High optical gain in KGd$_x$Lu$_y$Er$_{1-x-y}$/(WO$_4$)$_2$ waveguide amplifiers despite energy-transfer upconversion

S. A. Vázquez-Córdova1,*, S. Aravazhi2, C. Grivas3, Y. S. Yong1, S. M. García-Blanco1, J. L. Herek1, M. Pollnau2,4

1Optical Sciences, MESA+ Institute, University of Twente, Enschede, The Netherlands
2Integrated Optical Microsystems, MESA+ Institute, University of Twente, Enschede, The Netherlands
3School of Physics and Astronomy, University of Southampton, United Kingdom
4Department of Materials and Nano Physics, KTH – Royal Institute of Technology, Kista, Sweden

*Corresponding author: s.a.vazquezcordova-1@utwente.nl

A crucial enabling function in integrated optics is amplification of optical signals at 1.5 µm. Whereas rare-earth-doped amplifiers allow for high-speed signal transmission at THz bit rates, typically they deliver an internal net gain per unit length of only a few dB/cm [1]. The rare-earth-doped potassium double tungstates KY(WO$_4$)$_2$, KGd(WO$_4$)$_2$, and KLu(WO$_4$)$_2$ [2] are especially suited for optical amplification due to the high transition cross-sections of rare-earth ions in these materials [3]. Recently an internal net gain of ~1000 dB/cm has been demonstrated in ytterbium-doped thin films [1].

Here we report optical gain at 1.53 µm in KGd$_x$Lu$_y$Er$_{1-x-y}$/(WO$_4$)$_2$ channel waveguides doped with five different Er$^{3+}$ concentrations of 0.75, 1.5, 3, 6, and 10 at.%, grown by liquid-phase epitaxy (LPE) onto undoped KY(WO$_4$)$_2$ substrates [4] and microstructured by Ar$^+$ etching. When pumping at 980 nm, a very high internal net gain of 13 dB/cm is experimentally demonstrated, despite the fact that the intrinsic propagation losses in these surface waveguides were as high as 4 dB/cm.

When increasing the erbium concentration and population density of the 4I$_{13/2}$ amplifier level to achieve higher gain, the probability of ETU increases linearly with erbium concentration and quadratically with the 4I$_{13/2}$ population density. For determining the macroscopic ETU parameter W_{ETU}, we measured the luminescence-decay curves in channel waveguides with all five Er$^{3+}$ concentrations, each at 4 different values of the pump power. The extracted concentration-independent donor-donor and donor-acceptor microscopic parameters are $C_{DD} = 5.4 \times 10^{-39}$ cm6/s and $C_{DA} = 4.9 \times 10^{-40}$ cm6/s, respectively, from which W_{ETU} was calculated as a function of doping concentration. The gain was simulated by use of a rate-equation system, thereby confirming that ETU limits the available gain.

Using buried channel waveguides, whose intrinsic propagation losses are only 0.2 dB/cm, and optimizing the Er$^{3+}$ concentration and waveguide length to ~3 cm, for 500 mW of launched pump power a total gain of ~40 dB is predicted, thereby underlining that Er$^{3+}$-doped potassium double tungstates are extremely high-performing amplifiers at 1.5 µm.

Keywords: rare-earth amplifier, erbium, channel waveguide, potassium double tungstate.

References

18th International Conference on Luminescence – ICL 2017, from August 27th to September 1st 2017, João Pessoa, Paraíba, Brazil.