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Abstract
Algebraic transformation and optimization tech-

niques have been the method of choice in relational
query execution, but applying them in OODBMS is
difficult due to the complexity of object-oriented query
languages. This paper demonstrates that the problem
can be simplified by mapping an OO data model to
the binary ralational model implemented by Monet, a
state-of-the-art database kernel. We present a generic
mapping scheme to flatten data models and study the
case of a straightforward object-oriented model. We
show how flattening enabled us to implement a query
algebra, using only a very limited set of simple oper-
ations. The required primitives and query execution
strategies are discussed, and their performance is eval-
uated on the 1GB TPC-D benchmark, showing that our
divide-and-conquer approach yields excellent results.

1 Introduction
During the last decade, relational database technol-

ogy has grown towards industrial maturity, and the
attention of the research community has shifted to-
wards efficient support for objects in database systems
[CaD96]. New application domains, like GIS, multi-
media, etc, use the rich modeling facilities offered by
object database systems to model application specific
data.

A relational DBMS typically first translates SQL
queries into relational algebra, which is subsequently
optimized into an efficient physical algebra program.
Algebraic optimization has proven a powerful tool in
this process.

Currently, the research community tries to reuse this
idea for the implementation of calculus-based object
query languages [ClD92]. A lot of research is done in
the complex area of translating such a language into an
algebra [FeM95,GKG97,ShF94,SBB96], and the area
of their optimization. A number of algebras on the
object data model have been proposed, e.g. AQUA
[LMS93] and KOLA [ChZ96]. The implementation
of such algebras is difficult due to the combination
of the very large number of operations and the com-
plex storage model. To our knowledge, no efficient
implementations of such algebras have been reported.

The contribution of this paper is twofold: first, we
present the implementation of an object algebra on top
of the Monet database kernel, and second, we evaluate
the performance of this implementation.

Flattening an object algebra : : :
This paper shows how a high-level object data

model and algebra can be mapped to the binary
relational system Monet, a state-of-the-art, high-
performance database kernel, used as backend for
query execution. The concept of mapping the ob-
ject data model to a different physical data model
brings back the benefits of data independence, often
hard sought for in OODBMS.

Section 3.3 discusses a formalism to describe map-
pings to the binary model of Monet. This process is
illustrated with MOA, the Magnum1 Object Algebra.
MOA is designed as an intermediate algebraic lan-
guage between a calculus-style object query language
and the database execution language. MOA is a stan-
dard query algebra on a standard object datamodel,
derived from well-known concepts elaborated in other
algebras [ChZ96,LMS93,SBB96].

: : : to provide performance
This paper presents a system that can execute com-

plex OO queries with high performance. This system
translates MOA queries into Monet programs. Monet
is used as a backend for execution. Demonstrating this
performance posed a problem, since no complex and
voluminous OO query benchmarks exist. The OO7
benchmark measures navigational performance in OO
systems, but the query part of the benchmark is trivial.
The BUCKY object-relational benchmark [CDN97] is
not really complex in terms of joins and aggregations.
The few complex OO benchmarks that we know of
[ERE95] just specify queries, no database population.

Therefore we chose to use the TPC-D benchmark
[TPC95]. The TPC-D queries consist of complex com-
binations of selections, joins, grouping, and aggrega-
tions against a relational decision support database.
TPC-D can be run using different scaling factors with a
database sizes from 1GB to 100GB. Numerous DBMS
and OLAP system vendors have published results.

We slightly adapted TPC-D to fit an object-oriented
context. Its database schema can be reformulated as a
nested MOA schema (see Figure 1). The groupby
SQL statement, maps to the OO concept of nesting and
aggregation.

As we focus on query execution, we used only the
query part of TPC-D, and did not – yet – look into
updates. As the TPC-D queries were hand-translated
from SQL into MOA, and vertical fragmentation is

1Two Dutch universities and the CWI cooperate in Magnum
research project, which studies object database technology in the
context of geographical applications.
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a cornerstone of Monet, we do not comply with the
benchmark implementation rules and do not intend to
present our results as anything like an “official bench-
mark implementation”. The schema, queries and 1 GB
database just serve to illustrate the performance of our
system. We compare our performance figures with the
IBM/DB2 implementation to provide the reader with
context.

Scope and outline of this paper
Object-oriented databases typically bring together

i) structural object-orientation which allows defin-
ing structured object classes, ii) behavioral object-
orientation which models the behavior of objects in
a set of operations, iii) inheritance which relates ob-
ject types in a subtype/supertype graph, iv) a high-level
object query language like OQL, and v) a persistent
programming environment like a language binding for
Java or C++. Object-relational systems with row-types
will be able to use more and more of these features
starting from a relational standpoint, and add to this
list the vi) base type extensibility.

The end-goals of the Magnum project envision a
system with all these features. The work described in
this paper is limited to points i), iv) and vi). We will
integrate the work concerning ii), iii) and v) described
in [BKK96] in a later stage of the project.

The organization of the remainder of the paper is as
follows. Section 2 describes the features of the Monet
database kernel. Section 3 discusses the MOA object
data model, and its the mapping on the binary Monet
data model. Considerable attention is paid to the for-
mal foundation of this mapping. Section 4 describes
the MOA algebra, Monet’s execution algebra and the
translation of the one into the other. Section 5 outlines
implementation techniques for the execution algebra
in Monet, and Section 9 analyzes our TPC-D experi-
ments and results. Finally, Section 7 summarizes and
concludes the paper.

2 Monet
Monet is an extensible parallel database kernel that

has been developed at the UvA and CWI since 1993.
Monet has already achieved considerable successes
in Data Mining [HKM95], for supporting GIS data
[BQK96] and OO traversals [BKK96].

The design of Monet is based on trends in hardware
technology: main memories of hundreds of megabytes
are now affordable,and custom CPUs can perform over
200 MIPS. Since magnetic storage gets bigger but not
faster, this means that IO is increasingly becoming a
barrier in processing. Also, in the near future, standard
PC hardware will come with multiple processors, so
shared memory parallelism will become ever present.
On the software side, we see the evolution of operating
system functionality towards micro-kernels, i.e. those
that make part of the Operating System functionality
accessible to customized applications. Prominent re-
search prototypes are Mach, Chorus and Amoeba, but
also commercial systems like Silicon Graphics’ Irix
and Sun’s Solaris increasingly provide hooks for bet-
ter memory and process management.

The incorporation of new datatypes like GIS data
or multimedia types image, audio and video, has led
to a steep increase in data volumes in databases. This
causes tuples to grow wide, while a decreasing per-
centage of IO is really useful in queries that mainly

access the small standard data types. Instead of de-
signing a system around IO-oriented processing where
hardware trends actually work against this, we concen-
trate on finding a data storage method that decreases
the role of IO.

Bearing this in mind, the following ideas are applied
in the design of Monet:
Main memory query execution All Monet’s primitive
database operations work on the assumption that the
database hot-set fits in main-memory. It has no page-
based buffer manager: Monet’s algebraic operations
always have direct access to the table data in main
memory.

If the database gets larger, however, Monet allows
making a gradual transition to IO dominated database
processing. This is achieved by the transparent use of
memory mapped files. Monet avoids introducing code
to ’improve’ or ’replace’ the operating system facil-
ities for memory/buffer management. Instead, it lets
you give advice to the lower level OS-primitives on the
buffer management strategy and lets the MMU do the
job in hardware. Since these features themselves are
controlled via the Monet Interface Language, "buffer
management" itself becomes a part of query optimiza-
tion, which has the additional advantage that decisions
can be based on as complete knowledge as possible.
Decomposed storage model Monet implements a bi-
nary relational data model, in which all data is stored
in Binary Association Tables (BATs, see Figure 2).
So, structured data is decomposed over narrow tables
[CoK85]. This fragmentation helps reduce chunk sizes
to fit memory and saves a lot of IO. Monet exclusive
accesses only those attributes that are actually used in
a query.
Extensibility The Monet system is run-time extensi-
ble in various ways: algebra commands and operators
can be added. Base types can be added via an ADT
extension mechanism similar to Postgres [SRH90]. To
augment the collection of standard types, temporal data
extensions and a complete set of common GIS types
have been written [BQK96]. Finally, search acceler-
ators can be added to Monet. New base types can-
not always be indexed efficiently with standard index
structures, therefore the Monet extension mechanism
allows adding new index structures, like the R-tree.
Parallelism Monet supports shared-memory paral-
lelism via parallel iteration and parallel block exe-
cution and shared-nothing parallelism via a TCP/IP
protocol. The primitives are relatively coarse-grained
to preserve efficiency.
Dynamic Optimization A query engine that performs
some dynamic optimization can hence simplify the
work of a query optimizer, and is more robust to
changes in the environment. Once the query optimizer
has decided what primitives are necessary to execute
a query, Monet decides at run-time which alternative
implementation is most efficient at that moment.

3 Data Models
Object oriented type systems can be characterized

by the concepts of base types and structuring primi-
tives.

A class definition defines the structure of objects,
that is mapped onto physical storage by the DBMS.
Object oriented models typically have a rich hierar-
chy of structuring primitives, which besides the class
primitive may contain concepts like tuple, set, list, and
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class Part <
name : string,
manufacturer: string,
brand : string,
type : string,
size : integer,
container : string,
retailPrice : float >;

class Customer <
name : string,
address : string,
phone : string,
acctbal : float,
nation : Nation,
mktsegment : string,
orders : {Order} >;

class Nation <
name : string,
region : Region >;

class Supplier <
name : string,
address : string,
phone : string,
acctbal : float,
nation : Nation,
supplies :

{< part : Part,
cost : float,
available: integer>} >;

class Order <
cust : Customer,
item : {Item},
status : char,
totalprice : float,
orderdate : instant,
orderpriority: string,
clerk : string,
shippriority : string >;

class Item <
part : Part,
supplier : Supplier,
order : Order,
quantity : integer,
returnflag : char,
linestatus : char,
extendedprice: float,
discount : float,
tax : float,
shipdate : instant,
commitdate : instant,
receiptdate : instant,
shipmode : string,
shipinstruct : string >;

class Region <
name : string,
comment : string >;

Figure 1: MOA data model for the TPC-D database

array.
The internal structure of base types on the other

hand cannot be accessed. It is only accessible via op-
erations. These base types allow efficient implementa-
tion in a general-purpose programming language, and
are often supported inside the database query engine
by specialized search accelerators.

There is growing consensus among OO database
researchers that the collection of base types and associ-
ated search accelerators should be extensible [CaD96].
This gives a database designer the choice between im-
plementing an entity either as atomic type, or as a
database structure. Examples of data entities that are
typically modeled as base types are lines and poly-
gons in spatial systems, and image and sound data for
multimedia applications.

3.1 MOA logical data model
The MOA data model is similar to well-known

structural object data models like [ClD92,SAB94]. At
its basis, MOA accepts all atomic types of Monet (that
is fbool, short, integer, float, dou-
ble, long, stringg) as base types. Since
Monet can be extended with new atomic types, this
automatically provides MOA with base type extensi-
bility. The base types can be combined orthogonally
using the structure primitives SET, TUPLE and OB-
JECT, which will be formalized in Section 3.3. A
MOA database is formed by the collection of class-
extents, which are sets for each type of object that
contain all their instances. Figure 1 shows the MOA
model for the TPC-D schema and illustrates the use of
structures.

3.2 Monet physical binary model
Monet stores all data in Binary Association Ta-

bles (BATs). Figure 2 shows the design of the BAT
structure. The left column of a BAT is referred to as
head, the right column as tail. Due to the design of
its datastructure, any BAT can always be viewed from
two perspectives: its normal form bat[X,Y], and
the mirror bat[Y,X], which has the head and tail
columns swapped.
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Figure 2: The Binary Association Table (BAT) and its
memory layout

A BAT has at least 1 and at most 5 associated
heaps. There is always a heap that contains the atomic
value pairs, called Binary UNits (BUNs). This ensures
dense, array-like storage of fixed-size datas. For atoms
of variable size – such asstring orpolygon – both
head and tail can have an extra heap (the BUNs then
contain integer byte-indices into that heap). Finally,
persistent search accelerators – for instance hash tables
– may be stored in separate heaps, for both head and
tail.

3.3 Flattening the object data model
Every implementation of an object-oriented data

model has to map structuring primitives to some phys-
ical representation. Some implementations use a one-
to-one mapping between the logical and the physical
model. A well-formalized mapping provides data in-
dependence, enabling the DBMS to choose a physical
representation different from the logical one, so that it
may have extra optimization possibilities during query
execution.

In the case of MOA, we use full vertical decompo-
sition [CoK85] to store structured data in BATs. The
combination of BATs storing values and a structure
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function on those BATs forms the representation of a
structured value.

SET

OBJECT

TUPLE

SET

Supplier

Supplier_name

Supplier_address

Supplier_phone

Supplier_acctbal

Supplier_nation

Supplier_supplies

Supplier_supplies_part

Supplier_supplies_cost

Supplier_supplies_available

Figure 3: Mapping of the supplier table on BATs

An example
Figure 3 shows the decomposition of the TPC-

D Supplier class into BATs. For example, BAT
Supplier name contains the values of the name
attribute in the Supplier objects. All BATs
that store attribute values contain an oid in the
head and the corresponding attribute values in the
tail. The Supplier name BAT thus has signature
BAT[oid,string]. The BAT Supplier con-
tains all oids of existing objects, and is called the
extent BAT. The set-valued attribute supplies uses
the BAT named Supplier supplies to map sup-
plier oids to set-ids, and the attribute values in the
supplies set are stored in BATs that can contain 0
or more BUNs for each set-id. The structure expres-
sion

SET(Supplier,
OBJECT(Supplier name, Supplier address,

Supplier phone, Supplier acctbal, Supplier Nation,
SET(Supplier supplies,

TUPLE(Supplier supplies part,
Supplier supplies cost,
Supplier supplies available))))

describes how the Supplier objects are created out
the BATs they are decomposed over. Each structure
in the type system is reflected by a structure func-
tion in the structure expression. To form a rigorous
framework for the implementation of the algebra it is
essential to formalize the semantics of the structure
functions SET, OBJECT, and TUPLE.
The formal semantics of the mapping

To define the mapping of structures on BATs, we
will formalize the type-system, the concept of a BAT
and we will define containers of tuple values and of set
values.
The type system is defined as follows:
basetypes: � is a type if � is an atomic Monet type.
tuple types: h�1; � � � ; �ni is a type, if �i are types.
set types: f�g is a type if � is a type.

V� is used to denote the domain associated with type � .
V� denotes the domain of a base type. Monet supports
a base type oid, and Void the set of object identifiers.

A BAT[�1; �2] is semantically equivalent to a subset
of Vh�1;�2i.
A head-unique BAT[�1; �2] has unique values in the
head column, so it is a subset of

fhxi; yii 2 Vh�1;�2iji 6= j ! xi 6= xjg

An identified value set S is a set of pairs in which
each value vi is associated with an identifier idi that is
unique within the value set: S� is called an IVS over
� iff

S 2 P(Vhoid;�i) ^
8hi; vi; hj; wi 2 S : hi; vi 6= hj; wi =) i 6= j

Identifiers can be, and actually are, reused in different
value sets. In this way the concept of synchronous
value sets is defined:
Two identified value sets S1 and S2 are synchronous
if

hidk; xi 2 S1() hidk; yi 2 S2

So, each identifier-value pair in S1 has an identifier-
value pair in S2 for which the identifiers correspond
and vice versa.
We can now define the semantics of the structure func-
tions recursively as follows.

A head-unique BAT [oid; �] represents an identified
value set S� .

A head-unique BAT [oid; oid] in which the tail-values
refer to database objects of class X, represents an iden-
tified value set fhidi; XiiXi 2 X ^ oidi = oid(Xi)g.

If S1; � � � ; Sn are mutually synchronous identified
value sets, the structure function
TUPLE(S1; � � � ; Sn) defines a new value set:

fhidi; hvi1; � � � ; viniijhidi; viji 2 Sjg

The OBJECT structure function is identical to the TU-
PLE structure function. The ids associated with the
tuples generated are the object identifiers.

If A is a BAT [oid; oid], and S is an identified value
set then the structure function SET(A;S) defines the
value set

fhoidi; fvjgijhoidi; idii 2 A ^ hidi; vji 2 Sg

A serves as an index into value set S.

If A is a BAT [oid; �], then the structure function
SET(A) defines the value set:

fhoidi; fvjgijhoidi; vji 2 Ag

This an optimization of the previous way of storing
sets, for the case that the set element value is simple
(i.e. a base type or an object reference).

Because the structure functions all have identified
value sets as operands and result in identified value
sets, they can be composed to generate complex struc-
tured data. There is a one-to-one relationship between
structures in the data model and structure functions in
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the physical-to-logical mapping. This implies that any
data type expressible in MOA can be represented by a
set of BATs and a composition of structure functions.
In the remainder of this paper the symbol (S) is used
to denote some composition of structure functions.

4 Query Execution
In the Magnum project, we aim at supporting a

declarative object query language like IQL [AbK92]
and ODMG-OQL [Cat94]. The preparatory stage,
the translation of a declarative object query language
into an object algebra, has been studied extensively
[SAB94,SBB96] and an implementation of the ideas
developed is on its way.

This section describes the MOA query algebra,
which is designed to be an intermediate language. In
the context of this paper however, it is our source lan-
guage and the Monet Interpreter Language (MIL) is
our target language.

4.1 MOA Query Algebra
The MOA query algebra is a standard object alge-

bra. It contains the operations select, project, join,
semijoin, union, intersection, difference, subset, in,
nest, unnest, and aggregates that operate on sets; it
allows access to attributes of tuples and objects; it sup-
ports operations on the atomic types and allows for
method invocations on objects. Example descriptions
of similar algebras may be found in [ClD92,LMS93,
SBB96].

project[<date : year, sum(project[revenue](%2)) : loss>](
nest[date](

project[<year(order.orderdate) : date,
*(extendedprice,-(1.0, discount)) : revenue>](

select[=(order.clerk, "Clerk#000000088"),
=(returnflag, ’R’)](Item))))

The MOA version of TPC-D query 13 displayed above
provides a flavor of the algebra. This query analyzes
the quality of work of a certain clerk. It combines
two selections on Item – sold by a certain clerk, and
having a return flag indicating that it was sent back with
defects – computes a revenue lost per returned item,
and then sums the losses over each year. The grouping
of losses per year is done using nesting. The result of
the query is projected into a set of <year, loss>
tuples.

4.2 Monet Execution Algebra
The Monet Interface Language (MIL) consists of

the BAT-algebra, which contains basic set operations,
and a collection of control structures. BAT-algebra
operations materialize their result and never change
their operands.

The above primitives are sufficient to execute the
majority of MOA constructs on Monet. Each BAT al-
gebra primitive has a fixed semantics regarding what it
expects in the columns of its parameters. If necessary
you just use themirror command to flip head and tail
of a BAT; an operation free of cost. The semijoin
operation is important, since it is heavily used for re-
assembling vertically partitioned fragments (in Sec-
tion 5.2 we will elaborate an efficient implementation
of this operation). Note that the equi-join projects
out the join columns, in order to keep the operation
closed in the binary model. The unique produces
its result by removing the duplicates from its operand.

MIL command informal semantics
AB.mirror fbajab 2 ABg

AB.semijoin(CB) fabjab 2 AB; 9cd 2 CD ^ a = cg

AB.join(CD) fadjab 2 AB ^ cd 2 CD ^ b = cg

AB.select(Tl,Th) fabjab 2 AB ^ b � T l ^ b � Thg

AB.select(T) fabjab 2 AB ^ b = T lg

AB.unique fabjab 2 ABg

AB.group faobjab 2 AB ^ ob = unique oid(b)g
AB.group(CD) faobdjab 2 AB ^ cd 2 CD ^ a = c^

obd = unique oid(b; d)g
[f ](AB) faf(b)jab 2 ABg

[f ](AB,� � �,XY) faf(b; � � � ; y)jab 2 AB; � � � ;

xy 2 XY ^ a = � � � = xg

fgg(AB) fag(Sa)ja 2 A ^ Sa = fbjab 2 ABgg

Figure 4: BAT primitives for executing OO queries

Operations on values (like arithmetic), and aggregate
operations on BATs (like sum, avg, etc) are also part of
MIL, but are omitted for brevity, just like the theta-join
and some set-operations (difference, intersection, etc).
grouping The group operation introduces new oids
for uniquely occurring values in a BAT column. In this
definition, the unique oid(� � �) function returns a newoid
for each unique (combination of) parameter(s). This
operation is used to implement SQL groupby and
MOA nest. For groupings on one attribute the unary
version is used. For groupings on multiple attributes,
this is followed up by binarygroup invocations till all
attributes are processed. This is illustrated in Figure 5
by the grouping that occurs on the objects of interest
according to year (the group operation assigns new
oids, that are used as key for all three result BATs of
the query).
method invocation The multiplex constructor [X ] al-
lows bulk application of any algebraic operation on all
tail values of a BAT. Multiple BAT parameters can be
given, in which case the algebraic operation is applied
on all combinations of tail values over the natural join
on head values. This operation is used to vectorize
computation of expressions, and invocation of meth-
ods. As an example, in Figure 5 the expression (1-
price)*discount is vectorized in successive [*]
and [-] operations.
aggregation The set-aggregate constructor is used for
bulk aggregation. It is defined for each aggregate func-
tionY that maps a set to some value. The set-aggregate
version fY g() groups over the head of the BAT and
calculates for each formed set of tail values an aggre-
gate result. With this construct, we can execute nested
aggregates in one go, rather than having to do iterative
calls to some function on nested collections.

4.3 MOA to MIL transformation
The idea behind the algebra implementation is to

translate a query on the representation of the struc-
tured operands into a representation of the structured
query result. Figure 6 illustrates this process: the
query is a MOA expression on a structure expression
on BATs, and its translation is a MIL program on the
operand BATs that generates result BATs, which in
turn are operands of another structure expression that
represents the result.

Formally, this implementation is described as fol-
lows: Assume that we execute MOA-operation moa
on the structured data value X . X is stored in BATs
X1; � � � ; Xn, and there is a structure functionSX , such
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that SX(X1; � � � ; Xn) = X . The implementation of
operation moa consists of a MIL-program mil, that
results in BATs Y1; � � �Ym, and a structure function
SY , taking Y1; � � � ; Ym as operands, so that

SY (mil(X1; � � � ; Xn)) = moa(X)

Because the operations in MIL and in MOA, and the
structure functions have a formal semantics, it is pos-
sible to prove the correctness of implementation of
MOA on MIL. A detailed discussion of this issue is
beyond the scope of this paper. Informally, a correct
implementation can be described as an implementation
for which both gray paths in Figure 6 yield the same
result.

For each operation in MOA, a transformation rule
for the translation of the operation into a MIL program
and structure function is generated. The MOA imple-
mentation consists of a straightforward term rewriter.
Figure 5 shows the MIL translation of TPC-D query
13. We illustrate the simplicity of the transformation
rules with a few examples:

4.3.1 Selection
The syntax for a selection in MOA is:

select[f()](X), in which X is an expression, that
evaluates to the set fxg, and f() is a boolean operation
on the elements in X. The semantics of this selection
expression is fxjx 2 X ^ f(x)g. The transformation
rule for selections is:

select[f()](SET(A, X)) ! SET(semijoin(A, T (f(X))), X).

Because the selection operation operates on sets, the
translation of the operands of a syntactically cor-
rect MOA selection expression is always of the form
SET(A, X), with A as set index and X as identified
value set. In this rule, T (f(x)) is the translation
of the selection predicate f() on the operands value-
set X . The selection predicate has to be a boolean
function on the value set; it is translated via its own
transformation rule into a BAT containing the ids of
the qualifying values in value set X . A new setindex
is generated via a semijoin.
4.3.2 Operations on set-valued attributes

Structures in MOA may be nested, and therefore,
set-valued attributes may occur. The Supplier class in
the TPC-D benchmark is an example. Assume that we
want to retrieve, for each supplier, the set of parts that
are out of stock, so that available is equal to 0. In
MOA this query is expressed as follows:

project[<%name,
select[%available = 0](%supplies)>](Supplier).

This query contains a selection on set-valued attribute
supplies. The transformation rule for selection set-
valued attributes is identical to the rule a selection on a
single set. If operand X in Section 4.3.1 is interpreted
as an identified set of set values, the transformation of
this expression results in the correct identified set of
reduced set values.

Here we see one of the beneficial effects of storing
nested sets in a flattened model: instead of executing
repeated selections for each nested set, we can do all
work together in one selection on the flattened repre-
sentation. Similar efficient translations are made for
other nested set-operations like union, difference, and
intersection.

5 Monet Implementation
This section describes some aspects of the Monet

implementation that are heavily used in the TPC-D
implementation.

5.1 Property Management
The Monet kernel generally contains multiple im-

plementations for each algebraic operation. For in-
stance, for thesemijoin there is a hashsemijoin
implementation, but also amergesemijoin, that as-
sumes the join columns of both BATs to be ordered.
The most particular variant is the syncsemijoin,
that using the knowledge that the join columns are
exactly equal just returns a copy of its left operand
BAT.

The philosophy of Monet is that the algebraic com-
mands do an additional dynamic optimization step just
before execution. Depending on the state of the sys-
tem, and the state of the operands, a run-time choice
between the available algorithms can be made. To
this end, Monet keeps track of various properties of
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permanent and intermediate BATs. We focus here on
three BAT properties that are maintained by the kernel
on each column. The following are examples of such
properties:

ordered(BAT) is true, if the head column of
stored in ascending order.

key(BAT) is true, if the head column of the BAT
does not contain duplicate elements.

synced(BAT1,BAT2) is true, if the BUNs in
both BATs correspond by position. The most
common case for this is that the head columns of
the two BATs are exactly identical.

Once set, these properties are actively guarded by
the kernel. When updates occur, they are rechecked,
and switched off if necessary. Each MIL command has
a propagation rule for propagating the properties of
its parameters onto its result. For example, a semijoin
will propagate the key properties on both head and tail
of its left operand onto the result, a rangeselect
will propagate theordered information on both head
and tail to the result.

5.2 The Datavector Accelerator
OLAP queries as found in the TPC-D benchmark,

typically consist of two phases:

� first, they select an interesting subset of objects;
using some selection-attributes.

� then, in a second phase, computation of expres-
sions and aggregations on other attributes of the
selected objects takes place. Let us call these the
value-attributes.

These trends can be observed also in TPC-D query
13 and are indicated in Figure 5.

When the database hotset outgrows main memory,
algorithms using sorted tables like merge-join, merge-
semijoin, and binary search selection tend to work best
in Monet, because they have sequential access patterns
and can better be supported by the OS virtual memory
pager.

For doing the selection on the selection-attributes,
one would prefer to have attribute BATs ordered on
attribute value (tail column), in order to use binary
search selection.

To do computation and aggregation on the value-
attributes of the selected objects, one needs to do semi-
joins between the value-attribute BATs and the made
selection. Observe that although multiple semijoins
may be necessary, many of those will be very similar:
they will semijoin the same selected oids from the
attribute BATs.

This leads to conflicting clustering-requirements:
selection-attributes require sorting on tail, whereas
value-attributes require sorting on oid. Also, at-
tributes have different roles – value or selection – in
different queries.

The solution explored here is to store all attributes
ordered on tail; this favors the access from values to
oids (e.g. selections, and joins on attribute values).
The path in the opposite direction, fromoids to values
is then tackled by using a fully vectorized representa-
tion of the n-ary table into one vector of oids and n
vectors with attribute values, that are all stored in oid
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Figure 7: Datavector Creation through Project and Sort

order. They can easily be represented in Monet using
unary BATs. 2 Note that the MOA mapping of objects
already gave us the unary vector of oids, as the extent
BAT (see Section 3.3). We use the discussed synced
kernel property (see Section 5.1) to let Monet ensure us
that the vectors correspond by position. The original
BATs used in the MOA mapping, that are – as said –
kept sorted on tail, then have a reference to their "value
vector" by means of a new Monet search accelerator
extension dubbed datavector.

Through all this we actually achieve a fully vec-
torized storage (represented by the extent BAT and all
datavectors), supplemented by an inverted list index
on all attributes (the "normal" BATs containing the
oid,attribute combinations).
5.2.1 Datavector Semijoin

Just like the presence of a hash-table on an operand
might lead the join to choose a hashjoin imple-
mentation, might the presence of a datavector influ-
ence the execution strategy of some operations. The
most important operation in our context issemijoin,
since it is instrumental in the phase of getting to the
value-attributes of an OLAP query. We hence in-
troduced a datavector semijoin; which is displayed
below in pseudo code:

01 PROCEDURE datavector semijoin(BAT[oid,any] A, BAT[oid, ] B)
02 BEGIN
03 oid EXTENT[size(A)] := extent(A);
04 any VECTOR[size(A)] := datavector(A);
05 int LOOKUP[] := positions(B);
06
07 IF NOT EXIST(LOOKUP) THEN
08 INT IDX := 0
09 LOOKUP := new INT[size(B)];
10 FORALL BUNS [X, ] IN BAT B DO
11 IF (POS := probedlookup(EXTENT,X)) THEN
12 LOOKUP[INC(IDX)] := POS;
13 FI
14 OD
15 FI
16 BAT RESULT[oid,anyNY];
17 FORALL Z in [1..size(LOOKUP)] DO
18 INT POS := LOOKUP[Z];
19 RESULT.insert(EXTENT[POS], VECTOR[POS]]);
20 DO
21 RETURN RESULT;
22 END

2Unary BATs are of course a contradiction. We mean BATs that
have the zero-space type void in one column.
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Associated with the left operand BAT are both the ex-
tent and the datavector (lines 3-4). For ease of reading
both are displayed here as simple arrays. If it is the first
time that B is used as right operand for a semijoin, then
lookup has to be performed (line 7). All elements of B
are looked up in the extent (line 10-11). The extent is
always kept sorted, so this lookup can be implemented
efficiently using probe-based binary search. For each
hit, the array index is saved in the LOOKUP array (line
12). It is kept there for later use, so subsequent semi-
joins with B not re-do the lookup effort. The insertion
phase walks through the LOOKUP array, and fetches
the matching head and tail values from respectively
EXTENT and VECTOR (lines 17-19).
5.2.2 IO Cost Model

On the one hand, Monet benefits from the full ver-
tical fragmentation (less IO, narrow tables), on the
other, it has to face the extra semijoins to recombine
fragments. This section analyses the resulting perfor-
mance trade-off via a small performance model, in
which the costs the Monet approach are compared
to non-decomposed relational approach. As doing
some semijoins poses no performance problem in main
memory, we focus here on the IO bound situation. That
is, we assume cold memory mapped BATs, such that
every access to them will cause page faults.

We are interested for expected numberE ofB-byte
disk pages to be retrieved (or: virtual memory page
faults) for doing a selection with selectivity s, followed
by a projection to p attributes in an n-ary table. This
n-ary table has X rows which are n*w bytes wide,
where w is taken uniform as the byte width of one
value:

Erel(s) = d sX
Cinv

e+ d X
Crel

e � (1� (1� s)Crel) is
the expected number of disk blocks to fetch when
using a relational strategy where the database ta-
ble is stored without decomposition. The first
component is the IO cost of discovering which
tuples participate in the selection. This can most
efficiently be done using an index; in this case we
assume an inverted-list, implemented as an array
of [value,tuple-pointer] records. The
number of inverted-list tuples per page Cinv =
b B
2w
c. The second component models – unclus-

tered – retrieval itself. It is a multiplication of
the number of pages with the probability that at
least one row in a page is selected. The number
of rows per page Crel = b B

(n+1)�wc.

Edv(s) = d sX
Cbat

e+ (p+ 1)(d X
Cdv

e � (1� (1� s)Cdv ))
expresses the costs for the Monet approach. The
first component represents doing the selection on
a BAT. We have all data BATs sorted on tail,which
is in fact like having an inverted list on each at-
tribute. The second component of the formula
represents doing p datavector semijoins to get
the requested attribute values. The lookup into
the extent performed during the first datavector
semijoin counts as one semijoin more, hence the
factor p+ 1. The number of BUNs per page of a
BAT Cbat = b B

2w
c, and the number of datavector

values per page Cdv = bB
w
c. .

Figure 8 displays the projected cost with parame-
ters derived from the 1GB TPC-D Item table (X =
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Figure 8: select-project IO cost according to selectivity
for relational vs datavector approach

6000000; n = 16; w = 4; B = 4096). The fat line
shows the model for the relational storage case. The
thin lines show the Monet case for various values of p.
It shows that Monet’s datavector semijoin strategy is
generally more efficient than the relational approach,
apart from very low values of s, e.g. the crossover
point for n = 16; p = 3 is at s ' 0:004.

6 TPC-D Experiments
We used the DBGEN program to generate the 1GB

database in ASCII files. We then loaded these into
Monet our system, using its bulk load utility, which
took 1:28 hour. This utility correctly sets the properties
key, ordered, and synced for each generated BAT.

For each class, an extent[oid,void]was cre-
ated by taking one attribute-BAT, and projecting out
the tail column. Initially, all tables were sorted on oid
(head column), so it was cheap to create datavectors on
them: we just had to make a projection on tail column
for each attribute BAT. Creating the extents and the
datavectors took about half an hour.

In order to efficiently execute selections and joins
on attribute values, we then reordered all tables on
tail values. This took an additional hour. In total,
the TPC-D database occupies 1.6GB of diskspace (of
which 300MB in data vectors, and 1.3 GB as base
data).

All MOA versions of the TPC-D queries were fed
through the translator – which takes no significant time
– and executed in a sequence on the Monet backend.
Figure 9 shows the absolute performance results in
elapsed seconds. To provide more insight, we also in-
clude stats on the number of page faults, the selectivity
in the main table (Item has 6 million tuples), the to-
tal size of all intermediate results, and the maximum
memory consumption during query execution.

6.1 Hardware
The hardware platform used for experimentation

was a Sun SuperSparc 20/61 (performing at 98.1
SPECint) running Solaris 5.3. The machine had two
internal 4GB Seagate ST15150W disks (9 ms access
time, 6MB/s throughput), of which one was used as
root file system and swap area, the other one for stor-
ing our TPC-D data. The only other known TPC-
D numbers for the 1GB benchmark are the official
IBM numbers, obtained on a PentiumPro 200 Mz PC
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DB2 Monet total max Item page
Qx (sec) (sec) (MB) (MB) select% faults comment

1 668.4 1098.1 800 95 98% 73K billing aggregates over 700MB table
2 6.7 14.1 10 4 n.a. 518 cheapest part supplier for a region
3 179.7 99.8 76 60 56% 368 find top-10 valuable orders
4 88.3 52.3 6 6 4% 16K priority assessment, customer satisfaction
5 148.2 172.2 98 44 15% 13K revenue per local supplier
6 95.2 48.7 45 32 15% 132 benefits if discounts abolished
7 261.3 109.5 124 29 30% 966 value of shipped goods between 2 nations
8 54.2 117.5 39 29 30% 4.1K part market share change for a region
9 2321.6 77.1 70 7 3% 25K line of parts profit for year and nation
10 221.7 83.1 22 8 4% 18K top-20 customers with problematic parts
11 6.4 8.9 9 3 n.a. 97 significant stock per nation
12 128.8 214.4 76 25 15% 11K cheap shipping affecting critical orders
13 24.1 37.9 0 0 0.1% 4.7k loss due to returned orders of a clerk
14 64.7 35.2 8 4 1% 384 market change after a campaign date
15 55.6 41.1 33 22 4% 47 identify the top supplier

load 4740 10080 ascii import and accelerator creation
QppD 43.8 59.1 geometric mean-based query per hour rate

Figure 9: TPC-D Results In Elapsed Seconds

(performing at 351 SPECint) running Windows NT
3.51. This configuration had an ultrawide SCSI con-
troller, with four Ultrastore XP disks (9 ms access
time, 10MB/s throughput). Both platforms had a total
of 128MB memory. Note that the IBM is about 3 times
more powerful than our hardware.

6.2 Analysis
We see the best side of Monet in e.g. in queries

3, 4, 6, 7, 9, 10 and 14. The IO cost model (Sec-
tion 5.2.2) also shows Monet to be at a relative disad-
vantage on low selectivity values or when very small
results are obtained. This effect can indeed be seen
in the relatively lagging performance of queries 2, 11
and 13 (which has p = 3, and s = 0:001). Only on
query 1, the database hot-set outgrows main-memory
size. This query has a selectivity 98% over the 6 mil-
lion line items. Under such conditions, our algebraic
buffer management starts to save intermediate results
to disk to make room in main memory. A test run with
explicit buffer management omitted, choked the sys-
tem by excessive swapping. This shows the viability
of our approach of including OS buffer management
advise as an algebraic alterative in the query trans-
formation. It should however be noted that Monet’s
policy of materializing intermediate results here is a
disadvantage. Lagging performance for queries 5, 8
and 12 is related to a high number of page faults when
processing complex sequences of joins. We think that
more optimization could improve these numbers.

6.2.1 Detailed Performance Trace
To discuss Monet’s performance in more detail,Fig-

ure 10 shows the execution results of a simplified3
version of the MOA translation of Q13 to MIL.

The query starts with selecting all orders from
Order clerk[oid,string] for a certain clerk.
Efficient binary search can be used, and the results
are all stored consecutively, so this operation causes
very few page faults. The returned 1459 orders are
then joined with the Item order[oid,oid] to
get to the line items. Actually the orders[oid,

3All buffer management operations have been omitted. For
full MOA and MIL scripts see the Monet web pages at tt
http://www.cwi.nl/�monet.

elapsed MIL statement
ms faults
21 238 1 orders := select(Order clerk, "Clerk#000000088")

16102 7 2 items := join(Item order, orders)
12932 3663 3 returns := semijoin(Item returnflag, items)

5 0 4 ritems := select( returns, ’R’)
2415 250 5 critems := semijoin(Item order, ritems)
1653 331 6 years := [year](join( critems,Order orderdate))

5 0 7 class := group( years)
6 0 8 INDEX := join( ritems.mirror, class).unique
7 0 9 YEAR := join( class.mirror, years).unique

2022 232 10 prices := semijoin(Item extendedprice, critems)
2420 247 11 discount := semijoin(Item discount, critems)

4 0 12 factor := [-](1.0, discount)
4 0 13 rlprices := [*]( prices, factor)
9 0 14 losses := join( class.mirror, rlprices)
4 0 15 LOSS := fsumg( losses)

Figure 10: Q13 Detailed Monet Execution Results

oid] is also ordered on tail, so the mergejoin
implementation is used. In line 3 we semijoin
them to get returnflags. This semijoin will go
into the datavector-semijoin implementation, since the
Item returnflags[oid,char] is not sorted on
oid, but has a datavector attached to it. The selec-
tion on the returns[oid,char] with 5929 ele-
ments is cheap. The following join (line 5) is again
a merge-join, since we still have sorted oids. In
lines 7-9 the grouping in classes according to year
of the order is determined. Note the use of the
multiplex [year]() operator to extract years from
the sets of dates. The semijoin in 10 is again a
datavector-semijoin. This is cheap, because the pre-
vious datavector-semijoin (line 3) has already blazed
the trail into the extent. The costs are just the costs of
fetching values from the vector; this repeats itself in
line 11. The two multiplex operations that follow can
be executed very efficiently, since the Monet kernel
knows that the BATs prices[oid,float] and
discount[oid,float] are synced. Both stem

from a semijoin with a 100% match with the small
relation critems[oid, oid], so they again are
synced.

The result of the query are the three BATs IN-
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DEX[void, oid], YEAR[oid,int] and LOSS[
oid, flt]. MOA looks at them through through the
structure function SET(INDEX, TUPLE( YEAR,
LOSS)).

As we have seen, the active use of properties by the
Monet kernel enables it to successfully choose efficient
implementations at run-time, the datavector-semijoin
being a winner among them: in many TPC-D queries
it reduces the cost of multiple semijoins by more than
half. Due to this intelligent semijoin execution, Monet
is able to avoid being punished for its use of full vertical
fragmentation, and is able to reap the benefits – namely
– doing IO on very thin tables.

7 Conclusions
The large scale experiment reported here demon-

strates progress in two key areas of modern database
management. First, the experiments demonstrate con-
vincingly that a DBMS kernel based on binary as-
sociations and a strong bias to exploit main-memory
algorithms can be scaled to accommodate a disk-based
decision support benchmark. Second, the mapping of
an object-algebra to the binary relational platform us-
ing transformation rules can be achieved and proved
correct. Taken together our results mark progress in de-
veloping small, yet extensible database kernels, which
are applicable to a wide variety of database application
scenarios using an object-oriented interface (See also,
[BKK96,BQK96,HKM95]).

Currently, we are integrating the work on object
database language bindings and method invocation de-
scribed in [BKK96] into the algebraic context. More
structure primitives, like the list, bag, and array, will
be included in MOA. Research goals for Monet in-
clude further scaling of the database kernel technology
to over 100GB databases via the exploitation of par-
allelism. Our experience from PRISMA [WFA95] is
being used in a project were the MOA implementation
will be extended to generate heterogeneously parallel
MIL programs.
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