De resultaten van hoofdstuk 9 vatten de belangrijkste boodschap van dit proef-
schrift samen: wachttijden en -rijen bij bloedafname kunnen worden verkort zonder
dat meer medewerkers nodig zijn. Dit kan worden bereikt door medewerkers ef-
ficiénter en effectiever in te zetten en de aankomsten van donors meer te controleren.
De methoden beschreven in dit proefschrift zijn daarvoor een goed uitgangspunt, die
kunnen worden geimplementeerd als eerste stap en verder kunnen worden ontwik-
keld. Dit is niet alleen voordelig voor donors, maar ook voor de medewerkers door
de werkdruk te verspreiden over de werkdag.
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