
Change Impact Analysis for SysML Requirements
Models based on Semantics of Trace Relations

David ten Hove1, Arda Goknil1, Ivan Kurtev1, Klaas van den Berg1
and Koos de Goede2

1Software Engineering Group, University of Twente, 7500 AE Enschede, the Netherlands
2@-portunity B.V., 2023 KB Haarlem, the Netherlands

d.tenhove@student.utwente.nl, {a.goknil, kurtev, k.g.van.den.berg}@ewi.utwente.nl,
koos@atportunity.com

Abstract. Change impact analysis is one of the applications of requirements
traceability in software engineering community. In this paper, we focus on
requirements and requirements relations from traceability perspective. We
provide formal definitions of the requirements relations in SysML for change
impact analysis. Our approach aims at keeping the model synchronized with
what stakeholders want to be modeled, and possibly implemented as well,
which we called as the domain. The differences between the domain and model
are defined as external inconsistencies. The inconsistencies are propagated for
the whole model by using the formalization of relations, and mapped to
proposed model changes. We provide tool support which is a plug-in of the
commercial visual software modeler BluePrint.

1 Introduction

Requirements traceability is the ability to link requirements back to stakeholders’
rationales and forward to corresponding design artifacts, code and test cases [8]. One
of the applications of requirements traceability is the change impact analysis. Impact
analysis is defined as the process of identifying the potential consequences (side-
effects) of a change, and estimating what needs to be modified to accomplish that
change [4].

Although considerable research has been devoted to change impact analysis
methods using trace relations, less attention has been paid to the usage of trace
relation semantics for change impact analysis. In most tools and approaches, there is a
lack of precise definition of trace relations. For instance, SysML [12] provides
different types of trace relations between requirements, and between requirements &
other design artifacts. However, there are only informal definitions for the relations in
SysML. In this respect, change impact analysis may result that every related
requirement and design artifact are impacted by a requirement change. The cost of
implementing a change may become several times higher than expected. Bohner [3]
formulates this problem as explosion of impacts without semantics. He states that
change impact analysis must employ additional semantic information to increase the
accuracy by finding more valid impacts.

In this paper, we focus on requirements and requirements relations from
traceability perspective. We give formal definitions of SysML requirements relations
[12] [5] in first-order logic. Our approach aims at keeping the model synchronized
with what stakeholders want to be modeled, and possibly implemented as well, which
we called as the domain. The differences between the domain and model are defined
as external inconsistencies. The inconsistencies are propagated for the whole model
by using the formalization of relations, and then they are mapped to proposed model
changes. The tool support for the approach is a plug-in of the visual software modeler
BluePrint [14] developed by @-Portunity.

The paper is structured as follows. Section 2 describes the approach. Section 3
presents the requirements relations in SysML. In Section 4 we provide the
formalization for the relations. In Section 5, we describe the use of the formalization
for change impact analysis. Section 6 illustrates the approach by an example. In
Section 7 we give details of the tool support. Section 8 describes the related work and
Section 9 concludes the paper.

2 Overview of the Approach

In this paper, we use the following terminology. The Domain is what stakeholders
want to be modeled, and possibly implemented as well. It is the part of the reality that
needs to be modeled, viewed through the requirements it sets for the resulting system.
We call the changes in the domain as domain change. The Model represents a part of
the reality called the domain and it is expressed in a modeling language. A model
provides knowledge for a certain purpose that can be interpreted in terms of the
domain. External Inconsistencies define differences between the model and domain.
These differences can be caused by a domain change. Our approach is focused on
keeping the model synchronized with the domain. Internal Inconsistencies define
conflicts within the model itself. External consistency checking in this paper and
internal consistency checking in [6] are complementary.

The Change Impact Analysis process (Figure 1) consists of the following activities:
External Consistency Checking: This activity takes the requirements model and

domain change as input, and gives the external inconsistencies as output. The activity
has several steps: (1) identification of a domain change, which should be performed
by a requirements engineer. (2) Then, the requirements engineer decomposes the
domain change into primitive domain change(s) that we classify as changes to be
mapped to proposed model changes. (3) After that, propagating external
inconsistencies is performed. This step is semi-automatic. Propagation rules are
defined based on the formal definitions of the relations. The requirements engineer
has to select the correct propagation proposed by the tool.

Model Changing: This activity first handles mapping the external inconsistencies
to the proposed model changes which are entirely automated. The requirements
engineer performs the actual model changes according to proposed model changes.

Iterating: The process given in Figure 1 is iterative. After external consistency
checking and model changing, the requirements engineer may return to external
consistency checking activity in case there might be new domain changes. Otherwise,

the process ends with the assumption that the requirements engineer is satisfied with
results.

Figure 1 Process for Change Impact Analysis

3 SysML support for Requirements

SysML is a systems modeling language that supports the specification, analysis,
design, verification and validation of complex systems. The language is an adaptation
of UML for systems including hardware, software, information, and process. In
SysML, a requirement is considered as a property that must (or should) be satisfied.
The SysML requirements diagram helps in organizing requirements, and also shows
explicitly the types of relations between requirements [5]. Figure 2 gives the part of
SysML metamodel that depicts the trace relations.

The Trace relation provides a general purpose relation between a requirement and
any other model element. It has no real constraints and no defined semantics. It is
extended by other relations. The relations between requirements in SysML are
ComposedBy, Copy and DeriveReqt. Since the ComposedBy relation is defined by
using UML4SysML::NestedClassifier in SysML metamodel, it is not given as an
extension of the Trace relation in Figure 2.

These relations are defined in the SysML specification as follows.
• A ComposedBy relation enables a complex requirement to be decomposed into

its containing child requirements.
• A DeriveReqt relation is a dependency between two requirements in which a

client requirement can be derived from the supplier requirement.
• A Copy relation is a dependency between a supplier requirement and a client

requirement that specifies that the text of the client requirement is a read-only
copy of the text of the supplier requirement.

These definitions are informal. We formalize the relations in the next section.

Figure 2 Part of SysML Metamodel for Requirements Diagrams [12]

4 Formalization of Requirements and Relations

In this section we provide the formalization for requirements and the DeriveReqt
relation. The other relations are formalized in a similar way (but they are not
presented here due to space limitation).

We chose a formalization of requirements in first-order logic (FOL). The
expressiveness of FOL is sufficient for our goal. There are examples of formalization
of requirements in other types of logic such as modal and deontic logic [11].

We assume the general notion of a requirement in SysML being “a property that
must (or should) be satisfied”. We define a requirement R as a tuple <P, S> where P
is the property and S is the set of systems that satisfy P, i.e.)(: sPSs∈∀ . P can be

represented in a conjunctive normal form (CNF) in the following way:
 P = (p1 ∧ … ∧ pn); where n � 1 and pn is disjunction of literals

A literal is an atomic formula (atom) or its negation. An atomic formula is a
predicate symbol applied over terms. We assume that all formulas are in CNF. In the
rest of the paper we use the notation (p1 … pn) for (p1 ∧ … ∧ pn).

We formalize the DeriveReqt relation as follows: Let R1 = <P1, S1> and R2 = <P2,
S2> be requirements. P1 and P2 are formulas and the conjunctive normal form of P2 is:

P2 = (p1..pn) ∧ (q1.. qm); n � 1, m � 0

Let p1
l, p2

l,…, pn-1
l, pn

l be disjunction of literals such that pj
l � pj for nj ..1∈

R1 DeriveReqt R2 iff P1 is derived from P2 by replacing every pj in P2 with pj
l for

nj ..1∈ such that the following two statements hold:

a) P1 = (p1
l.. pn

l) ∧ (q1.. qm) ∧ (z1.. zt); n � 1, m � 0, t � 0

b) 12 : SsSs ∉∈∃

From the definition we conclude that if P1 holds for a given system s then P2 also
holds for s (

21 : SsSs ∈∈∀). On the basis of
12 : SsSs ∉∈∃ and

21 : SsSs ∈∈∀ ,

we conclude (S1 ⊂ S2). We have the properties non-reflexive, non-symmetric,
transitive for the DeriveReqt relation.

5 Change Impact Analysis

Change impact analysis is defined as the process of identifying the potential
consequences (side-effects) of a change, and estimating what needs to be modified to
accomplish that change [4]. Analyzing the impact of changes provides determining
possible conflicts and design alternatives influenced by changes. Our change impact
analysis approach is based on determining external inconsistencies for a domain
change and proposing possible model changes to fix these inconsistencies between the
domain and model. In this respect, propagating external inconsistencies based on the
semantics of relations are the potential consequences of a change and proposed model
changes are the estimates about what needs to be modified to accomplish the change.
Table 1 shows how domain changes are mapped to external inconsistencies, and in
turn how external inconsistencies are mapped to model changes.

Table 1 Domain Changes, External Inconsistencies and Model Changes

Primitive Domain Change External Inconsistency Model Change
1 New requirement added to the

domain
Requirement in the domain but absent in
the model

Requirement is
added

2 Existing requirement is
removed from the domain

Requirement is not in the domain but
present in the model

Requirement is
removed

3 Requirement in the domain is
made more specific

Requirement in the model is less specific
than the requirement in the domain

Details are added to
the requirement

4 Requirement in the domain is
made more abstract

Requirement in the model is more specific
than the requirement in the domain

Details are removed
from the
requirement

5 Part is removed from the
requirement in the domain

Requirement in the model has more parts
than the requirement in the domain

Part is removed
from the
requirement

6 New part is added to the
requirement in the domain

Requirement in the model has less parts
than the requirement in the domain

Part is added to the
requirement

The domain changes in Table 1 are called primitive domain changes. Mapping a
domain change to an external inconsistency according to Table 1 is manually done by
the requirements engineer. First, the requirements engineer determines the domain
change and decomposes the domain change into primitive domain changes. With the
help of Table 1, he/she determines external inconsistencies between the domain and
model. Mapping an external inconsistency to a model change is done automatically.
However, there might be other external inconsistencies derived from the external
inconsistency identified by the requirements engineer.

In Section 4, we give formal definition of SysML requirements relations in first-
order logic. Based on the formal definition of the relations, we define external
inconsistency propagation rules. Table 2 shows the external inconsistency
propagation rules for the “DeriveReqt” relation. Similar tables are derived for other
relations (but they are not presented here due to space limitation). The columns in
Table 2 are the external inconsistency propagation rules for external inconsistency
types.

Table 2 External Inconsistency Propagation Rules for the “DeriveReqt” Relation

External Inconsistency R1 DeriveReqt R2 R1 DeriveReqt R2 … Rn
1 R1 is not in the domain R2 is not in the domain R2 … Rn are not in the domain
2 R2 is not in the domain R1 is not in the domain or part

of R1 is not in the domain
Part of R1 is not in the domain or
R1 is not in the domain

3 R1 is less specific than it
is in the domain

No propagation No propagation

4 R2 is less specific than it
is in the domain

R1 is less specific than it is in
the domain

R1 is less specific than it is in the
domain

5 R1 is more specific than it
is in the domain

R2 is more specific than it is in
the domain or no propagation

(R2 is more specific than it is in
the domain and/or Rn more
specific than it is in the domain) or
no propagation

6 R2 is more specific than it
is in the domain

R1 is more specific than it is in
the domain

R1 is more specific than it is in the
domain

7 R1 has more parts than it
has in the domain

R2 has more parts than it has in
the domain or R2 is not in the
domain or no propagation

((R2 not in domain or part of R2
not in domain) and/or (Rn not in
domain or part of Rn not in
domain)) or no propagation

8 R2 has more parts than it
has in the domain

R1 has more parts than it has in
the domain

R1 has more parts than it has in the
domain

9 R1 has less parts than it
has in the domain

No propagation No propagation

10 R2 has less parts than it
has in the domain

R1 has less parts than it has in
the domain

R1 has less parts than it has in the
domain or no propagation

11 Relation is in the model,
not in the domain

No propagation No propagation

12 R4 is in the domain, not in
the model

No propagation No propagation

Some external inconsistencies like in Rule 9, Rule 11 and Rule 12 do not propagate
while others like in Rule 2, Rule 5, Rule 7 and Rule 10 have multiple propagation
possibilities. All these rules are defined based on the semantics of the “DeriveReqt”
relation given in first-order logic. Due to space limitation we can not give explanation
of the propagation rules in Table 2. The following explains how Rule 4 in Table 2 for
the “R1 DeriveReqt R2” case is defined.

Let R1 = <P1, S1> and R2 = <P2, S2> be requirements. Since R1 DeriveReqt R2, we
have P1 and P2 in the following conjunctive normal form.

 P2 = (p1..pn) ∧ (q1.. qm); n � 1, m � 0
 P1 = (p1

l.. pn
l) ∧ (q1.. qm) ∧ (z1.. zt); n � 1, m � 0, t � 0

where p1
l, p2

l,…, pn-1
l, pn

l be disjunction of literals such that pj
l � pj for nj ..1∈

Rule 4 in Table 2 has the external inconsistency “R2 is less specific in the model
than it is in the domain”. According to Table 1, this external inconsistency is caused
by the domain change “Requirement in the domain is made more specific”.

After the domain change, at least one of the disjunctions of literals in the
conjunction normal form of P2 (pn or qm) is less specific than it is in the domain.

Since we have P1 = (p1
l.. pn

l) ∧ (q1.. qm) ∧ (z1.. zt), at least one of the disjunctions
of literals in the conjunction normal form of P1 (pn

l or qm) is less specific than it is in
the domain

This means adding a detail to R1, by tagging it as “R1 is less specific than it is in
the domain”.

The domain change and external inconsistency, together, provide the reason of the
model change. Mapping the external inconsistency to the proposed model changes
justifies the model change. Therefore, we choose propagating the external
inconsistency rather than propagating the model change. When we know all parts of
the model to be changed, we can provide the proposed changes for the whole model.

6 Example

In this section we illustrate our approach by a well-known example using the
requirements for a Rain Sensing Wiper (RSW) system [2]. The goal of the RSW
system is to wipe the surface of the windshield automatically whenever droplets of
liquid are detected on the windshield’s surface. The amount of liquid detected dictates
the speed of the wiper. Balmelli [2] gives the example requirements model in SysML
for the Rain Sensing Wiper system. The textual form of the requirements for the Rain
Sensing Wiper system can be found in Appendix 1.

Figure 3 SysML Requirements Model for the Rain Sensing Wiper System [2]

We give one change scenario to illustrate our approach. For external inconsistency
propagation, we give only the explanation of the DeriveReqt relation in the example.
Activity 1: External Consistency Checking:

Step 1: Identify a domain change
• We have the domain change for the actuator functions “C-language will be used

for actuation functions (determined by user)”
Step 2: Decomposing the domain change into primitive domain changes
• The domain change itself is a primitive domain change. We classify this domain

change as “Requirement in the domain is made more specific”
• The external inconsistency is applied to the requirement in the model

“Actuation function”
• The domain change is mapped to the external inconsistency “Requirement in the

model is less specific than it is in the domain” (automatically derived from Rule
3 in Table 1)

Step 3: Propagate external inconsistencies
• Same external inconsistency is propagated from Actuation function to Use

Dedicated ECU (automatically derived from Rule 4 in Table 2)
• Same external inconsistency is propagated from Actuation function to Use

Sensing software (automatically derived from Rule 4 in Table 2)
• Same external inconsistency is propagated from Use Sensing Software to

System Calibration (automatically derived from Rule 4 in Table 2)
• Same external inconsistency is propagated from Use Dedicated ECU to

System Calibration (automatically derived from Rule 4 in Table 2). This
requirement was already tagged as externally inconsistent in the same way

• No propagation from Use Dedicated ECU to Sensing Function (automatically
derived from Rule 3 in Table 2)

• No propagation from System Calibration to Use Sensor on Windshield
(automatically derived from Rule 3 in Table 2)

• No propagation from Core Functions to Automatic Disablement and
Automatic Enablement and Speed Adjustment to Rain Intensity
(automatically derived from Rule 3 in Table 2)

Activity 2: Model Changing
Step 1: Map external inconsistencies to model changes
• We have only one external inconsistency type: “Requirement in the model is

less specific than it is in the domain”. Each one is mapped to the model change
“Details are added to the requirement” (automatically derived from Rule 3 in
Table 1)

Step 2: Implementing the model changes
• The only assistance, here, is the type of the model change which should be

performed. Apart from that, the implementation of model changes is manual.

7 Tool support

We provide the tool support for change impact analysis in SysML requirements
models. In this section, we depict the usage of the tool within the context of the

process given in Figure 1. The tool support is a plug-in of the UML2.1 compliant
visual software modeler BluePrint [14]. The tool supports the propagating external
inconsistency step in the external inconsistency checking activity and the mapping
external inconsistencies to proposed model changes step in the model changing
activity. Figure 4 gives the output of the external inconsistency propagation for the
RSW system example.

Figure 4 Output of the External Inconsistency Propagation

The external inconsistency “Less Specific than in Domain” for the Actuation
Function requirement is propagated into the Core Functions requirement as “Less
Specific than in Domain”. The rounded boxes give the external inconsistencies. In
Figure 4, the popup window lists the alternative propagations for the Sensing
Function requirement. The requirements engineer selects the appropriate one.

After determining all external inconsistencies in the model, the tool derives the
proposed model changes from these inconsistencies based on the mapping given in
Table 1. Figure 5 gives the output of the proposed model changes. The rounded boxes
tag the Core Functions, Actuation Function, Use Sensing Software, Use Dedicated
ECU and System Calibration requirements with the proposed model change “Remove

Detail”. The requirements engineer does the actual changes with the help of the
proposed model changes.

Figure 5 Output for the Proposed Model Changes

8 Related Work

In our previous work [6], we proposed a metamodel for requirements models (called
core metamodel). We define the semantics of the concepts and the relations in the
core metamodel. On the basis of the semantics we can perform reasoning on
requirements that may detect implicit relations and internal inconsistencies. However,
the approach in [6] does not support change impact analysis. As a continuum of that
work, we proposed a change impact analysis technique [7] based on formalization of
requirements relations in the requirements metamodel in [6]. However, the change
impact analysis technique in [7] aims at propagating the impact of the change directly
rather than propagating the external inconsistency. We did not have the concepts like
domain, external inconsistency that provide the reason of the change. Therefore,
without the reason of the change in [7], the approach gives similar impacts for
different types of changes.

Ajila [1] explicitly defines elements and their relations to be traced with
dependencies they called as intra-level and inter-level. Impact analysis based on
transitive closures of call graphs is discussed in Law [9]. Lindvall et al. [10] show
tracing across phases again with intra-level and inter-level dependencies. They also
discuss an impact analysis method based on traceability. However, they do not
support their analysis with formalism. Change impact analysis for software
architectures has been studied by Zhao et al. [13]. They use a formal architectural
description language to specify the architectures.

9 Conclusion

In this paper, we proposed a change impact analysis technique based on formalization
of requirements relations considered as trace relations in SysML. The approach
focuses on requirements models reflecting the domain what stakeholders want to be
modeled, and possibly implemented as well. Any model changes are fueled by
changes in that domain.

Using the formal definitions of the SysML relations ComposedBy, Copy and
DeriveReqt, several change impact rules were defined. These rules give the
propagation possibilities of external inconsistencies which define differences between
the model and domain. They are mapped to model changes. The requirements
engineer is guided through the change process using these rules. He only needs to
select the proper propagation rules. Implementing model changes puts the model back
in sync with the domain.

Since the approach is based on SysML, existing tools can be easily extended in
order to include it. This was shown in the tool support. The tool support is a plug-in of
the visual software modeler BluePrint [14]. We applied our approach to an example
SysML requirements model for the Rain Sensing Wiper system.

References

1. Ajila, S.: Software Maintenance: An Approach to Impact Analysis of Object Change.
Software - Practice and Experience, 25(10), pp. 1155-1181, 1995

2. Balmelli, L.: An Overview of the Systems Modeling Language for Products and Systems
Development. Journal of Object Technology, 6(6), pp. 149-177, 2007.

3. Bohner, S.A.: Software Change Impacts – An Evolving Perspective. ICSM’02, IEEE
Computer Society Press, pp. 263-271, 2002.

4. Briand, L.C., Labiche, Y., O`Sullivan, L., Sowka, M.M.: Automated Impact Analysis of
UML Models. Journal of Systems and Software, 79(3), pp. 339-352, 2006.

5. dos Santos Soares, M., Vrancken, J.: Model-Driven User Requirements Specification
using SysML. Journal of Software, 3(6), pp. 57-68, June 2008.

6. Goknil, A., Kurtev, I., van den Berg, K.: A Metamodeling Approach for Reasoning about
Requirements. European Conference on Model Driven Architecture Foundations and
Applications (ECMDA-FA’08), LNCS, vol. 5095, pp. 311-326, 2008.

7. Goknil, A., Kurtev, I., van den Berg, K.: Change Impact Analysis based on Formalizations
of Trace Relations for Requirements. ECMDA-TW’08, SINTEF Report, pp.59-75, 2008.

8. Gotel, O.C.Z., Finkelstein, C.W.: An Analysis of the Requirements Traceability Problem.
RE’94, IEEE Computer Society Press, pp. 94-101, 1994.

9. Law, J., Rothermel, G.: Whole Program Path-based Dynamic Impact Analysis. ICSE’03,
IEEE Computer Society Press, pp. 308-318, 2003

10. Lindvall, M., Sandahl, K.: Traceability Aspects of Impact Analysis in Object-oriented
Systems. Software Maintenance: Research and Practice, vol.10, pp. 37-57, 1998.

11. Meyer, J.J.C., Wieringa, R., Dignum, F.: The Role of Deontic Logic in the Specification
of Information Systems. Logics for Databases and Information Systems, pp.71-115, 1998.

12. OMG: SysML Specification. OMG ptc/06-05-04, http://www.sysml.org/specs.htm
13. Zhao, J., Yang, H., Xiang, L., Xu, B.: Change Impact Analysis to Support Architectural

Evolution. Journal of Software Maintenance and Evolution: Research and Practice, vol.14,
pp. 317-333, 2002

14. @-portunity. http://www.atportunity.com/

Appendix 1. Rain Sensing Wiper System Requirements

In this appendix, we give an overview of the textual form of the Rain Sensing Wiper
system requirements modeled as SysML requirements model (based on [2]).

R1 Automatic wiping: The system shall automatically wipe the windshield of the car
whenever necessary or desired by the user
R2 System Initialization: System initial check-up
R3 Automatic Disablement: The system shall automatically stop wiping the
windshield when it is no longer necessary
R4 Manual Disablement: The driver should be able to stop the wiping manually
R5 Automatic Enablement: The system shall automatically start wiping the
windshield when it is necessary
R6 Wiping Speed Selection: The system shall offer three different wiping speeds
from which the driver can choose
R7 Speed Adjustment to Rain Intensity: The wiping speed should adjust according
to rain intensity
R8 Faster with Greater Rain Intensity: The more rain, the faster the wiping
R9 Core functions: Identified core functions
R10 Sensing function: The system shall be able to sense rain intensity
R11 Actuation Function: The system shall be able to actuate based on automatic and
manual input
R12 Use Serial Bus: The system shall use a serial bus to transfer data
R13 Use Sensor on Windshield: The system shall sense the rain intensity via a
sensor on the windshield
R14 Use Dedicated ECU: An Electronic Control Unit dedicated to this purpose will
serve as the processor for the input
R15 Use Sensing Software: A software solution shall be implemented to process
driver and sensor input
R16 System Calibration: The sensor shall be calibrated for the characteristics of the
windshield, and the type of car

