
Performance Evaluation 39 (2000) 5–35

Compositional performance modelling with the TIPPtool

H. Hermanns∗, U. Herzog, U. Klehmet, V. Mertsiotakis, M. Siegle
Lehrstuhl für Informatik VII, Friedrich-Alexander Universität Erlangen–Nürnberg, Martensstr. 3, 91058 Erlangen, Germany

Abstract

Stochastic process algebras have been proposed as compositional specification formalisms for performance models. In this
paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool.
It incorporates methods for compositional specification as well as solution, based on state-of-the-art techniques, and wrapped
in a user-friendly graphical front end. Apart from highlighting the general benefits of the tool, we also discuss some lessons
learned during development and application of the TIPPtool. A non-trivial model of a real life communication system serves
as a case study to illustrate benefits and limitations. ©2000 Published by Elsevier Science B.V. All rights reserved.

Keywords:Stochastic process algebra; Performance analysis; Markov chain; Bisimulation aggregation; Tool support

1. Introduction

Process algebras are an advanced concept for the design of distributed systems. From the beginning
[39,49], their basic idea was to systematically construct complex systems from small building blocks.
Standard operators allow highly modular and hierarchical specification. An algebraic framework supports
the comparison of different system specifications, process verification and structured analysis. Classical
process algebras such as LOTOS [8], CSP [40] or CCS [50] describe the functional behaviour of systems,
but no temporal aspects.

Starting from [33], we developed an integrated design methodology by embedding stochastic features
into process algebras, leading to the concept ofstochastic process algebras(SPA). Since then, research
on SPA has been a field of growing activity, motivated by the desire to carry out performance and
dependability studies on the basis of an algebraic framework, exploiting the beneficial characteristics
of process algebras for the purpose of stochastic modelling. SPAs allow one to specify and investigate
both functional and temporal properties. The significant advantage of such an integrated approach is
obvious: early consideration of all major design aspects, avoiding costly redesign. Research on SPA

∗ Corresponding author. Present address: Systems Validation Centre, Department of Computer Science, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands. Tel.:+31-53-4894661; fax:+31-53-4893247.
E-mail address:hermanns@cs.utwente.nl (H. Hermanns).

0166-5316/00/$ – see front matter ©2000 Published by Elsevier Science B.V. All rights reserved.
PII: S0166-5316(99)00056-5

6 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

has been presented in detail in several publications, e.g. [6,15,21,27,36,53]. The community of SPA
researchers is still small, however, several European research groups work intensively in this exciting
area and meet regularly at the successful series ofWorkshops on Process Algebras and Performance
Modelling(PAPM)1 .

This paper is about a modelling tool, the TIPPtool, which reflects the state-of-the-art of SPA research.
Development of the tool started as early as 1992, the original aim being a prototype tool for demonstrating
the feasibility of our ideas. Step by step, we added new features, allowing more general and more efficient
specification and analysis, as well as a user-friendly graphical front end. Over the years, the tool has been
extensively used in the TIPP project as a testbed for the semantics of different SPA languages and the
corresponding algorithms. Meanwhile, the tool has reached a relatively high degree of maturity, supporting
compositional modelling and analysis of complex distributed systems.

The core of this tool is an SPA language where actions either happen immediately, or are delayed in
time, the delay satisfying a Markovian assumption [27]. Beside some support for analysis of functional
aspects, the tool offers algorithms for the numerical analysis of the underlying stochastic process which,
under certain restrictions, turns out to be a Markov chain. Exact and approximate evaluation techniques
are provided for stationary as well as transient analysis. The tool is capable of handling large state spaces,
and it incorporates some very advanced features, such as the semi-automatic compositional aggregation
of complex models.

Among related work, the PEPA Workbench, developed by Hillston et al. in Edinburgh [18], is another
tool for performance evaluation, where Markov chain models are also specified by means of a process
algebra. The toolTwoTowers [5], based on two existing tools (one for functional analysis and one for
performance analysis), also employs a stochastic process algebra as its specification formalism.

The paper is organised as follows: in Section 2, we summarise the theoretical background of stochastic
process algebras. Section 3 gives an overview of the components of the tool and their inter-operation. All
aspects of model specification are discussed in Section 4, and analysis algorithms are the subject of Section
5. Section 6 briefly discusses some implementation considerations and suggestions for improvement. In
Section 7 we demonstrate the use of the tool by means of a non-trivial case study. Section 8 concludes
the paper.

2. Foundations of stochastic process algebras

2.1. Process algebras

Classical process algebras (e.g., LOTOS [8], CSP [40], CCS [50]) have been designed as formal
description techniques for concurrent systems. They are well suited to describe reactive systems, such
as operating systems, automation systems, communication protocols, etc. Basically, a process algebra
provides a language for describing systems as a cooperation of smaller components, which themselves
belong to the language. However, there are some distinguishing features, schematically visualised in Fig.
1. The basic constructs from which all specifications are built areactionsandprocesses, where processes
may perform actions. In Fig. 1, processes are represented as blocks of different shape, and actions appear
as labels (a, b, . . .) of bidirectional arrows. The description formalism iscompositional, which means
that it allows to build highly modular and hierarchical system descriptions using composition operators.

1 See, for further details [9,19,35,38,54,56].

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 7

Fig. 1. Basic principles of process algebras.

These operators are provided by the language to construct processes out of smaller processes. For instance,
a parallel composition operator is used to express concurrent execution (of, say, actionc) and possible
synchronisation of processes. Another important operator realisesabstraction. Details of a specification
which are internal details at a certain level of system description can be internalised by hiding them
from the environment. Several notions ofequivalencemake it possible to reason about the behaviour of
a system, e.g., to decide whether two systems are equivalent. Apart from a formal means for verification
and validation purposes, equivalence-preserving transformations can be profitably employed in order to
reduce the complexity of the system. This can also be performed in a compositional way, i.e., system
parts can be replaced by behaviourally equivalent but aggregated representations. A formal semantics
and an algebraic framework ease the handling and comparison of specifications.

Let us exemplify the basic constructs of a process algebraic specification by means of a simple queuing
system. It consists of an arrival processArrival, a queue with finite capacity, and aServer. First, we model
an arrival process as an infinite sequence of incoming arrivals (arrive), each followed by an enqueue action
(enq). This is specified using theprefixoperator ‘;’.

Arrival := arrive; enq; Arrival

The behaviour of a finite queue can be described by a family of processes, one for each value of the current
queue population. Depending on the population, the queue may permit to enqueue a job (enq), dequeue
a job (deq) or both. The latter possibility is described by achoiceoperator [] between two alternatives.

Queue0 := enq; Queue1
Queuei := enq; Queuei+1 [] deq; Queuei−1 1 ≤ i < max
Queuemax := deq; Queuemax−1

Next, we need to define a server process, as follows:

Server:= deq; serve; Server

These separate processes can now be combined by theparallel compositionoperator|[. . .]| in order
to describe the whole queuing system. This operator is parametrised with a list. . . of actions on which
the partners are required to synchronise

System:= Arrival |[enq]| Queue0 |[deq]| Server

8 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

Fig. 2. Semantic model, hiding and aggregation.

A formal semantics associates each language expression with an unambiguous interpretation represented
in terms of a variant of the well known state transition diagrams. Thislabelled transition system(LTS)
is obtained by structural operational rules [52] which define for each language expression a specific LTS
as the unique semantic model. Fig. 2 (top) shows the semantic model for our example queuing system,
under the assumption that the maximal population of the queue ismax = 3. There are 16 states, the initial
state being indicated by a double circle. A transition between two states is represented by a dashed arrow
and is labelled with an action which occurs when the system changes from one state to another. Since we
can assume that we are not interested in the internal details of interaction betweenArrival andQueue,
respectively,QueueandServer, we may wish to only observe actionsarrive andserve. This requires
abstractionfrom internal details, and is achieved by employing thehidingoperator:

hide enq, deq in System

As a result, actionsenqanddeqare nowinternalactions, i.e., they are not visible from the environment.
Actions hidden from the environment become the distinguished internal actionτ . In other words, the

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 9

semantic model of the above expression is obtained by turning allenqor deqlabels appearing in Fig. 2
(top) intoτ .

Suchτ -actions can be eliminated from the semantic model using an equivalence which is insensitive
to internal details of a specification, such asweak bisimulation. Weak bisimulation is one of the central
notions of equivalence in the general context of process algebras [50]. Fig. 2 (bottom) shows an LTS,
which is weakly bisimilar to the one on top (where allenq-anddeq-actions have been replaced byτ before
applying weak bisimulation). It may be surprising that the resulting LTS has six and not four states (we
assumedmax = 3). This is due to the fact that the arrival of a customer and its enqueuing into the queue
are separate actions, so that one more arrival is possible if the queue is already full. Likewise, dequeuing
and serving are modelled as separate actions, such that at the moment the queue becomes empty, the
server is still serving the last customer.

2.2. Stochastic process algebras

Parallel and distributed systems are usually fully designed and functionally tested before any at-
tempt is made to determine their quantitative characteristics such as performance and dependability.
As a consequence, costly redesign of both hardware and software is often needed. In order to con-
tribute to the avoidance of such costs, the SPA modelling paradigm is aimed at the integration of
qualitative-functional and quantitative-temporal aspects in a single specification and modelling approach
[21].

In order to achieve this integration, temporal information is attached to actions, in the form of continuous
random variables, representing activity durations. Models enhanced in this way are well-suited to capture
the functional and temporal behaviour of a large range of applications which may be referred to asshared
resource systems. These systems are characterised by randomly varying temporal behaviour, possibly
due to data-dependent execution times, traffic-dependent communication delays, or runtimes which are
highly dependent on unpredictable environmental conditions. Examples are communication networks
and distributed systems, central server systems and parallel machines, or production lines and workflow
systems.

The concept of stochastic process algebras follows the lines of classical process algebras: the system
behaviour is described by an abstract language from which a LTS is generated, using structural operational
rules [27]. The additional time information in the semantic model makes it possible to evaluate different
system aspects:
• functional behaviour (e.g., liveness or deadlocks),
• temporal behaviour (e.g., throughput, waiting times, reliability),
• combined properties (e.g., probability of timeout, duration of certain event sequences).
Let us give a stochastic process algebra specification for the above queuing system, by attaching distri-
butions to actions. We assume that the arrival process is a Poisson process with rateλ and the service
time is exponentially distributed with rateµ. We are not forced to associate a duration with every action.
Actions without durations happen as soon as possible, therefore, they are calledimmediateactions. In
our example, enqueuing and dequeuing is assumed to happen without any relevant delay, thusenqand
deqare immediate.

Arrival := (arrive, λ); enq; Arrival
Server:= deq;(serve, µ); Server

10 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

Fig. 3. (Top) the labelled transition system for the example queuing system; (bottom) the corresponding CTMC.

The queue is specified as before (it is only involved inenqanddeq, therefore, its specification does not
have to be changed) and the composed system is (also as above)

System:= Arrival |[enq]| Queue0 |[deq]| Server

Fig. 3 depicts the labelled transition system associated with this model, again assuming a maximal queue
size ofmax = 3. Note that, there are two kinds of transitions between states: timed transitions (drawn
by solid lines) which are associated with an exponential delay, and immediate transitions which happen
as soon as the respective action is enabled.

States without outgoing immediate transition are shown emphasised in the figure. Under the assumption,
thatenqanddeqhappen without any delay, the emphasised states correspond to states of a continuous time
Markov chain (CTMC). This chain is shown at the bottom of the figure. It is isomorphic to an LTS obtained
by applying the notion ofweak Markovian bisimulation, after hidingenqanddeq. Weak Markovian
bisimulation is an adaptation of weak bisimulation to the setting of timed and immediate actions [26].
Abstraction from the two immediate actionsenq and deq turns out to be an essential prerequisite to
unambiguously determine the Markov chain underlying this specification. If, say,enq is hidden, we
can indeed be sure that our assumption thatenqhappens without any delay is justified. Otherwise, it
may be the case thatSystemis used as a component in further composition contexts, which require
synchronisation on actionenq. In this case, the Markov chain depends on additional timing constraints

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 11

imposed onenq. Therefore, it is not possible to removeenq, as long as further synchronisation onenqis still
possible.2

This particularity highlights an important difference in the semantics of immediate actions compared
to the semantics of immediate transitions in GSPN [2]. In contrast to the priority levels defined in GSPN,
immediate actions do not always have priority over timed actions. Under the notion of weak Markovian
bisimulation onlyinternal immediate actions preempt timed actions. Such a distinction is necessary to
ensure that equivalent components remain equivalent in the context of arbitrary further compositions, see
below (and [27] for an exhaustive discussion).

2.3. Bisimulation and compositional analysis

As illustrated in the running example, the notion of bisimulation is of high importance. Bisimulation
manifests itself in the following way: two states of a process are bisimilar if they have the same possibilities
to interact (with a third party) and reach pairwise bisimilar states after any of these interactions [50]. This
definition only accounts for immediate actions. On the level of Markov chains, a corresponding definition
is provided by the notion oflumpability. Two states of a Markov chain are lumpable if they have the same
cumulative rate of reaching pairwise lumpable states [44].Markovian bisimulationreflects lumpability
and bisimulation on timed transitions, by imposing constraints on actions and rates, see [30] or [11,36] for
details.WeakMarkovian bisimulation additionally allows abstraction from internal immediate actions,
in analogy to ordinary weak bisimulation [31].

Such equivalences are defined in terms of states and transitions, i.e., on the level of the LTS. In order
to get insight into their particularities, it is highly valuable to characterise their distinguishing power
on the level of the language by means ofequational laws. Some important laws for weak Markovian
bisimulation are given below [29]:

(a, λ); τ ; P = (a, λ); P (1)

τ ; P [] (a, λ); Q = τ ; P (2)

(a, λ); P [] (a, µ); P = (a, λ + µ); P (3)

They reflect the following characteristics of weak Markovian bisimulation. According to law (1), an
immediate internal action following a timed action has no effect and can therefore be eliminated. Law (2)
states that the internal immediate actionτ has priority over a Markovian timed action, since the former
will happen without any delay. Recall that this priority only holds forinternal immediate actions. Law
(3) says that the rate of two timed transitions (with the same action) can be cumulated. This law reflects
lumpability, and is also valid for (non-weak) Markovian bisimulation.

In the presence of composition operators, such as hiding and parallel composition, it is highly desirable
that equivalences aresubstitutive. Intuitively, substitutivity allows to replace components by equivalent
ones within a large specification, without changing the overall behaviour. Substitutive equivalences are
also calledcongruences. Indeed, Markovian and weak Markovian bisimulation are congruences, except
for the choice operator, where weak bisimulations generally require a slight refinement [29]. Practically
important, such equivalences allowcompositional aggregationtechniques, where the size of a com-
ponent’s state space may be reduced, without affecting any significant property of the whole model.

2 Indeed, abstraction rules out any further synchronisation, sinceτ is not allowed to appear in the list ‘. . . ’ of synchronising
actions of a parallel composition operator|[. . .]|.

12 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

Fig. 4. Compositional aggregation of the example queuing system.

Compositional aggregation has successfully been applied to a variety of systems, see e.g. [14], for an
impressive industrial case study.

Let us return to our queuing example in order to illustrate compositional aggregation. We will now
model a queuing system with one Poisson arrival process, two queues and two servers. We can build this
system from the same components, i.e., processesArrival, QueueandServerare defined as above. The
system is now

System:= Arrival |[enq]| ((Queue0 |[deq]| Server) ||| (Queue0 |[deq]| Server))

If the queue sizes are given bymax = 3, the model has 128 states and 384 transitions. By hiding actions
enqanddeqand applying weak Markovian bisimulation to the complete system, the state space can be
aggregated to 22 states and 48 transitions. However, aggregation can also be performed in a compositional
fashion such that the 128 state system never has to be generated explicitly: the subsystem consisting of one
queue–server pair has eight states, which can be aggregated to five states. Combining both (aggregated)
queue–server pairs, we obtain 25 states which can be aggregated to 15 states (this aggregation step mainly
exploits symmetry of the model). If this aggregated system is combined with the arrival process, we get 30
states which can again be aggregated to 22 states. This concept of compositional aggregation is illustrated
in Fig. 4, where the size of the state space and the number of transitions are given for each aggregation
step.

It is interesting to observe that this system exhibits non-deterministic behaviour: after the completion
of a Markovian timed actionarrive, it is left unspecified which of the two queues synchronises with
the arrival process on immediate actionenq (provided, of course, neither queue is full, in which case
the behaviour is deterministic). As a consequence, the Markov chain underlying this specification is
formally not completely specified. One may assume that both alternatives occur with the same probability.
Alternatively, one may explicitly add information (such as a scheduling strategy) in order to resolve
non-determinism. In Section 4, we will follow the latter path.

The reduction obtained by compositional application of weak Markovian bisimulation relies on two
phenomena.
1. Since the equivalence notion incorporates the idea of lumpability, symmetries within the specification

can be exploited, as in the above example, where the two queue–server pairs are replicas of each other.

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 13

Fig. 5. Structure of the tool.

(Note, however, that in general the lumping effect of (weak and strong) Markovian bisimulation goes
beyond simple symmetry exploitation [16,25].)

2. Abstraction of sequences of internal immediate actions can be exploited in a component wise fashion.
Immediate transitions contribute to the state space only to the extent in which they are required for
further composition. Therefore, it is possible to abstract frominternal immediate actions (over which
synchronisation is not allowed). This effect is also present in (the first and the final step of) the
aggregation example depicted in Fig. 4.

3. Tool overview

The TIPPtool consists of several components. It includes a parser which checks specifications for
syntactic correctness. The language accepted by the parser is a superset of Basic LOTOS [8], and will
be explained in detail in Section 4. If a specification is syntactically correct, the tool applies the struc-
tural operational rules automatically and generates the underlying semantic model and its corresponding
Markov chain. It provides several numerical algorithms for the solution of the Markov chain and the com-
putation of measures. Algorithms are provided to aggregate the LTS according to different bisimulation
equivalences. The interaction among different components of the tool is shown in Fig. 5.

Specifications can be created with an editor which is provided by the tool (Edit component). The
Generate/Aggregate component is responsible for the generation of the semantic model and for the
aggregation of the LTS according to a bisimulation equivalence. The user may currently choose between
four bisimulation equivalences.

Via theOptions , the user can specify various measures to be calculated, such as the probability of
the system being in a certain subset of states, or the throughput (i.e., the mean frequency of occurrence)
of some action. An experiment description contains information about activity rates which may vary, i.e.,
which are represented by a textual string to be replaced during analysis by a concrete value. A series

14 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

of experiments can be carried out automatically in an efficient manner, generating numerical results for
different values of a certain model parameter, while the state space only needs to be generated once.

Models can be analysed with theAnalyze module. It provides several numerical solution methods
for the steady state analysis as well as for the transient analysis of Markov chains. If an experiment series
has been carried out, the results are presented graphically with the toolPXGRAPH from UC Berkeley.

TheExport module of the tool provides interfaces to three other tools,ALDEBARAN [17], PEPP
[24], andTOPO [45]. The former interface is based on a special semantics for SPAs which generates
stochastic task graphs [34,46], for which the toolPEPP offers a wide range of both exact and approximate
analysis algorithms, some of which work even for general distributions. The second interface provides
support for the translation of SPA specifications into a format suitable for the LOTOS toolTOPO.
Among other functionalities, this tool is capable of buildingC-programs from LOTOS specifications.
The third interface can be used to exploit the powerful bisimulation equivalence algorithms of the tool
ALDEBARAN. Here, the interface is at the level of the state space.

4. Model specification

In this section, we explain the details of the specification language supported by the TIPPtool. In
particular, we highlight howparametric processesand inter-process communicationcan be used to
model complex dependences conveniently. The specification language of the TIPPtool is closely related
to LOTOS [41], the ISO standardised specification language. To reflect the passing of time in a speci-
fication, randomly varying delays may be attached to actions. At the moment, for reasons of analytical
tractability, only exponential distributions are supported. Thus, our language can be seen as a means for
the compositional high-level description of a CTMC.

4.1. Basic operators

The available operators are listed in Table 1; the upper half has already been used in Section 2, namely
(timed and immediate) action prefix, choice, hiding and parallel composition (with synchronisation). Note

Table 1
Basic syntax of the TIPPtool language (P andQ are behaviour expressions,a, a1, . . . , an are action names)

Name Syntax

Timed action prefix Observable (a, r); P

Internal (tau , r); P
Immediate action prefix Observable a; P

Internal tau ; P
Choice P [] Q

Parallel composition With synchronisation P |[a1, . . . , an]| Q

Pure interleaving P |||Q
Hiding hide a1, . . . , an in P

Inaction stop
Successful termination exit
Enabling P»Q

Disruption P [> Q

Process instantiation P [a1, . . . , an]

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 15

that the internal actionτ is denotedtau . If no synchronisation between two processes is required, the
pure interleaving operator||| models independent parallelism. Synchronisation is possible both between
immediate or between timed actions. Synchronising a timed with an immediate action is not allowed.
When synchronising on timed actions, we define the resulting rate to be theproductof the two partner
rates. This definition preserves compositionality [27,30].

The intuition of the remaining operators is as follows:stop represents an inactive process, i.e., a
process which cannot perform any action.exit behaves likestop after issuing a distinguished signal
δ indicating that the process has successfully terminated. This signal is used in combination with the
enabling operator» to model sequential execution of two processes. Disruption with[> is useful to
model the interruption of one process by another. As soon asQ executes any action,P is preempted and
control is handed over toQ. There is one exception to this general rule: in order to allow the passing of
time until preemption takes place, internal, timed actions ofQ do not preemptP . Process instantiations
P [a1, . . . , an] resemble the invocation of procedures in procedural programming languages such as
PASCAL. We will see examples in the sequel.

4.2. Value passing and inter-process communication

The concept of process instantiation makes it possible to parameterise processes over action names. In
addition, it is often convenient to parameterise a specification with some data values, such as a rate, or
the length of a queue. Indeed, the above specification of a queue can be seen as a simple example for a
data-dependent specification, since the parameteri governs the synchronisation capabilities ofQueuei .

We have incorporated the possibility to describe data dependencies explicitly in the TIPPtool. In addi-
tion, data can also be attached as parameters to actions, and therefore, be exchanged between processes,
using the concept of inter-process communication [8]. This is highly beneficial, in order to conveniently
describe complex dependencies.

As a prerequisite for inter-process communication and data parametrisation, it is necessary to support at
least basic data types. In the current version of the TIPPtool, the type integer may be used for inter-process
communication, and both integer and (positive) real for process parametrisation. In order to be used for
inter-process communication, data values have to be declared. A value declaration has the form! value
and is usually attached to an action, as ina!2;stop . valuemay be a specific value, a variable or an
arithmetic expression. Variable declarations are the counterpart of value declarations. They have the form
?variable: typewherevariable is the name of the variable. An example isa?x:int; P .

These basic ingredients can be combined to form three different types of inter-process communication
supported by the TIPPtool.
• Value passing. If value declaration and variable declaration are combined in a synchronisation, the

value is transmitted from one process to the other and the variable is instantiated by the transmitted
value. An example is

a! 2; stop |[a]| a?x:int ; b!(x + 1); . . .

• Value matching. If synchronisation on actions is specified where both actions involve value declarations,
this synchronisation is only possible if the values turn out to be equal, as in the example given below.

a! 2; stop |[a]| a!(1 +1); . . .

16 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

Table 2
Language constructs for inter-process communication and data parametrisation (bool-expr is a Boolean expression, possibly
containing ‘<’, ‘ =’, and ‘>’; parametersr, r1, . . . , rm can be instantiated by arbitrary positive real numbers, integers or by
arithmetic expressions of such numbers)

Name Syntax

Value declarations (send) a! r

Variable declarations (receive) a?x:int
Return values exit (n)
Accept values accept x:int in P

Conditional constructs [bool-expr] → P

Parametric processes P [a1, . . . , an](r1, . . . , rm)

• Value generation. If several actions are synchronised, each with a variable declaration of the same
type, a synchronisation with another process which offers a value of the required type yields a form of
multicast communication.

a!2; stop |[a]| a?x:int; P |[a]| a?y:int; s . . .

With the inclusion of values, further extensions to the basic syntax are convenient. When the enabling
operator is used, it is sometimes desirable to receive a value from the exiting process, as for instance
in a?x:int; exit(x) » accept v:int in P . Furthermore, it is convenient to describe be-
haviours which depend on conditions. For instance, the queue with three places can be described as
follows.

Queue(i) := [i < 3] → (enq; Queue(i + 1)) []
[i > 0] → (deq; Queue(i − 1))

The operators currently supported for inter-process communication and parametric processes are sum-
marised in Table 2. Note that inter-process communication is currently only implemented for immediate
actions.

4.3. The queuing example revisited

In order to illustrate the power of these language elements, we return to our running example of
a queuing system. We modify the model in order to represent the join-shortest-queue (JSQ) service
strategy. The idea is to insert a new process,Scheduler , between arrival and queue, whose task it is
to insert an arriving job into the shortest queue, i.e., the queue with smallest current population. For this
purpose,Scheduler scans all queues in order to determine the shortest queue, whenever an arrival has
occurred. ProcessServer is defined as before. The arrival and queue processes, on the other hand, do
not communicate directly via actionenq any more, but via theScheduler . Therefore, we simplify the
arrival process as follows (‘process ’ and ‘endproc ’ are keywords enclosing a process specification):

process Arrival := (arrive, lambda); Arrival endproc

i.e., Arrival andScheduler now synchronise on the timed actionarrive . The top-level specifi-
cation is as follows:

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 17

(Arrival |[arrive]|Scheduler(2,1,1,100,100))

|[ask,repl,enq]|

((Queue(1,0)|[deq] |Server)||| (Queue(2,0)|[deq]|Server))

The Scheduler is a parametric process, which can be used for an arbitrary numbernoq of queues.
After an arrival (actionarrive with the “passive” rate 1), the scheduler polls allnoq queues in order to
identify the queue with the smallest population (actionsask andrepl). Each queue sends as a reply its
current population. After polling,Scheduler has identified the shortest queue. It then enqueues the job
into that queue (actionenq). Parametersc , b, nc andnb are needed to store the current queue, the queue
with (currently) smallest population, the current population and the (currently) smallest population. In the
example,nc andnb are (re-)initialised with the value 100, a value larger than any real queue population.

process Scheduler(noq,c,b,nc,nb) :=

(arrive,1); AskQueue(noq,c,b,nc,nb)

where

process AskQueue(noq,c,b,nc,nb) :=

ask!c; repl?x:int; Decide (noq,c,b,x,nb)

endproc

process Decide (noq,c,b,nc,nb):=

[c<noq and nc<nb]

→ AskQueue(noq,c +1,c,nc,nc) []

[c<noq and (nc>nb or nc =nb)]

AskQueue(noq,c +1,b,nc,nb) []

[c =noq and nc<nb]

→ (enq!c; Scheduler(noq,1,1,100,100)) []

[c =noq and (nc>nb or nc =nb)]

→ (enq!b; Scheduler(noq,1,1,100,100))

endproc

endproc

TheQueue process has to be modified as well: it now has a parameters which denotes the identity
of the queue. In addition, it can now perform actionsask andrepl in order to supply information on
the current queue size to the scheduler. Note how value matching is used with actionsask andenq , and
value passing is used with actionrepl .

process Queue(s,i) :=

[i < 3] → enq!s; Queue(s,i + 1) []

[i > 0] → deq; Queue(s,i − 1)

ask!s; repl!i; Queue(s,i) []

endproc

18 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

5. Analysing a specification

The semantic model serves as a basis for functional analysis and performance analysis. We will infor-
mally explain how the semantic model is constructed by the TIPPtool and how it is used later on. Details
can be found in [27].

5.1. Generating and analysing the semantic model

The formal semantics of SPA provides an unambiguous description of how to construct the semantic
model in a mechanised way. The structural operational rules can be implemented in a straightforward
fashion. One such rule, e.g., is

if P
a→P ′ then P []Q

a→P ′

i.e., if the processP is able to perform the actiona and switch toP ′, then the processP [] Q can do the
same action, leading toP ′, thus preemptingQ. Of course, a symmetric rule would allowQ to preempt
P . The semantic model contains all possible states to which the specified system may evolve.

The semantic model is a directed graph whose nodes denote states and whose arcs represent transitions
between states. According to the semantics, states are labelled by terms of the SPA language (in encoded
notation), while the arcs contain an action name and optionally a transition rate and some auxiliary labels.
The state space is either saved directly to files (while a hash-table of all states is maintained in memory)
or it is temporarily stored in main memory as an adjacency list (a common data structure for graphs),
depending on whether equivalence checking algorithms are enabled or not (see Section 5.3).

Once the semantic model is generated, it can be used for some elementary functional analysis. Our
tool provides the capabilities of checking for deadlocks and tracing through the states, i.e., showing a
path of actions leading from the initial state to a user-specified target state. Apart from that, equivalence
checking algorithms can be used for deciding equivalence of two models. In this way it can be checked,
for instance, whether a model meets the requirements of a high-level specification.

5.2. Performance evaluation

Transforming the semantic model into CTMC and then analysing it by means of numerical solution
algorithms for Markov chains, we can obtain performance and reliability measures for a given specifica-
tion. For didactic reasons, let us first assume that the model contains timed actions only, and later show
how to extend the procedure for immediate actions.

5.2.1. Models without immediate actions
For any SPA model with timed actions only and finite state space, the underlying CTMC can be derived

directly by associating a Markov chain state with each node of the labelled transition system [20,36]. The
transitions of the CTMC are given by the union of all the arcs joining the LTS nodes, and the transition rate
is the sum of the individual rates (see Fig. 6). This is justified by the properties of exponential distribution,
in particular the fact that the minimum of two exponentially distributed random variables with ratesλ1, λ2

is again exponentially distributed with rateλ1+λ2. Transitions leading back to the same node (loops) can
be neglected, since they would have no effect on the balance equations of the CTMC. The action names
are only taken into account later on, when high-level performance measures are to be computed.

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 19

Fig. 6. Deriving a Markov chain.

In the TIPPtool, standard numerical solution algorithms [61] (Gauß–Seidel, Power method, LU factori-
sation, refined randomisation) are employed for steady state analysis as well as transient analysis of the
CTMC. Apart from these, prototypical implementations of efficient approximation methods are realised
(see Section 5.4).

5.2.2. Models with both timed and immediate actions
As discussed in Section 2, immediate actions happen as soon as they become enabled. In order to ensure

that this enabling cannot be delayed by further composition, abstraction of immediate actions is mandatory.
In the stochastic process, these immediate actions correspond to immediate transitions. The presence
of immediate transitions leads to two kinds of states in this process: states with outgoing immediate
transitions and states without such transitions. We adopt the usual terminology for the former kind of states
and refer to them asvanishingstates. All other states are calledtangiblestates [2]. If several immediate
transitions emanate from a single state, the decision among these alternatives is non-deterministic, and it
may depend on which action is offered by the environment. If we consider the system as a closed system
(which is made explicit by hiding all immediate actions) the decision among several (now internalised)
immediate transitions still has to be taken. One possible solution is to weigh all alternatives with equal
probabilities. Under this assumption of equi-probability, the underlying stochastic process is not a Markov
chain, but a special type of semi-Markov process which has both Markovian and immediate transitions.
Although, the solution of such semi-Markov processes represents no conceptual problem, the solution
effort is usually reduced by eliminating vanishing states, thus yielding a CTMC with fewer states.

Several methods exist for eliminating immediate transitions. The method used in most tools is to
incorporate transitions into the CTMC which are due to the traversal of some vanishing states between
two tangible states. This is done until all vanishing states are bypassed [2]. The rate of these arcs is
computed by multiplying the rate of the Markovian transitions leaving the source tangible state with
the probability of reaching the target tangible state (see Fig. 7). This is quite a general and efficient
technique. However, [55] showed that it should be applied with care in the SPA context, essentially
because a non-deterministic decision is conceptually different from an equi-probable decision. Therefore,
in order to remove immediate transitions, it is more appropriate for SPAs to eliminate them on the basis
of bisimulation equivalences, as it has been done in Fig. 3. If non-deterministic alternatives only lead

Fig. 7. Eliminating immediate transitions.

20 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

(via some internal, immediate steps) into equivalent states, equivalence-preserving transformations allow
to remove this non-determinism, see Section 5.3. The TIPPtool proposes to follow this way, whenever
a critical non-deterministic decision is encountered, by issuing a warning. Depending on the user’s
advice, it is able to proceed with performance analysis, by applying the usual elimination of vanishing
states.

5.3. Compositional aggregation

Equivalence relations such as (weak) Markovian bisimulation, introduced in Section 2.3, are ben-
eficial both for eliminating immediate transitions, and for alleviating the state space explosion prob-
lem by means of lumping. Both effects can be achieved by means of the same strategy. For a given
specification, saySystem, the key idea is to compute a specification,System′, which is minimal (with
respect to the number of states) among all those specifications which are equivalent toSystem. Perfor-
mance analysis can then be based on the minimised specification. In principle, it is possible to produce
System′ by term rewriting on the level of the syntax, using equational laws, see e.g. [26]. A different
approach works on the level of the transition system, factorising the whole state space into equivalence
classes of states. A minimal representation is obtained afterwards, representing each class by a single
state.

The general strategy for factorising the state space is known aspartition refinement. A partition is
a representation of a set as a disjoint union of subsets. The bisimulation algorithm should obviously
compute a partition of the state space, such that the subsets correspond to the bisimulation equivalence
classes. This is achieved by a successive refinement of an initial partition which consists of a single subset
containing all states. The partition becomes finer and finer until no further refinement is needed, or, in
technical terms, a fixed-point is reached. This fixed-point is the desired result.

This general strategy can be realised by means of efficient algorithms [42,51]. Therefore, our bisimu-
lation algorithm prototypes implemented in the TIPPtool follow the partition refinement approach [32].
For specifications which do not contain timed transitions, we implemented Kanelakis and Smolka’s
algorithm to compute strong and weak bisimulation. For the converse case (only timed transitions),
we implemented an algorithm which is due to Baier [4] for factorising specifications with respect to
Markovian bisimulation. These two implementations form the basis of the general case, where timed and
immediate transitions coexist: weak Markovian bisimulation is computed by alternating the algorithms
for weak bisimulation (for immediate transitions) and Markovian bisimulation (for timed transitions)
until a fixed-point is reached. Since weak Markovian bisimulation abstracts from internal, immediate
transitions, this opens a way to eliminate immediate transitions from a specification, as long as they are
internal. So hiding of immediate transitions is necessary for an elimination, but it is, in some cases, not
sufficient, because non-deterministic internal decisions may remain after factorisation. In this case the
system is underspecified, and the TIPPtool produces a warning message to the user.

Bisimulation-based minimisation is particularly beneficial if it is applied to components of a larger
specification in a stepwise fashion. Since all implemented bisimulations have the algebraic property
of substitutivity, minimisation can be applied compositionally, as illustrated in Fig. 4. Minimising an
arbitrary component of a specification does not alter the behaviour of the whole specification. In this way,
specifications with very large state spaces become tractable, as outlined in [28].

In the TIPPtool, compositional minimisation is supported in an elegant way. By dragging the mouse
inside the edit window, it is possible to highlight a certain component of the specification and to invoke
compositional minimisation of this component. When the minimised representation is computed, a new

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 21

Fig. 8. Compositional aggregation by selecting parts of the specification with the mouse.

specification is generated automatically, where the selected component has been replaced by the minimised
representation. This new specification is displayed in a new, distinguished window, see Fig. 8. We used
this feature for compositional aggregation of our queuing example. The resulting sizes of the component’s
state spaces and their aggregated versions are depicted in Fig. 4.

22 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

5.4. Approximate analysis

In addition to the exact analysis methods discussed above, prototypical implementations of two efficient
approximation algorithms are integrated into the TIPPtool. Both approaches are based on decomposition.
The theoretical foundations of SPA were of high importance for both approaches, since they were needed
to show the correctness of the transformations imposed on the model during decomposition/aggregation
[47].

5.4.1. Time scale decomposition
Time scale decomposition (TSD) is a decomposition method which tries to exploit thenear complete

decomposability(NCD) property of many Markov chains. In particular, CTMCs resulting from models
which contain reliability aspects lead to NCD Markov chains. Such models tend to lead to so-calledstiff
Markov chains, which increases the solution effort immensely. TSD partitions the state space into fast
and slow components, based on a distinction between fast and slow actions, according to a threshold
value for the rate [37]. The generation of the whole state space at once is avoided. Only one partition at
a time is held in memory. The accuracy of the results is excellent for systems with NCD structure. The
algorithm is based on existing work on SPNs [7] and goes back to the decomposition/aggregation scheme
of Simon and Ando [60]. Of course, there are some drawbacks, in particular due to the restriction that
the partitions need to be solvable by steady state analysis, i.e., they have to be irreducible. If this is not
the case, an additional error is introduced.

5.4.2. Response time approximation
Response time approximation (RTA) works on the specification level rather than on the CTMC level

[47,48]. The basic principle goes back to early work on queuing networks [1,13] and more recent deriva-
tives in the SPN context, e.g. [12]. Here, the state space is not generated for the whole model, but only
for a small part of the model. The RTA algorithm for a special class of SPNs, called marked graphs,
has been adapted to so-called decision free processes (DFP), and implemented in the TIPPtool, in order
to derive substitute aggregates which approximate the response time of the original aggregates. Several
equivalence-preserving transformations are applied to the model prior to decomposition. If the decom-
posed model components are still too big, they can be decomposed again recursively in a divide and
conquer fashion. Thus, the state complexity is reduced by several orders of magnitude. The main limita-
tion is that this method is restricted to DFP, a very specific class of models [47].

For example, a DFP whose specification is given as

System := P1|[. . .]|P2|[. . .]|P3|[. . .]|P4|[. . .]|P5|[. . .]|P6|[. . .]|P7|[. . .]|P8

is aggregated into a smaller aggregated system

Aggregated system := P1|[. . .]|P2|[. . .]|P3|[. . .]|AP

where the substitute aggregateAP amalgamates the whole behaviour of the replaced componentsP5-P8

into a few actions only, thus reducing the total state space complexity. The substitute aggregate is obtained
automatically, by weak bisimulation preserving transformations. Its temporal behaviour is estimated by
an adaptation of the RTA algorithm for marked graphs.

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 23

Fig. 9. Measure definition dialog box.

5.5. Definition and computation of characteristic performance measures

The result of steady state analysis as well as transient analysis is a vector of probabilities. This vector
can be used by the TIPPtool in order to derive more sophisticated measures. Currently, three types of
measures are supported:
• State measure. This measure represents the probability that the system is in a certain state or in a group of

states. The user may specify such a set of states via regular expressions. After analysis, the tool collects
all states from the state space which are matched by this expression and sums up the corresponding
probabilities. Typical measures which can be obtained in this way are resource utilisation, availability,
or probability of deadlock.

• Throughput. Here the result is not a probability, but a frequency. If the name of a timed action is
specified, its throughput will be computed, i.e., the average number of occurrences of this action per
time unit.

• Mean value. In the presence of parametric processes where one parameter represents a counter (e.g.,
a queue length), this measure type returns the mean value of this counter.
Fig. 9 shows how three measures for the running example are defined via a dialog box. The state

measures ‘Empty’ and ‘Blocking’ correspond to the probability of finding both queues empty (full).
‘Throughput’ is the number ofserve -actions per time unit.

5.6. Experiment definition and visualisation

The TIPPtool provides a dialog box for the definition of experiments (Fig. 10). Here, the user specifies
the numerical values of symbolic model parameters. Values may either be constant or variable. In the
latter case, a smallest and a largest value, as well as a stepsize have to be specified. The tool will then

24 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

Fig. 10. Definition of experiments.

automatically replace the symbolic parameters by the actual values, and evaluate the model for each value
combination. The state space, however, only has to be generated once.

Fig. 11 contains a screen shot of some numerical results for our running example, calculated during an
experiment where the service rateµ was varied, and displayed with the help ofPXGRAPH.

6. Implementation considerations

In this section, we wish to give some insight into a few implementation aspects of the TIPPtool.
Although, the tool is quite far advanced and provides a user-friendly interface, it still represents a prototype,
and as such has shortcomings with regard to the efficiency of the implementation.

Our choice for the programming language Standard ML deserves special consideration. We used it
for implementing the parser, the semantics, and the bisimulation algorithms. It was also used for the
approximate solution methods. The main advantage of this language is that it is perfectly suited for
implementing semantics of formal languages. Its type concept, memory management (garbage collector)
and a rich library made the development of the tool a lot easier. Standard ML code is translated into

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 25

Fig. 11. Display of experimental results viaPXGRAPH.

an architecture-dependent executable bytecode. Consequently, this part of the tool clearly represents
a bottleneck. Furthermore, the implementations of partition refinement to compute (weak) Markovian
bisimulation do not meet the best possible complexity results, their efficiency can therefore be improved
a lot [25,32]. For instance, the weak bisimulation algorithm implemented in the TIPPtool currently fails
for state spaces of more than 8000 states, while a far more advanced implementation of essentially the
same algorithmic idea, realised inALDEBARAN, is able to handle more than 106 states.

As for the numerical analysis part, we chose a ‘C’-library which provides data structures for sparse
matrices, called SparseLib1.3 (by Kenneth Kundert, UC Berkeley). We extended this library by a few
iterative solution methods for steady state analysis and transient analysis. The numerical solvers were
implemented in ‘C’, and the communication with the state space generator is done via ASCII-files. The
clear interface of the library makes it easy to integrate other solution methods into the tool.

For computing the measures, shell-scripts are used, which are based on standardUNIX-tools such as
GREP, AWK and SED. Finally, the graphical user interface has been implemented using another scripting
language, Tcl/Tk. The communication between the GUI and the other tools is done viaUNIX-pipes. This
turned out to be a good choice, since the use of Tcl/Tk makes it easy to customise the GUI of the tool.

7. Case study: a hospital communication system

In this section, we exemplify the use of the TIPPtool by means of a non-trivial case study. We describe
the specification and analysis of the hospital communication system (HCS) operated by the University

26 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

Fig. 12. The hospital communication system model.

of Erlangen. This study is part of an ongoing performance measurement and modelling project which is
being conducted at the University of Erlangen [3,58,59].

7.1. Global structure of the HCS

The hospital communication system provides a communication infrastructure which is used by medical
subsystems for exchanging information such as patient data, observation results, medical images and
accounting data. Furthermore, the system consists of a huge number of interacting subsystems, among
them the hospital’s main laboratory, an observations processing system and the operations documentation
system.

In a large clinic such as the Erlangen University hospital there exists a great variety of subsystems
associated with different departments and institutions. Due to historical reasons, these decentralised in-
formation processing systems are mostly incompatible. In the past, communication between subsystems
was based on proprietary one-to-one relations. Integration efforts have led to the use of standardised
message formats (e.g., the Health Level 7 message standard developed for the health care sector) and the
deployment of a central communication server. In Erlangen, the communication server DataGate from
STC is used, whose tasks are the reception, checking, processing, routing and forwarding of (standard-
ised) messages between medical subsystems. Among the subsystems in the Erlangen HCS, the patient
management system, a SAP R/3 IS-H product, is the central business application. Beside the patient man-
agement system, there is a second large data base, the communication data base, which mirrors parts of the
patient management system and contains additional medical information. The communication database
serves as a fast data buffer which, from the point of view of the subsystems, provides data access about
10 times faster than the patient management system itself, and as a side effect also significantly reduces
the load of the latter.

We only present a rudimentary model of the Erlangen hospital communication system which during our
project has been extended in various directions. Fig. 12 shows the basic structure of the model. It consists
of the communication server (CS), the communication data base (CDB) and two medical subsystems,
the main laboratory system (MLS) and an observations processing system (OPS). Since almost all of the
subsystems’ demands for data can be satisfied by the CDB, we do not model the patient management
system (PMS) at this stage (therefore the PMS is drawn grey in the figure). There is an “artificial”
subsystem, representing an adjustable background load (BL), caused by those subsystems which are not
explicitly modelled (BL actually consists of two subprocesses, a source and a sink which communicate
with CS via actionsload in andload out).

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 27

The top-level specification for the TIPPtool is as follows:

hide request, response in

(MLS|||OPS)

|[request, response]|

(

hide query, answer in

(

hide load in,load out in

BL|[load in,load out]|CS

)

|[query,answer]|CDB

)

7.2. Specification of components

We now describe a typical communication sequence in the system: the MLS, after some internal
processing, needs a patient data record from the CDB. It sends a request message to the CS (action
request) which is forwarded to the CDB (actionquery). After completing the data base lookup, the
CDB generates an answer message which is sent back to the CS (actionanswer) and from there on to the
MLS (actionresponse). Queries initiated by the OPS subsystem do not request patient data records,
they request observation results instead. Apart from that, they follow the same basic pattern as queries
initiated by MLS. However, since the answer to a request for observations may consist of a number of
different observations, an OPS query does not result in a single answer message, but in a random number
of answer messages. Measurements on the real system have shown that this number follows a geometric
distribution.

Subsystems MLS, OPS communicate with CS via actionsrequest andresponse . In order for these
communications to be distinguishable, we use inter-process communication, in particular value passing
and value matching. All actions associated with communications initiated by subsystem MLS carry the
value 0, while those originating from OPS carry the value 1. The following part of the specification
illustrates how value passing and value matching are employed between MLS and CS. Note that MLS is
capable of receiving aresponse at any time. This is used to ensure that CS may engage inresponse
even though MLS has just decided to induce the nextrequest!0 (equivalently a sink could be used
instead, that runs independently in parallel and just consumesresponse!0 actions).

process MLS :=(time mls, lambda); MLS 2 [] response!0; MLS

endproc

process MLS2 :=request!0; ML S [] response!0; MLS2

endproc

The following portion of code specifies the behaviour of subsystem CS. In subprocessCStodo aquery
is submitted to the CDB. Depending on the valuex received through actionrequest , this corresponds to
a query for a patient data record or for observation results. In subprocessesCStodo andCStransmit ,

28 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

checking the condition[x =0 or x =1] is redundant. It is, however, an example for a useful mechanism
for debugging during model development, since the receiving of arequest or ananswer with a value
different from 0 or 1 would constitute an error and result in a deadlock. Concerning the rate of timed
actions such astime cs , the basic time unit is 1 ms.

processCS := request?x:int; (time cs, 0.02); Cstodo(x) []

answer?x:int; (time cs, 0.02); Cstransmit(x) []

load in; (time cs, 0.02); load out; CS

endproc

process CStodo(x) := [x = 0 or x = 1] → (query!x;CS)

endproc

process CStransmit(x) := [x = 0 or x = 1] → (response!x; CS)

endproc

Similar value passing mechanisms are employed for the communication between the CS and the CDB. In
order to perform the correct type of data base lookup, the CDB has to recall the initiator of each query. To
this end, queries are stored in front of the CDB in a queue with multiple job classes, i.e., for each queue
position the type of the query is stored. Again, several equivalent ways are possible to represent this data
type inside a TIPP specification. The following fragment of code illustrates the concept of a queue with
three waiting positions and multiple job classes.

process
CDB(f,p1,p2,p3):=

[f =0] → (query?x:int; CDB(1,x,0,0)) []

[f =1] → (query?x:int; CDB(2,p1,x,0) []

Lookup(1,p1,0,0)) []

[f =2] → (query?x:int; CDB (3,p1,p2,x) []

Lookup(2,p1,p2,0)) []

[f =3] → (query?x:int; (full,10); CDB(3,p1,p2,p3) []

Lookup(3,p1,p2,p3))

endproc

Parameterf denotes the current queue population. The remaining three parameters are used to store the
class of the job in the first, second and third queue position. Actionquery sets the next free position
with the value passed from the CS and increases parameterf . (If a query action meets a full queue, i.e.,
in the case wheref =3, an exception is raised by actionfull). The converse operation, sending (one
or several) answer(s) back to the CS and thereafter removing a job from the queue, is not shown in this
fragment. It is part of theLookup process and its subprocesses which can be entered under the condition
that the CDB queue is not empty. If theLookup process is processing aquery originating from the
OPS, it generates a geometrically distributed number of answers. This geometric distribution is modelled
by a loop with a non-zero probability of reentry after an answer has been generated.

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 29

Fig. 13. Compositional aggregation applied to the hospital communication system.

7.3. State space construction

The size of the state space for this model is 4951 states and 16 236 transitions. The computation time
for generating this state space was about 80 s on a SUN Ultra 1 C equipped with 512 MB of main memory.
Building the generator matrix and solving the linear system for obtaining steady state probabilities took
about 30 s. It was also possible to construct an aggregated state space for this model in a compositional
fashion, applying stepwise aggregation by means of bisimulation, see Fig. 13. In this way, for instance,
the state space of CDB could be aggregated from 80 to 73 states, and the parallel composition of CS and
BL could be reduced from 22 to 20 states, after abstraction ofload in and load out . Combining
these intermediate state spaces and hidingquery as well asanswer we obtained 1132 states which,
again, were aggregated to 764 states. Finally, we obtained 3056 states for the overall system specification
which could be aggregated to an equivalent specification with 2294 states, instead of the original 4951
states. This very last aggregation step took more than 15 h, indicating that compositional aggregation
still deserves some implementation effort. All aggregations were based on the notion of weak Markovian
bisimulation and made use of the mouse drag-and-highlight feature to steer compositional aggregation
(cf. Fig. 8).

7.4. Numerical analysis and evaluation

We have calculated a variety of numerical results for this model. There are no queues in front of
process CS, i.e., subsystems wishing to communicate via the CS may have to wait until the CS is ready
for synchronisation. This waiting time can become quite significant if the CS is very heavily loaded. For
instance, experiments revealed that under heavy background load the subsystem MLS spends up to 11%
of total time waiting for the CS (cf. Fig. 14, left). In this as in other experiments, the offered background
load was increased exponentially, starting with an initial valueload0 = 1 request per second which was
doubled in every step.

This raises the question of the utilisation of CS which of course depends on the offered load. The
traffic generated by subsystems MLS and OPS is constant, namely 1 request per second for MLS and
0.25 requests per second for OPS. The offered background load, as mentioned, is increased dramatically
from load0 = 1 to 1024 requests per second. Fig. 14 (right) shows the proportion of time the CS is idle,
depending on the offered background load. It should be noted that due to the average message processing

30 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

Fig. 14. (Left) waiting time percentage in subsystem MLS dependent on background load; (right) probability of CS being idle.
(Note the logarithmic scale.)

time of 50 ms per message, a maximum of 20 messages per second can be carried by the CS, no matter
how much background load is offered.

We now briefly discuss the size of the queue in front of the CDB and its implications. In the real system,
an almost unlimited number of queries can be queued in front of the CDB, the only limitation being the
size of physical memory of the machine. In order to avoid state space explosion, we can only model very
small queue sizes. The diagram in Fig. 15 (left) shows that for a queue size of three waiting positions the
probability of the queue being full is between 5.9 and 8.3%, depending on the offered background load.

The rate at which (MLS and OPS) queries get lost is 0.077–0.097 queries per second, see Fig. 15 (right).
This corresponds to a query loss probability of 6.3 (low background load) to 8.6% (high background load).

Fig. 15. (Left) probability of the CDB queue being full; (right) rate of lost queries.

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 31

In real life such high loss probabilities would of course not be acceptable. On the other hand, we observe
that even for modelling a queue size of three one already obtains quite reasonable estimates for the
performance measures.

The parameters used in the model were derived from measurements on the real system. We found
that exponential assumptions were justified for the request inter-arrival times and even for the message
processing time in the CS. The data base lookup times in the CDB were modelled as Erlang-2 distributions
(as a sequence of two exponential phases), with different mean, depending on whether a query originated
from the MLS or OPS subsystem.

As explained above, the specification makes excessive use of interprocess communication and of
immediate actions. On the other hand, it is interesting to observe that the applied synchronisation discipline
for timed actions (where the product of rates is implemented) is of no importance in this case study, because
synchronisation is carried out only over immediate actions.

As mentioned above, the model described in this section was our first rudimentary model, which we
extended in various directions. For instance, we explicitly modelled the PMS and the fact that queries
which cannot be satisfied by the CDB have to be forwarded to the PMS (see Fig. 12, where it is indicated
that synchronisation between CDB and PMS is performed via actionsask andput). We conducted
experiments with varying CDB “hit rates”, i.e., varying probability of forwarding a query from the
CDB to the PMS. We also studied the question whether it is beneficial to enable parallel queries to the
CDB by employing a separate “query” process for each subsystem generating queries. In all of these
investigations we frequently dealt with state space sizes of several hundreds of thousands of states.
Compositional aggregation, however, was only possible for models of modest size, due to limitations of
our implementation. Recently, on the other hand, the interface between the TIPPtool andALDEBARAN
has been successfully used to circumvent this bottleneck and to compositionally analyse another case
study of more than 107 states in total [28].

8. Conclusion

In this paper, we have presented the status quo of the TIPPtool. We have described the particular
features of a process algebra based specification formalism, together with the distinguishing components
of the tool. A non-trivial case study has shown how a performance model of significant complexity can
be specified and analysed compositionally. We believe that the TIPPtool currently is the leading tool
for compositional modelling and analysis. In particular, it is the only tool supporting semi-automatic
compositional aggregation.

Although a lot has been achieved, there remain, of course, many open problems for future research. We
will briefly present some aspects of ongoing work in the TIPP project. Several attempts have been made
in order to incorporate generally distributed random variables into the model [22,23,34,43,53]. However,
they all suffer from the problem that general distributions lead to intractable stochastic processes, i.e.,
it is usually impossible to evaluate them efficiently. Simulation is a possible way out, but very costly in
general. Another problem is that, so far, it is not completely solved how to obtain an algebraic framework
(equivalences and equational laws) for a process algebra with general distributions. A promising approach,
however, is reported in [15], usingstochastic automataas a model based on generalised semi-Markov
processes.

We have built a prototype tool for graphical model specification, calledDEEDO, which is an easy-to-use
front-end for users who are not familiar with the syntax of the TIPPtool’s specification language. Via a

32 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

graphical editor, the user can draw automaton-like models, consisting of states and transitions. A hiding
operator and a parallel composition operator are also supplied, such that hiding of internal behaviour and
the combination of submodels can be specified graphically in a hierarchical fashion. Currently,DEEDO
produces a textual model description which is used as input for the TIPPtool.

With the view on models with large state spaces, we are currently investigating techniques for the
compact symbolic representation of the semantic model of an SPA description. The basic idea is as
follows: the LTS is encoded as a Boolean function and represented as a binary decision diagram (BDD)
[10]. Parallel composition of submodels is done on their BDD representation. This has the major advantage
that BDDs only grow linearly in size when they are composed in parallel, whereas transition systems grow
exponentially with the number of parallel components. In order to incorporate the stochastic information
into the symbolic representation, we developed DNBDDs, an extension of purely functional BDDs [57].
We have implemented a tool which builds a BDD from the LTS-description generated by the TIPPtool,
performs BDD-based parallel composition of submodels, and — most interesting — aggregates the model
by means of a Markovian bisimulation algorithm which works exclusively on BDDs. The resulting BDD
can be converted back to an LTS-file for further processing by the TIPPtool.

To summarise, the TIPPtool realises state-of-the-art techniques for compositional performance and
dependability modelling. As we have described in this paper, there is a lot of ongoing activity, both in
theoretical research, and concerned with the further development and optimisation of components of the
tool.

References

[1] S.C. Agrawal, J.P. Buzen, A.W. Shum, Response time preservation: a general technique for developing approximate
algorithms for queuing networks, in: Proceedings of the 1984 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, Performance Evaluation Rev. 12 (3) (1984) 63–77.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, Performance Models of Multiprocessor Systems, MIT Press, Cambridge, MA,
1986.

[3] B. Aures, Modellierung des Erlanger Klinikkommunikationssystems mit Hilfe von stochastischen Prozeßalgebren und
TIPPtool, Studienarbeit, Universität Erlangen–Nürnberg, IMMD VII, October 1998.

[4] C. Baier, Polynomial time algorithms for testing probabilistic bisimulation and simulation, in: Proceedings of the CAV’96,
Lecture Notes in Computer Science, vol. 1102, Springer, Berlin, 1996, pp. 50–61.

[5] M. Bernardo, W.R. Cleaveland, S.T. Sims, W.J. Stewart, TwoTowers: a tool integrating functional and performance analysis
of concurrent systems, in: FORTE/PSTV, 1998.

[6] M. Bernardo, R. Gorrieri, Extended Markovian process algebra, in: CONCUR’96, Lecture Notes in Computer Science, vol.
1119, Springer, Berlin, 1996, pp. 315–330.

[7] A. Blakemore, S. Tripathi, Automated time scale decomposition of SPNs, in: Proceedings of the Fifth International Workshop
on Petri Nets and Performance Models, Toulouse, IEEE Computer Society Press, Silverspring, MD, 1993.

[8] T. Bolognesi, E. Brinksma, Introduction to the ISO specification language LOTOS, in: P.H.J. van Eijk, C.A. Vissers, M.
Diaz (Eds.), The Formal Description Technique LOTOS, North-Holland, Amsterdam, 1989, pp. 23–73.

[9] E. Brinksma, A. Nijmeijer (Eds.), Proceedings of the Fifth Workshop on Process Algebras and Performance Modelling,
CTIT Technical Report Series, vol. 97-14, University of Twente, 1997.

[10] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans. Comput. Sci. C 35 (8) (1986) 677–
691.

[11] P. Buchholz, Markovian process algebra: composition and equivalence, in: Herzog and Rettelbac (Eds.), Proceedings of
the Second Workshop on Process Algebra and Performance Modelling, University of Erlangen-Nürnberg, IMMD, 1994,
pp. 11–30.

[12] J. Campos, J.M. Colom, H. Jungnitz, M. Silva, Approximate throughput computation of stochastic marked graphs, IEEE
Trans. Software Eng. 20 (7) (1994) 526–535.

[13] K.M. Chandy, U. Herzog, L. Woo, Parametric analysis of queuing models, IBM J. Res. Develop. 19 (1) (1975) 36–42.

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 33

[14] G. Chehaivbar, H. Garavel, N. Tawbi, F. Zulian, Specification and verification of the powerscale bus arbitration protocol: an
industrial experiment with LOTOS, in: R. Gotzhein, J. Bredereke (Eds.), Formal Description Techniques, vol. IX, Chapman
& Hall, London, 1996, pp. 435–450.

[15] P.R. D’Argenio, J.P. Katoen, E. Brinksma, An algebraic approach to the specification of stochastic systems (extended
abstract), in: D. Gries, W.-P. de Roever (Eds.), Programming Concepts and Methods, Chapman & Hall, New York, 1998,
pp. 126–148.

[16] S. Donatelli, H. Hermanns, J. Hillston, M. Ribaudo, Quantitative methods in parallel systems, in: Practice — Modelling a
Distributed Mail System, chapter GSPN and SPA, Springer, Berlin, 1995.

[17] J.C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, M. Sighireanu, Cadp (cæsar/aldebaran development
package): a protocol validation and verification toolbox, in: R. Alur, T.A. Henzinger (Eds.), Proceedings of the Eighth
Conference on Computer-Aided Verification, New Brunswick, NJ, USA, Lecture Notes in Computer Science, vol. 1102,
Springer, Berlin, 1996, pp. 437–440.

[18] S. Gilmore, J. Hillston, The PEPA workbench: a tool to support a process algebra-based approach to performance modelling,
in: G. Haring, G. Kotsis (Eds.), Seventh International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, Wien, 1994, pp. 353–368.

[19] S. Gilmore, J. Hillston (Eds.), Proceedings of the Third Workshop on Process Algebras and Performance Modelling (special
issue), Comput. J. 38 (7) (1995).

[20] N. Götz, Stochastische Prozeßalgebren — integration von funktionalem entwurf und leistungsbewertung verteilter systeme,
Ph.D. Thesis, Universität Erlangen–Nürnberg, Erlangen, 1994.

[21] N. Götz, U. Herzog, M. Rettelbach, Multiprocessor and distributed system design: the integration of functional specification
and performance analysis using stochastic process algebras, in: Tutorial Proceedings of the 16th International Symposium
on Computer Performance Modelling, Measurement and Evaluation, Performance’93, Lecture Notes in Computer Science,
vol. 729, Springer, Berlin, 1993, pp. 121–146.

[22] N. Götz, U. Herzog, M. Rettelbach, TIPP — Einführung in die Leistungsbewertung von verteilten Systemen mit Hilfe
von Prozeßalgebren, in: Verteilte Systeme — Grundlagen und zukünftige Entwicklungen aus der Sicht des SFB182,
BI-Wissenschaftsverlag, Mannheim, 1993, pp. 509–531.

[23] P. Harrison, B. Strulo, Stochastic process algebra for discrete event simulation, in: F. Bacelli, A. Jean-Marie, I. Mitrani
(Eds.), Quantitative Methods in Parallel Systems, Esprit Basic Research Series, Springer, Berlin, 1995, pp. 18–37.

[24] F. Hartleb, A. Quick, Performance evaluation of parallel programmes — modeling and monitoring with the tool PEPP, in:
B. Walke, O. Spaniol (Eds.), Proceedings der 7, GI-ITG Fachtagung Messung, Modellierung und Bewertung von Rechen-
und Kommunikationssystemen, Aachen, 21–23 September 1993, Informatik Aktuell, Springer, Berlin, 1993, pp. 51–63.

[25] H. Hermanns, Interactive Markov chains, Ph.D. Thesis, Universität Erlangen–Nürnberg, Erlangen, 1998.
[26] H. Hermanns, U. Herzog, V. Mertsiotakis, Stochastic process algebras as a tool for performance and dependability modelling,

in: Proceedings of the IEEE International Computer Performance and Dependability Symposium, IEEE Computer Society
Press, Erlangen, 1995.

[27] H. Hermanns, U. Herzog, V. Mertsiotakis, Stochastic process algebras-between LOTOS and Markov chains, Comput.
Networks ISDN Systems 30 (9–10) (1998) 901–924.

[28] H. Hermanns, J.P. Katoen, Automated compositional Markov chain generation for a plain old telephony system, Sci.
Comput. Programming 36 (1) (2000) 97–127.

[29] H. Hermanns, M. Lohrey, Priority and maximal progress are completely axiomatisable, in: D. Sangiorgi, R. de Simone
(Eds.), CONCUR’98 Concurrency Theory, Lecture Notes in Computer Science, vol. 1446, Springer, Berlin, 1998, pp.
237–252.

[30] H. Hermanns, M. Rettelbach, Syntax, semantics, equivalences, and axioms for MTIPP, in: U. Herzog, M. Rettelbach (Eds.),
Proceedings of the Second Workshop on Process Algebra and Performance Modelling, University of Erlangen–Nürnberg,
IMMD, 1994, pp. 71–88.

[31] H. Hermanns, M. Rettelbach, T. Weiß, Formal characterisation of immediate actions in SPA with nondeterministic branching,
in: S. Gilmore, J. Hillston (Eds.), Proceedings of the Third Workshop on Process Algebras and Performance Modelling
(special issue), Comput. J. 38 (7) (1995) 530–541.

[32] H. Hermanns, M. Siegle, Bisimulation algorithms for stochastic process algebras and their BDD-based implementation, in:
J.P. Katoen (Ed.), Proceedings of the ARTS’99, Lecture Notes in Computer Science, vol. 1601, Springer, Berlin, 1999, pp.
244–264.

[33] U. Herzog, Formal description, time and performance analysis. A framework, in: T. Härder, H. Wedekind, G. Zimmermann
(Eds.), Entwurf und Betrieb Verteilter Systeme, IFB 264, Springer, Berlin, 1990, pp. 172–190.

34 H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35

[34] U. Herzog, A concept for graph-based stochastic process algebras, generally distributed activity times and hierarchical
modelling, in: M. Ribaudo (Ed.), Proceedings of the Fourth Workshop on Process Algebras and Performance Modelling,
Universita di Torino, CLUT, 1996, pp. 1–20.

[35] U. Herzog, M. Rettelbach (Eds.), Proceedings of the Second Workshop on Process Algebra and Performance Modelling,
University of Erlangen-Nürnberg, IMMD, 1994.

[36] J. Hillston, A compositional approach to performance modelling, Ph.D. Thesis, University of Edinburgh, Edinburgh, 1994.
[37] J. Hillston, V. Mertsiotakis, A simple time scale decomposition technique for SPAs, in: S. Gilmore, J. Hillston (Eds.),

Proceedings of the Third Workshop on Process Algebras and Performance Modelling (special issue), Comput. J. 38 (7)
(1995) 566–577.

[38] J. Hillston, F. Moller (Eds.), Proceedings of the First Workshop on Process Algebra and Performance Modelling, University
of Edinburgh, Edinburgh, 1993.

[39] C.A.R. Hoare, Communicating sequential processes, Commun. ACM 21 (8) (1978) 666–677.
[40] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs, NJ, 1985.
[41] ISO, LOTOS: A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour, ISO, Geneve,

1989.
[42] P. Kanellakis, S. Smolka, CCS expressions, finite state processes, and three problems of equivalence, Inform. and Comput.

86 (1990) 43–68.
[43] J.P. Katoen, D. Latella, R. Langerak, E. Brinksma, Partial order models for quantitative extensions of LOTOS, Comput.

Networks ISDN Systems 30 (9–10) (1998) 925–950.
[44] J.G. Kemeny, J.L. Snell, Finite Markov Chains, Springer, Berlin, 1976.
[45] J.A. Manas, T. de Miguel, J. Salvachua, Tool support to implement LOTOS specifications, Comput. Networks ISDN Systems

25 (7) (1993) 815–839.
[46] K. Marzbani, Hierarchische Beschreibung und Analyse von Kommunikationssystemen mittles graphbasierten

Prozeßalgebren, Master’s Thesis, Universität Erlangen-Nürnberg, Erlangen, 1998.
[47] V. Mertsiotakis, Approximate analysis methods for stochastic process algebras, Ph.D. Thesis, Universität

Erlangen–Nürnberg, Erlangen, 1998.
[48] V. Mertsiotakis, M. Silva, Throughput approximation of decision free processes using decomposition, in: Proceedings

of the Seventh International Workshop on Petri Nets and Performance Models, St. Malo, IEEE Computer Society Press,
Silverspring, MD, 1997, pp. 174–182.

[49] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Software, vol. 92, Springer, Berlin, 1980.
[50] R. Milner, Communication and Concurrency, Prentice-Hall, London, 1989.
[51] R. Paige, R. Tarjan, Three partition refinement algorithms, SIAM J. Comput. 16 (6) (1987) 973–989.
[52] G.D. Plotkin, A structured approach to operational semantics, Technical Report DAIMI FM-19, Computer Science

Department, Aarhus University, 1981.
[53] C. Priami, Stochasticπ -calculus with general distributions, in: M. Ribaudo (Ed.), Proceedings of the Fourth Workshop on

Process Algebras and Performance Modelling, Universita di Torino, CLUT, 1996, pp. 41–57.
[54] C. Priami (Ed.), Proceedings of the Sixth Workshop on Process Algebras and Performance Modelling, University of Verona,

September 1998.
[55] M. Rettelbach, Stochastische Prozeßalgebren mit zeitlosen Aktivitäten und probabilistischen Verzweigungen, Ph.D. Thesis,

Universität Erlangen–Nürnberg, Erlangen, 1996.
[56] M. Ribaudo (Ed.), Proceedings of the Fourth Workshop on Process Algebras and Performance Modelling, Universita di

Torino, CLUT, 1996.
[57] M. Siegle, Compact representation of large performability models based on extended BDDs, in: Fourth International

Workshop on Performability Modeling of Computer and Communication Systems (PMCCS4), Williamsburg, VA,
September 1998, pp. 77–80.

[58] M. Siegle, D. Kraska, M. Simon, B. Wentz, Analyse des Erlanger Klinikkommunikationssystems mit Hilfe von
Leistungsmessungen, in: E. Greiser, M. Wischnewsky (Eds.), 43rd Jahrestagung der Deutschen Gesellschaft für
Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Bremen, September 1998, MMV Medien & Medizin
Verlag, Munich, p. CD-ROM C24.

[59] M. Siegle, B. Wentz, A. Klingler, M. Simon, Neue Ansätze zur Planung von Klinikkommunikationssystemen mittels
stochastischer Leistungsmodellierung, in: R. Muche, G. Büchele, D. Harder, W. Gaus (Eds.), 42nd Jahrestagung der
Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Ulm, September 1997, MMV
Medien & Medizin Verlag, Munich, pp. 188–192.

H. Hermanns et al. / Performance Evaluation 39 (2000) 5–35 35

[60] H.A. Simon, A. Ando, Aggregation of variables in dynamic systems, Econometrica 29 (1961) 111–138.
[61] W.J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton University Press, Princeton, NJ, 1994.

Holger Hermanns studied applied mathematics at the University of Bordeaux I, France, and computer
science at the University of Erlangen–Nürnberg, Germany, where he received his diploma degree in 1993
(with honours). He received a Ph.D. degree from the Department of Computer Science, University of
Erlangen–Nürnberg, in 1998 (with honours). Currently he is with the Systems Validation Centre, University
of Twente, the Netherlands. He has been active in the area of algebraic foundations of specification
and evaluation methods for performance prediction. His main research interests include compositional
performance modelling, state space compression, and model checking of performance models.

Ulrich Herzog received all his degrees in electrical engineering from the University of Stuttgart. In
1964, he joined the Institute for Switching Techniques and Data Processing at the University of Stuttgart,
working in the area of telephone switching systems and teletraffic research. He then spent two years in the
Teleprocessing System Optimisation Group at IBM Thomas J. Watson Research Centre. Since 1976, he has
been full Professor at the University of Erlangen–Nürnberg. Since 1981, he has held the chair on computer
architecture and performance evaluation. His current research and teaching interests are architecture and
performance evaluation of computer systems, and communication networks. In particular, he is involved
in projects on system design methodology, the integration of process algebras and performance modeling,
and rapid prototyping of real-time systems.

Ulrich Klehmet studied mathematics at the Ernst–Moritz–Arndt University, Greifswald from where he
received his degree in 1973. From 1990 to 1995 he worked at the University of Erlangen–Nürnberg.
During that time he was dealing with performance modelling and parameter optimisation of the German
fieldbus protocol Profibus. In 1995 he received his Ph.D. Currently he is a researcher at the University of
Erlangen–Nürnberg in the group of Prof. Ulrich Herzog. His research interests include stochastic process
algebras and their application to performance and dependability evaluation.

Vassilis Mertsiotakis received a degree in computer science from the University of Erlangen–Nürnberg
in 1993. From 1993 until 1998 he was research assistant at the Computer Science Department of the
University of Erlangen–Nürnberg where he participated at the project SFB182Multiprocessor and network
configurations. He defended his doctoral thesis on approximate analysis methods for stochastic process
algebras in 1998. In the same year he joined Lucent Technologies, Switching and Access Systems Group,
R & D. He is involved in software architecture of access networks for POTS, ISDN, PRA-ISDN, xDSL,
and FITL.

Markus Siegle studied computer science at the University of Stuttgart from 1984 to 1989, graduating
with the German engineering degree. He received a Fulbright scholarship which allowed him to pursue his
studies at North Carolina State University where he earned a Masters degree in 1990. From 1990 to 1995
he worked as a researcher at the University of Erlangen–Nürnberg in the group of Prof. Ulrich Herzog
from where he received the doctorate degree in 1995. Markus Siegle is currently working on stochastic
modelling and verification at the University of Erlangen–Nürnberg.

