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Abstract

In the paper we introduce weighted and restricted versions of the Deegan-Packel power

index. We show that the classical Deegan-Packel index, which was proposed as an

alternative to the Shapley-Shubik index, in fact coincides with the Shapley value of some

specific game determined by the set of minimal winning coalitions, and therefore, it has

close affinities with the Shapley-Shubik index. We investigate monotonicity properties

of the weighted Deegan-Packel index and introduce easy to check conditions under which

it is monotonic with respect to the players’ weights. An axiomatic characterization of

the weighted Deegan-Packel index is provided. The computations done for three real-life

examples from realm of politics demonstrate clearly the coincidence of our theoretical

predictions with the reality.
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1 Introduction

After parliamentary elections, the situation in which different parties who won a positive

number of seats should decide which coalitions to join to form a majority, is quite standard

on the political podium. In real life it happens quite often that different majorities are

feasible and several parties may choose among a number of alternatives. In such cases it is

important to have a tool that allows the parties to evaluate properly their actual position

under different opportunities, and therefore, to make a better decision concerning their own

choice. On the other hand, the same tool may be used by an external agent intending to

predict which coalition is the most likely to form the majority. This problem is usually

modeled from the game theoretical point of view as a simple cooperative game, and a

weighted majority game is often applied for this purpose. A solution to such simple game is
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called a power index. Several power indices are well known in the literature, for example, the
Shapley-Shubik index (cf. Shapley and Shubik [12]), the Banzhaf index (cf. Banzhaf [1]), the
Deegan-Packel index (cf. Deegan and Packel [4]), etc. To estimate the power distribution
different power indices apply different principles. For example, both Shapley-Shubik and
Banzhaf indices take into account the player’s participation in all winning coalitions, while
the Deegan-Packel index counts only minimal winning coalitions the player belongs to. The
latter approach is not only more efficient from computational point of view, but it has been
also widely appreciated and accepted by political scientists already for long. For example,
in Riker [10] it is shown that there are no circumstances wherein an incentive exists for
coalitions of greater than minimal winning size to form and, on the other hand, there are
sufficient incentives for such coalitions to form. Also the works of Brams and Fishburn [2]
and [3] deserve mentioning in this context. Indeed, an ejection of the superfluous members
from a large winning coalition means that the same total amount of value can be divided
among the fewer members of its minimal winning subcoalition. Thus, the obtained profit
(power) of each of the members, still left in the winning coalition, becomes higher. Moreover,
the minimal winning coalitions are also more stable in comparison to the larger ones because
all their members have no interest in the loss of any of their partners, which in such a case
leads to the loss of winning power of the whole remaining coalition.

However, classical power indices usually evaluate only the ability of parties to form
winning coalitions. But for evaluation of the importance of a party in the majority formation
not only the party’s formal ability to participate in winning coalitions plays a role. Also
some other parameters representing asymmetries between the parties such as the party’s
social impact or social importance reflected in a number of seats the party won during the
elections, and also the party’s ability to cooperate with the other parties, which may be
represented in terms of feasible communication (cooperation) links between the parties, are
important. For instance, a simple example of a hypothetical parliament consisting of 99
members and composed by three parties that have correspondingly 49, 49 and 1 seats clearly
demonstrates the importance of taking into account the parties’ weights when evaluating
their power. In fact, while all these three parties play equal roles in the creation of winning
coalitions (any two-party coalition in this example is winning) the social evaluation and
social respect of the parties are much different. Moreover, any of the two-party coalitions,
which includes the last party with only one seat, is no longer winning if one of its members
is absent or vote differently from the others, while the coalition formed by the first two
parties, each one possessing 49 seats, keeps the winning position even in cases of defections
of up to 48 of its members. Unfortunately, the use of the weighted Shapley-Shubik power
index, determined by the weighted Shapley value (cf. Shapley [11]) instead of the classical
Shapley value (cf. Shapley [11]) used by the Shapley-Shubik index, cannot help to solve
the problem. The weighted Shapley-Shubik index indeed takes into account the weights of
participants, but as it was noted by Owen [9], the weighted Shapley value and the weighted
Shapley-Shubik power index in general and, in particular, the weighted Shapley-Shubik
power index in the weighted majority game, may display nonmonotonicity with respect to
the players’ weights.

In this paper we introduce weighted and restricted versions of the Deegan-Packel power
index. We show that the classical Deegan-Packel index, which was proposed by the authors
as an alternative to the Shapley-Shubik index1, in fact coincides with the Shapley value of

1Deegan and Packel on page 113 in [4] wrote: ”In this paper we propose another power index which,
under easily stated assumptions, quantifies an alternate a priori model of power determination.”
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some specific game determined by the set of minimal winning coalitions, and therefore, it
has close affinities with the Shapley-Shubik index. Similarly to the Deegan-Packel index,
its weighted version, and also its restricted and weighted restricted versions when restric-
tions are introduced by means of communication graph, coincide correspondingly with the
weighted Shapley value, the Myerson value (cf. Myerson [8]), and the weighted Myerson
value (cf. Haeringer [6]) of the same game. We investigate the monotonicity property of the
weighted Deegan-Packel index and introduce quite easy to check conditions under which
the weighted Deegan-Packel index is monotonic with respect to the players’ weights. An ax-
iomatic characterization of the weighted Deegan-Packel index is provided. To illustrate the
practical value of the proposed power indices we consider their application for the analysis
of three real-life historical examples of parliamentary elections: (i) 1983 Italian Parliament
elections after which Bettino Craxi, the leader of the Italian Socialist Party that got only
73 seats in the Lower Chamber from the total amount of 630, but that had very strong cen-
tral position, became the Prime Minister; (ii) 2009 Basque Country Parliament elections
after which the Basque Nationalist Party winning the largest number of seats finally was
not included into the government coalition due to its weak ability to communicate with
other political parties; (iii) 2009 Israeli Knesset election after which the Prime Minister,
Benjamin Netanyahu, was chosen not from the winning party Kodima, but from the next
winning Likud due to its better ability to cooperate with other parties. The computations
done show good coincidence of our theoretical predictions with the reality, and thus, clearly
demonstrate practical efficiency of applying the proposed power indices.

The structure of the paper is as follows. Preliminaries are given in Section 2. In
Section 3 we introduce a weighted Deegan-Packel index, discuss its properties, and provide
an axiomatic characterization. Section 4 considers restricted modifications of the Deegan-
Packel index when not all minimal winning coalitions are feasible. In Section 5 we discuss the
application of the introduced indices to analyze three historical examples of parliamentary
elections.

2 Preliminaries

A cooperative game with transferable utility (TU game) is a pair (N, v), where N ⊂ IN,
N = {1, . . . , n}, is a finite set of n players and v : 2N → IR is a characteristic function with
v(∅) = 0, assigning to every coalition (subset) of players S ⊆ N its worth v(S), which can
be freely distributed among the members of S. By GN we denote the set of all TU games
with fixed player set N . For ease of notation if no ambiguity appears we write v when we
refer to a game (N, v). A singleton solution on G ⊆ GN , usually called a value on G, is a
mapping ξ : G → IRN that assigns to every v ∈ G a payoff vector ξ(v) ∈ IRN , where ξi(v) is
the payoff to player i ∈ N in v. In the sequel we denote the cardinality of a set A by |A|
along with lower case letters like n = |N |, m = |M |, nk = |Nk|, etc., and we use standard
notation x(S)=

∑

i∈S

xi for any x∈ IRN and S ⊆ N .

It is well known (cf. Shapley [11]) that unanimity games uT ∈ GN , T ⊆ N , T 6= ∅,
defined as

uT (S) =

{

1, T ⊆ S,

0, T * S,
for all S ⊆ N,
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form a basis in GN , i.e., every v ∈ GN can be uniquely presented in the linear form

v=
∑

T⊆N,T 6=∅

λv
T uT , (1)

where the coefficient λv
T is usually referred to as the Harsanyi dividend of coalition T in

game v (cf. Harsanyi [5]). One of the most appealing and well known singleton solution
concepts is the Shapley value (cf. Shapley [11]) which assigns to a game v ∈ GN a payoff
vector Sh(v) ∈ IRN given by

Shi(v) =
∑

T⊆N

T∋i

λv
T

t
, for all i ∈ N. (2)

Given a vector of positive weights of the players w ∈ IRN , wi > 0, i ∈ N , the weighted

Shapley value (cf. Shapley [11]) assigns to a game v ∈ GN a payoff vector Shw(v) ∈ IRN

given by

Shwi (v) =
∑

T⊆N

T∋i

λv
T

wi

w(T )
, for all i ∈ N.

A game v ∈ GN is monotonic if for all S ⊆ T ⊆ N , v(S) ≤ v(T ). Note that every
monotonic game is nonnegative, i.e., v(S) ≥ 0 for all S ⊆ N . A monotonic game v ∈
GN is simple if it takes only the values 0 and 1. In a simple game v a coalition S is
winning if v(S) = 1, otherwise S is losing. A coalition S is minimal winning if all its
proper subcoalitions T $ S are losing. It is easy to see that every simple game is uniquely
determined by the set of its minimal winning coalitions. For a simple game v the set of all
winning coalitions and its subset of all minimal winning coalitions we denote correspondingly
by W (v) and Ŵ (v). A simple game is proper if for every winning coalition S ⊆ N the
complementary coalition N\S is losing. In what follows we concentrate on nontrivial proper
simple games, i.e., on proper simple games with the winning grand coalition, and the class
of these games we denote by Gs

N . For any two games v, v′ ∈ Gs
N , a merged game v∨ v′ ∈ Gs

N

is defined as

(v ∨ v′)(S) =

{
1, v(S) = 1 or v′(S) = 1,

0, otherwise,
for all S ⊆ N.

Two games v, v′ ∈ Gs
N are mergeable if for all S ∈ Ŵ (v) and T ∈ Ŵ (v′), S * T and

T * S, i.e., Ŵ (v) ∩ Ŵ (v′) = ∅. Observe that for mergeable games v, v′ ∈ Gs
N it holds that

Ŵ (v ∨ v′) = Ŵ (v) ∪ Ŵ (v′), and therefore,

|Ŵ (v ∨ v′)| = |Ŵ (v)|+ |Ŵ (v′)|. (3)

Given a game v ∈ GN , a coalition S ⊆ N is a coalition of partners or a p-type coalition
in v if v(R ∪ T ) = v(R) for all T $ S and R ⊆ N\S, i.e., every proper subcoalition of a
p-type coalition is powerless. A player i ∈ N is a null-player in game v ∈ GN if he adds
nothing to every coalition not containing him, i.e., v(S ∪ {i}) = v(S) for all S ⊆ N\{i}.
Obviously, in any game, a coalition composed by only null-players is a p-type coalition. A
player i ∈ N is a veto-player in game v ∈ GN if every coalition not containing him possesses
zero worth, i.e., v(S) = 0 for all S ⊆ N\{i}. A game v ∈ GN is a veto-rich game if it has
at least one veto-player. For a simple game v ∈ Gs

N and a winning coalition S ∈ W (v), a
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player i ∈ S is pivotal if S\{i} is losing, i.e., S\{i} /∈ W (v). In a veto-rich simple game
v ∈ Gs

N a veto-player i ∈ N is pivotal for every winning coalition S ⊆ N , S ∋ i. Note that
in a simple game v ∈ Gs

N , for every S ∈ W (v), every null-player i ∈ S is non-pivotal, and for

every S ∈ Ŵ (v) every i ∈ S is pivotal and, therefore, is not a null-player. In a simple game
v ∈ Gs

N a player i ∈ ∩
Q∈Ŵ (v)

Q, i.e., a player belonging to every minimal winning coalition,

is a veto-player.
Given a tuple [q;w1, ..., wn] where q > 0 is an a priori given majority quota and a

nonnegative n-vector w = (w1, ..., wn) ∈ IRN
+ (wi ≥ 0, i ∈ N) represents the weights (not

necessarily normalized to 1) of players, a weighted majority game vw on the player set N is
a simple game defined as

vw(S) =

{
1, w(S) > q,

0, otherwise,
for all S ⊆ N. (4)

When q ≥
w(N)

2
, the corresponding weighted majority game vw is a proper simple game,

i.e., vw ∈ Gs
N .

A value applied to the subclass of simple games Gs
N , in particular to simple majority

games, is called a power index and each of its components is interpreted as a power assigned
to the corresponding player. Several power indices are known from the literature.

The Shapley-Shubik power index (cf. Shapley and Shubik [12]) is defined as the Shapley
value of a given simple game and for each player it is determined by all winning coalitions
for which the player is critical. For a simple game v ∈ Gs

N the Shapley-Shubik index is given
by

SSi(v) =
∑

S/∈W (v),S∪{i}∈W (v)
S⊆N\{i}

s! (n− s− 1)!

n!
, for all i ∈ N. (5)

The Deegan-Packel power index (cf. Deegan and Packel [4]), unlike the Shapley-Shubik
index, counts only minimal winning coalitions: the total power is firstly divided equally
among minimal winning coalitions and then the power of each of them is divided equally
among its members. For a simple game v ∈ Gs

N the Deegan-Packel index is defined as

DPi(v) =
1

|Ŵ (v)|

∑

S∈Ŵ (v)
S∋i

1

s
, for all i ∈ N. (6)

A communication structure on N ⊂ IN is specified by a graph, which is a pair (N,Γ),
where N is the set of nodes (players) and Γ ⊆ {{i, j} | i, j ∈ N, i 6= j} is the set of links
(edges) between two nodes in N . For ease of notation and if no ambiguity appears we write
Γ when we refer to a graph (N,Γ). For a graph Γ on N and S ⊆ N , the subgraph of Γ
induced by S is the graph Γ|S = {{i, j} ∈ Γ | i, j ∈ S} on S. In a graph Γ a sequence of
different nodes (i1, . . . , ir), r ≥ 2, is a path in Γ between i1 and ir if {ih, ih+1} ∈ Γ for
h= 1, . . . , r−1. Nodes i, j ∈ N , i 6= j, are connected in graph Γ if there exists a path in
Γ between i and j. Γ is connected if any i, j ∈ N , i 6= j, are connected in Γ. S ⊆ N is
connected in Γ if Γ|S is connected. For S ⊆ N , CΓ(S) denotes the collection of subsets of
S connected in Γ, S/Γ is the collection of maximal connected subsets, called components,
of S in Γ, and (S/Γ)i is the (unique) component of S in Γ containing i ∈ S. For ease of
notation given a graph Γ and a link {i, j} ∈ Γ, the subgraph Γ\{{i, j}} is denoted by Γ−ij .
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A pair (v,Γ) of a game v ∈ GN and a graph Γ on N constitutes a game with graph
communication structure, for brevity called graph game, on N . The set of all graph games
with fixed player set N we denote by GΓ

N . A singleton solution on a set of graph games
G ⊆ GΓ

N , called a graph game value, or simply value for brevity if no ambiguity appears, on
G, is a mapping ξ : G → IRN , which assigns to every (v,Γ) ∈ G a payoff vector ξ(v,Γ) ∈ IRN .
The Myerson value (cf. Myerson [8]) assigns to a graph game (v,Γ) ∈ GΓ

N a payoff vector
µ(v,Γ) ∈ IRN given by

µi(v,Γ) = Shi(v
Γ), for all i ∈ N,

where
vΓ(S) =

∑

C∈S/Γ

v(C), for all S ⊆ N.

Given a vector of positive weights of the players w ∈ IRN , wi > 0, i ∈ N , the weighted

Myerson value (cf. Haeringer [6]) assigns to a graph game (v,Γ) ∈ GΓ

N a payoff vector
µw(v,Γ) ∈ IRN given by

µw
i (v,Γ) = Shwi (v

Γ), for all i ∈ N.

3 Weighted Deegan-Packel index, properties and

axiomatization

3.1 Definition and relation to the Shapley value

Given a simple game v ∈ Gs
N and a vector of positive weights of the players w ∈ IRN

++

(wi > 0, i ∈ N) we assume that unlike the equal distribution of the power of minimal
winning coalitions amongst their members as proposed by the original Deegan-Packel index,
the power of each minimal winning coalition is distributed proportionally to its members’
weights, and we define the weighted Deegan-Packel power index as

DPw
i (v) =

1

|Ŵ (v)|

∑

S∈Ŵ (v)
S∋i

wi

w(S)
, for all i ∈ N. (7)

Note that the consideration of only positive weights of the players does not restrict the
generality. Indeed, in a simple game v ∈ Gs

N every null player i ∈ N cannot belong to any
minimal winning coalition and, therefore, DPw

i (v) = 0 independently of whether the weight
wi = 0 or wi > 0. From the other hand, the assumption that in a simple game v ∈ Gs

N the
weight wi = 0 of a player i ∈ N , who belongs to at least one minimal winning coalition,
is not correct also because it leads to the discrimination of player i, since in such a case
DPw

i (v) = 0, while as a member of at least one minimal winning coalition i possesses some
positive power.

The following example provides good motivation for involving of weighted power indices
into analysis of different practical situations, in which the players’ weights matter when
evaluating their power.

Example 3.1 Consider a hypothetical parliament consisting of 99 members and composed
by three parties that have correspondingly 49, 49 and 1 seats. All these three parties play
equal roles in the creation of winning coalitions (any two-party coalition in this example is

6



winning), but the social evaluation and social respect of the parties differ much. Moreover,
any of the two-party coalitions, which includes the last party with only one seat, is no
longer winning if one of its members is absent or vote differently from the others, while the
coalition formed by the first two parties, each one possessing 49 seats, keeps the winning
position even in cases of defections of up to 48 of its members. Simple computations bring
the following results:

=⇒ DPi(v
w) = Shi(v

w) =
1

3
, i = 1, 2, 3.

DPw
1 (vw) = DPw

2 (vw) =
37

75
=

1221

2475
, DPw

3 (vw) =
1

75
=

33

2475
,

Shw1 (v
w) = Shw2 (v

w) =
1213

2475
, Shw3 (v

w) =
49

2475
,

what clearly demonstrates the advantage of use of weighted indices in such situations.

The next theorem reveals close and deep relationship between the Deegan-Packel and
the Shapley-Shubik indices and between the weighted Deegan-Packel and the weighted
Shapley-Shubik indices correspondingly.

Theorem 3.1 For a simple game v ∈ Gs
N
, for every i ∈ N it holds that

DPi(v) = Shi(u
v),

and given a vector of positive weights w ∈ IRN
++,

DPw
i (v) = Shwi (u

v),

where game uv ∈ GN is defined as

uv =
1

|Ŵ (v)|

∑

S∈Ŵ (v)

uS . (8)

Proof. By definition,

DPi(v)
(6)
=

1

|Ŵ (v)|

∑

S∈Ŵ (v)
S∋i

1

s

(2)
=

1

|Ŵ (v)|

∑

S∈Ŵ (v)

Shi(uS).

Wherefrom by additivity of the Shapley value and the definition (8) of uv we obtain that

DPi(v) = Shi(u
v).

The proof for the weighted case is similar and we omit it.

Remark 3.1 For every v ∈ Gs
N

it holds that uv(N) = 1, but in general the game uv is not
simple.

Theorem 3.1 implies the following relation between the (weighted) Deegan-Packel and
the (weighted) Shapley-Shubik power indices via the (weighted) Shapley value.

7



Corollary 3.1 For every simple game v ∈ Gs
N , while the (weighted) Shapley-Shubik index

by definition is equal to the (weighted) Shapley value of game v,

SSi(v) = Shi(v) (correspondingly SSw
i (v) = Shwi (v)),

the (weighted) Deegan-Packel index is equal to the (weighted) Shapley value of game uv,

DPi(v) = Shi(u
v) (correspondingly DPw

i (v) = Shwi (u
v)).

The last observation uncovers the deep inner relationship between the Deegan-packel
and Shapley-Shubik power indices. Indeed, both indices are given by the Shapley value of
two different, but strongly mutually linked games, both of which are uniquely determined
via the same set of minimal winning coalitions. While the Shapley-Shubik index is the
Shapley value of the given proper simple game, which is uniquely determined by the set
of its minimal winning coalitions, however, the nonzero terms in its linear representation
(1) via the unanimity basis, in general, may be given by unanimity games determined by
any winning coalition and not necessarily only by minimal winning coalition, and therefore,
the game, which represents information of all winning coalitions. The Deegan-Packel index
is also the Shapley value, but of, in general, not a simple game, which is also uniquely
determined by the same set of minimal winning coalitions of the original simple game, but
of the game, for which its linear representation via the unanimity basis is given by the
mean value of the unanimity games determined by these minimal winning coalitions, and
therefore, of the game representing information only over this set of coalitions.

3.2 Monotonicity with respect to the players’ weights

Unfortunately, similar to the weighted Shapley-Shubik index, the weighted Deegan-Packel
index may violate monotonicity with respect to the players’ weights. However, while for the
weighted Shapley-Shubik index, it is difficult to foresee a priori if in a given simple game
the nonmonotonicity effect appears or not, for the weighted Deegan-Packel index there exist
easy to check sufficient conditions guaranteeing its monotonic behavior.

Theorem 3.2 Given a simple game v ∈ Gs
N and a vector of positive weights of the players

w ∈ IRN
++, if wi ≥ wj for some i, j ∈ N and for all S ∈ Ŵ (v) such that S ∋ j, S 6∋ i, it

holds that (S\{j} ∪ {i}) ∈ Ŵ (v), then

DPw
i (v) ≥ DPw

j (v).

Proof. By definition,

DPw
i (v)

(7)
=

1

|Ŵ (v)|

∑

S∈Ŵ (v)
S∋i

wi

w(S)
,

which can be equivalently rewritten as

DPw
i (v) =

1

|Ŵ (v)|

[ ∑

S∈Ŵ (v)
S∋i,S∋j

wi

w(S)
+

∑

S∪{i}∈Ŵ (v)
S 6∋i,S 6∋j

wi

w(S) + wi

]
. (9)

Similarly,

DPw
j (v) =

1

|Ŵ (v)|

[ ∑

S∈Ŵ (v)
S∋i,S∋j

wj

w(S)
+

∑

S∪{j}∈Ŵ (v)
S 6∋i,S 6∋j

wj

w(S) + wj

]
. (10)
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Due to the assumption wi ≥ wj , for all S ⊆ N\{i, j}, it holds that

wi

w(S)
≥

wj

w(S)
and

wi

w(S) + wi

≥
wj

w(S) + wj

. (11)

Further, the assumption that for all S ∈ Ŵ (v) such that S ∋ j, S 6∋ i, it holds that

(S\{j}∪{i}) ∈ Ŵ (v), implies that the number of terms in the second sum in (9) is not less

then the number of terms in the second sum in (10), and moreover, for each term
wj

w(S) + wj

in (10) there is the corresponding term
wi

w(S) + wi

in (9). Wherefrom together with the

inequalities (11) we obtain

DPw
i (v) ≥ DPw

j (v).

Furthermore, in a weighted majority game the Deegan-Packel index, similarly to the
weighted Deegan-Packel index and unlike the Shapley-Shubik index (see Theorem 3.4 be-
low), may exhibit nonmonotonicity with respect to the players’ weights. Fortunately sim-
ilarly to the just considered situation with the weighted Deegan-Packel index, in this case
as well exist easily testable sufficient conditions analogous to those of Theorem 3.2, which
guarantee monotonic behavior of the Deegan-Packel index in a weighted majority game.

Theorem 3.3 Given a weighted majority game vw = [q;w1, ..., wn] ∈ Gs
N with a positive

vector of weights of the players w = (w1, ..., wn) ∈ IRN
++ and majority quota q ≥

w(N)

2
, if

wi ≥ wj for some i, j ∈ N and for all S ∈ Ŵ (vw), such that S ∋ j, S 6∋ i, it holds that

(S\{j} ∪ {i}) ∈ Ŵ (vw), then
DPi(v

w) ≥ DPj(v
w).

Proof. The proof strategy is similar to the proof of Theorem 3.2. By definition,

DPi(v
w)

(6)
=

1

|Ŵ (vw)|

∑

S∈Ŵ (vw)
S∋i

1

s
,

which can be equivalently rewritten as

DPi(v
w) =

1

|Ŵ (vw)|

[ ∑

S∈Ŵ (vw)
S∋i,S∋j

1

s
+

∑

S∪{i}∈Ŵ (vw)
S 6∋i,S 6∋j

1

s+ 1

]
. (12)

Similarly,

DPjv
w) =

1

|Ŵ (vw)|

[ ∑

S∈Ŵ (vw)
S∋i,S∋j

1

s
+

∑

S∪{j}∈Ŵ (vw)
S 6∋i,S 6∋j

1

s+ 1

]
. (13)

Then, from the definition (4) of a weighted majority game and the assumptions of the
theorem, it follows that the number of terms in the second sum in (12) is not less than the
number of terms in the second sum in (13). Wherefrom together with equalities (12) – (13)
we obtain immediately that

DPi(v
w) ≥ DPj(v

w).
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What is indeed remarkable in this context and worth mentioning is that the Shapley-
Shubik index in a weighted majority game, unlike the weighted Shapley-Shubik index, is
always monotonic with respect to the players’ weights. However talking about monotonicity,
we always keep in mind weak inequalities, which do not exclude equalities. Therefore one
should be careful when choosing the Shapley-Shubik and Deegan-Packel indices for investi-
gating the situations, in which it is important to take into account distinctions between the
players given in terms of weights, because even in cases when these indices do not violate
monotonicity formally they may assign equal power to players with different weights, see
for instance Example 3.1.

Theorem 3.4 Given a weighted majority game vw = [q;w1, ..., wn] ∈ Gs
N with a positive

vector of weights of the players w = (w1, ..., wn) ∈ IRN
++, if wi ≥ wj for some i, j ∈ N , then

SSi(v
w) ≥ SSj(v

w).

Proof. By definition,

SSi(v
w)

(5)
=

∑

S/∈W (vw),S∪{i}∈W (vw)
S⊆N\{i}

s! (n− s− 1)!

n!
,

or equivalently,

SSi(v
w)=

∑

S/∈W (vw),S∪{i}∈W (vw)
S⊆N\{i,j}

s! (n− s− 1)!

n!
+

∑

S∪{j}/∈W (vw),S∪{i,j}∈W (vw)
S⊆N\{i,j}

(s+ 1)! (n− s)!

n!
. (14)

Similarly,

SSj(v
w)=

∑

S/∈W (vw),S∪{j}∈W (vw)
S⊆N\{i,j}

s! (n− s− 1)!

n!
+

∑

S∪{i}/∈W (vw),S∪{i,j}∈W (vw)
S⊆N\{i,j}

(s+ 1)! (n− s)!

n!
. (15)

Due to the assumption wi ≥ wj , from the definition of the weighted majority game (4)
it follows that S ∪ {j} ∈ W (vw) implies S ∪ {i} ∈ W (vw) and S ∪ {i} /∈ W (vw) implies
S ∪ {j} /∈ W (vw). Therefore, the numbers of terms in both sums in (14) are not less than
the numbers of terms in both corresponding sums in (15). Whence we immediately obtain
that

SSi(v
w) ≥ SSj(v

w).

The next example illustrates what was discussed above about the monotonicity issues.

Example 3.2 Consider four weighted majority games vw, v̂w v̄w, and ṽw, for which by
simple calculations we obtain the following results:

(i) game vw = [34; 30, 25, 13]:

Ŵ (vw) = {{1, 2}, {2, 3}, {1, 3}}
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SS(vw) =
(1
3
,
1

3
,
1

3

)

SSw(vw) = (0.3608, 0.3771, 0.2621)

DP (vw) =
(1
3
,
1

3
,
1

3

)

DPw(vw) = (0.4144, 0.3708, 0.2148)

(ii) game v̂w = [10; 7, 4, 3, 3, 3]:

Ŵ (v̂w) = {{1, 2}, {1, 3, 4}, {1, 4, 5}, {1, 3, 5}, {2, 3, 4, 5}}

SS(v̂w) =
(27
60

,
12

60
,
7

60
,
7

60
,
7

60

)

SSw(v̂w) = (0.4915, 0.1654, 0.1144, 0.1144, 0.1144)

DP (v̂w) =
(18
60

,
9

60
,
11

60
,
11

60
,
11

60

)

DPw(v̂w) = (0.4503, 0.1343, 0.1385, 0.1385, 0.1385)

(iii) game v̄w = [110; 79, 40, 27, 27, 27]:

Ŵ (v̄w) = {{1, 2}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4, 5}}

SS(v̄w) =
(27
60

,
12

60
,
7

60
,
7

60
,
7

60

)

SSw(v̄w) = (0.4834, 0.1731, 0.1145, 0.1145, 0.1145)

DP (v̄w) =
(18
60

,
9

60
,
11

60
,
11

60
,
11

60

)

DPw(v̄w) = (0, 4892, 0.1667, 0.1573, 0.1573, 0.1573)

(iv) game ṽw = [50; 27, 22, 17, 17, 17]:

Ŵ (ṽw) = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5},
{2, 4, 5}, {3, 4, 5}}

SS(ṽw) =
(1
5
,
1

5
,
1

5
,
1

5
,
1

5

)

SSw(ṽw) = (0.2090, 0.2089, 0.1940, 0.1940, 0.1940)

DP (ṽw) =
(1
5
,
1

5
,
1

5
,
1

5
,
1

5

)

DPw(ṽw) = (0.2555, 0.2179, 0.1755, 0.1755, 0.1755)

In games vw and ṽw the assumptions of Theorems 3.2 and 3.3 are fulfilled and both
the Deegan-Packel and weighted Deegan-Packel indices are monotonic with respect to the
players’ weights. In game v̂w both Deegan-Packel indices manifest nonmonotonic behavior
towards the second player in comparison with the last three players, and in game v̄w the
Deegan-Packel index violates monotonicity also with respect to the second player in com-
parison with the last three players, while the weighted Deegan-Packel index is monotonic.
But in games v̂w and v̄w the assumptions of Theorems 3.2 and 3.3 are also violated: in
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both these games the sets of minimal winning coalitions coincide and each of three minimal
winning coalitions {1, 3, 4}, {1, 4, 5}, and {1, 3, 5} by replacing any of players 3, 4, or 5 by
player 2, keeps being winning but is not anymore a minimal winning. In all games vw, v̂w,
v̄w, and ṽw the Shapley-Shubik index is monotonic with respect to the players’ weights. But
the weighted Shapley-Shubik index in game vw demonstrates nonmonotonic behavior with
respect to the first and second player, and it exhibits monotonicity in games v̂w, v̄w, and
ṽw. It is also worth mentioning that even if in games vw and ṽw both the Shapley-Shubik
and Deegan-Packel indices do not violate monotonicity, they both do not distinguish the
players according to their weights, by assigning equal power to each one of them.

The table 1 summarizes the behavior of the power indices under scrutiny in four con-
sidered simple games on whether they respect monotonicity (+) or not (–).

vw v̂w v̄w ṽw

SS + + + +
SSw – + + +
DP + – – +
DPw + – + +

Table 1: Summary over monotonic behavior of the Shapley-Shubik, weighted Shapley-
Shubik, Deegan-Packel, and weighted Deegan-Packel power indices.

As a remedy for the complete exclusion of a possible nonmonotonicity issue with respect
to the players’ weights when determining the power distribution in a weighted majority game
by using for this the power distribution mechanism proposed by Deegan and Packel, one
may use extended modifications of the Deegan-Packel and weighted Deegan-Packel indices,
which differently from the Deegan-Packel and weighted Deegan-Packel indices take into
account not only minimal winning but all winning coalitions.

For a simple game v ∈ Gs
N , the extended Deegan-Packel index is defined as

D̃P i(v) =
1

|W (v)|

∑

S∈W (v)
S∋i

1

s
, for all i ∈ N.

For a simple game v ∈ Gs
N and a vector of positive weights of the players w ∈ IRN

++, the
weighted extended Deegan-Packel index is defined as

D̃P
w

i (v) =
1

|W (v)|

∑

S∈W (v)
S∋i

wi

w(S)
, for all i ∈ N.

Theorem 3.5 Given a weighted majority game vw = [q;w1, ..., wn] ∈ Gs
N with a positive

vector of weights of the players w = (w1, ..., wn) ∈ IRN
++, if wi ≥ wj for some i, j ∈ N , then

D̃P i(v
w) ≥ D̃P j(v

w) and D̃P
w

i (v
w) ≥ D̃P

w

j (v
w).

The proofs of both inequalities in Theorem 3.5 can be easily obtained by simple adap-
tation of the proofs of Theorems 3.2 and 3.3, and therefore we omit them.

However, when applying the extended versions of the Deegan-Packel indices it is neces-
sary to take into account that these indices differ principally from the original ones because
they violate the basic postulate of Deegan and Packel [4] stating that only the minimal
winning coalitions matter in evaluating the power of different participants.
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3.3 Axiomatization

The weighted Deegan-Packel power index on Gs
N

can be characterized via next five axioms:

A power index ξ is efficient (E ) on Gs
N

if for all v ∈ Gs
N

it holds that
∑

i∈N
ξi(v) = 1.

A power index ξ meets null-player property (NP) on Gs
N
, if for all v ∈ Gs

N
and every

null-player i ∈ N in v it holds that ξi(v) = 0.

A power index ξ on Gs
N

is strictly positive (SP) if for all v ∈ Gs
N

and every i ∈ N , which
is not a null-player in v, it holds that ξi(v) > 0.

A power index ξ meetsmergeability (M ) on Gs
N
if for any two mergeable games v, v′ ∈ Gs

N

it holds that

ξ(v ∨ v′) =
1

|Ŵ (v ∨ v′)|

[
|Ŵ (v)|ξ(v) + |Ŵ (v′)|ξ(v′)

]
. (16)

A power index ξ meets partnership (P) on Gs
N

if for any v ∈ Gs
N

and every p-type
coalition S ⊆ N in v it holds that

ξi(v) = ξS(v)ξi(uS), for all i ∈ S. (17)

The intuition content and rationale behind these axioms is consistent with the desired
properties of a power index. Efficiency, null-player, and strict positivity are standard axioms
used in various axiomatizations, in particular for the Shapley value. Mergeability, used in
Deegan and Packel [4] for the characterization of the Deegan-Packel index, states that
the power in a merged game of two mergeable games is a weighted mean of the powers
of the component games with the weights provided by the numbers of minimal winning
coalitions in each component game. Partnership, introduced in Kalai and Samet [7] for the
characterization of the weighted Shapley values, requires that if the proper subcoalitions
of a coalition are powerless, then it should not make any difference whether players of
the coalition receive their individual payoffs in the game, or they altogether receive their
group payoff in the game and then later determine their individual payoffs. The original
requirement of the Kalai and Samet Partnership axiom is reformulated a bit here to make the
axiom acceptable for application on the class of simple games Gs

N
. Note that for the Kalai-

Samet axiomatization of the weighted Shapley values the current modification is equivalent
to their original Partnership axiom due to the linearity of the weighted Shapley values.

The next lemma reveals the structure of p-type coalitions for games in Gs
N

which is
needed for the proof of the axiomatization result below.

Lemma 3.1 Given a game v ∈ Gs
N
, a coalition S ⊆ N is of p-type in v if and only if it is

of one of the following types:

(i) every i ∈ S is a null-player in v;

(ii) every i ∈ S is a not null-player in v and there is Q ∈ Ŵ (v) such that Q ⊇ S;

moreover if |Ŵ (v)| > 1, one of the two options also should hold:

(ii.a) S ∩Q′ = ∅ for all Q′ ∈ Ŵ (v), Q′ 6= Q;

(ii.b) S ⊆ Q′ for all Q′ ∈ Ŵ (v).
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Proof. It is not difficult to see that in all three cases (i), (ii.a), and (ii.b) a coalitionS is
of p-type in v:

(i): From the definition of a null-player it follows immediately that v(R ∪ T ) = v(R)
for all T $ S and R ⊆ N\S.

(ii): In this case for every T $ S and R ⊆ N\S it also holds true that v(R∪T ) = v(R).
Indeed, if v(R) = 1, then the validity of the latter equality follows from the monotonicity
of game v. If v(R) = 0, the equality v(R ∪ T ) = 1 is impossible because if it is true, there

should exist Z ∈ Ŵ (v) such that

R ∪ T ⊇ Z, but R + Z. (18)

However, if Z = Q, (18) is impossible because Q ⊇ S % T , R ⊆ N\S, and therefore,

R ∪ T + Q. But if |Ŵ (v)| > 1 and Z = Q′ for Q′ ∈ Ŵ (v), Q′ 6= Q, (18) is also impossible.

Indeed, in case of (ii.a) it holds that S ∩Q′ = ∅ for all Q′ ∈ Ŵ (v), Q′ 6= Q, and therefore,
R∪T ⊇ Q′ can be only if Q′ ⊆ R, which is impossible because of the assumption v(R) = 0.
In alternative case of (ii.b), every minimal winning coalition contains S, i.e., every i ∈ S
is a veto-player, whence together with T $ S and R ⊆ N\S it follows immediately that
v(R ∪ T ) = v(R) = 0. Hence, if v(R) = 0, then v(R ∪ T ) = 0 as well.

It is left to show that a p-type in v coalition S containing at least one not null-player is
a coalition of type (ii.a) or (ii.b). First we show that all players i ∈ S are not null-players
as well. We prove that by contradiction. Let i ∈ S be not a null-player and besides assume
that there is at least one null-player in S. Then there is a coalition Z ⊂ N\{i} such that

v(Z) = 0 and v(Z ∪{i}) = 1. Since player i is pivotal for Z ∪{i} ∈ W (v) there is Q ∈ Ŵ (v)
such Q ⊆ Z ∪ {i}, Q ∋ i, and moreover, Q ∩ S $ S because minimal winning coalition
cannot contain null-players. Let T = Q∩ S $ S and R = Q∩ (N\S). Then v(R) = 0 since
game v is proper and monotonic, but v(R ∪ T ) = v(Q) = 1, which contradicts to S being
of p-type.

We show now that for any p-type in v coalition S composed by not null-players there is
Q ∈ Ŵ (v) such that Q ⊇ S, and if |Ŵ (v)| > 1, then either S ∩ Q′ = ∅ for all Q′ ∈ Ŵ (v),

Q′ 6= Q, or S ⊆ Q′ for all Q′ ∈ Ŵ (v). We consider two cases S ∈ W (v) and S /∈ W (v).
1). Let S ∈ W (v), i.e., v(S) = 1. We show that this is possible only if S is a unique

minimal winning coalition, i.e. S ∈ Ŵ (v) and |Ŵ (v)| = 1. Assume that S /∈ Ŵ (v). Then

there exists T ∈ Ŵ (v) such that T $ S. v(N\S) = 0 because S ∈ W (v) and v is a proper

simple game. Take R ⊆ N\S. By monotonicity of v, v(R) = 0, but since T ∈ Ŵ (v),

v(R ∪ T ) = 1, which contradicts to S being of p-type, and therefore, S ∈ Ŵ (v).

Next we show that a minimal winning coalition S ∈ Ŵ (v) can be of p-type only if being

a unique one, i.e., if |Ŵ (v)| = 1. Indeed, if there is Q ∈ Ŵ (v), Q 6= S, then Q ∩ S 6= ∅
and v(Q\S) = 0 because game v is proper and monotonic. Consider T = Q ∩ S $ S and
R = Q\S ⊂ N\S. Then, v(R) = 0, but v(R ∪ T ) = v(Q) = 1, again contradiction with S

being of p-type. Wherefrom it follows that |Ŵ (v)| = 1.

2). Let S /∈ W (v), i.e., v(S) = 0. It was just proved above that for every not null-player

i ∈ S there is Q ∈ Ŵ (v) such that Q ∩ S ∋ i and that all i ∈ S are not null-players. So, to
prove the statement it is enough to show that for p-type coalition S composed by only not
null-players it is impossible that two different minimal winning coalitions have nonempty
intersections with S, or all minimal winning coalitions contain S, i.e., S is composed by
only veto-players.
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Indeed, assume that there are Q1, Q2 ∈ Ŵ (v), Q1 6= Q2, such that Qj ∩ S 6= ∅, j = 1, 2,
and that there is a player i ∈ S, such that i ∈ Q1, but i /∈ Q2. Consider T = Q2 ∩ S $ S
and R = Q2\S ⊆ N\S. Then, v(R) = 0, but v(R ∪ T ) = v(Q2) = 1, which contradicts to
S being of p-type.

Corollary 3.2 A p-type coalition S ⊆ N in a game v ∈ Gs
N is winning only if v has a

single minimal winning coalition, which, in turn, coincides with S, i.e., |Ŵ (v)| = 1 and

S ∈ Ŵ (v). This implies that unanimity games are the only games in Gs
N that have p-type

winning coalitions, and, moreover, every unanimity game uS , S ⊆ N , has the only p-type
minimal winning coalition, which is S.

Theorem 3.6 A power index ξ on Gs
N meets efficiency, null-player property, strict posi-

tivity, mergeability, and partnership if and only if there exists a vector of strictly positive

weights w ∈ IRN
++ such that ξ = DPw.

Proof. I. First we show that the weighted Deegan-Packel index meets the axioms E, NP,
SP, M and P. Assume that a proper simple game v ∈ Gs

N and a vector of weights w ∈ IRN
++

w = (wi)i∈N , wi > 0, i ∈ N , are given.
(E):

∑

i∈N

DPw
i (v)

(7)
=

∑

i∈N

1

|Ŵ (v)|

∑

S∈Ŵ (v)
S∋i

wi

w(S)
=

1

|Ŵ (v)|

∑

S∈Ŵ (v)

∑

i∈S

wi

w(S)
= 1.

(NP): The null-player property follows immediately from the fact that a null-player in
v does not belong to any minimal winning coalition.

(SP): The strict positivity is a direct corollary of the assumption of strict positivity of
the players’ weights: wi > 0, i ∈ N .

(M): Let games v, v′ ∈ Gs
N be mergeable. To confirm the mergeability of the weighted

Deegan-Packel index we need to verify the equality (16) for ξ = DPw. Indeed, since for

mergeable games v and v′ it holds that Ŵ (v) ∩ Ŵ (v′) = ∅ and Ŵ (v ∨ v′) = Ŵ (v) ∪ Ŵ (v′),
we obtain that for all i ∈ N ,

DPw
i (v ∨ v′)

(7)
=

1

|Ŵ (v ∨ v′)|

∑

S∈Ŵ (v∨v′)
S∋i

wi

w(S)

=
1

|Ŵ (v ∨ v′)|

[ ∑

S∈Ŵ (v)
S∋i

wi

w(S)
+

∑

S∈Ŵ (v′)
S∋i

wi

w(S)

]

(7)
=

1

|Ŵ (v ∨ v′)|

[
|Ŵ (v)|DPw

i (v) + |Ŵ (v′)|DPw
i (v′)

]
.

(P): Let coalition S ⊆ N be of p-type in v. To prove the partnership property of the
weighted Deegan-Packel index we need to show that equality (17) with ξ = DPw holds
true, or which is the same to prove that for all i ∈ S,

1

|Ŵ (v)|

∑

T∈Ŵ (v)
T∋i

wi

w(T )
=

[∑

j∈S

( 1

|Ŵ (v)|

∑

T∈Ŵ (v)
T∋j

wj

w(T )

)] wi

w(S)
(19)
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Due to Lemma 3.1 a p-type coalition in v can be only of one of the three types (i), (ii.a),
or (ii.b):

If (i), then all i ∈ S are null-players in v and the null-player property of the weighted
Deegan-Packel index implies DPw

i (v) = DPw
S (v) = 0, wherefrom equality (19) obviously

follows.
If (ii.a), then equality (19) reduces to

wi

w(S)
=


∑

j∈S

wj

w(S)


 wi

w(S)
,

which obviously confirms the validity of equality (19) as well.

If (ii.b), S ⊆ T for all T ∈ Ŵ (v), and therefore, for all i ∈ S it holds that {T ∈ Ŵ (v) |

T ∋ i} = {T ∈ Ŵ (v)}. Hence, in this case equality (19) transforms into

∑

T∈Ŵ (v)

wi

w(T )
=

[∑

j∈S

∑

T∈Ŵ (v)

wj

w(T )

] wi

w(S)
.

But then it is not difficult to see that the right side of the latter equality easily reduces to
the left one:

[∑

j∈S

∑

T∈Ŵ (v)

wj

w(T )

] wi

w(S)
=

∑

T∈Ŵ (v)

∑
j∈S

wj

w(T )

wi

w(S)
=

∑

T∈Ŵ (v)

wi

w(T )
,

what also confirms equality (19).

II. Second, to complete the proof of the theorem, we show that every power index ξ on Gs
N

satisfying axioms E, NP, SP, M, and P, coincides with the weighted Deegan-Packel index
with some particular vector of positive weights w ∈ IRN

++.
First we define the vector of weights w as

wi = ξi(uN ), for all i ∈ N. (20)

Since there are no null-players in the unanimity game uN ∈ Gs
N , the strict positivity of the

weighted Deegan-Packel index implies w ∈ IRN
++.

Consider arbitrary game v ∈ Gs
N . Obviously, for any distinct Q,Q′ ∈ Ŵ (v), the una-

nimity games uQ, uQ′ ∈ Gs
N are mergeable. Moreover, for any pairwise mergeable games

v, v′, v” ∈ Gs
N , games v ∨ v′ and v” are mergeable, and Ŵ (v ∨ v′) = Ŵ (v)∪ Ŵ (v′). Whence

it straightforwardly follows that
v = ∨

Q∈Ŵ (v)
uQ.

Due to the latter equality and since both indices ξ and DPw satisfy mergeability, the
successive application of mergeability (16) together with equality (3) leads to the equalities

ξi(v) =

∑
Q∈Ŵ (v)

ξi(uQ)

|Ŵ (v)|

and

DPw
i (v) =

∑
Q∈Ŵ (v)

DPw
i (uQ)

|Ŵ (v)|
.
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Hence, to prove coincidence of the ξ and DPw indices it is enough to show that they coincide
on the unanimity games.

So, given a unanimity game uS ∈ Gs
N , S ⊆ N , S 6= ∅, we need to show that for all i ∈ N ,

ξi(uS) = DPw
i (uS).

First note that every i ∈ N\S is a null-player in uS , and the null-player property of both ξ

and DPw implies that for all i ∈ N\S,

ξi(uS) = DPw(uS) = 0.

Then, from Lemma 3.1 it follows that S is a p-type coalition in uS . Since ξ satisfies
partnership (17), it holds that for any game v ∈ Gs

N ,

ξi(v) = ξS(v)ξi(uS), for all i ∈ S.

Wherefrom together with the definition of weights wi, i ∈ N , and the definition of the
DPw-index it follows that for all i ∈ S,

ξi(uS) =
ξi(uN )

ξS(uN )

(20)
=

wi

w(S)

(7)
= DPw

i (uS).

4 Restricted and weighted restricted Deegan-Packel indices

It might happen that in a given simple game v ∈ Gs
N not all winning coalitions are feasible.

In such a case instead of the Deegan-Packel and weighted Deegan-Packel indices we may
consider the restricted Deegan-Packel and weighted restricted Deegan-Packel indices. In
what follows the set of all feasible winning coalitions of game v ∈ Gs

N we denote by WF (v)

and by ŴF (v) the set of all feasible minimal winning coalitions.

For a simple game v ∈ Gs
N , the restricted Deegan-Packel index is defined as

DP r
i (v) =

1

|ŴF (v)|

∑

S∈
̂
WF (v)
S∋i

1

s
, for all i ∈ N.

For a simple game v ∈ Gs
N and a vector of positive weights of the players w ∈ IRN

++, the
weighted restricted Deegan-Packel index is defined as

DPwr
i (v) =

1

|ŴF (v)|

∑

S∈
̂
WF (v)
S∋i

wi

w(S)
, for all i ∈ N.

When restrictions on cooperation are given by an undirected connected graph Γ on
N , instead of only a simple game v ∈ Gs

N we have a tuple of a simple game v together
with a graph communication structure Γ, which determines a graph game (v,Γ). Following
Myerson (1977), we assume that cooperation is possible only among connected players and
consider a (Myerson) restricted game vΓ on N defined as

vΓ(S) =
∑

C∈S/Γ

v(C), for all S ⊆ N.
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Observe that since all simple games in Gs
N are monotonic and proper, for every v ∈ Gs

N ,
the restricted game vΓ ∈ Gs

N as well and, moreover, every minimal winning coalition in vΓ

is connected in Γ and winning in v. From where it easily follows that in this case the set
of feasible minimal winning coalitions in (v,Γ) coincides with the set of minimal winning

coalitions in vΓ, i.e., ŴF (v,Γ) = Ŵ (vΓ).
Similar to Theorem 3.1 revealing the relation between the (weighted) Deegan-Packel and

the (weighted) Shapley-Shubik indices via the (weighted) Shapley value, the next theorem
uncovers the similar relation between the (weighted) restricted Deegan-Packel index in
case, when restrictions on cooperation are introduced by undirected communication graph,
and the (weighted) Myerson index via the (weighted) Myerson value, and the (weighted)
Shapley-Shubik index of the restricted game via the (weighted) Shapley value.

Theorem 4.1 For a graph game (v,Γ) ∈ GΓ
N given by a simple game v ∈ Gs

N , for every

i ∈ N it holds that

DP r
i (v,Γ) = µi(ū

v,Γ) = Shi((ū
v)Γ),

and given a vector of positive weights w ∈ IRN
++,

DPwr
i (v,Γ) = µw

i (ū
v,Γ) = Shwi ((ū

v)Γ),

where game ūv ∈ GN is defined as

uv =
1

|Ŵ (vΓ)|

∑

S∈Ŵ (vΓ)

uS .

Moreover, when restrictions on cooperation are introduced by an undirected graph, for
the restricted Deegan-Packel and weighted restricted Deegan-Packel indices, similar to the
Deegan-Packel and weighted Deegan-Packel indices, there exist easy to check sufficient con-
ditions guaranteeing their monotonic behavior with respect to the players’ weights. In fact
these conditions are practically the same, as for the Deegan-Packel and weighted Deegan-
Packel indices given by Theorems 3.2 and 3.3, with the only replacement of game v by the
restricted game vΓ in the adapted statements of the theorems.

Theorem 4.2 For a graph game (v,Γ) ∈ GΓ
N given by a simple game v ∈ Gs

N and a vector

of positive weights of the players w ∈ IRN
++, if wi ≥ wj for some i, j ∈ N and for all

S ∈ Ŵ (vΓ) such that S ∋ j, S 6∋ i, it holds that (S\{j} ∪ {i}) ∈ Ŵ (vΓ), then

DPwr
i (v,Γ) ≥ DPwr

j (v,Γ).

Theorem 4.3 Given a weighted majority game vw = [q;w1, ..., wn] ∈ Gs
N with a positive

vector of weights of the players w = (w1, ..., wn) ∈ IRN
++ and majority quota q ≥

w(N)

2
, and

a communication graph Γ on N , if wi ≥ wj for some i, j ∈ N and for all S ∈ Ŵ ((vw)Γ),

such that S ∋ j, S 6∋ i, it holds that (S\{j} ∪ {i}) ∈ Ŵ ((vw)Γ), then

DP r
i (v

w,Γ) ≥ DP r
j (v

w,Γ).

The proof strategies of Theorems 4.1-4.3 are similar to that in corresponding Theo-
rems 3.1-3.3, and therefore these proofs are omitted.
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5 Historical examples

To illustrate a practical value of the introduced power indices we consider their application
for the analysis of three historical examples of parliamentary elections.

5.1 Italian parliament elections 1983

An impressive historical example when a small but central party that got not too many
seats in a parliament but finally became the most important in the sense that a prime
minister was chosen from it can be found in the Italian parliament elections of 1983. The
official data on the distribution of seats in the Chamber of Deputies are:

Democrazia Cristiana (DC) 225 seats;
Partito Comunista Italiano (PCI) 198 seats;
Partito Socialista Italiano (PSI) 73 seats;
Movimiento Sociale It. (MSI-DN) 42 seats;
Partito Repubblicano Italiano (PRI) 29 seats;
Partito Socialista Dem. It. (PSDI) 23 seats;
Partito Liberale Italiano (PLI) 16 seats;
Partito Radicale (PR) 11 seats;
Democrazia Proletaria (DP) 7 seats;
Sudtiroler Volkspartei (SVP) 3 seats;
Liga Veneta (LV) 1 seat;
Partito Sardo d’Azione (PSA) 1 seat;
UV-UVP - Dem.Pop. 1 seat.

and possible links between the parties2 are depicted in Figure 1.

PCI (198)

PSI (73)

DC (225)

DP (7)

MSI-DN (42)

PR (11)

PSDI (23) PRI (29) PLI (16)

UV-UVP-DP (1) SVP (3)

LV (1) PSA (1)

Figure 1: Italian parliament elections 1983, network structure.

Following this elections the prime minister, Bettino Craxi, was chosen from Italian Socialist
Party (PSI) that after elections got only 73 seats from the total amount of 630 in the
Chamber of Deputies. But PSI possessed very strong bargaining power being between two

2The information about possible links between the parties is provided by Vito Fragnelli, Italian game

theorist working in the field of power indices and their applications, who is well familiar with the historical

relations between Italian political parties.
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main parties - Christian Democrats (DC) that got 225 seats and Italian Communist Party
(PCI) that got 198 seats. Indeed, the traditional ruling coalition, known as Pentapartito
(five parties), was DC + PLI + PSI + PRI + PSDI (225 + 16 + 73 + 29 + 23 = 366).
But there was another possible winning coalition composed by PCI + PSI + DP + PR +
PSDI + PRI (198 + 73 + 7 + 11 + 23 + 29 = 341). The latter coalition never formed
before on the country government level but it happened to be formed on the levels of local
governments. This fact provided PSI with very strong bargaining power and finally the
prime-minister Bettino Craxi, member of PSI, was chosen.

To analyze the situation formally, consider the corresponding weighted majority game,
which is a standard tool for analysis of voting situations. The total number of seats is 630, so,
the ruling coalition should contain at least 316 members. The minimal winning coalitions in
the graph-restricted game are DC + PCI + PSI, DC + PSI + PRI, DC + PSI + PSDI, PCI
+ PSI + PRI + PSDI and PCI + PSI + PRI + PR + DP. Italian Socialist Party appears
in all of them, whereas the two most voted parties, Christian Democrats and Communists
appear only in three each one, and moreover, their union is not feasible due to the ideological
incompatibilities. Consequently, PSI appears to be a veto-player in the restricted game–
the formation of ruling coalitions is impossible ignoring PSI. The computation results on
power distribution according to the studied in the paper power indices, the Deegan-Packel,
weighted Deegan-Packel, restricted Deegan-Packel, and weighted restricted Deegan-Packel
indices, are presented in Table 2.

Party Seats DP DP
w

DP
r

DP
rw

Democrazia Cristiana (DC) 225 0.109 0.363 0.194 0.465

Partito Comunista Italiano (PCI) 198 0.098 0.307 0.075 0.206

Partito Socialista Italiano (PSI) 73 0.122 0.127 0.269 0.227

Movimiento Sociale It. (MSI-DN) 42 0.098 0.068 0 0

Partito Repubblicano Italiano (PRI) 29 0.089 0.047 0.131 0.045

Partito Socialista Dem. It. (PSDI) 23 0.071 0.031 0.097 0.024

Partito Liberale Italiano (PLI) 16 0.093 0.026 0.083 0.017

Partito Radicale (PR) 11 0.069 0.015 0.075 0.011

Democrazia Proletaria (DP) 7 0.070 0.010 0.033 0.004

Sudtiroler Volkspartei (SVP) 3 0.056 0.004 0.042 0.002

Liga Veneta (LV) 1 0.042 0.001 0 0

Partito Sardo d’Azione (PSA) 1 0.042 0.001 0 0

UV-UVP - Dem.Pop. 1 0.042 0.001 0 0

Table 2: Italian parliament elections 1983, power distribution according to the Deegan-
Packel type power indices.

One can see immediately that the power of PSI, both according to the classical and weighted
Deegan-Packel indices, increases significantly when the underlying communication structure
is taken into account. In particular, PSI is the party with the highest power value when
applying the restricted Deegan-Packel index. The value of its power slightly decreases under
using the weighted restricted Deegan-Packel index when also the weights given by the seats
shares are taken into account.
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5.2 Basque Country parliament elections 2009

The Basque Country (Euskadi) is one of 17 autonomous communities of Spain. Its parlia-
ment elections 2009 provide an example when the party that won the elections but being
not able to create the majority itself finally was not included into the government due to
the weak cooperation ability. The Basque Country parliament contains 75 members and
after the elections in March 2009 it was composed by 7 parties with the distribution of seats
as follows:

Basque Nationalist Party (PNV) 30 seats;
Euskadi’s Socialist Party (PSE) 25 seats;
Popular Party (PP) 13 seats;
ARALAR 4 seats;
Euzko Alkartasuna (EA) 1 seat;
Ezker Batua-Berdeak (EB-B) 1 seat;
Union, Progress and Democracy (UPD) 1 seat,

Plausible links between the parties, which take into account the historical relations among
parties in Spain, are depicted in Figure 2.

PP (13) PSE (25) PNV (30) EA (1)

UPD (1) ARALAR (4)

EB (1)

Figure 2: Basque Country parliament elections 2009, network structure.

With the total number of seats of 75, a majority coalition contains at least 38 members.
Notice the lack of a direct relation between the right PP and the nationalist PNV parties.
Whereas PSE and PNV had formed government coalitions in the Basque Country in the
past, such a coalition was never formed in case of both PP and PNV parties being present
together. Moreover, the strong rejection of the nationalism in the discourse of PP is an
additional reason to consider the combination of PP and PNV to be impossible because of
its (predictably) high electoral cost for the PP in the rest of Spain. As the result, in 2009
PSE preferred to form a ruling coalition together with PP and UPD, without including the
most voted nationalist PNV. Table 3 presents the computation results of the Deegan-Packel
type indices considered in the paper.

21



Party Seats DP DP
w

DP
r

DP
rw

Basque Nationalist Party (PNV) 30 1/3 0.414 1/4 0.273

Euskadi’s Socialist Party (PSE) 25 1/3 0.371 1/2 0.556

Popular Party (PP) 13 1/3 0.215 1/4 0.171

ARALAR 4 0 0 0 0

Euzko Alkartasuna (EA) 1 0 0 0 0

Ezker Batua-Berdeak (EB-B) 1 0 0 0 0

Union, Progress and Democracy (UPD) 1 0 0 0 0

Table 3: Basque Country parliament elections 2009, power distribution according to the
Deegan-Packel type power indices.

Note that the Deegan-Packel index assigns equal power to the three main parties, as they
symmetrically belong to three two-player minimal winning coalitions. However, both the
restricted Deegan-Packel and weighted restricted Deegan-Packel indices clearly highlight
the highest power of PSE, because of its crucial position in the communication structure.

5.3 Israeli 18th Knesset elections 2009

After the Israeli Knesset elections 2009, similarly to the Basque Country parliament elec-
tions 2009 discussed in the previous example, it happened that the most voted party Kadima
was not included into the ruling coalition created by Likud who received in Knesset less
seats.

Following the elections the 18th Knesset of 120 members was composed as:

Kadima 28 seats;
Likud 27 seats;
Yisrael Beiteinu 15 seats;
Avoda 13 seats;
Shas 11 seats;
United Torah Judaism + National Union 5+4=9 seats;
Ta’al 4 seats.
Hadash 4 seats.
Balad 3 seats.
The Jewish Home 3 seats.
Meretz 3 seats.

Plausible links between the parties based on the historical relations between the Israeli
parties are depicted in Figure 3. Given the closeness of the United Torah Judaism and
National Union positions and for the sake of simplicity, we put these two parties together.
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Meretz (3)

Avoda (13) UTJ+NU (9)
Shas (11)

Likud (27)

Kadima (28)

The Jewish Home (3)

Yisrael Beiteinu (15)
Balad (3)

Ta’al (4)Hadash (4)

Figure 3: Israeli parliament elections 2009, network structure.

The computation results on application of the Deegan-Packel type indices are presented
in Table 4.

Party Seats DP DP
w

DP
r

DP
rw

Kadima 28 0.108 0.241 0.102 0.144

Likud 27 0.106 0.233 0.224 0.375

Yisrael Beiteinu 15 0.102 0.131 0.106 0.106

Avoda 13 0.097 0.110 0.187 0.159

Shas 11 0.085 0.085 0.165 0.116

United Torah Judaism + National Union 9 0.073 0.063 0.128 0.080

Ta’al 4 0.090 0.034 0 0

Hadash 4 0.090 0.034 0 0

Balad 3 0.083 0.024 0 0

The Jewish Home 3 0.083 0.024 0.044 0.011

Meretz 3 0.083 0.024 0.044 0.011

Table 4: Israeli parliament elections 2009, Deegan-Packel like power share

The results obtained obviously show that both, the restricted Deegan-Packel and weighted
restricted Deegan-Packel indices, clearly award the primacy to Likud emphasizing the ad-
vantage of its strategic position in the network.
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