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Abstract—Bottleneck of the validation and evaluation of analy-
sis and verification tools for distributed systems is the shortage of
benchmark problems. Specifically designed benchmark problems
are typically artificial, rare, and small, and it is difficult to
guarantee challenging properties of realistic benchmarks. This
paper shows how to systematically construct arbitrarily complex
Petri Nets with guaranteed safety properties. Key to our construc-
tion is a top-down parallel decomposition based on lightweight
assumption commitment specifications. We will illustrate how a
specific strategy for design choices, which may well be automated,
leads to benchmarks that grow exponentially with the number of
its parallel components, and that are very difficult to verify. In
particular, we will report numbers from a systematic sequence
of concrete corresponding verification attempts using today’s
leading verification technology.

I. INTRODUCTION

Today’s software verification and analysis tools are increas-
ingly complex and often comprise diverse technologies like
SMT solving, data and process mining, statistical methods
or even runtime analysis. This hybrid tool structure makes
traditional verification of verification tools almost intractable
and asks for alternative validation support. Bottleneck of
experimental evaluation approaches, in particular for analysis
and verification tools for distributed systems, is the shortage
of adequate benchmark problems [22], [21] which are of chal-
lenging size and structure, and guaranteed to exhibit/violate
interesting (temporal) properties. ’Realistic’ benchmark sys-
tems come with the risk that it is unknown whether the
considered property holds [21]. In such cases, the presumed
solution is often chosen by some kind of majority vote
which is, of course, no guarantee for correctness. On the
other hand, manual benchmark design typically does not scale
and therefore does not provide truly challenging verification
scenarios. Work on the systematic construction of benchmark
systems, like [18], [32], [11], is still very limited for distributed
systems.

In this paper, we systematically apply the approach pre-
sented in [33] by sketching an incremental process to expand
a given benchmark scenario B(M,Φ) that consists of a Model
Transition System (MTS) [25] specification M for some
concurrent implementation of controllable size1 together with
a set of properties Φ that is guaranteed to be correct for

1What we mean here is that M can be conveniently model checked wit
state of the art technology.

M 2. This expansion results in a system with an arbitrary
degree of parallelism, where all parallel components need to
be considered for validation.

Key to our approach is the property-preserving parallel
decomposition in a light-weight assumption commitment style.
Property preservation is guaranteed on the basis of Modal
Contracts (MCs) that permit a (weak) refinement into a
component and its context while supporting the propagation
of dependencies that are vital for the validity of considered
properties. More technically, our development is based on the
weak refinement [19] of convergent systems which preserves
an interesting class of temporal properties [24], [4].

Given an initial benchmark scenario B(M,Φ), we system-
atically construct a corresponding parallel benchmark scenario
via property preserving decomposition in two phases:

1) Phase I: Constructing a contract from B(M,Φ) in terms
of an MC I by

• choosing a sub-alphabet Γ of M ’s alphabet Σ,
• marking must transitions with labels from Γ by coloring

them green, and
• (randomly) adding red transitions labelled with Γ in a

way that does not conflict with existing may transitions.

The intuition here is that the to be constructed context system
Mc must guarantee to provide communication partners for
green transitions, while it has to make sure that red transitions
will never find a communication partner.

2) Phase II: Decomposing I into a system component Ms

and a context component Mc both of which may be further
decomposed during successive iterations. Important is here
that both components are vital for the validity of Φ: Neither
Ms nor Mc alone suffice to guarantee Φ, but their parallel
composition does.

Based on this approach it is possible to device strategies
guaranteeing that generated benchmarks grow exponentially
with the number of its parallel components. We will illustrate
the effectiveness of this approach by reporting numbers from
a sequence of systematic, concrete corresponding verification
attempts using today’s leading verification technology.

2Our exposition focuses on the preservation of validity. It should be noted
that our MTS-based approach also maintains the existence of counterexam-
ples, which is something different for linear time temporal formulas.
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Our approach harnesses the power of correctness by construc-
tion [23] where the essential dependencies are designed and
therefore known during the iterative decomposition process.
Revealing them afterwards during a-posteriori verification is
a very different challenge, similar in flavor to the difference
between proof checking and proof construction.

In contrast to classical assumption commitment [15] and
approaches like the ones presented in [13], [14], the iterative
decomposition based on MCs scales very well. However,
admittedly, to achieve a different kind of goal because we
do not require completeness and can therefore focus on
a simplicity-oriented approach [26]. This scalability, which
intuitively exists due to the difference between a posteriori
verification and correctness by construction, can be regarded
as the essence of our benchmark generation approach [18],
[32], [11].

After introducing relevant preliminaries in Section II, Sec-
tion III introduces our notion of Modal Contracts, the basis
for our corresponding decomposition process, before the con-
struction of an adequate context MTS Mc is described in Sec-
tion IV. Subsequently, Section V illustrates our approach by
developing benchmark scenarios of exploding size. Section VI
shows how these benchmark scenarios can be transformed into
Petri nets. Our experimental data is presented in Section VII,
before Section VIII concludes this paper and presents some
directions to future work.

II. PRELIMINARIES

The Modal Contracts (MCs) proposed in this paper are an
extension of modal transition systems (MTSs). This section
introduces fundamental definitions that are important for un-
derstanding the remainder of this paper. We assume that the
reader is familiar with regular languages and related automata.

Definition 1 (Modal Transition Systems):
Let S be a set of states and Σ an alphabet of action symbols.
M = (S, s0,Σ,�,���) is called a (rooted) modal transition
system (MTS) with root s0 if the following condition holds:

� ⊆ � ⊆ (S × Σ× S)

Elements of � are called may transitions, those of � must
transitions. We sometimes call the set (� \�) may-only transi-
tions. Throughout this paper, the domain of all possible MTSs
is referred to as M.

We further define the operators states(M) =def S,
alph(M) =def Σ, may(M) =def �, and must(M) =def �.
For any t = (p, σ, q) ∈ �, we call sym(t) =def σ the symbol
or label of t. Operator sym(·) extends naturally to transition
relations T ⊆ (S×Σ×S) by sym(T ) =def {sym(t) | t ∈ T}.

An MTS can be seen as a generalisation of a traditional
(rooted) labeled transition system (LTS), which allows the
following definition:

Definition 2 (Labeled Transition Systems):
A labeled transition system (LTS) is an MTS
M = (S, s0,Σ, �,�) with � = �.

The language L(M) of M is defined as the language of the
related prefix-closed non-deterministic finite automaton (NFA)
that results from marking all states in S as accepting.

We sometimes use an equivalent syntax M = (S, s,Σ,→) and
denote transitions (p, σ, q) ∈ → as p σ→ q when modalities are
no longer relevant.

Intuitively speaking, a may transition in an MTS stands for
an underspecification and indicates a transition that may or
may not be present in an actual implementation. A modal
transition system therefore specifies a set of LTSs. These LTSs
can be retrieved by refinement according to the following
definition [25]:

Definition 3 (MTS Refinement):
Let Mp = (Sp, s

p
0,Σp, �p,�p),Mq = (Sq, s

q
0, Σq, �q,�q) ∈

M be two MTSs. A relation ... ⊆ (Sp × Sq) is called a
refinement if the following hold for all (p, q) ∈ .:

1.) ∀(p, σ, p′) ∈ �p, ∃(q, σ, q′) ∈ �q : (p′, q′) ∈ .
2.) ∀(q, σ, q′) ∈ �q , ∃(p, σ, p′) ∈ �p : (p′, q′) ∈ .

We write Mp . Mq if there exists a refinement . with
(sp0, s

q
0) ∈ .. In addition, we call Mp a strict refinement of

Mq , denoted as Mp �Mq , if Mp .Mq and Mq 6.Mp.
For the construction of adequate contexts, the maximal

language defined by an MTS is important.
Definition 4 (Largest Language of an MTS):

Let M = (S, s0,Σ, �,�) be an MTS. We call the language

L>(M) =def L((S, s0,Σ, �, �))

the largest language of M .

The parallel composition operator we consider in this paper
for MTSs is reminiscent of CSP [17] with synchronization of
components on their common alphabets.

Definition 5 (Parallel MTS Composition):
Let Mp = (Sp, s

p
0,Σp, �p,�p),Mq = (Sq, s

q
0,Σq, �q,�q) ∈

M be two MTSs, and let T ∈ {�,�} identify the type of
transition. The parallel composition

(Mp || Mq) =def (Sp × Sq, (sp0, s
q
0),Σp ∪ Σq, �,�)

is then defined as the least commutative and associative
operation satisfying the following operational rules: 3

p
σ→T p

′ q
σ→T q

′

(p, q)
σ→T (p′, q′)

p
σ→T p

′ σ /∈ Σq

(p, q)
σ→T (p′, q)

This allows us to define our notion of a Benchmark Scenario:

Definition 6 (Benchmark Scenarios):
Let M = (M1 || ... || Mn) be the parallel composition of n
MTSs and Φ a set of properties. Then we call B(M,Φ) a
benchmark scenario if each property φ ∈ Φ is either satisfied
or violated by M .

It is straightforward to establish that || preserves refinement
for both operands:

3This definition depends on the fact that each must transition is also a may
transition.
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Proposition 1 (Refinement Monotonicity):
Let M,M ′,M ′′ ∈ M be three arbitrary MTSs. Refining a
component of a parallel composition also refines the compo-
sition:

(M .M ′) =⇒ ((M || M ′′) . (M ′ || M ′′))

Note that due to the commutativity of operator || this
monotonicity holds for both components of a composition.

The following notion of conjunction for MTSs is very close
to that of parallel compostion:

Definition 7 (MTS Conjunction):
Let Mp = (Sp, s

p
0,Σ, �p,�p),Mq = (Sq, s

q
0,Σ, �q,�q) ∈ M

be two MTSs, and let T ∈ {�,�} identify the type of
transition. The conjunction

(Mp ∧Mq) =def (Sp × Sq, (sp0, s
q
0),Σ, �,�)

of Mp and Mq is then defined as a commutative and associa-
tive operation satisfying the following operational rules: 4

p
σ→� p′ q

σ→� q′

(p, q)
σ→� (p′, q′)

p
σ→� p′ q

σ→� q′

(p, q)
σ→� (p′, q′)

p
σ→� p′ q

σ

6→�
(p, q)

σ→ error

Whenever an error occurs, the conjunction of Mp and Mq is
undefined.

The MTS conjunction of Def. 7 guarantees that a refining
MTS refines both components:

Proposition 2 (Conjunction of Refinement Constraints):
Let M,Mp,Mq ∈M be three MTSs. If (Mp∧Mq) is defined,
then the following holds:

(M . (Mp ∧Mq))⇐⇒ (M .Mp ∧M .Mq)

Alphabet abstraction and, in particular hiding, is an important
means to improve the scalability of verification methods. We
apply these methods here for generating challenging bench-
marks:

Definition 8 (Label Hiding):
Let M = (S, s0,Σ, �,�) ∈ M be an MTS. Let Γ ⊆ Σ be a
sub-alphabet. The Γ-hiding

hidΓ(M) =def (S, s0, ((Σ \ Γ) ∪ {τ}), hid(�), hid(�))

of M relabels all transitions t of M such that sym(t) ∈ Γ
with the special symbol τ and therefore features the following
transition relations for all T ∈ {�,�}:

hid(T ) = {(p, τ, q) | ∃γ ∈ Γ : (p, γ, q) ∈ T}
∪ {(p, σ, q) ∈ T | σ ∈ (Σ \ Γ)}

In order to prepare the (standard) definition of weak MTS
refinement, we define the usual observational relation of a
transition relation:

4This definition again depends on the fact that each must transition is also
a may transition.

Definition 9 (Observational Relation):
Let (Σ∪{τ}) be an alphabet and let T ⊆ (S×(Σ∪{τ})×S)
be a transition relation between states in S. Let p, p′, q, q′ ∈ S.
We define the observational relation obs(T ) of T as follows.

Let p σ→ p′ denote a feasible transition (p, σ, p′) ∈ T and
p

σ
=⇒ p′ a feasible transition (p, σ, p′) ∈ obs(T ). The transi-

tion relation obs(T ) results from an exhaustive application of
the following three rules for all σ ∈ Σ:

p
ε

=⇒ p
p
τ→ p′ p′

ε
=⇒ q

p
ε

=⇒ q

p
ε

=⇒ p′ p′
σ→ q′ q′

ε
=⇒ q

p
σ

=⇒ q

The observational MTS is now simply defined by replacing the
original transition relations by their observable counterparts:

Definition 10 (Observational MTS):
Let M = (S, s0,Σ, �,�) ∈M be an MTS. The observational
MTS ω(M) of M is based on the observational expansion of
its transition relations (Def. 9):

ω(M) =def (S, s0, ((Σ \ {τ}) ∪ {ε}), obs(�), obs(�))

This is sufficient to introduce weak MTS refinement [19]:

Definition 11 (Weak MTS Refinement):
Let M,M ′ ∈ MTS be two MTSs. Weak refinement /// is
defind as follows:

(M /M ′)⇐⇒ (ω(M) . ω(M ′))

Weak refinement is insensitive to divergence, i.e. the possi-
bility that the system engages in an infinite τ sequence, and
therefore does not preserve liveness properties. In order to
partially repair this drawback we will reduce our attention to
convergent systems:

Definition 12 (Convergent MTS):
An MTS is called convergent, if every allowed τ sequence is
finite.

In the following we show how to systematically construct
benchmark scenarios of challenging nature.

III. MODAL CONTRACTS

This section establishes our notion of a Modal Contract,
which is designed to support the property-preserving decom-
position of its argument MTS into two components that need
both to be considered for verification. This requires:

Definition 13 (Label Projection):
Let T be a transition relation with sym(T ) = Σ and Γ ⊆ Σ
be a subset of Σ. We call the transition relation

αΓ(T ) =def {(p, γ, q) ∈ T | γ ∈ Γ}

the (label) projection of T onto Γ.
Our notion of modal contract is now defined as follows:

Definition 14 (Modal Contract):
Syntax: Let M = (S, s0,Σ, �,�) be an MTS and Γ ⊆ Σ. A
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Modal Contract (MC) of M with communication alphabet
Γ(I) =def Γ is a tuple

I = (S, s0,Σ, �,�, G,R)

where
• G =def αΓ(�), and
• R is a set of transitions over the alphabet Γ that do not

exist in � and such that they are not in conflict with G,
meaning there do not exist two paths of may transitions
in M with the same label sequence such that one ends
with a transition in G and the other with one in R.5

Moreover G(I) =def G and R(I) =def R, and we color
transitions of G(I) green and transitions of R(I) red.

Definition 15 (Meaning of an MC):
Let I = (S, s0,Σ, �,�, G,R) be an MC, and let r be a new
sink state r /∈ S. Define

R′ =def {(p, σ, r) | ∃q ∈ S : (p, σ, q) ∈ R}

be a redirection of transitions in R to the new sink, and

R∗ =def R
′ ∪ {(r, σ, r) | σ ∈ Σ}

the extension of R with arbitrary subsequent behavior. Then
I defines a so called system MTS

Ms(I) =def ((S ] {r}), s0,Σ, (� ∪R∗),�)

and a set of corresponding context MTSs

MC(I) =def {Mc(I) | (Ms(I) || Mc(I)) .M}

An MTS Mc(I) ∈MC(I) is called a correct context of I .
Intuitively speaking, an MC specifies an assume-guarantee

contract [15], [2] based on an MTS M such that the parallel
composition of the system MTS and a corresponding context
component is guaranteed to refine M .

IV. CONTEXT GENERATION

Given an MC I , we now first define a specific MTS M∗c (I),
called the green/red context of I , such that M∗c (I) is correct
with regards to I (cf. Theorem 1). Our goal is to specify
an M∗c (I) with minimal constraints in order to have many
possible choices in the actual implementation of this context.
Following [33], we first define the green-only context Mg

c (I)
and subsequently refine it with the separately defined red-only
context Mr

c (I) for I . It is easy to see that the conjunction
of the green-only context and the red-only context satisfies
the requirements of I (cf. Theorem 1). Subsequently, we
generalize our notion of context via alphabet extension, and
we show that this generalization can be realized via parallel
composition with an independently defined MTS for alphabet
extension.

Definition 16 (Language Projection):
Let Σ,Γ be two alphabets with Γ ⊆ Σ. For any word
w = (σ1, ..., σn) ∈ Σ∗, the projection αΓ(w) of w onto Γ

5Such a conflict can easily be detected via the determinization of the may
automaton for I .

results from skipping symbols σi /∈ Γ. This projection extends
naturally to languages.

Using this projection, we can now define the green-only
context:6

Definition 17 (Green-Only Contexts):
Let M ∈M be an MTS and let I (Def. 14) be an MC of M
and Fd be the minimal DFA that describes the prefix-closed
language αΓ(I)(L>(M)).

We define the green-only context Mg
c (I) as the MTS that

is the result of the following transformation based on Fd:
1.) Consider all incoming and outgoing transitions of the

unique non-accepting sink state as may-only transi-
tions.

2.) Consider all other transitions as must transitions.
3.) Disregard the property of accepting/non-accepting.

states.
The red-only context Mr

c (I) is defined as follows:

Definition 18 (Red-Only Contexts):
Let I (Def. 14) be an MC, and LR be the language of words
for which a path in I exists that contains a red transition t ∈ R.
Let Fd be the minimal DFA that describes the prefix-closed
language (Γ(I)∗ \ αΓ(I)(LR)) (see also Def. 16).

We define the red-only context MTS Mr
c (I) as the MTS

that results from the following transformations of Fd:
1.) Remove all incoming and outgoing transitions of the

unique non-accepting sink state together with this sink
state itself.

2.) Consider all remaining transitions as may-only transi-
tions.

3.) Disregard the property of accepting/non-accepting
states.

Green/red contexts are now simply defined via MTS conjunc-
tion:

Definition 19 (Green/Red Contexts):
Let I be an MC with red-only context Mr

c (I) (Def. 18) and
green-only context Mg

c (I) (Def. 17). Then the corresponding
green/red context M∗

c (I) is defined as follows:

M∗c (I) =def (Mr
c (I) ∧Mg

c (I))

As green and red transitions are guaranteed to be non-
conflicting (see Def. 14), the following theorem follows
straightforwardly [33]:

Theorem 1 (Correctness of Green/Red Context):
Let M ∈ M be an MTS and I be an MC of M (Def. 14)
with its green/red context M∗c (I) according to Def. 19. Then
M∗c (I) is well-defined and the following holds:

(Ms(I) || M∗c (I)) .M

Weak refinement of convergent systems preserves an inter-
esting class of temporal properties [19], [24], [4]. We will

6In order to simplify this exposition, the definition of the green-only context
is kept simple here. It can be generalized based on the notion of weak
refinement and a definition of MTS determinization.
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therefore restrict our attention to properties of this class, be
they branching time, linear time, safety or liveness properties.

Definition 20 (ΣE Context Extensions):
Let M ∈ M be an MTS and let I be an MC of M . Let ΣE
be a new alphabet, i.e. (ΣE ∩ alph(M)) = ∅.

1) An MTS ME is called ΣE context extension of Γ(I)
if it results from the following three-step construction.
• Choose an arbitrary MTS over ΣE with the follow-

ing two properties:
– M restricted to its must transitions is deadlock

free
– Each state of M is reachable via must transitions

• Select a set S of transitions with the property
that every infinite trace in ME visits a state in S
infinitely often.7

• Replace each transition of S by a set of must
transitions, one for each symbol in Γ(I).

2) Let M∗c (I) be the green/red context of I and let ME be
a ΣE context extension of Γ(I). An MTS

M∗c (I,ME) =def (M∗c (I) || ME)

is called a ΣE-extended context of I .
This allows us to formulate the main Theorem of [33].

Theorem 2 (Correctness of ΣE-Extended Context):
Let M ∈M be an MTS, let I be an MC of M (Def. 14), and
let ME be a ΣE context extension of Γ(I). Then we have:

1.) hidΣE
(Ms(I) || M∗c (I,ME)) /M

2.) hidΣE
(Ms(I) || M∗c (I,ME)) is convergent.

As argued in [33], it is quite easy to generate benchmark
systems with arbitrary degree of parallelism where no com-
ponent can be abstracted away. The most important feature of
a framework for property-preserving benchmark generation,
however, is that it can produce systems of arbitrary state size.
This can easily be achieved via an informed use of green
and red context construction and their successive alphabet
extension. We will sketch such a strategy in the next section
in a fashion that its generalization to the generation of more
sophisticated benchmark scenarios should become clear.

V. DECOMPOSITION PATTERN BY EXAMPLE

In order to illustrate a simple yet effective strategy towards
automatically generating benchmark scenarios whose state
spaces are guaranteed to grow exponentially with their degree
of parallelism, we consider a very simple example scenario
starting with Milner’s four-state cycler (Figure 1):
Our decomposition strategy proceeds now in two dimensions:

The first dimension is characterized by replication in a
fashion reminiscent of Milner’s round robin scheduler. This
can be achieved by defining a Modal Contract Ii with
Γ(Ii) =def {ci}. We then choose ΣEi =def {bi+1, ci+1, di+1}

7This definition is similar to the notion of cut points in Floyd’s inductive
assertion method.

a1

b1

c1

d1

Fig. 1: Milner’s four-state cycler

as the extension alphabet in order to generate the ΣEi
context

extension MEi
illustrated in Figure 2. Note that in this

specific scenario, both MEi
and the resulting extended context

M∗c (Ii,MEi) are identical.

ci

bi+1

ci+1

di+1

Fig. 2: Extended context and (i+ 1)’th component

This decomposition can be iterated to generate a potentially
infinite chain. The elements of this chain are in a sec-
ond dimension further decomposed into pairs of components
based on a Modal Contract I ′i with communication alphabet
Γ(I ′i) =def {bi, di} as depicted in Figure 3.8

ci−1

bi

ci

di

di

Fig. 3: Contract to generate a pair of components9

This contract I ′i yields the green/red context illustrated in
Figure 4. Dashed arrows indicate may-only transitions. We
do not extend this context with a new alphabet. Instead,
we simply define a must transition for every existing may
transition in both system and context in order to retrieve LTS
implementations. The final pair of components resulting from
a contract I ′i is shown within a single rectangular box of
Figure 5. Figure 5 itself illustrates the resulting parallel system
when generating a chain of n component pairs.
It is easy to see that the state space of this chain easily doubles
whenever a further pair is added. Note that any temporal
property that is preserved by weak refinement of divergent
MTSs can be chosen for a corresponding benchmark scenario.
An example can be found in Section VII-B.

We consider this construction as a kind of minimal skeleton for

8In case of i = 2, the transition labeled ci−1 would instead be labeled a1.
9The di self loop is red and horizontal arrows labeled di and bi are green.
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bi

di

di bi

{bi, di}

bi

di

bi

bi

di

bi

∧

Fig. 4: Context of contract I ′i .

a1

b1

c1

d1

d1

b1

d1 b1

c1

b2

c2

d2

d2

b2

d2 b2

...
cn−1

bn

cn

dn
dn

bn

dn bn

Fig. 5: Parallel components of exemplary benchmark scenario

benchmark generation. Of course for RERS, our components
will be much bigger, and they will exploit the potential given
by the many may transitions much more, but deep inside we
will make sure that there are at least some dependencies of
the kind described above in order to guarantee the exponential
growth of the benchmarks with increasing degree of paral-
lelism. Detecting these vital dependencies in the benchmarks
is certainly one of the major challenges when solving the
corresponding benchmark scenario.

VI. GENERATING PETRI NETS

In this section we show how the generated benchmark pro-
cesses can be transformed to Petri Nets. Naturally, we restrict
ourselves to 1-safe Petri Nets. Subsequently, we validate if
the verification problems are indeed hard for current model
checking tools.

A. Transformation to Petri-Nets

A Petri Net is a tuple (P, T,→) of places P , transitions T ,
connected by arcs → ⊆ P × T ∪ T × P . Let src(t) =def

{p ∈ P | p → t} be the places preceding t, and similarly
let trg(t) =def {p ∈ P | t → p} be the places succeding
t. A marking is a function µ : P → N; µ(p) indicates the
number of tokens in place p. Tokens can be moved around
by firing transitions. A transition t is enabled in marking µ
if all p ∈ src(t) have µ(p) > 0. The effect of firing t is to
first decrease M(p) for all places p ∈ src(t) by one, and then
to increase M(p) for all places p ∈ trg(t) by one. The LTS
induced by a Petri Net and an initial marking is the set R of

(reachable) markings, connected by transition firings. A Petri
Net is 1-safe, if µ(p) never exceeds 1.

Given a generated benchmark process M = M1 || · · · ||Mn,
consisting of the parallel composition of LTSs Mi =
(Si, si,Σi,→i), our goal is to transform it into a Petri Net,
whose underlying LTS is equivalent to the LTS of P . For a
single component M , the transition would be straightforward:
Every state in the LTS corresponds to a place of the Petri Net,
and every LTS transition p a→ q becomes a Petri Net transition
ta with arcs p→ ta and ta → q.

For a parallel composition we must take care of the syn-
chronisation between actions. This is complicated by multiple
occurrences of the same action within a single process: in such
cases an a-step can potentially synchronize with any matching
a-step in each component. So, given a label a, we will intro-
duce a new Petri Net transition for each combination of LTS
transitions from different components. Note that components
in which a doesn’t occur should not block the synchronisation.

More formally, given action a, let index set I(a) =def

{i | a ∈ Σi} describe the processes that synchronize on a. Let
E(a, i) =def {(p, a, q) | p

a→i q} be the set of a-transitions
in Mi. Then we define the Petri Net (P, T,→) as follows:
• The set of places P =def

⋃
i∈1...n Si is the union of the

states of all components.
• The set of transitions T =def

⋃
a∈Σ

∏
i∈I(a)E(a, i) is

the Cartesian product of all transitions (p, a, q) in those
processes with a in their alphabet.

• For every (p, a, q) that participated in Petri Net transition
t, we set the arcs p→ t→ q.

• The initial marking M has M(si) = 1 for the initial
states si of Mi, and M(s) = 0, otherwise.

By construction, (P, T,→) is 1-safe, and the LTS of
(P, T,→) is isomorphic to the LTS of M .

B. Running Example

We demonstrate the Petri Net generated from two processes
in Section V, more specifically from the two components
illustrated in the rectangle on the left-hand side of Figure 5.
Red places (circles) originate from the respective process in
the first row of Figure 5 and blue places originate from the
respective process in the second row. The transitions a1 and
c1 are internal to the first component, whereas the labels b1
and d1 are synchronized.

a1

c1

d1 d1b1 b1
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C. Implementation.

We implemented the translation in Python. It takes a
description of M in dot-format, and generates a Petri Net
in PNML10 format. This format is also used in the MCC
competition [21]. The PNML format allows extra annotations
that can be used by model checkers. In particular, we expose
the structure of our Petri Nets in NUPN format (Nested-Unit
Petri Nets) [10] by declaring all places derived from a single
component as a unit.

VII. VALIDATION OF BENCHMARK HARDNESS

In order to check how hard the generated benchmarks
are, we analyse the feasibility of state space generation and
model checking. As input, we take an increasing chain of
n components, of the running example in Section V. We
transformed the example to a Petri Net following Section VI.
Note that the generated Petri Net could blow up exponentially
in principle, but due to the regular communication structure
this does not happen. The size of the generated Petri Nets
grows in the number of red and blue components as follows:

• Number of red components = |R|
• Number of blue components = |B|
• Number of transitions = |T | = 1 + 5 · |R∪B|2
• Number of places = |P | = 2 · |R|+ 4 · |B|
• Number of states (reachable markings) = |R| = 4|R∪B|

The (estimated) number of states indicates that explicit-
state model checking will not get very far. We will now
experiment with the symbolic model checker in LTSmin [20],
which scored highest in the LTL category of the last MCC
competion [21]. We performed two experiments: reachability
analysis and model checking. All experiments were run on an
AMD Opteron 4386 machine and 64GB memory. We used
LTSmin version 3.0, with a timeout of 30 minutes.

A. Symbolic Reachability Analysis

In this experiment, we just compute the Decision Diagram
consisting of all reachable states of the system. Symbolic
Reachability can exploit many tricks. In particular, we used
variable reordering and transition firing strategies. In LTSmin,
we experimented with reordering strategies FORCE [1] and
Sloan [27]. The Sloan strategy (based on Sloan’s matrix
bandwidth reduction algorithm) clearly wins. As transition
firing we used a combination of chaining and saturation as
reachability strategy. As underlying decision diagrams, we
took the multicore Multiway Decision Diagrams from Syl-
van [7].

Table I shows the size of the chain (number of red and blue
components), the size of the state space, computed by the
reachability tools, and the peak size and final size, indicating
the maximal intermediate and final number of MDD nodes
required to store the set of visited states symbolically.

10http://www.pnml.org/

B. Model Checking

Finally, we checked the following ACTL (action-based
CTL) property: AG AF a1, which means that action a1 occurs
infinitely often along each path. Note that this formula is
equivalent to the LTL property A GF a1.11

In LTSmin, we interpret this CTL formula in µ-calculus,
using a direct translation of CTL operators to fixpoints. Then
we use the straightforward algorithm [8] to evaluate µ-calculus
formulas as sets of states, taking advantage of the fact that
CTL formulas do not introduce any true µ/ν-alternations.
This set-based algorithm can be directly converted to MDDs,
as in [3]. It is possible to further optimize this algorithm
specifically for CTL. The µ-calculus algorithm based on
equation systems, provided by [6], is linear in the size of
the CTL formula and the explicit LTS. For symbolic state
spaces any model checking procedure for µ-calculus requires
exponential time [29]. However, one could implement smart
iteration heuristics, like saturation [35]. Our implementation
evaluates fixed points in a strict breadth-first manner. As a
consequence, the scalability of model checking CTL formulas
is much lower than for reachability properties.

The last column in Table I indicates the number of MDD
nodes required in model checking the ACTL property men-
tioned above. Note that the resources required by model
checking grow much faster than the requirements for state
space generation. We get a timeout when trying to model check
with size 128, this is shown is the bottom right entry.

structure State space CTL
|R| |B| states peak final peak
1 1 4 14 14 14
2 2 16 30 28 39
4 4 256 92 59 145
8 8 6.55 · 104 301 117 1107
16 16 4.29 · 109 430 224 10277
32 32 1.84 · 1019 4005 467 99813
64 64 3.40 · 1038 1816 896 875030
128 128 1.15 · 1077 3674 1792 TO

TABLE I: Number of states (left) and MDD nodes (right) with
growing chain

VIII. CONCLUSION

In this paper, we have proposed a systematic approach to
generate highly parallel benchmark systems, in particular in
terms of complex Petri Nets, that are guaranteed to satisfy
a set of given temporal properties. Key to our approach is
the iterative property-preserving parallel decomposition in a
light-weight assumption commitment style on the basis of
Modal Contracts. We have illustrated how a specific strategy
for design choices, which may well be automated, leads to
benchmarks that grow exponentially with the number of its
parallel components, and that are very difficult to verify. In
particular, we have reported numbers from a sequence of
systematic, concrete corresponding verification attempts using
today’s leading verification technology.

11Note that this is accidental: AFAG a1 is not equivalent to AFG a1.
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Currently, generated context components are deterministic
concerning the initial alphabet by construction, a property
that may be exploited by potential verifiers. We are there-
fore planning to eliminate this determinisms via a notion of
context-dependent semantic determinism, which we consider
very hard to distinguish from full non-determinism. In this
context, we will also investigate which influence dedicated
properties have on the tools performance, e.g. when they come
close to characteristic formulae [30], [31].

Benchmark problems generated with our method can be
guaranteed to explode in size. It has to be seen whether
our notion of hardness is stable in the context of advanced
reduction/verification techniques such as the compositional
minimization presented in [13], [14], (lazy) CEGAR [5],
[16], and partial order reduction [34], [28], [12], [9]. The
planned investigation of the corresponding interplay between
the introduction and reduction of difficulty is envisioned to
boost the progress of system verification.

Another line of future research is to include data and arith-
metic in the modeling language, for example in the fashion
proposed for sequential benchmarks in [32]. In particular when
allowing shared memory between the components this imposes
new challenges both for the generation process and, even more
so, for the solution of resulting benchmark problems.

We plan to make our generation tool available open source
in order to invite users to enhance the generation potential and
to contribute to a library of characteristic benchmarks. Ideally,
this will help to establish an accepted quality standard.
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