
GENERATING ELLIPSIS USING DISCOURSE STRUCTURES

Feikje Hielkema, Mariët Theune & Petra Hendriks

University of Groningen; University of Twente

Feikje@ai.rug.nl, M.Theune@ewi.utwente.nl, P.Hendriks@let.rug.nl

Abstract

This article describes an effort to generate elliptic sentences, using Dependency Trees connected

by Discourse Relations as input. We contend that the process of syntactic aggregation should be

performed in the Surface Realization stage of the language generation process, and that

Dependency Trees with Rhetorical Relations are excellent input for a generation system that has

to generate ellipsis. We also propose a taxonomy of the most common Dutch cue words,

grouped according to the kind of discourse relations they signal.

1 Introduction

Ellipsis and co-ordination are key features of natural language. For a Natural Language

Generation system to produce fluent, coherent texts, it must be able to generate co-

ordinated and elliptic sentences. This article describes an effort to implement syntactic

aggregation in the Virtual Storyteller, a Java-based story generation system. The focus

lies on the generation of co-ordinated and elliptic structures for the Dutch language.

In this abstract, syntactic aggregation is defined as the process of combining two clauses

at the surface level using any kind of syntactic structure, for instance ellipsis, co-

ordination or a subordinate clause. We make two important claims:

• The process of syntactic aggregation belongs in the Surface Realizer module of a

natural language generation system

• The combination of dependency trees and discourse structures constitutes

excellent input to the Surface Realizer

Cue phrases are a natural language’s resources to signal different rhetorical relations,

and as such are a vital part of syntactic aggregation. They have great influence on the

syntactic structure of an aggregated sentence. Therefore we have designed a taxonomy

of the most common Dutch cue words, to use in the aggregation process.

The Virtual Storyteller is a multi-agent NLG-system that creates and narrates fairy tales.

At the time of writing, the generated tales feature only two characters, but have different

events and endings. The plot is created by so-called Actor agents, autonomous computer

programs that represent the characters in the story, each with its own personality and

goals. They are able to reason logically and are affected by emotions. These emotions,

when felt strongly, cause the agent to adopt a new goal that overrides its original goal.

The Narrator Agent transforms the plot into text. The initial version of the Narrator only

presented the bare facts of the story, mapping the events from the plot to simple, fixed

sentences. This resulted in a very monotone, uninteresting narrative. Syntactic

aggregation should help enormously to improve the liveliness of the generated

narratives. The goal of our project was to make the Narrator produce at least the

following structures:

• Paratactic constructions: Diana left the desert and Brutus entered the forest

• Hypotactic constructions: Diana left the desert, because she saw Brutus

• Conjunction Reduction: Diana entered the desert and saw Brutus

• Right Node Raising: Diana entered and Brutus left the desert

• Gapping: Diana entered the desert and Brutus the forest

• Stripping: Diana entered the desert and Brutus too

Different cue words should be available, to improve the variety and to signal different

rhetorical relations. Although our work aims in the first place at improving the texts

produced by our story generation system, we believe that our approach to syntactic

aggregation and ellipsis is sufficiently general to be relevant for all kinds of language

generation systems. In addition, we will argue that our approach is largely language-

independent.

The rest of this paper is structured as follows. In section 2 we describe the design of the

Narrator, and argue that syntactic aggregation should be located within the last stage of

the language generation process. In section 3, we present the cue word taxonomy that

we developed for use in the aggregation process, and we discuss how we perform

aggregation in our system, using this taxonomy. We end with a brief discussion and

conclusions.

2 Design

2.1 The Narrator

The design of the Narrator agent is based on the three stage pipe-line structure described

by Reiter & Dale (2000). The Content (Document) Planner receives as input a list of

propositions representing the events that make up the plot, plus related background

material (typically, characters’ actions and their causes). It removes superfluous

information and adds rhetorical relations between the propositions (see section 3.2.2).

The Sentence Planner (Microplanner) maps the propositions to Dependency Trees (see

section 3.2.1), while maintaining the rhetorical relations between them. Finally, the

Surface Realizer performs syntactic aggregation and generates the surface form.

Although Reiter & Dale (2000) see aggregation as a Microplanning task, we have

decided to situate syntactic aggregation in the Surface Realizer module instead. The

RAGS-project (Cahill & Reape, 1999) showed a lack of consensus on the location of

the aggregation process in the NLG pipe-line; instead the situation varied widely over

different NLG-systems. This divergence is partly caused by the fact that many, quite

different processes are gathered under ‘aggregation’ (see Reape & Mellish, 1999). Our

project only dealt with syntactic aggregation. As syntactic aggregation deals with

grammatical processes (co-ordinating sentences and deciding which elements can be

deleted without rendering the sentence ungrammatical), in our view it should be situated

with the other grammatical processes, in the Surface Realizer.

2.2 The Surface Realizer

The Surface Realizer receives as input a ‘Rhetorical Dependency Graph’: a graph

specifying the rhetorical relations between sentences, represented as Dependency Trees.

Dependency Trees are a prominent feature of Meaning-Text theory (Mel’cuk, 1988).

They are constructed on the basis of predicates and arguments. There is no dependency

on linear word order, and no limit on the amount of children a node can have. This

means the trees are able to handle variation in word order easily, so that they translate

well over different languages. In fact, Dependency Trees have been used with success in

Machine Translation (Lavoie et al., 1999). This means that a generation system using

Dependency Trees can be adjusted to another language quite easily; only the rules

specific to the generated language have to be replaced, the generation algorithm remains

intact.

The independence of word order, and the dependency labels that specify which role a

node performs in its parent syntactic category, cause Dependency Trees to be easy to

manipulate, especially for the purpose of generating ellipsis. In our project, we follow
the Alpino format for Dependency Trees (Bouma et al., 2001), with some minor
changes. A tag for morphology has been added, and the tags that indicate the position of
a word or syntactic category in the Surface Form are left out.

The discourse structure graphs, of which the Dependency Trees form the nodes, were

inspired by Rhetorical Structure Theory (Mann & Thompson, 1987). This theory was

originally developed as a descriptive framework for the analysis of text structure, but it

is also used in several NLG applications (for an overview, see Hovy, 1993). Among

other things, rhetorical relations influence the syntactic structure of a co-ordinated and

elliptic sentence. Shaw (2002) uses discourse structures to determine the syntactic

structure that should be used to combine two propositions. Hendriks (2004) showed that

rhetorical relations do hold as well for certain elliptic structures, such as gapping: a

gapped sentence can only have a Resemblance relation between its clauses.

As well as Dependency Trees, rhetorical relations are language independent, as is

illustrated by the fact that Rhetorical Structure Theory has been applied successfully to

various languages including English, Dutch, German, and Portuguese. This means that

rhetorical structures can be passed on to the Surface Realizer, to be used for the

selection of a correct and fitting co-ordinating syntactic and/or elliptic structure, when

combining two Dependency Trees. The rhetorical relations that we currently distinguish

are Cause, Contrast, Purpose, Temporal and Additive. These were judged to be most

important for storytelling. The number of relations can be easily expanded if necessary.

Because the Narrator is closely connected to the rest of the multi-agent system, it can

access the reasoning, plans and emotions of the Actor agents, and use this information

to determine which rhetorical relations to include in the Rhetorical Dependency Graph.

For instance, an agent makes a plan to reach a certain goal (Purpose), or can have two

conflicting goals (Contrast).

3 Cue Phrase Taxonomy

Sanders & Noordman (2000) show that coherence (rhetorical) relations play an

important part in human text processing, and that linguistic markers (cue phrases) cause

faster processing of coherence relations between two segments. As a useful linguistic

feature in text processing, cue phrases should certainly be included in text generation.

3.1 Related work: Taxonomies for English and Dutch cue phrases

Knott & Dale (1993) use cue phrases as an objective measure to determine a set of

rhetorical relations that is based on linguistic evidence. They classified a corpus of cue

phrases according to their function in discourse, using a substitutability test. Put simply,

this test is used to determine whether two cue phrases signal (partly) the same features,

by checking whether one can be substituted by the other in a particular context.

On this basis a taxonomy of cue phrases was created. This taxonomy was hierarchical,

as some cue phrases signal more features than others. Knott & Sanders (1998) have

created a similar taxonomy for Dutch cue phrases, using the cognitive primitives that

were proposed by Sanders et al. (1992) to differentiate between the classes. However,

this taxonomy is rather complex and will presumably be hard to implement. Moreover,

Knott & Sanders admit that their taxonomy was created using only those cue phrases

that were easiest to classify; other cue words will be even harder to classify and cause

the taxonomy to be even more of a labyrinth. For these reasons we have decided to

create a less convoluted taxonomy for our own purposes.

3.2 Cue Word Taxonomy for syntactic aggregation

For the purpose of syntactic aggregation in our storytelling system, a small taxonomy

charting only the most prevalent cue words in Dutch, has been constructed using a

variant of the substitutability test described by Knott & Dale (1993). Because the

taxonomy, given in figure 1, is meant to be used by the Surface Realizer before the

words are ordered to produce the surface form (linearization), unlike Knott and Dale we

paid no attention to any changes a cue word might make in the word order in the

clauses. The clause order could be changed as well, if this did not influence the meaning

of the sentence. In short, we only looked at substitutability with respect to meaning,

regardless of surface form.

The test was used on two types of data: sentences taken from a fairy tale book

(Andersen, 1975), and sentences based on the output of the story generating system.

The tested cue words all had a frequency of over a hundred in a representative sample

from the Spoken Dutch Corpus (Wouden et al., 2003), to exclude rare cue words. Only

cue words that seemed appropriate for narrating a story (not too difficult, because the

target group are children) were included.

When grouping the cue words, it turned out that rhetorical relations such as Cause,

Purpose and Contrast were not enough to distinguish the classes; extra variables needed

to be introduced. We selected features which are in principle available to the story

generating system, such as volitionality and the chronological ordering of events.

Figure 1: Cue word Taxonomy

3.3 Using the taxonomy

The cue word taxonomy is used in the Surface Realizer, during the syntactic

aggregation process. On the basis of the rhetorical relation between two Dependency

Trees, an appropriate cue word is selected that has, if possible, not recently been used

(to achieve some variation in the generated texts). The cue word is given in the shape of

a Dependency Tree node, with its part-of-speech tag and its dependency relation. The

relation and the cue word are then passed to the Conjunction algorithm. This algorithm

either combines both clauses with the cue word, or adds the cue word to one of them,

depending on the cue word’s dependency relation. The rhetorical relation determines the

cue word, and the cue word determines the syntactic construction that is used.

After Conjunction, Elliption takes place. If the aggregate tree is paratactic and contains

redundant elements (an identical node in both conjuncts), the Ellipsis algorithm will try

to find a suitable elliptic structure, based on the number and kind of identical nodes. The

rhetorical relation can rule out certain elliptic structures. For instance, a Causal relation

can rule out gapping. Redundant nodes are removed and their parent nodes receive a

connection to the twin node in the other conjunct, labeled 'borrowed' to show that the

node should not appear in the Surface Form at this point. This way the elliptic conjunct

has the same structure as the intact conjunct, but is ellipted in the Surface Form. If

necessary, a node can be added (such as 'ook' (too) in Stripping).

Then the tree is ordered, obeying rules dictating the order of the child nodes, using their

dependency labels. During this ordering, names of characters, objects or places will be

substituted by pronouns if they were the last of their gender to be mentioned, and if they

had the same syntactic role then. For instance, in 'Diana is bang. Toch wil Diana Brutus

doden', the second occurrence of 'Diana' is replaced by 'zij' (she) because she was the

last female named, and was subject both times. All verbs, nouns and determiners are

inflected. Punctuation is added when the Surface Form is complete.

4 Results

Using the taxonomy, the Conjunction and Elliption algorithm are able to generate

several different sentences on the basis of a given Rhetorical Dependency Graph. Each

relation has several cue words by which it can be expressed, and as these cue words do

not all have the same relation, they are expressed by different syntactic structures as

well. The program generates hypotactic and paratactic sentences, and can add modifiers

to individual trees as well. If the input consists of two simple trees (figure 2 shows the

input of the Surface Realizer, and the output of the Elliptor) and a Contrast relation

between them, the initial version would have produced: 'Diana is bang. Diana wil

Brutus doden' (Diana is scared. Diana wants to kill Brutus). The current system can

produce paratactic and hypotactic constructions, or add a modifier to one of the clauses.

These constructions can be produced with several different cue words as well. This

causes a variety of sentences far greater than the boring sequence of fixed, simple

sentences that were generated before.

Figure 2: input of the Surface Realizer, output of the Elliptor

If the Conjunction algorithm has generated a paratactic structure, such as 'Diana is bang,

maar Diana wil Brutus doden' (Diana is afraid, but Diana wants to kill Brutus), the

Elliptor finds a suitable elliptic structure. In this example that is Conjunction-Reduction,

resulting in 'Diana is bang, maar wil Brutus doden'. We were able to produce all the

desired forms of ellipsis (see section 1), including combinations of different structures,

such as gapping and conjunction reduction simultaneously (Diana wants to hug the

prince but maim Brutus).

5 General Discussion

5.1 Syntactic Aggregation in the Surface Realizer

As we discussed above, one of the findings of the RAGS-project was that there is no

consensus on the right location for aggregation to take place. This is at least partly

caused by the use of different definitions of aggregation, which comprise processes

quite different in level. Syntactic aggregation deals with grammatical processes, and so

the Surface Realizer, the module where linearization is performed using grammatical

rules, is the logical place to situate it.

There is evidence that ellipsis is language-dependent. Not all forms of ellipsis are

permissible in all languages. Some forms depend on word order, so it seems that ellipsis

is influenced by the same grammatical rules that perform linearization. The Surface

Realizer already has access to these rules, an extra argument to perform syntactic

aggregation (and the generation of ellipsis) in the Surface Realizer.

Discourse structures do not seem to be affected by which language is used. Because

rhetorical relations are neutral, they can be processed at the latest stage, after

lexicalisation, in the Surface Realizer. This also puts less strain on the component that

has to create the Dependency Trees. The trees only represent simple facts ('Diana is

scared', 'Diana flees'), so the trees are uncomplicated.

5.2 Dependency Trees

Is the Dependency Tree language-independent? Mel'cuk (1988) designed Dependency

Trees to be free of word order to allow for languages where the word order is vastly

different from English. But is it only word order that makes languages differ from one

another? In Latin, it is not necessary to mention the subject of a sentence – and that

certainly shows in a Dependency Tree. And all languages have some concepts that do

not translate well, though these might not crop up often in the telling of a simple fairy

tale. Still, even if the Dependency Trees that the Surface Realizer gets as input are not

totally language-independent, the methods to process them and turn them into Surface

Forms are. Substituting the cue words and grammatical rules should be sufficient to

enable the Surface Realizer to process Dependency Trees lexicalised to a different

language. For this reason alone, we think Dependency Trees are excellent input for a

Surface Realizer that tries not to commit itself to one language. Another advantage of

using Dependency Trees in syntactic aggregation is that they can easily be manipulated,

because the role a word or a constituent plays in a sentence is given by a label (subject-

deletion is realized by deleting the node labeled 'subject').

5.3 Discourse Structures

Rhetorical relations can determine which cue words can be used. They are a suitable

mechanism to carry a certain meaning across to the level when it is finally of use. And if

the relations even influence the grammatical structure that an elliptic sentence can have,

the Surface Realizer certainly should have access to them.

However, the relations that were used in this project were not the set that is given by

Mann & Thompson (1987). Only a few relations were selected for the moment, those

deemed of the most importance to the narrating of a fairy-tale. Cause and Contrast are

very basic concepts, and Temporal relations are vital for any narrative. They were then

divided into subclasses that correspond to groups of cue words, derived from the small

cue word taxonomy that was created for this purpose. The properties that distinguish the

subclasses are molded in terms of information that is available to the story generation

system. This way, rhetorical relations can easily be added by the Content Planner,

because the information is already there. The rhetorical relations that we currently

distinguish were selected based on linguistic evidence, on the groups of cue words that

were determined. In the future, our cue word grouping should be experimentally

confirmed, and if it is not confirmed, the taxonomy should be adapted. Because, as

Reape & Mellish (1999) have said, NLG systems should be based on linguistic theories

and linguistic evidence to be truly successful.

6 Conclusion

In this article, we have worked toward the following conclusions:

• The most appropriate place for syntactic aggregation is at the level of the Surface

Realizer

• The combination of Dependency Trees and rhetorical relations is excellent input for

such a Surface Realizer, because Dependency Trees are easily manipulated and

rhetorical relations can determine the syntactic constructions that can be used

The Surface Realizer that was created is capable of syntactical aggregation, and of

generating several forms of ellipsis that are prevalent in Dutch.

References

Andersen, Hans Christian; Sprookjes en Vertellingen; translated 1975 by W. van Eeden; Bussum, Van Holkema en

Warendorf, 1975

Bouma, Van Noord & Malouf; 2001; Alpino: Wide Coverage Computational Analysis of Dutch. In: Computational

Linguistics in the Netherlands CLIN 2000

Cahill, L. & Reape, M.; 1999; Component tasks in applied NLG Systems; Information Technology Research Institute
Technical Report Series

Hendriks, Petra; (2004); Coherence Relations, Ellipsis, and Contrastive Topics; in Journal of Semantics 21:2, pp.

133-153.

Hovy, E.;1993; Automated Discourse Generation using Discourse Structure Relations; in Artificial Intelligence,

pages 341-385

Knott, A. & Sanders, T.; 1998; The Classification of Coherence Relations and their Linguistic Markers: An

Exploration of Two Languages; In Journal of Pragmatics, Volume 30, pages 135-175

Knott, A. & Dale, R.; 1993; Using Linguistic Phenomena to Motivate a Set of Rhetorical Relations; in Discourse

processes : a multidisciplinary journal, vol. 18 (1994), afl. 1, pag. 35-62

Lavoie, B., Kittredge, R., Korelsky, T., Rambow, O.; 2000; A Framework for MT and Multilingual NLG systems
based on Uniform Lexico-structural Processing; In Proceedings of ANLP/NAACL 2000

Mann, William C. and Sandra A. Thompson; 1987; Rhetorical Structure Theory: A Theory of Text Organization, ISI:

Information Sciences Institute, Los Angeles, CA, ISI/RS-87-190, 1-81.

Mel'cuk, Igor A. (1988); Dependency Syntax: Theory and Practice; State University of New York

Reape, M. & Mellish, C.; 1999; Just What is Aggregation Anyway?; in Proc. 7th European Workshop on Natural
Language Generation, 1999

Reiter, Ehud & Dale, Robert (2000); Building Natural Language Generation Systems; Cambridge University Press

Sanders, Ted J.M., Spooren, Wilbert P.M. & Noordman, Leo G.M.; 1992; Toward a Taxonomy of Coherence
Relations; in Discourse Processes 15, pages 1-35, 1992

Sanders, Ted J.M. & Noordman, Leo G.M.; 2000; The Role of Coherence Relations and their Linguistic Markers in
Text Processing; in Discourse Processes, Volume 29(1), pages 37-60.

Shaw, J.C.; 2002; Clause Aggregation; an approach to generating Concise Text; Phd thesis, Columbia University

Wouden, T. van der, H. Hoekstra, M. Moortgat, B. Renmans & I. Schuurman; Syntactic Analysis in the Spoken

Dutch Corpus. In M. González Rodriguez & C. Paz Suárez Araujo, Proceedings of the third International

Conference on Language Resources and Evaluation. 768-773.

