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Surface roughness plays an important role in the performance of highly loaded elastohydrodynamically

lubricated contacts. As the pressures are very high, each of the surface roughness components deforms

differently, and as a result the roughness inside the highly loaded contact is different from the

measured roughness. Under pure rolling conditions the amplitude reduction theory describes the

waviness deformation as a function of wavelength and operating conditions. The current work suggests

that similar predictions are possible under rolling sliding conditions, provided that the wavy surface

velocity u2 exceeds the smooth surface velocity u1. For u2 ou1 the maximum value of Ad=Ai depends on

the slide to roll ratio and may be significantly less than 1.0.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Surface roughness has an important influence on the perfor-
mance of concentrated lubricated contacts. The standard way of
accounting for the surface roughness is through the film thickness
to roughness parameter: h=s. However, under highly loaded
Elasto Hydrodynamically Lubricated (EHL) conditions, the
surfaces and the roughness deform. Hence it is important to be
able to predict this deformation in order to predict contact
performance. The roughness deformation has been studied using
semi-analytical methods [1–6] or using numerical techniques [7].
A parallel research effort has used numerical techniques to
predict lubrication of real measured roughness profiles [8,9].
Furthermore, experimental techniques have been used to test
the numerical predictions, studying the deformation of artificial
features [10,11] or the deformation of real roughness [12].

A consensus exists concerning the deformation of sinusoidal
waviness under pure rolling conditions, the so called Amplitude
Reduction Theory (ART), which predicts the deformation as a
function of a single dimensionless parameter r, containing the
wavelength and the operating conditions. Physically this para-
meter represents the ratio of the waviness and the length of the
inlet pressure sweep [3]. For large values of this parameter
the waviness is completely deformed, for short wavelengths the
deformation tends to zero. This prediction has been confirmed
experimentally for pure rolling [12].

However, for rolling sliding conditions, the situation is more
complicated and the semi-analytical models predict a deformation
ll rights reserved.

ubrecht).
of the waviness for both high and low wavelength values. A first
attempt to study the rolling sliding contact numerically was made
by Lubrecht et al. [13]. However, this work covered a much smaller
parameter range, than the current work. Furthermore, the identifi-
cation of the mechanics of the amplitude reduction theory (wave-
length to inlet length r) allows a more comfortable presentation of
the results. Recently, Hooke and co-workers [5,6] predicted the film
thickness perturbations in EHL contacts under rolling–sliding
conditions, using a perturbation analysis and an Eyring lubricant
model.

The current work originated from a discussion on the experi-
mental validation under rolling–sliding conditions which proved
more complicated than for pure rolling [14]. This incited the authors
to revisit the problem of waviness deformation in EHL under rolling/
sliding using a numerical analysis of the complete transient equa-
tions. For clarity, i.e. to see the dominant first order effects of rolling
sliding on waviness deformation, a line contact analysis was chosen,
and even though taking into account Eyring rheological behaviour
is not significantly more complicated, e.g. see [15], a simple
Newtonian model was used. The objective is to see if an overall
trend emerges that can be validated experimentally.
2. Theory

The dimensionless Reynolds equation for the transient line
contact problem reads:
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The boundary conditions are PðXa,TÞ ¼ PðXb,TÞ ¼ 0, 8T where Xa,
Xb denote the boundaries of the domain. Furthermore, the
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Nomenclature

Ad dimensionless deformed amplitude, Ad ¼ ½maxT ðHÞ�

minT ðHÞ�=2
ai initial amplitude (m)
Ai dimensionless initial amplitude Ai ¼ aiRx=b2

b contact half-width (m)
E0 reduced modulus of elasticity, 2=E0 ¼ ð1�n2

1Þ=E1þ

ð1�n2
2Þ=E2 (Pa)

G dimensionless material parameter G¼ aE0

h film thickness (m)
H dimensionless film thickness, H¼ hRx=b2

h0 integration constant
H0 dimensionless integration constant, H0 ¼ h0Rx=b2

L dimensionless lubricant parameter, L¼ Gð2UÞ0:25

M 1d dimensionless load parameter M¼Wð2UÞ�0:5

p pressure (Pa)
P dimensionless pressure P¼ p=ph

ph maximum Hertzian pressure
Rx reduced radius of curvature in x (m)
R surface waviness
T dimensionless time T ¼ ut=b

u1,u2 smooth (1) and rough (2) surface velocity (m/s)
u mean surface velocity u ¼ ðu1þu2Þ=2
U dimensionless velocity parameter, U ¼ Z0u=ðE0RxÞ

w 1d load per unit length (N/m)
W 1d dimensionless load parameter, W ¼w=ðE0Rx)
x coordinate in direction of rolling (m)
X dimensionless coordinate X ¼ x=b

X0 dimensionless scaling parameter
a pressure viscosity index (Pa�1)
a dimensionless parameter, a ¼ aph

r 1d dimensionless wavelength parameter, r¼ ðl=bÞ

ðM3=4=L1=2Þ

r 1d dimensionless wavelength parameter, r ¼ ðl=bÞ

ðM3=4=L1=2Þ
ffiffiffiffiffiffiffiffiffiffiffi
u=u2

p
l dimensionless speed parameter, l ¼ 12ðZ0uR2

x Þ=ðb
3phÞ

l roughness wavelength (m)
lh film thickness modulation wavelength (m)
Z viscosity (Pa s)
Z dimensionless viscosity, Z ¼ Z=Z0

n Poisson ratio
r density (kg/m3)
r dimensionless density, r ¼ r=r0
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cavitation condition PðX,TÞZ0, 8X,T must be satisfied. e and l are
defined according to:

e¼ rH3

Zl
, l ¼

12Z0uR2
x

b3ph

The density r is assumed to depend on the pressure according
to the Dowson and Higginson relation [16] and the Roelands
viscosity pressure relation [17] is used.

The film thickness equation is made dimensionless using the
same Hertzian parameters and accounting for a moving surface
waviness R reads:

HðX,TÞ ¼H0ðTÞþ
X2

2
�RðX,TÞ�

2

p

Z
O

PðX0,TÞln
X�X0

X0

� �
dX0 ð2Þ

where RðX,TÞ denotes the undeformed geometry of the surface
waviness at dimensionless time T and H0ðTÞ is an integration
constant. X0 is a dimensionless scaling parameter:

RðX,TÞ ¼ Ai cos 2p X�
u2

u
T

� �� .
ðl=bÞ

�
ð3Þ

The waviness equation is damped using an exponential, to start
from a smooth contact stationary solution, and to add the roughness
in a physically correct manner. This avoids unphysical start up effects.
The deformed amplitude was ‘‘measured’’ when a periodic response
of film thickness as a function of time was reached. The Ai value is
chosen as 0:1 Hc to remain in the linear range, the non-linear
extension is described by Biboulet et al. [18,19].

At all times the force balance condition is imposed, i.e. the
integral over the pressure must balance the externally applied
contact load. This condition determines the value of the integra-
tion constant H0ðTÞ in Eq. (2). Expressed in the dimensionless
variables it reads:Z
O

PðX,TÞ dX�
p
2
¼ 0, 8T ð4Þ

In physical terms this equation means that the acceleration
forces of the contacting bodies are neglected. The equations are
discretised to second order precision, using narrow upstream
discretization of the wedge and squeeze terms in the Reynolds
equation, see [21] and solved using MultiLevel techniques [20,22].
The deformed amplitude of the waviness is defined as a function
of the operating conditions through the following relation:

2Ad ¼max
T

Hð0,TÞ�min
T

Hð0,TÞ ð5Þ

The time T is chosen large enough to avoid start-up effects.
3. Results

Fig. 1 shows the pressure and film thickness distribution as a
function of X for a periodic time distribution. From the film
thickness distribution the deformed amplitude Ad can be
obtained. In order to study the influence of the different operating
parameters on the deformed amplitude, the parameters M, L, l=b

and the slide to roll ratio u2=u have been varied and the deformed
amplitude was recorded.

Fig. 1b shows a detail of the film thickness distributions as a
function of the slide to roll ratio. The deformed waviness changes
wavelength and a small amplitude variation can also be observed.

Fig. 2 shows the amplitude reduction Ad=Ai as a function of the
standard waviness parameter r. The results show that indeed the
deformed amplitude tends to zero for large values of r. However,
the scatter obtained is large and increases towards the low r
zone, where the results obtained vary between 0 and 1. For these
low r values the scatter renders the curve useless. However, a
more detailed analysis shows that the scatter is not random at all!

When plotting the amplitude reduction as a function of the
dimensionless wavelength r, for a single slide to roll ratio, rather
smooth curves are obtained, see Figs. 3 and 4. However, two distinct
types of behaviour are observed, for u2ou1 (Fig. 3) the maximum
value of Ad=Ai is significantly less than 1. Furthermore, this max-
imum value depends on the slide to roll ratio. For u24u1 (Fig. 4)
however, the maximum value of Ad=Ai is very close to 1 and is
independent of the slide to roll ratio. Hence it was decided to
analyse the results of the cases u2ou1 and u24u1 separately.

Fig. 5 shows the amplitude reduction Ad=Ai as a function of the
standard waviness parameter r for u24u1 only. The results show
that indeed the deformed amplitude tends to zero for small and
large values of r. However, the scatter on the curve obtained is
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Fig. 1. (a) Pressure and film thickness distribution for M¼100, L¼10, l=b¼ 0:25

and u2=u ¼ 1:0. (b) Detail of film thickness distribution for M¼100, L¼10,

l=b¼ 0:25 and u2=u ¼ 1:0 . . .1:8.
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Fig. 2. Amplitude reduction as a function of r for rolling sliding

u2=u ¼ 0:20 . . .0:9,1:1, . . .1:9.
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Fig. 3. Amplitude reduction as a function of r for rolling sliding u2=u ¼ 0:5.
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Fig. 4. Amplitude reduction as a function of r for rolling sliding u2=u ¼ 1:5.
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Fig. 5. Amplitude reduction as a function of r for rolling sliding u2=u ¼ 1:1, . . .1:9.
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rather large, particularly in the low r zone. When analysing the
results for low r values, it was found that the order of the points
was determined by the slide to roll ratio u2=u.
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Fig. 6. Amplitude reduction as a function of r for rolling sliding

u2=u ¼ 1:1,1:2,1:3 . . .1:9.
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As such a modified r parameter was introduced. The basic idea
from the influence of the slide to roll ratio on the ordering of the
points was to replace the mean velocity u by the wavy surface
velocity u2. The mean velocity appears in both the M and L

parameter. Because of the powers on M and L, u appears with
power of �0.5 in the r parameter. As such a modified r parameter
was introduced, defined as r ¼r

ffiffiffiffiffiffiffiffiffiffiffi
u=u2

p
. This dimensionless wave-

length parameter uses the velocity of the wavy surface u2 as the
reference velocity, instead of the mean velocity u used in the
standard r parameter.

Fig. 6 displays the amplitude reduction Ad=Ai as a function of
the modified waviness parameterr . The figure shows that indeed
the scatter is much reduced, especially in the low r zone and a
single master curve is indeed obtained.
4. Discussion

As was the case for the numerically obtained master curve
under pure rolling conditions, the results do not exactly fall onto a
single line. Numerical tests using finer grids show that the error in
the deformed amplitude Ad is generally less than 5%. Furthermore,
the linearity was checked using smaller amplitudes Ai. The scatter
observed in Fig. 5 does not seem to stem from either of these two
numerical sources.

A possible explanation for the scatter might be the influence
of secondary order effects, such as the rigid body motion, which
is influenced by the force balance over the contact area. Hence,
the force balance perturbations would be influenced by the
wavelength.

Compared with the results reported in [5], the overall trend is very
similar; the dominant parameter is the dimensionless wavelength,
compared to the inlet length r. The curve shows an amplitude that
goes to zero for small and large values of the dimensionless
wavelength. Furthermore, a maximum amplitude is found to be less
than 1 for the cases where u2ou1. Finally, a similar scatter around
the master curve is observed by Hooke et al. [5, Fig. 12]. However,
some differences are also observed, the constant maximum ampli-
tude for u24u1 and the slightly better fit using the modified
wavelength parameter. Experiments will have to determine if the
Eyring model is essential in predicting the roughness deformation
correctly.
5. Conclusion

The current paper analyses the amplitude reduction of wavi-
ness in EHL line contacts for slide to roll ratios u2=u varying from
0.2 to 0.9 and from 1.1 to 1.9. The work suggests that a single
master curve exists, describing the amplitude reduction under
rolling–sliding conditions, when the wavy surface velocity u2

exceeds the smooth surface velocity u1. The amplitude reduction
is maximum for both short and long wavelengths, i.e.
Ad=Aiðr ¼ 0Þ ¼ 0 and Ad=Aiðr ¼1Þ¼ 0. In between these two
extremes the waviness amplitude is not reduced, i.e. Ad=Ai ¼ 1.
This maximum value occurs for all slide to roll ratios from 1.1 to
1.9. The amplitude reduction reduces to a single curve when
accounting for the slide to roll ratio u2=u, hence the use of the
modified waviness parameter r . It seems that for slide to roll
ratios u2ou1, the maximum value attained is different, as
predicted by Hooke et al. and therefore the quest for a single
master curve will involve a more complex parameter on the
vertical axis. Finally, the current work requires an extension to
circular contacts and two dimensional contact waviness.
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Appendix A. Numerical example

To illustrate the dependence of amplitude reduction of waviness
under sliding conditions, a quantitative example is given. Consider
the case with the following parameters: a¼ 2:0� 10�8 Pa�1, E0 ¼

2:1011 Pa, Z0 ¼ 0;04 Pa s, u ¼ 1:0 m=s, R¼0.01 m, w¼ 1:3� 106

N=m. The values of the Hertzian parameters are ph ¼ 2 GPa and
b¼ 4� 10�4 m.

The values of the Dowson and Higginson Parameters are
W ¼ 6:5� 10�4, U ¼ 2� 10�11, and G¼ 4:0� 103. The values of
the Moes parameters are M¼100 and L¼10. The central film
thickness for this case is 0:22 mm. The value of r for this case
r¼ 10ðl=bÞ.

Let the undeformed amplitude and wavelength of three
components be given by aiðl¼ 4� 10�4

Þ ¼ 0:2 mm, aiðl¼ 2�
10�4
Þ ¼ 0:1 mm, and aiðl¼ 1� 10�4

Þ ¼ 0:05 mm. For ðu2=uÞ ¼ 1
(pure rolling) the computed values of ad=ai for these components
are: 0.17, 0.38, and 0.66 (the values obtained from the curve-fit
formula given in [7] are 0.16, 0.38, and 0.64), giving values of the
deformed amplitudes of 0.035, 0.038 and 0:033 mm, illustrating
the wavelength dependent deformation.

For the case of sliding the situation is more complex, as the
wavelength of the film thickness oscillation in the contact, say lh,
differs from the wavelength of the surface waviness l according
to lh ¼ l=ðu2=uÞ. For ðu2=uÞ ¼ 0:5 (the waviness is on the slower
surface) the values of lh are 8� 10�4, 4� 10�4 and 2� 10�4 m,
and the values of ad=ai are 0.12, 0.30, and 0.53. So, assuming the
same initial amplitudes of 0.2, 0.1 and 0:05 mm the amplitudes of
the associated film disturbances will be 0.025, 0.030 and
0:027 mm respectively. Note that, due to the wavelength elonga-
tion, the film thickness oscillations induced by the waviness
significantly differ from those that would be produced by the
undeformed waviness passing through the conjunction.

For ðu2=uÞ ¼ 1:5 (the waviness is on the faster surface) the
apparent wavelength is shorter. For the three components
the values are lh ¼ 2:67� 10�4, 1:34� 10�4 and 0:67� 10�4.
The computed values of ad=ai are 0.20, 0.45, and 0.77, so, the
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amplitudes of the associated film thickness oscillations are 0.041,
0.045, and 0:038 mm.

These examples clearly indicate that a pattern consisting of
multiple waves will cause a film oscillation in the contact region
that significantly differs from the undeformed waviness and
strongly depends on the slide to roll ratio.
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