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Abstract. We propose a novel approach to developing a dialogue model that is 
able to take into account some aspects of the user's affective state and to act 
appropriately. Our dialogue model uses a Partially Observable Markov Decision 
Process approach with observations composed of the observed user's affective 
state and action. A simple example of route navigation is explained to clarify our 
approach. The preliminary results showed that: (1) the expected return of the 
optimal dialogue strategy depends on the correlation between the user's affective 
state & the user's action and (2) the POMDP dialogue strategy outperforms five 
other dialogue strategies (the random, three handcrafted and greedy action 
selection strategies). 
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Introduction 

We aim to develop dialogue management models which are able to act appropriately by 
taking into account some aspects of the user's affective state. These models are called 
affective dialogue models. Concretely, our affective dialogue manager processes two 
main inputs, namely the user's action (e.g., dialogue act) and the user's affective state, 
and selects the most appropriate system's action based on these inputs and the context. 
In human-computer dialogue, this work is difficult because the recognition results of 
the user's action and affective state are ambiguous and uncertain. Furthermore, the 
user's affective state can change over time. Therefore, an affective dialogue model 
should take into account both the basic dialogue principles (such as turn-taking and 
grounding) and the dynamic aspects of the user's affective state.  

We found that Partially Observable Markov Decision Processes (POMDPs) are 
suitable for use in designing these affective dialogue models because of three main 
reasons. First, the POMDP allows for realistic modeling the user's affective state, user's 
intention, and other user's hidden states by incorporating them into the state space. 
Second, the recent dialogue management research for spoken dialogue systems 
[1,2,3,4] has shown that the POMDP-based dialogue model is able to cope well with 
the uncertainty that can occur at many levels inside a dialogue system from the speech 
recognition, natural language understanding to the dialogue management. Third, the 
transition model and observation model of a POMDP are usually represented by a set 
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of Dynamic Bayesian Networks. These networks are suitable for modeling the user 
affect and for simulating the behavior of the user.  

In this paper, we first introduce a short overview of POMDP and its application to 
the dialogue management problem. Second, a general affective dialogue model using 
POMDP is described. Then, we present a simple example to illustrate our ideas and 
discuss future work. 

1. POMDP and Dialogue Management 

A POMDP is defined by the tuple <S,A,Z,T,O,R>, where S is the set of states (of 
the environment), A is the set of the agent's actions, Z is the set of observations the 
agent can experience of its environment, T is the transition model, O is the observation 
model, and R is the reward model (Figure 2a).  

In a dialogue management context (Figure 1), the agent is the system (i.e., the 
dialogue manager) and a part of the POMDP environment represents the user's state. 
The system uses a state estimator (SE) to compute its internal belief about the user's 
current state and a policy π to select actions. SE takes as its input the previous belief 
state, the most recent action and the most recent observation, and returns an updated 
belief state. The policy π selects actions based on the system's current belief state [5].  

 

 
Figure 1. The interaction between the agent (the system) and its environment (the user) in a dialogue 

management context 

Concretely, the system starts with an initial belief state b0. At time t, the system 
belief is b, it selects action a and sends to the user. The user's state changes to s'. 
State s' is unobservable and the system only gets observation z'. At this moment the 
system needs to update its belief state b' given knowing b,a,z': 
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where α=1/P(z'|a,b) is the normalizing constant. 



The system task is usually involved in finding the optimal policy (i.e. optimal 
dialogue strategy) π*=argmaxπE[V

π(b)], where E[Vπ(b)] is the expected value 
function and  
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γ is a discount factor which ensures the sum is finite (0≤γ<1) and the closer γ to 1 
the more effect future rewards have on current system action selection.  

The first work that applies POMDP for the dialogue management problem is 
proposed by Roy and his colleagues for the nursing home robot application [1]. In this 
application, a flat POMDP is used where the states represent the user's intentions; the 
observations are the speech utterances from the user; and the actions are the system 
responses. They show that the POMDP dialogue manager handles well with noisy 
speech utterances, for example their POMDP-based dialogue manager makes fewer 
mistakes than an MDP dialogue manager and it automatically adjusts the dialogue 
policy when the quality of the speech recognition degrades. Zhang's model [2] extends 
Roy's model in several dimensions: (1) a factored POMDP [6] is deployed for the state 
and observation sets, (2) the states are composed of the user's intensions and "hidden 
system states", (3) the observations are the user's utterances and other observation 
being inferred from lower-level information of speech recognizer, robust parser, and 
other input modalities. Williams's model [3,4] further extends Zhang's model by adding 
the state of the dialogue from the perspective of the user to the state set. All these 
approaches focus on spoken dialogue systems.  

Our POMDP dialogue model extends the previous work by integrating the user's 
affective states and observed user's affective states into state and observation spaces. 
Furthermore, we propose to verify the performance of the POMDP-based dialogue 
strategy as well as to simulate the user behavior using a set of parameters (to generate 
the transition and observation models). The detail of the model is described in the next 
section.  

2. A POMDP Approach to Affective Dialogue Modeling 

We select the factored POMDP [6] for representing our affective dialogue model.  The 
state set and observation set are composed of six features. The state set is composed of 
the user’s goal (Gu), the user’s affective state (Eu), the user’s action (Au), and the user’s 
grounding state (Du) (similar to the user's dialogue state described in [3,4]). The 
observation set is composed of the observed user’s action (OAu) and the observed 
user’s affective state (OEu). Depending on the complexity of the application’s domain, 
these features can be represented by more specific features. For example, the user’s 
affective state can be encoded by continuous variables such as valence and arousal, and 
can be represented using a continuous-state POMDP [7]. The observed affective state 
might be represented by a set of observable effects such as response speech, speech 
pitch, speech volume, posture, and gesture [8].   

 



 
Figure 2. (a) Standard POMDP, (b) Two time-slice of factored POMDP for ADM, where state set S is 

factored into four features Gu, Eu, Au, and Du, the observation set Z is factored into two features OAu and OEu

At the moment we are focusing on finite-state discrete-time POMDPs. Figure 2b 
shows our affective dialogue model (ADM). The features of the state set, action set, 
observation set, and their correlations form a two time-slice Dynamic Bayesian 
Network (2TBN). The 2TBN in Figure 2b is built for our route navigation example that 
will be presented in Section 4. We can easily modify this 2TBN for representing other 
correlations, for example the correlation between the user's goal and affective state. 
Parameters pgc, pec, pe, poa, and poe are used to produce the transition and 
observation models in case no real data is available, where pgc and pec are the 
probabilities that the user's goal and emotion change; pe is the probability of the user's 
action error induced by emotion; poa and poe are the probabilities of the observed 
action and observed affective state errors. 

The reward model depends on each specific application. Therefore, it is not 
specified in our general affective dialogue model. 

3. Example: Route Navigation in an Unsafe Tunnel 

We illustrate our affective dialogue model described in Section 2 by a simulated toy 
route navigation example. An accident happened in a tunnel. A rescue member 
(denoted by ``the user'') is sent to the unsafe part of the tunnel to evacuate some injured 
victims. Suppose the user is in one of three locations (v1,v2,v3). The user interacts 
with the system which is located at the operation center. The system is able to produce 
the route description when knowing the user's current location. Furthermore, the system 
can detect the user's stressful state (nostress or stress) and uses this information 
to act appropriately. In this simple example, the system can ask the user about his 
current location, confirm a location provided by the user, show route description 
(ok) of a given location, and stop the dialogue by connecting the user with the 
operator. 

The POMDP for this problem is represented by S=<Gu×Au×Eu×Du>= 
<{v1,v2,v3}×{answer(v1),answer(v2),answer(v3),yes,no}×{stres
s,nostress}×{notstated,stated}>,A={ask,confirm(v1),confirm



(v2),confirm(v3),ok(v1),ok(v2),ok(v3),stop}>,O=<OAu×OEu>=<{an
swer(v1),answer(v2),answer(v3),yes,no}×{stress,nostress}>. 
The full flat-POMDP model is composed of 61 states (including a special end state), 
eight actions, and ten observations. 

The transition and observation models are generated from the 2TBN (Figure 2b). 
We assume that the observed user's action only depends on the true user's action (i.e. 
P(oau|au)=(1-poa) if oau=au, otherwise P(oau|au)=poa/4). The observed 
user's affective state is computed in a similar way. We use two criteria to specify the 
reward model, helping the user obtain the correct route description as soon as possible 
and maintaining the dialogue appropriateness [3]. Concretely, if the system confirms 
when the user's dialogue state is notstated , the reward is -2, the reward is -5 for 
action stop, the reward is 10 for action ok(vi) if gu=vi, otherwise the reward is   
-10. The reward for any action taken in the absorbing end state is 0. The reward for 
any other action is -1.  Whenever the system selects actions ok or stop, the current 
state changes to the end state and the dialogue episode (or dialogue session) is ended.  
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Figure 3. Expected return vs. the user’s action error induced by stress pe

The expected return (i.e. the expected amount of future discounted reward the 
agent can gather in a large number of steps) of the optimal policy (Figure 3) is 
computed using the Perseus [9] which is an approximate POMDP algorithm that 
requires two inputs, a number of belief points and a maximum runtime value. We 
found 1000 belief points and a runtime of 60 seconds be a good choice for testing our 
problem. The probability of the user's action error being induced by stress pe changes 
from 0 (stress has no influence to the user's action selection) to 0.8 (the user is highly 
stressed and acts almost randomly). Three lines in Figure 3 are: no observation error 
(poa=poe=0.0); low observation error (poa=poe=0.1); and high observation error 
(poa=poe=0.3). All these lines show that the expected return of the optimal policy 
depends on pe. 
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Figure 4. Comparison between POMDP and other dialogue strategies 

Figure 4 shows a quantitative comparison between the POMDP dialogue strategy 
and a set of five other system dialogue strategies (1. select action randomly, 2. first ask 
and give route description (SDS-HC1), 3. first ask, then confirm, and give route 
description (SDS-HC2), 4. first ask, then confirm if stress, and give route description 
(ADS-HC), 5. select the greedy action using a set of 2 time-slice Dynamic Decision 
Networks (DDNPOMDP). Strategy 1 aims to show the difference between the random 
dialogue strategy and other dialogue strategies. Strategies 2 and 3 are considered as the 
non-affective dialogue strategies since they ignore the user's stress state. Strategy 4 
uses commonsense rules to generate the system behavior. Strategy 5 is a special case of 
the POMDP-based dialogue with the discount factor γ=0 (this strategy is used in 
[10,11]).  The result is obtained by letting each strategy interact with the simulated user 
(the simulated user model is constructed as a 2TBN described in Figure 2b). The 
average return is the average dialogue episode reward the agent receives (1000 
dialogue episodes are carried out for each strategy). As expected, the POMDP dialogue 
strategy outperforms all other strategies, see Figure 4.   

4. Conclusions and Future Work 

We have presented a POMDP approach to affective dialogue modeling and illustrated 
our affective dialogue model by a simple example. The 2TBN representation allows 
integrating the features of states, actions, and observations in a flexible way. We have 
also shown that even if the observation is perfect, the expected return of the optimal 
dialogue strategy depends on the correlation between the user's affective state and the 
user's action. The POMDP dialogue strategy outperforms five other strategies (the 
random, three handcrafted and greedy action selection strategy). Furthermore, the 
POMDP dialogue strategy copes well with different types of errors such as speech 
recognition error [1,2,3,4] and the user's action error being induced by stress as showed 
in Section 3. 

However, solving the POMDP problem (i.e. finding the optimal policy) is 
computationally expensive. Therefore, all currently developed POMDP dialogue 
management work is limited to toy frame-based dialogue problems with the size of 



several slots [4]. We are currently working with the scaling up issue; especially we 
focus on the online belief update for real-world dialogue systems. 
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