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Abstract

Algebraic transformation and optimization tech-
niques have been the method of choice in relational
query execution, but applying them in OODBMS is
difficult due to the complexity of object-oriented query
languages. This paper demonstrates that the problem
can be simplified by mapping an OO data model to
the binary ralational model implemented by Monet, a
state-of-the-art database kernel. We present a generic
mapping scheme to flatten data models and study the
case of a straightforward object-oriented model. We
show how flattening enabled us to implement a query
algebra, using only a very limited set of simple oper-
ations. The required primitives and query execution
strategiesarediscussed, andtheir performanceiseval-
uated on the 1GB TPC-D benchmark, showing that our
divide-and-conquer approachyieldsexcellent results.

1 Introduction

During the last decade, relational database technol-
ogy has grown towards industrial maturity, and the
attention of the research community has shifted to-
wards efficient support for objectsin database systems
[CaD96]. New application domains, like GIS, multi-
media, etc, use the rich modeling facilities offered by
object database systems to model application specific
data.

A relational DBMS typically first translates SQL
queries into relational algebra, which is subsequently
optimized into an efficient physical algebra program.
Algebraic optimization has proven a powerful tool in
this process.

Currently, theresearch community triesto reusethis
idea for the implementation of calculus-based object
query languages [CID92]. A lot of researchisdonein
the complex area of trandating such alanguageinto an
algebra [FeM95,GK G97,ShF94,SBB96], and the area
of their optimization. A number of algebras on the
object data model have been proposed, e.g. AQUA
[LMS93] and KOLA [ChZ96]. The implementation
of such algebras is difficult due to the combination
of the very large number of operations and the com-
plex storage model. To our knowledge, no efficient
implementations of such algebras have been reported.

The contribution of this paper is twofold: first, we
present the implementation of an object algebraon top
of the Monet database kernel, and second, we evaluate
the performance of thisimplementation.
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Flattening an object algebra....

This paper shows how a high-level object data
model and algebra can be mapped to the binary
relational system Monet, a state-of-the-art, high-
performance database kernel, used as backend for
query execution. The concept of mapping the ob-
ject data model to a different physical data model
brings back the benefits of data independence, often
hard sought for in OODBMS.

Section 3.3 discusses a formalism to describe map-
pings to the binary model of Monet. This process is
illustrated with MOA, the Magnum® Object Algebra.
MOA is designed as an intermediate algebraic lan-
guage between a calculus-style object query language
and the database execution language. MOA is a stan-
dard query algebra on a standard object datamodel,
derived from well-known concepts elaborated in other
algebras[ChZ96,L M S93,SBB96)].

...toprovide performance

This paper presents a system that can execute com-
plex OO queries with high performance. This system
translates MOA queriesinto Monet programs. Monet
isused asabackend for execution. Demonstrating this
performance posed a problem, since no complex and
voluminous OO query benchmarks exist. The OO7
benchmark measures navigational performancein OO
systems, but the query part of the benchmark istrivial.
TheBUCKY object-relational benchmark [CDN97] is
not really complex in terms of joins and aggregations.
The few complex OO benchmarks that we know of
[ERE95] just specify queries, no database popul ation.

Therefore we chose to use the TPC-D benchmark
[TPC95]. The TPC-D queriesconsist of complex com-
binations of selections, joins, grouping, and aggrega-
tions against a relational decision support database.
TPC-D can berunusing different scaling factorswith a
database sizesfrom 1GB to 100GB. NumerousDBM S
and OL AP system vendors have published results.

We dlightly adapted TPC-D to fit an object-oriented
context. Its database schema can be reformulated as a
nested MOA schema (see Figure 1). The gr oupby
SQL statement, mapsto the OO concept of nesting and
aggregation.

As we focus on query execution, we used only the
query part of TPC-D, and did not — yet — look into
updates. Asthe TPC-D queries were hand-translated
from SQL into MOA, and vertical fragmentation is

1Two Dutch universities and the CWI cooperate in Magnum
research project, which studies object database technology in the
context of geographical applications.
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a cornerstone of Monet, we do not comply with the
benchmark implementation rules and do not intend to
present our results as anything like an “ official bench-
mark implementation”. The schema, queriesand 1 GB
database just serveto illustrate the performance of our
system. We compare our performancefigureswith the
IBM/DB2 implementation to provide the reader with
context.

Scope and outline of this paper

Object-oriented databases typically bring together
i) structural object-orientation which allows defin-
ing structured object classes, ii) behavioral object-
orientation which models the behavior of objects in
a set of operations, iii) inheritance which relates ob-
ject typesin asubtype/supertypegraph, iv) ahigh-level
object query language like OQL, and v) a persistent
programming environment like alanguage binding for
Javaor C++. Object-relational systemswith row-types
will be able to use more and more of these features
starting from a relational standpoint, and add to this
list the vi) base type extensibility.

The end-goals of the Magnum project envision a
system with all these features. The work described in
this paper is limited to pointsi), iv) and vi). We will
integrate the work concerning ii), iii) and v) described
in [BKK96] in alater stage of the project.

The organi zation of the remainder of the paper isas
follows. Section 2 describes the features of the Monet
database kernel. Section 3 discusses the MOA object
data model, and its the mapping on the binary Monet
datamodel. Considerable attention is paid to the for-
mal foundation of this mapping. Section 4 describes
the MOA algebra, Monet’s execution algebra and the
tranglation of the one into the other. Section 5 outlines
implementation techniques for the execution algebra
in Monet, and Section 9 analyzes our TPC-D experi-
ments and results. Finally, Section 7 summarizes and
concludes the paper.

2 Monet

Monet is an extensible parallel database kernel that
has been developed at the UvA and CWI since 1993.
Monet has already achieved considerable successes
in Data Mining [HKM95], for supporting GIS data
[BQK96] and OO traversals [BKK96].

Thedesign of Monet is based on trendsin hardware
technology: main memoriesof hundredsof megabytes
arenow affordabl e, and custom CPUs can perform over
200 MIPS. Since magnetic storage gets bigger but not
faster, this means that 10 is increasingly becoming a
barrierin processing. Also, inthe near future, standard
PC hardware will come with multiple processors, so
shared memory parallelism will become ever present.
Onthe software side, we see the evolution of operating
system functionality towards micro-kernels, i.e. those
that make part of the Operating System functionality
accessible to customized applications. Prominent re-
search prototypes are Mach, Chorus and Amoeba, but
also commercial systems like Silicon Graphics' Irix
and Sun’s Solaris increasingly provide hooks for bet-
ter memory and process management.

The incorporation of new datatypes like GIS data
or multimedia types image, audio and video, has led
to asteep increase in data volumesin databases. This
causes tuples to grow wide, while a decreasing per-
centage of 10 is really useful in queries that mainly

access the small standard data types. Instead of de-
signing a system around 10-oriented processing where
hardwaretrends actually work against this, we concen-
trate on finding a data storage method that decreases
therole of 10.

Bearing thisinmind, thefollowing ideasare applied

in the design of Monet:
Main memory query execution All Monet’sprimitive
database operations work on the assumption that the
database hot-set fits in main-memory. It has no page-
based buffer manager: Monet's algebraic operations
aways have direct access to the table data in main
memory.

If the database gets larger, however, Monet allows
making a gradual transition to 1O dominated database
processing. Thisis achieved by the transparent use of
memory mapped files. Monet avoidsintroducing code
to 'improve’ or 'replace’ the operating system facil-
ities for memory/buffer management. Instead, it lets
you give adviceto thelower level OS-primitivesonthe
buffer management strategy and lets the MMU do the
job in hardware. Since these features themselves are
controlled via the Monet Interface Language, "buffer
management” itself becomes a part of query optimiza-
tion, which hasthe additional advantagethat decisions
can be based on as compl ete knowledge as possible.
Decomposed storage model Monet implements a bi-
nary relational data model, in which all datais stored
in Binary Association Tables (BATSs, see Figure 2).
So, structured data is decomposed over narrow tables
[CoK85]. Thisfragmentation helpsreduce chunk sizes
to fit memory and saves a lot of 10. Monet exclusive
accesses only those attributes that are actually used in
aquery.

Extensibility The Monet system is run-time extensi-
bleinvariousways: algebracommandsand operators
can be added. Base types can be added via an ADT
extension mechanism similar to Postgres[SRH90]. To
augment the collection of standard types, temporal data
extensions and a complete set of common GIS types
have been written [BQK96]. Finaly, search acceler-
ators can be added to Monet. New base types can-
not always be indexed efficiently with standard index
structures, therefore the Monet extension mechanism
allows adding new index structures, like the R-tree.
Parallelism Monet supports shared-memory paral-
lelism via paraldl iteration and parallel block exe-
cution and shared-nothing parallelism via a TCP/IP
protocol. The primitives are relatively coarse-grained
to preserve efficiency.

Dynamic Optimization A query enginethat performs
some dynamic optimization can hence simplify the
work of a query optimizer, and is more robust to
changesin the environment. Once the query optimizer
has decided what primitives are necessary to execute
a query, Monet decides at run-time which alternative
implementation is most efficient at that moment.

3 DataModéds

Object oriented type systems can be characterized
by the concepts of base types and structuring primi-
tives.

A class definition defines the structure of objects,
that is mapped onto physical storage by the DBMS.
Object oriented models typically have a rich hierar-
chy of structuring primitives, which besides the class
primitive may contain conceptsliketuple, set, list, and
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class Part < class Supplier < class Item <
name . string, narme : string, part Part,
manuf acturer: string, addr ess string, suppl i er Suppli er,
br and ;. string, phone : string, or der O der,
type string, acct bal : float, quantity i nt eger,
si ze i nt eger, nation Nat i on, returnflag char,
cont ai ner string, suppl i es l'i nestatus char,
retail Price : float >; {< part Part, ext endedprice: float,
cost . float, di scount . float,
class Customer < avai |l abl e: integer>} >; tax . float,
name : string, shi pdat e i nstant,
addr ess string, class Oder < conmi t dat e i nstant,
phone . string, cust : Custoner, recei ptdate i nstant,
acct bal : float, item  {lten}, shi prode string,
nation Nat i on, status : char, shi pi nstruct : string
mkt segnment string, total price : float,
orders  {Order} > orderdate i nst ant, class Region <
orderpriority: string, name . string,
class Nation < clerk : string, comment string
name . string, shippriority : string >;
region Regi on >;
Figure 1: MOA datamodel for the TPC-D database
array. Customer_name[OID,string] - BAT descriptor

The internal structure of base types on the other
hand cannot be accessed. It is only accessible via op-
erations. These basetypesallow efficientimplementa-
tion in a general -purpose programming language, and
are often supported inside the database query engine
by specialized search accelerators.

There is growing consensus among OO database
researchersthat the collection of basetypesand associ-
ated search accel erators should be extensible [CaD96].
This gives a database designer the choice between im-
plementing an entity either as atomic type, or as a
database structure. Examples of data entities that are
typically modeled as base types are lines and poly-
gonsin spatial systems, and image and sound data for
multimedia applications.

3.1 MOA logical data model

The MOA data model is similar to well-known
structural object datamodelslike[CID92,SAB94]. At
itsbasis, MOA acceptsall atomic typesof Monet (that
is {bool, short, integer, float, dou-
ble, long, string}) as base types. Since
Monet can be extended with new atomic types, this
automatically provides MOA with base type extensi-
bility. The base types can be combined orthogonally
using the structure primitives SET, TUPLE and OB-
JECT, which will be formalized in Section 3.3. A
MOA database is formed by the collection of class-
extents, which are sets for each type of object that
contain al their instances. Figure 1 shows the MOA
model for the TPC-D schemaand illustrates the use of
structures.

3.2 Monet physical binary model

Monet stores al data in Binary Association Ta-
bles (BATs). Figure 2 shows the design of the BAT
structure. The left column of a BAT is referred to as
head, the right column as tail. Due to the design of
its datastructure, any BAT can always be viewed from
two perspectives: its normal form bat [ X, Y], and
the mirror bat [ Y, X] , which has the head and tail
columns swapped.

mirror
descriptor

Name_customer

,,,,,,

Custom er_name

101
(102
103
104

Annita

3|qel-ysey

Accelerator
Heap

Figure 2: The Binary Association Table (BAT) and its
memory layout

A BAT has at least 1 and at most 5 associated
heaps. Thereisawaysaheap that containsthe atomic
valuepairs, called Binary UNits (BUNS). Thisensures
dense, array-likestorage of fixed-sizedatas. For atoms
of variablesize—suchasst ri ng orpol ygon —both
head and tail can have an extra heap (the BUNSs then
contain integer byte-indices into that heap). Finally,
persistent search accel erators—for instance hash tables
- .rlnay be stored in separate heaps, for both head and
tail.

3.3 Flattening the object data model

Every implementation of an object-oriented data
model hasto map structuring primitivesto some phys-
ical representation. Some implementations use a one-
to-one mapping between the logical and the physical
model. A well-formalized mapping provides data in-
dependence, enabling the DBM S to choose a physical
representation different from the logical one, so that it
may have extraoptimization possibilities during query
execution.

In the case of MOA, we use full vertical decompo-
sition [CoK 85] to store structured datain BATs. The
combination of BATs storing values and a structure
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function on those BATSs forms the representation of a
structured value.

Supplier_acctbal

Supplier_supplies_part

Supplier_nation

Supplier_supplies_cost

Supplier_supplies_available

Figure 3: Mapping of the supplier table on BATs

An example

Figure 3 shows the decomposition of the TPC-
D Supplier class into BATs. For example, BAT
Suppl i er _name contains the values of the nane
attribute in the Supplier objects. All BATs
that store attribute values contan an oi d in the
head and the corresponding attribute values in the
tail. The Suppl i er _name BAT thus has signature
BAT[ 0i d, string]. The BAT Supplier con-
tains al oi ds of existing objects, and is called the
extent BAT. The set-valued attribute suppl i es uses
the BAT named Suppl i er suppl i es to map sup-
plier oi ds to set-ids, and the attribute values in the
suppl i es set are stored in BATs that can contain 0
or more BUNSs for each set-id. The structure expres-
sion
SET(Supplier,

OBJECT (Supplier_name, Supplier_address,

Supplier_phone, Supplier_acctbal, Supplier_Nation,
SET(Supplier_supplies,
TUPLE(Supplier_supplies_part,
Supplier_supplies_cost,
Supplier_supplies_available))))

describes how the Suppl i er objects are created out
the BATSs they are decomposed over. Each structure
in the type system is reflected by a structure func-
tion in the structure expression. To form a rigorous
framework for the implementation of the algebrait is
essentia to formalize the semantics of the structure
functions SET, OBJECT, and TUPLE.

The formal semantics of the mapping

To define the mapping of structures on BATs, we
will formalize the type-system, the concept of a BAT
and wewill define containers of tuplevaluesand of set
values.
The type system is defined as follows:
basetypes: B isatypeif 3 isan atomic Monet type.
tupletypes. (m1,---, ) isatype, if 7; aretypes.
set types: {7} isatypeif  isatype.

V), isused to denotethe domain associated with type 7.
V3 denotesthe domain of abasetype. Monet supports
abasetypeoi d, and V,:4 the set of object identifiers.

A BAT[34, 2] is semantically equivalent to a subset
of Vig,6)- _ _

A head-unique BAT[f1, 82| has unique values in the
head column, so it is a subset of

{zi,y5) € Vig, o)l # 5 — i # x5}

An identified value set S is a set of pairs in which
each value v; is associated with an identifier 7d; that is
unique within the value set: S, iscaled an IVS over
T iff

Se P(v<oid,7'>) A
V(i,v), (5, w) € 5: (i,v) # (jyw) = i #]

Identifiers can be, and actually are, reused in different
value sets. In this way the concept of synchronous
value setsis defined:
Two identified value sets S1 and S2 are synchronous
if

(idy, z) € S1 <= (idg,y) € S2
So, each identifier-value pair in S1 has an identifier-
value pair in S2 for which the identifiers correspond
and vice versa.
We can now define the semantics of the structure func-
tionsrecursively asfollows.

A head-unique BAT [oid, [] represents an identified
velue set S3.

A head-uniqueBAT [o0id, oid] inwhichthetail-values
refer to database objects of class X, representsaniden-
tified value set {(Zdl,Xl>Xl € X Noid; = Old(XZ)}

If Sq,---,5, are mutualy synchronous identified
value sets, the structure function
TUPLE(Sy,- -, Sy,) definesanew vaue set:

{(Zdu (vila -t 'avin>>|<idiavi]’> € S]}

The OBJECT structurefunctionisidentical to the TU-
PLE structure function. The ids associated with the
tuples generated are the object identifiers.

If AisaBAT [oid, oid], and S isan identified value
set then the structure function SET(A4, S) defines the
value set

{(Oldz,{’l)]}”(m,dz,ldl) c AN (idi,vj) € S}
A servesasanindex into valueset S.

If A is a BAT [oid, 8], then the structure function
SET(A) definesthe value set:

{(oid;, {v;}) (0id;, vj) € A}

This an optimization of the previous way of storing
sets, for the case that the set element value is smple
(i.e. abasetype or an object reference).

Because the structure functions all have identified
value sets as operands and result in identified value
sets, they can be composed to generate complex struc-
tured data. Thereisaone-to-onerelationship between
structures in the data model and structure functionsin
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the physical-to-logical mapping. Thisimpliesthat any
datatype expressiblein MOA can be represented by a
set of BATs and a composition of structure functions.
In the remainder of this paper the symbol (S) is used
to denote some composition of structure functions.

4 Query Execution

In the Magnum project, we aim at supporting a
declarative object query language like IQL [AbK92]
and ODMG-OQL [Cat94]. The preparatory stage,
the trandation of a declarative object query language
into an object algebra, has been studied extensively
[SAB94,SBB96] and an implementation of the ideas
developedis on its way.

This section describes the MOA query algebra,
which is designed to be an intermediate language. In
the context of this paper however, it is our source lan-
guage and the Monet Interpreter Language (MIL) is
our target language.

4.1 MOA Query Algebra

The MOA query algebra is a standard object alge-
bra. It contains the operations select, project, join,
semijoin, union, intersection, difference, subset, in,
nest, unnest, and aggregates that operate on sets; it
allows accessto attributes of tuplesand objects; it sup-
ports operations on the atomic types and allows for
method invocations on objects. Example descriptions
%EsBigg;ar algebras may be found in [CID92,LM S93,

project[<date : year, sum(project[revenue](%2)) : loss>](
nest[date] (
project[<year(order.orderdate) : date,
* (extendedprice,-(1.0, discount)) : revenue>](
select[=(order.clerk, "Clerk#000000088"),
=(returnflag, 'R’)](Item))))

The MOA version of TPC-D query 13 displayed above
provides a flavor of the algebra. This query analyzes
the quality of work of a certain clerk. It combines
two selectionson | t em— sold by a certain clerk, and
having areturnflagindicating that it was sent back with
defects — computes a revenue lost per returned item,
and then sumsthelosses over each year. Thegrouping
of losses per year is done using nesting. The result of
the query is projected into a set of <year, | oss>
tuples.

4.2 Monet Execution Algebra

The Monet Interface Language (MIL) consists of
the BAT-algebra, which contains basic set operations,
and a collection of control structures. BAT-algebra
operations materialize their result and never change
their operands.

The above primitives are sufficient to execute the
majority of MOA constructs on Monet. Each BAT al-
gebraprimitive has afixed semanticsregarding what it
expectsin the columns of its parameters. If necessary
youjust usethemi r r or commandto flip head and tail
of a BAT; an operation free of cost. Thesem j oi n
operation is important, since it is heavily used for re-
assembling vertically partitioned fragments (in Sec-
tion 5.2 we will elaborate an efficient implementation
of this operation). Note that the equi-j oi n projects
out the join columns, in order to keep the operation
closed in the binary model. The uni que produces
its result by removing the duplicates from its operand.

MIL command informal semantics

AB.mirror {balab € AB}

AB.semijoin(CB) {ablab € AB,3ed € CD ANa = c}
AB.join(CD) {adlab € ABAcd € CDAb=c}
AB.select(TI,Th) | {ablab € ABAb> TIAb < Th}
AB.select(T) {ablab € ABAb =TI}

AB.unique {ablab € AB}

AB.group {aop|ab € AB A o, = unique_oid(b)}

AB.group(CD) {aopglab € ABANed € CD Aa =cA

0pg = Unique_oid(b, d)}

[f1(AB) {af(b)lab € AB}
[f](ABvaY) {af(b"")y)|abeAB)"')

zy € XY ANa=---=z}
{g}(AB) {ag(Sa)la € AN S, = {blab € AB}}

Figure 4: BAT primitivesfor executing OO queries

Operations on values (like arithmetic), and aggregate
operationson BATs (like sum, avg, etc) are also part of
MIL, but are omitted for brevity, just likethetheta-join
and some set-operations (difference, intersection, etc).
grouping Thegr oup operation introducesnew oi ds
for uniquely occurringvaluesin aBAT column. Inthis
definition, theunique_oid(- - -) function returnsanew oi d
for each unique (combination of) parameter(s). This
operation is used to implement SQL gr oupby and
MOA nest . For groupingson one attribute the unary
version is used. For groupings on multiple attributes,
thisisfollowed up by binary gr oup invocationstill all
attributes are processed. Thisisillustrated in Figure5
by the grouping that occurs on the objects of interest
accordingtoyear (thegr oup operation assigns new
oi ds, that are used as key for all three result BATSs of
the query).

method invocation The multiplex constructor [X] al-
lows bulk application of any algebraic operation on all
tail values of a BAT. Multiple BAT parameters can be
given, in which case the algebraic operation is applied
on all combinations of tail values over the natural join
on head values. This operation is used to vectorize
computation of expressions, and invocation of meth-
ods. As an example, in Figure 5 the expression ( 1-
price)*di scount isvectorizedin successive[ * ]
and[ -] operations.

aggregation The set-aggr egateconstructor isused for
bulk aggregation. It isdefined for each aggregatefunc-
tionY that mapsaset to somevalue. Theset-aggregate
version {Y }() groups over the head of the BAT and
calculates for each formed set of tail values an aggre-
gate result. With this construct, we can execute nested
aggregatesin one go, rather than having to do iterative
calls to some function on nested collections.

43 MOA toMIL transformation

The idea behind the algebra implementation is to
trandate a query on the representation of the struc-
tured operands into a representation of the structured
query result. Figure 6 illustrates this process. the
query isa MOA expression on a structure expression
on BATSs, and its trandation is a MIL program on the
operand BATSs that generates result BATs, which in
turn are operands of another structure expression that
represents the result.

Formally, this implementation is described as fol-
lows: Assume that we execute MOA-operation noa
on the structured data value X. X is stored in BATs
X,,-+-, X, andthereisastructurefunction Sx, such
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Figure6: MOA query execution by trandationto MIL

that Sx (X1,--+,X,) = X. The implementation of
operation noa consists of a MIL-program i | , that
results in BATs Yy, - -+ Y,,, and a structure function
Sy, taking Yy, - - -, Y, as operands, so that

Sy(m | (X, -+, X)) = moa(X)

Because the operationsin MIL and in MOA, and the
structure functions have a formal semantics, it is pos-
sible to prove the correctness of implementation of
MOA on MIL. A detailed discussion of this issue is
beyond the scope of this paper. Informally, a correct
implementation can be described as an implementation
for which both gray paths in Figure 6 yield the same
result.

For each operation in MOA, a transformation rule
for thetrand ation of the operationinto aMIL program
and structure function is generated. The MOA imple-
mentation consists of a straightforward term rewriter.
Figure 5 shows the MIL trandation of TPC-D query
13. We illustrate the simplicity of the transformation
ruleswith afew examples:

4.3.1 Selection

The syntax for a sdlection in MOA s
sel ect [f()](X), in which X is an expression, that
evaluatestotheset {z}, and () isaboolean operation
on the elements in X. The semantics of this selection
expressionis {z|z € X A f(z)}. Thetransformation
rulefor selectionsis:

select[f()] (SET(A, X)) — SET(semijoin(A, T (f(X))), X).

Because the selection operation operates on sets, the
trandation of the operands of a syntactically cor-
rect MOA selection expression is always of the form
SET(A, X),with A assetindex and X asidentified
value set. In thisrule, 7(f (x)) is the trandation
of the selection predicate f() on the operands value-
set X. The selection predicate has to be a boolean
function on the value set; it is trandated via its own
transformation rule into a BAT containing the ids of
the qualifying valuesin value set X. A new setindex
is generated viaa semijoin.
4.3.2 Operationson set-valued attributes
Structures in MOA may be nested, and therefore,
set-valued attributes may occur. The Supplier classin
the TPC-D benchmark isan example. Assume that we
want to retrieve, for each supplier, the set of parts that
areout of stock, sothat avai | abl eisequal to 0. In
MOA this query is expressed as follows:

project[ < Yoname,
select[Yavailable = 0] (Yosupplies)>](Supplier).

This query contains a selection on set-valued attribute
supplies. The transformation rule for selection set-
valued attributesisidentical to theruleaselectionon a
single set. If operand X in Section 4.3.1isinterpreted
as an identified set of set values, the transformation of
this expression results in the correct identified set of
reduced set values.

Here we see one of the beneficial effects of storing
nested sets in a flattened model: instead of executing
repeated selections for each nested set, we can do all
work together in one selection on the flattened repre-
sentation. Similar efficient trandations are made for
other nested set-operations like union, difference, and
intersection.

5 Monet Implementation

This section describes some aspects of the Monet
implementation that are heavily used in the TPC-D
implementation.

5.1 Property Management

The Monet kernel generally contains multiple im-
plementations for each algebraic operation. For in-
stance, forthesemi j oi nthereisahashseni j oi n
implementation, but alsoanmer geseni j oi n,thatas-
sumes the join columns of both BATSs to be ordered.
The most particular variant is the syncsemi j oi n,
that using the knowledge that the join columns are
exactly equal just returns a copy of its left operand
BAT.

The philosophy of Monet isthat the algebraic com-
mands do an additional dynamic optimization step just
before execution. Depending on the state of the sys-
tem, and the state of the operands, a run-time choice
between the available algorithms can be made. To
this end, Monet keeps track of various properties of
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permanent and intermediate BATs. We focus here on
three BAT propertiesthat are maintained by the kernel
on each column. The following are examples of such
properties.

order ed(BAT) is true, if the head column of
stored in ascending order.

key(BAT) istrue, if the head column of the BAT
does not contain duplicate elements.

synced( BAT1, BAT2) is true, if the BUNs in
both BATs correspond by position. The most
common case for thisis that the head columns of
the two BATs are exactly identical.

Once set, these properties are actively guarded by
the kernel. When updates occur, they are rechecked,
and switched off if necessary. Each MIL command has
a propagation rule for propagating the properties of
its parameters onto its result. For example, a semijoin
will propagatethek ey propertieson both head and tail
of its left operand onto the result, ar angesel ect
will propagatetheor der ed information on both head
and tail to the result.

5.2 The Datavector Accelerator
OLAP queries as found in the TPC-D benchmark,
typically consist of two phases:

o first, they select an interesting subset of objects;
using some sel ection-attributes.

¢ then, in a second phase, computation of expres-
sions and aggregations on other attributes of the
selected objectstakes place. Let us call these the
value-attributes.

These trends can be observed also in TPC-D query
13 and areindicated in Figure 5.

When the database hotset outgrows main memory,
algorithmsusing sorted tables like merge-join, merge-
semijoin, and binary search selection tend to work best
in Monet, because they have sequential access patterns
and can better be supported by the OS virtual memory
pager.

For doing the selection on the selection-attributes,
one would prefer to have attribute BATS ordered on
attribute value (tail column), in order to use binary
search selection.

To do computation and aggregation on the value-
attributes of the selected objects, one needsto do semi-
joins between the value-attribute BATs and the made
selection. Observe that although multiple semijoins
may be necessary, many of those will be very similar:
they will semijoin the same selected oi ds from the
attribute BATs.

This leads to conflicting clustering-requirements:
selection-attributes reguire sorting on tail, whereas
value-attributes require sorting on oi d. Also, at-
tributes have different roles — value or selection — in
different queries.

The solution explored hereis to store al attributes
ordered on tail; this favors the access from values to
oi ds(e.g. selections, and joins on attribute values).
Thepathinthe oppositedirection, fromoi dstovalues
is then tackled by using a fully vectorized representa-
tion of the n-ary table into one vector of oi dsand n
vectorswith attribute values, that are all storedin oi d

Customer_name (1) Create Datavector
(2) Sort on Tail

101 Annita Customer_name
102 Martin Annita
103 Peter .
104 Annita Annita
105 Pet Martin

er )

Martin

106 Martin EXTENT

Peter
Peter

|

Figure7: Datavector Creation through Project and Sort

T synced BATs

order. They can easily be represented in Monet using
unary BATs. 2 Notethat the MOA mapping of objects
already gave usthe unary vector of oi ds, asthe extent
BAT (see Section 3.3). We usethediscussed synced
kernel property (see Section 5.1) to let Monet ensureus
that the vectors correspond by position. The original
BATs used in the MOA mapping, that are — as said —
kept sorted ontail, then have areferenceto their "value
vector" by means of a new Monet search accelerator
extension dubbed dat avect or .

Through al this we actually achieve a fully vec-
torized storage (represented by the extent BAT and all
datavectors), supplemented by an inverted list index
on al attributes (the "normal” BATSs containing the
oi d,attribute combinations).

5.2.1 Datavector Semijoin

Just like the presence of a hash-table on an operand
might lead the | oi n to choose a hashj oi n imple-
mentation, might the presence of a datavector influ-
ence the execution strategy of some operations. The
most important operationin our contextissem j oi n,
since it is instrumental in the phase of getting to the
value-attributes of an OLAP query. We hence in-
troduced a datavector semijoin; which is displayed
below in pseudo code:

01 PROCEDURE datavector_semijoin(BAT[oid,any] A, BAT[oid,.] B)

02 BEGIN

03 oid EXTENT([size(A)] := extent(A);

04 any VECTOR[size(A)] := datavector(A);
05 int LOOKUPY[] := positions(B);

06

07 IF NOT EXIST(LOOKUP) THEN

08 INTIDX :=0

09 LOOKUP := new INT[size(B)];

10 FORALL BUNS[X,.] IN BAT B DO

11 IF (POS := probedlookup(EXTENT,X)) THEN
12 LOOKUP[INC(IDX)] := POS;

13 Fl

14 oD

15 FI

16 BAT RESULT[oid,anyNY];
17 FORALL Zin[1.size(LOOKUP)] DO

18 INT POS := LOOKUP[Z];

19 RESULT.insert(EXTENT[POS], VECTOR[POS]]);
20 DO

21  RETURN RESULT:

22 END

2Unary BATs are of course a contradiction. We mean BATS that
have the zero-space type voi d in one column.
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Associated with the left operand BAT are both the ex-
tent and the datavector (lines 3-4). For ease of reading
both aredisplayed hereassimplearrays. If itisthefirst
timethat B Isused asright operand for asemijoin, then
lookup hasto be performed (line 7). All elementsof B
are looked up in the extent (line 10-11). The extent is
alwayskept sorted, so thislookup can beimplemented
efficiently using probe-based binary search. For each
hit, the array index is saved in the LOOKUP array (line
12). It iskept there for later use, so subsequent semi-
joinswith B not re-do the lookup effort. Theinsertion
phase walks through the LOOKUP array, and fetches
the matching head and tail values from respectively
EXTENT and VECTOR (lines 17-19).

522 10 Cost Model

On the one hand, Monet benefits from the full ver-
tical fragmentation (less 10, narrow tables), on the
other, it has to face the extra semijoins to recombine
fragments. This section analyses the resulting perfor-
mance trade-off via a small performance model, in
which the costs the Monet approach are compared
to non-decomposed relational approach. As doing
some semijoinsposesno performanceprobleminmain
memory, wefocushereonthel O boundsituation. That
is, we assume cold memory mapped BATS, such that
every access to them will cause page faults.

We areinterested for expected number E of B-byte
disk pages to be retrieved (or: virtual memory page
faults) for doing aselection with selectivity s, followed
by a projection to p attributes in an n-ary table. This
n-ary table has X rows which are n*w bytes wide,
where w is taken uniform as the byte width of one
value:

Bre(s) =[G 1+ [+ (L= (1 —s)%1) is
the expected number of disk blocksto fetch when
using arelational strategy where the database ta-
ble is stored without decomposition. The first
component is the 10 cost of discovering which
tuples participate in the selection. This can most
efficiently be done using an index; in this case we
assume an inverted-list, implemented as an array
of [ val ue, t upl e- poi nter] records. The
number of inverted-list tuples per page C;ny =
| £ ]. The second component models — unclus-
tered — retrieval itself. It is a multiplication of
the number of pages with the probability that at
least one row in a page is selected. The number

of rows per page Cret = | rrayew |-

Bay(s) = g1+ 0+ 1)([g- 1+ (1 — (1 —5)%))
expresses the costs for the Monet approach. The
first component represents doing the selection on
aBAT. Wehaveall dataBATssorted ontail, which
isin fact like having an inverted list on each at-
tribute. The second component of the formula
represents doing p datavector semijoins to get
the requested attribute values. The lookup into
the extent performed during the first datavector
semijoin counts as one semijoin more, hence the
factor p + 1. The number of BUNS per page of a

BAT Chat = | £ |, and the number of datavector
values per page Cyq, = | £]. .

Figure 8 displays the projected cost with parame-
ters derived from the 1GB TPC-D | t emtable (X =

90000

T
Erel(n=16)
S o

80000 s
o
o
o Edv(p=12,n=16)|

70000 P

60000 /' &
/ o
Edv(p=9,n=16)

! O
L/ &
50000 - | o

page faults
3
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20000 " ; Edv(p=3,n=16)
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Edv(p=1,n=16)
h
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selectivity

Figure8: select-project 1O cost according to selectivity
for relational vs datavector approach

6000000,n = 16,w = 4, B = 4096). The fat line
shows the model for the relational storage case. The
thin lines show the Monet case for variousvalues of p.
It shows that Monet's datavector semijoin strategy is
generally more efficient than the relational approach,
apart from very low values of s, e.g. the crossover
point forn = 16,p = 3isat s ~ 0.004.

6 TPC-D Experiments

We used the DBGEN program to generate the 1GB
database in ASCII files. We then loaded these into
Monet our system, using its bulk load utility, which
took 1:28 hour. Thisultility correctly setstheproperties
key, ordered, and synced for each generated BAT.

For each class, anext ent [ oi d, voi d] wascre-
ated by taking one attribute-BAT, and projecting out
thetail column. Initially, all tableswere sorted onoi d
(head column), so it was cheap to create datavectorson
them: we just had to make a projection on tail column
for each attribute BAT. Creating the extents and the
datavectorstook about half an hour.

In order to efficiently execute selections and joins
on attribute values, we then reordered al tables on
tail values. This took an additional hour. In total,
the TPC-D database occupies 1.6GB of diskspace (of
which 300MB in data vectors, and 1.3 GB as base
data).

All MOA versions of the TPC-D queries were fed
through the translator —which takes no significant time
— and executed in a sequence on the Monet backend.
Figure 9 shows the absolute performance results in
€lapsed seconds. To provide more insight, we also in-
clude stats on the number of pagefaults, the selectivity
in the main table (I t emhas 6 million tuples), the to-
tal size of al intermediate results, and the maximum
memory consumption during query execution.

6.1 Hardware

The hardware platform used for experimentation
was a Sun SuperSparc 20/61 (performing at 98.1
SPECint) running Solaris 5.3. The machine had two
internal 4GB Seagate ST15150W disks (9 ms access
time, 6MB/s throughput), of which one was used as
root file system and swap area, the other one for stor-
ing our TPC-D data. The only other known TPC-
D numbers for the 1GB benchmark are the officia
IBM numbers, obtained on a PentiumPro 200 Mz PC
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DB2 M onet total max Item page
Qx (sec) (sec) (MB) | (MB) | select% faults || comment
1 668.4 | 1098.1 800 95 98% 73K billing aggregates over 700MB table
2 6.7 14.1 10 4 n.a 518 cheapest part supplier for aregion
3 179.7 99.8 76 60 56% 368 find top-10 valuable orders
4 88.3 52.3 6 6 4% 16K priority assessment, customer satisfaction
5 148.2 172.2 98 14 15% 13K revenue per local supplier
6 95.2 48.7 45 32 15% 132 benefits if discounts abolished
7 261.3 109.5 124 29 30% 966 value of shipped goods between 2 nations
8 54.2 1175 39 29 30% 4.1K part market share change for aregion
9 2321.6 77.1 70 7 3% 25K line of parts profit for year and nation
10 221.7 83.1 22 8 4% 18K top-20 customers with problematic parts
11 6.4 8.9 9 3 n.a 97 significant stock per nation
12 128.8 214.4 76 25 15% 11K cheap shipping affecting critical orders
13 24.1 379 0 0 0.1% 4.7k loss due to returned orders of aclerk
14 64.7 35.2 8 4 1% 384 market change after acampaign date
15 55.6 411 33 22 4% 47 identify the top supplier
load 4740 10080 ascii import and accelerator creation
QppD 43.8 59.1 geometric mean-based query per hour rate

Figure 9: TPC-D Results In Elapsed Seconds

(performing at 351 SPECint) running Windows NT
3.51. This configuration had an ultrawide SCSI con-
troller, with four Ultrastore XP disks (9 ms access
time, 10M B/s throughput). Both platforms had a total
of 128M B memory. Notethat the|BM isabout 3 times
more powerful than our hardware.

6.2 Analysis

We see the best side of Monet in e.g. in queries
3,4,6,7,9 10 and 14. The 10 cost model (Sec-
tion 5.2.2) also shows Monet to be at arelative disad-
vantage on low selectivity values or when very small
results are obtained. This effect can indeed be seen
in the relatively lagging performance of queries 2, 11
and 13 (which hasp = 3, and s = 0.001). Only on
query 1, the database hot-set outgrows main-memory
size. This query has a selectivity 98% over the 6 mil-
lion line items. Under such conditions, our algebraic
buffer management starts to save intermediate results
to disk to make room in main memory. A test runwith
explicit buffer management omitted, choked the sys-
tem by excessive swapping. This shows the viability
of our approach of including OS buffer management
advise as an algebraic dterative in the query trans-
formation. It should however be noted that Monet’s
policy of materializing intermediate results here is a
disadvantage. Lagging performance for queries 5, 8
and 12 isrelated to a high number of page faultswhen
processing complex sequences of joins. We think that
more optimization could improve these numbers.

6.2.1 Detailed Performance Trace

TodiscussMonet’sperformanceinmoredetail, Fig-
ure 10 shows the execution results of a simplified®
version of the MOA trandation of Q13 to MIL.

The query starts with selecting al orders from
Order cl erk[oid, string] for acertain clerk.
Efficient binary search can be used, and the results
are al stored consecutively, so this operation causes
very few page faults. The returned 1459 orders are
then joined with the | t emor der[ oi d, oi d] to
get to the line items. Actually the or der s[ oi d,

3All buffer management operations have been omitted. For
ful MOA and MIL scripts see the Monet web pages at tt
http://www.cwi.nl/~monet.

elapsed MIL statement

ms | faults

21 | 238[1] _orders :=sdlect(Order_clerk, "Clerk#000000088")|
16102| 7 | 2| -items :=join(ltem_order, _orders)
12932|3663| 3| -returns := semijoin(ltem_returnflag, _items)

5 0 (4| _ritems :=seect(_returns,'R’)
2415|250 | 5| _critems := semijoin(ltem_order, _ritems)
1653 331 | 6 _years := [year](join(-critems,Order_orderdate))

5 0|7 _class := group(_years)

6 0 | 8| INDEX :=join(.ritems.mirror, _class).unique

7 0 [9| YEAR :=join(_class.mirror, _years).unique
2022 | 232 |10{ _prices := semijoin(ltem_extendedprice,_critems)
2420 | 247 |11| discount := semijoin(ltem_discount,_critems)

4 0 (12| _factor :=[-](1.0,-discount)

4 0 (13| _rlprices :=[*](-prices,-factor)

9 0 (14| _losses :=join(-class.mirror, _rlprices)

4 0 (15| LOSS := {sum}(-losses)

Figure 10: Q13 Detailed Monet Execution Results

oi d] is also ordered on tail, so the mergejoin
implementation is used. In line 3 we semijoin
them to get returnflags. This semijoin will go
into the datavector-semijoinimplementation, since the
It emr et urnfl ags[ oi d, char] isnotsortedon
oi d, but has a datavector attached to it. The selec-
tion on the _r et ur ns[ oi d, char] with 5929 ele-
ments is cheap. The following join (line 5) is again
a merge-join, since we till have sorted oi ds. In
lines 7-9 the grouping in classes according to year
of the order is determined. Note the use of the
multiplex [ year] () operator to extract years from
the sets of dates. The semijoin in 10 is again a
datavector-semijoin. This is cheap, because the pre-
vious datavector-semijoin (line 3) has already blazed
the trail into the extent. The costs are just the costs of
fetching values from the vector; this repeats itself in
line 11. The two multiplex operations that follow can
be executed very efficiently, since the Monet kernel
knows that the BATs _pri ces[oi d, fl oat] and
_di scount[oid, fl oat] aresynced. Bothstem
from a semijoin with a 100% match with the small
relation _critens[oi d, oid], sothey again are
synced.
The result of the query are the three BATs | N-
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DEX[ voi d, oid],YEAR oi d,int] andLOSS[
oid, flt].MOA looksatthemthroughthroughthe
structure function SET( 1 NDEX, TUPLE( YEAR,
LOSS)) .

Aswe have seen, the active use of propertiesby the
Monet kernel enablesit to successfully chooseefficient
implementations at run-time, the datavector-semijoin
being a winner among them: in many TPC-D queries
it reducesthe cost of multiple semijoins by more than
half. Dueto thisintelligent semijoin execution, Monet
isableto avoid being punished for itsuse of full vertical
fragmentation, and isableto reap the benefits— namely
—doing IO on very thin tables.

7 Conclusions

The large scale experiment reported here demon-
strates progress in two key areas of modern database
management. First, the experiments demonstrate con-
vincingly that a DBMS kernel based on binary as-
sociations and a strong bias to exploit main-memory
algorithms can be scaled to accommodate a disk-based
decision support benchmark. Second, the mapping of
an object-algebrato the binary relational platform us-
ing transformation rules can be achieved and proved
correct. Takentogether our resultsmark progressin de-
veloping small, yet extensible database kernels, which
are applicableto awide variety of database application
scenarios using an object-oriented interface (See also,
[BKK96,BQK96,HKM95]).

Currently, we are integrating the work on object
database language bindings and method invocation de-
scribed in [BKK96] into the algebraic context. More
structure primitives, like the list, bag, and array, will
be included in MOA. Research goals for Monet in-
cludefurther scaling of the database kernel technology
to over 100GB databases via the exploitation of par-
alelism. Our experience from PRISMA [WFA95] is
being used in a project were the MOA implementation
will be extended to generate heterogeneously parallel
MIL programs.
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