
Traceability for Model Driven, Software Product Line
Engineering

Nicolas Anquetil1, Birgit Grammel2, Ismênia Galvão3, Joost Noppen1,3, Safoora
Shakil Khan4, Hugo Arboleda1, Awais Rashid4, Alessandro Garcia4

1
 Ecole des Mines de Nantes, France

{nicolas.anquetil,johannes.noppen,hugo.arboleda}@emn.fr
2
 SAP Research CEC Dresden

birgit.grammel@sap.com
3
 University of Twente

i.galvao@ewi.utwente.nl
4
Lancaster University, UK

{shakilkh,garciaa,marash}@comp.lancs.ac.uk

Abstract. Traceability is an important challenge for software organizations.
This is true for traditional software development and even more so in new
approaches that introduce more variety of artefacts such as Model Driven
development or Software Product Lines. In this paper we look at some aspect of
the interaction of Traceability, Model Driven development and Software
Product Line.

Keywords: Product line, traceability, object-oriented, aspect-oriented.

1 Introduction

Traceability of artefacts elicits the means of understanding the complexity of logical
relations and dependencies existing among artefacts that are generated during the
software development lifecycle. Numerous kinds of artefacts are generated at the
individual development stages, ranging from requirement artefacts to design elements
down to source code fragments. With the inception of model-driven software
development the scope of artefacts has been diversified by introducing models
concerning, business processes, system requirements, architecture, design, tests, etc.

Since software development is ever facing the challenge to minimise development
costs, advancing fields of Software Product Line (SPL) engineering and generative
programming have been fostered. This in turn raises the need for more intricate
traceability solutions, which in addition to classical end-to-end traceability, have to
support for the traceability of variabilities and commonalities in the SPL. One of the
main objectives of the European project AMPLE1 is to bind the variation points in

1 http://ample.holos.pt/

various development stages and dimensions into a coherent variability framework
across the SPL engineering life cycle thus providing forward and backward
traceability of variations and their impact.

In this paper we present various perspectives of the AMPLE project on traceability
for Model Driven, SPL engineering. The remainder of this paper is organized as
follows. Section 2, introduces basic concepts of SPL engineering and contextualize
traceability in it. Section 3, proposes a categorization of traceability links for SPL.
Section 4, discusses how to deal with uncertainty and tracing the rational of decisions
during the SPL development process. Section 5, looks at fine grained traceability links
when mixing Model Driven development and SPL. Finally, Section 6 presents our
conclusions and future work.

2 Software Product Line

The software industry is in crisis. It is unable to produce software at the pace required
by the market: Projects are delayed, they fail to meet quality requirements, their
budget is exceeded, expected functionalities are not delivered. SPL comes as an
answer to this situation. It promises to deliver software faster, with higher quality and
at a lower cost [1]. In this section we will introduce the basic concepts of SPL and
how SPL and traceability interact.

2.1 Basic Concepts

 The key to SPL promises (faster, better, cheaper) is to target, not a single system,
but a family of similar systems all tailored to fit the wishes of a particular market from
a constrained set of possible requirements. SPL is about producing software for a well
defined market, from a base software architecture, with a predefined set of options,
called variation points. To achieve higher quality more rapidly, it is based on reuse: of
the software architecture and of the software components that may be plugged into it.
Although the initial architecture and software components may be costly to develop,
successive applications inside the family are cheaper and cheaper as they reuse most
of what was build for the previous applications [1]. The SPL paradigm uses two
processes and two main focuses (see Figure 1): (i) Problem Space focuses on defining
what problem the family of applications, or an individual application in the family,
will address; (ii) Solution Space focuses on producing the software components to
solve that problem; (iii) Domain Engineering is responsible for establishing the
software family platform, first by identifying typical requirements of the problem
space and where they will be authorized to vary, second by developing the software
architecture that address these requirements and the software components that fit into
the architecture, and; (iv) Application Engineering is responsible for deriving
individual applications from the requirements of a customer (inside the set of
authorized variations) and composing this application from the family architecture
and the available components.

Although the two were conceived separately, Model Driven Development is a

natural candidate to fit in the general framework of SPL: One may develop a meta-
model that can be transformed in different applications according to the wishes of the
customer [2,3]. The general solution is described in Figure 1. First, in domain
engineering, one defines a meta-model of the problem (top left), specifying the
concepts that may be used in the creation of a solution --an application--, and a feature
model (model of all the features available). Second, still in domain engineering, but in
the modelling of the solution (top right), one defines transformation rules to generate
code from the application model (when it will be available). Obviously the future
application model must conform to the meta-model of the product line. In addition,
manually written software components (source code) can also be created that are
intended to be combined with the automatically generated code later. Third, in
application engineering (bottom left), one defines a model of a particular application
(conforming to the meta-model defined in domain engineering). One also selects the
features that should be implemented in this particular application. Finally, in the
solution space (bottom right), the application is automatically derived from the model
by applying the transformation rules.

Fig. 1. How MDD fits in the two processes and two spaces of SPL.

2.2 Traceability for SPL

Traceability is recognized by all to be highly important for SPL engineering. On top
of traditional concerns for traceability, SPL has to deal with variability and with two
development processes. Variability is the description of all possible variation points in
the family products, and all the variants, the available options for each variation point.
Traceability appears as a key asset to manage this complexity. Variability is seen as
the one fundamental aspect of SPL, and specific to it, that needs to be traced.

The difficulties linked to traceability in SPL are [4]: (i) there is a large number and
heterogeneity of documents, even more than in traditional software development; (ii)
one needs to have a basic understanding of the variability consequences during the
different development phases; (iii) one needs to establish relationships between
product members (of the family) and the product line architecture, or relationships
between the product members themselves; and (iv) there is still poor general support
for managing requirements and handling complex relations.

We could not find much tool support, neither available for industrial use nor in
form of research prototypes in academia. Traceability means to link several artefacts

at different levels and the rationale of this link. One has to link documents,
stakeholders and the rationale behind the links. Since software development and more
specifically SPL development is a complex task one has to trace many objects of
various kinds with different structures. In [5] a general presentation of the traceability
needs and the integration in a SPL are proposed. The traceability requirements are: (i)
it should be based on the semantics of models used in the SPL infrastructure; (ii) it
should be customized to capture relevant trace types; (iii) it should be capable to
handle variability; (iv) a small set of traces is better; and, (v) it should be automated
when possible.

Berg et al. [6] view software engineering for single (traditional) systems in two
dimensions, one for the development process and the other for levels of abstraction.
All development artefacts can be placed somewhere in these dimensions. Variability
adds a third dimension that explicitly captures variability information between
product line members. This approach establishes a conceptual variability model which
provides the appropriate mapping between all variation points in the two dimensional
space (development process and levels of abstraction).

Ajila and Ali Kaba [7] use traceability to manage the SPL evolution. They identify
three sources of changes in product line: (i) changes in an individual product; (ii)
changes in the entire product line; and (iii) repositioning of an architectural
component from individual product to the product line. The authors also analyse more
precisely the reasons and the nature of changes in SPL development. The dimensions
of analysis can be: motivations that led to the change (external or internal) and
changes in the management process.

In [8] Moon and Chae propose a meta-modelling approach to trace variability
between requirements and architecture in SPL. They define two meta-models for
requirements and architecture integrating variability. These matrices contain
information computed from the software structure and the variability points. Three
kinds of relationships are provided: (i) between artefact constituents and trace matrix;
(ii) between artefact constituents and models, and; (iii) between artefact constituents
and specifications.

We will now present several propositions to treat traceability in Model-Driven
SPL. Not all of them are specific to SPL, but all of them will be applied to this context
in the AMPLE project.

3 Categorization of Traceability

As pointed out by the Center of Excellence for Traceability [9], the precise semantic
of traceability links is poorly understood, and there is possibly a wide range of
semantics. This is aggravated by the fact that it may not be desirable (or even
possible) to create a closed set of semantic kinds of links. If one casts into stone the
kinds of semantic links, then one loses flexibility for user-defined links that might be
necessary to meet different project or company needs. But not predefining the link
semantics, would greatly complicate automatic and elaborate treatment. We chose to
develop a two layered solution with a high level abstract categorization, that we hope
is general enough to fit all purposes; and a lower level, more detailed categorization,

that may be too specific in some specific situations. This is still a research issue and
we have no definitive answer yet.

3.1 Dimension of Traceability

Traditional (non SPL) software engineering (e.g. [10, p.59], [11, p.526], [12]) defines
two forms of traceability: vertical and horizontal. Unfortunately, different authors
swap the respective definitions of vertical and horizontal! In this paper, we will call
them intra and inter traceability. Inter traceability refers to relationships between
different levels of abstraction: from requirements to models to implementation. Intra
traceability refers to relationships between artefacts at the same level of abstraction:
between related requirements, between models, between software components, etc.
To this initial framework, SPL engineering introduces a third dimension, orthogonal
to the two other ones to deal with variability and its implications (See also [6]).
Traceability links are required to relate variation points (options) to their variants
(choices), variants between themselves (when one choice constrains another one),
variation points between themselves, low level artefacts to variation points or
variants, and finally, choices made at the application engineering level to options
offered at the domain engineering level. Finally, since dealing with configuration
management is also a goal of the AMPLE project, we include a fourth dimension,
evolution, for relationship between the various versions and revisions of a given
artefact.
Note that there may be interactions between the different dimensions. For example,
intra and inter traceability links may evolve between two versions of the SPL. This
indicates that intra and inter traceability links may themselves be related by evolution
traceability links. Variability traceability links are also subject to evolution over time.
Finally, intra and inter traceability links may also be subject to variability traceability.
For example, if two artefacts have an intra or inter traceability link in the domain
model, and if both appear in the corresponding application model, then they should
exhibit the same intra or inter traceability link in the corresponding application model.
In summary, we may propose a hierarchy of dimensions: Evolution traceability may
also apply to intra, inter or variability traceability relationships (and not only on
artefacts). Variability traceability may also apply to intra or inter traceability
relationships. All other interactions between two dimensions are considered
meaningless.

3.2 Taxonomy of Traceability

There are quite a few approaches for inter and intra tracing intraditional systems
[22],[23]. But these approaches do not fulfil the needs of SPL due to dependencies
existing: (i) from core assets (domain engineering) to products (application
engineering); (ii) between commonality and variability at different abstraction level;
(iii) for core assets used by multiple products in a family of products. During the
development of a SPL, numerous entities, artefacts, and models are created during
both domain engineering and application engineering [16][17]. This makes it complex

to maintain and evolve the large number of intricate trace dependencies.
To facilitate trace maintenance and evolution in SPL, we propose to move away

from simple associative trace links to links that capture the semantics of the
relationship between the traced artefacts. We define a semantics-based dependency
taxonomy wherein the dependency information: captures intricate information about
the traces; promotes better understanding of the trace relationships; justifies the
rationale for existence of a particular trace link, and; determines the significance of a
trace link and help determine its consequence or impact on tracing information during
SPL evolution. The taxonomy describing various facets of a dependency is influenced
from conventional requirements engineering approaches, SPL concepts, and work on
dependencies by [21]. We also investigated two case studies: HealthWatcher [18][19]
and MobileMedia [20]. From these studies we structured the dependency links around
two characteristics: nature and granularity .The nature of a dependency describes the
fundamental categorization of the trace formed and helps define the significance of
the dependency (which may vary from domain to domain) holding at the same level
of abstraction (intra), higher to lower abstraction (inter), or between core assets and
product(s). The nature of dependency can be categorized as: Goal, Conditional,
Service, Task, Temporal, and Infrastructure. A more detailed discussion on nature of
dependency taxonomy is presented in [19]. The granularity of a dependency
elaborates on the trace by providing a better insight into the fundamental
categorization of the trace (nature of dependency) formed at the same level of
abstraction (intra), higher to lower abstraction (inter), or from core assets to products.
The granularity of dependency helps identify the number of entities impacted directly
or/and indirectly when a requirement, design, or implementation is evolved. The
granularity of dependency can be categorized as: Refinement, Composition,
Constraint, Multiplicity, Behavioural, and Structural.

We now discuss a brief trace scenario from the SmartHome industrial case study to
showcase the dependency taxonomy. The SmartHome application bridges different
technologies in a house like central heating, security system, household appliances
through mobile phones and/or personal computers to retrieve the status, set or modify
the control/setting of the devices. Our example scenario describes traces amongst the
artefacts in application domain. The climate control system for managing the central
heating ensures that the temperature a user (owner) has specified for the house is
maintained. The desired temperature is maintained by automatically turning the
central heating on/off when the specified temperature is reached. The nature of
dependency for the requirement forms a (service, conditional) dependency with the
HeatingComponents and Thermometer components at architectural level. Service and
conditional dependency is formed as the Thermometer component gets the
temperature of the house and the HeatingComponent turns the central heating on/off if
the temperature is above or below the specified temperature range. The granularity of
dependency is (behavioral) as the HeatingComponent reacts to the data output from
the Thermometer component. The example shows the dependency model help extract
end-to-end trace information between the loosely and/or tightly coupled requirements
and architecture providing the system analyst an understanding of how requirements
are being realized at architecture level.

4 Traceability in the Presence of Uncertainty

Independent of the categories of traceability and their nature and granularity, we
propose to attach additional information to traceability links: The rational for its
creation and the confidence we have in this rationale.

During software development, a large number of design decisions must be
resolved. Typically, for each design issue several candidate solutions are considered.
The rationale behind these design decisions is frequently based on assumptions made
about diverse relevant criteria related to these candidates, calculating the alternatives’
overall quality, and choosing the most appropriate solution. Ideally, the information
used for taking such decisions would be of perfect quality, i.e. clear and accurate.
However, in practice it is very difficult to attain accurate information at the moment it
is required. As important decisions are taken in early phases of development, software
architects will only have a partial and abstract view of the final, complete system. As
a result, the design activities generally are performed with assumptions on relevant
system characteristics that only partially provide the information with the desired
quality. The rationale for design decisions is naturally subject to uncertainty.

Uncertainty plays a role in any system that needs to evolve continuously to meet
the specified or implicit goals of the real world [13]. But while SPL engineering is
based on the principles of reuse and variability management, the development of
SPLs can suffer from uncertain information. As product line architectures are used
over a prolonged period of time, they become subject to unforeseen evolution and
maintenance. Moreover, the requirements definition and architectural design phases
typically will be prone to uncertain inputs, as the product line is intended to support a
versatile product family in volatile markets with changing demands. As a result of the
variety of product families, the complexity of product line architectures and the
longevity over which these must be maintained and evolved, it can be argued that the
impact of uncertainty on product line development can be even more sever than
traditional software systems.

As seen in section 2.1, the evolution of SPL artefacts in the problem space and the
solution space, both in domain engineering and application engineering levels, can
profit from model-driven techniques. The flexibility of model transformations offers
ample means to address evolution of product lines. For example, model-driven
approaches can automate the generation of trace links between source and target
artefacts involved in a transformation [14]. Nonetheless, the application of MDE
approaches does not resolve all problems caused by evolution and uncertainty in SPL
development. MDE artefacts are subject to evolution. Change requests may cause the
evolution of metamodels, models and model transformations. Moreover, the definition
and realization of a model-driven approach can suffer significantly when uncertainty
in the available information is not recognized and addressed accordingly.

Under this perspective, traceability of design decisions in SPL development is an
important and relevant issue, as these are key points where uncertainty influences the
design process. For performing traceability in the presence of uncertainty, the focus of
handling uncertain information in particular should be on the rationale used to resolve
design decisions. By identifying the uncertainty that exists in design decision rationale
and modelling it accordingly in the decision process, its negative influence can be
minimized. Further, tracing information on design decisions facilitates the

understanding of the impact of the uncertainty on the development of the SPL.
Tracing the rationale of decisions improves the understanding of the important
contextual factors that impact the quality of the SPL and variability management.

To this end, we have defined a meta-model that conceptualizes the kinds of design
decision rationale in which we are interested, such as problem, alternatives, quality
attributes, context and arguments. This meta-model comprises elements from
argument-based rationale methods, problem-solving approaches and quality
evaluation methods. Moreover, the meta-model accommodates the representation of
uncertainty in the assumptions made by the developers while taking design decisions.
Uncertainty is represented by utilizing techniques from fuzzy set theory.

The rationale behind each relevant design decision can be a model instantiated
from the design decision rationale meta-model. Such models are themselves also
considered as traceable artefacts. Therefore, the traces related to or from design
decision rationale instances are stored along with inter or intra traceability
relationships. For example, the design decision rationale can be traced to other
decisions, or from and to other artefacts, such as requirements and architectural
models. In this way, we are able to analyse the influences of uncertainty in the design
rationale, while performing traceability for the sake of, for example, change impact
analysis and root-cause analysis.

5 Traceability and Fine Grained Variability

We saw in Section 2.1 how, in the Model Driven, SPL approaches [2,3] a particular
application is defined as a model conforming to the meta-model of the product line.
The application must also choose available features from a feature model. By default,
this approach does not allow fine grained selection of features, an application either
has or not a feature. We call large variation a characteristic that affects the whole
application [15]. For instance, properties such as localization (English or German), or,
in a Smart Home system, a large variation could express that the house can have
automatic lights (this would imply that all the lights in the houseare managed
automatically). In contrast to this, we also define the concept of fine variation [15]. A
fine variation is a characteristic that may be applied to specific elements of the
application model. For example, in a Smart Home system, a fine grained variation
could express that specific rooms of the house have the feature automatic light, but
not all of them. Note that, large variations can be treated as special case of fine
variation where all the elements of the model individually have the feature of interest.

The gain in flexibility of fine variation comes at the cost of more complex models
and meta-model, with many new artefacts, model-to-model transformations, etc.
Maintaining and evolving all the relations between individual elements and their
features would require detailed management of traceability at a fine grained level. To
manage this additional complexity, we defined a constraint models as part of the
problem space modelling, during domain engineering [15]. This constraint model
expresses what features may be linked (with fine variation) to what element of the
meta-model. The constraint model also restrict the possible bindings by bounding
possible cardinality and specifying properties that the element should have when

bound to the feature (for example, room that have automatic light requires some
sensor). The actual binding of an element of the application to a feature occurs at the
application engineering level, during the modelling of the problem. This is the
moment where possible bindings described in the constraint model are created (or not)
between actual elements of the application (concept in the model of the application)
and the features offered in the feature model. Each binding defined in the application
model is automatically checked against the restrictions expressed in the constraint
model. The transformation of the application model to implementing code is realized
by transformation rules.

Fine grained variability works in three dimensions of traceability: The specification
of binding constraints between meta-concepts and features is an intra traceability, as
both are at the same level of abstraction (during domain engineering, as part of the
problem space modelling); binding of a concept to a feature is a variability
traceability as the concepts appear during application engineering whereas the
features are specified at the domain engineering level. Finally, the implementation of
a given binding between a concept and a feature is an inter traceability.

6 Conclusion and Future Work

There is no doubt that traceability is a fundamental discipline of modern software
development. As new development approaches emerge, such as Software Product
Lines (SPL) engineering, the challenges of traceability, still not complete tackled, are
increased. For example, SPL engineering increases the range of artefacts (variability
model, variation points, variants). Model Driven Development (MDD) is another
approach that also introduces new artefacts (meta-models, transformation rules).

In this paper, we looked at the AMPLE project, which is interested in the
interaction of MDD and SPL with respect to traceability. We proposed a
categorization mechanism for traceability links that offers to level of semantic: at the
higher level we have four general traceability dimensions; at the lower level we
propose finer grained semantic categories that may be specific to Model Driven, SPL
engineering. We also discuss the problem of tracing development decision in the
presence of uncertainty. Finally, we proposed a fine grained traceability mechanism
between a domain meta-model and a product line variability model.

AMPLE is a project in progress and we started to implement these ideas in a
traceability framework (described in another paper presented at this workshop). Other
actions include creating industry case study to test our tools.

Acknowledgements. This work is supported by the European Commission grant IST-
33710 - Aspect-Oriented, Model-Driven Product Line Engineering (AMPLE),

References

1. K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering - Foundations,
Principles, and Techniques. Springer Verlag, Heidelberg, 2005.

2. K. Czarnecki, M. Antkiewicz. “Mapping Features to Models: A Template Approach Based on
Superimposed Variants”. GPCE'05., Lecture Notes in Computer Science, Vol. 3676, pages 422-
437. Springer Verlag. 2005.

3. M. Voelter and I. Groher. “Product Line Implementation using Aspect-Oriented and Model-
Driven Software Development”. SPLC'07, pages 233-242

4. W. Jirapanthong and A. Zisman. “Supporting Product Line Development through Traceability”.
APSEC’05, pages 506--514. .

5. J. Bayer and T. Widen. “Introducing traceability to product lines”, Fourth International Workshop
on Product Family Engineering (PFE-4), pages 399-406, 2001.

6. K. Berg, J. Bishop, and D. Muthig. “Tracing software product line variability - from problem to
solution space”, SAICSIT '05pages 182-191

7. S. Ajila and B. Ali Kaba. “Using Traceability Mechanisms to Support Software Product Line
Evolution”. IRI’04, pages 157-162.

8. M. Moon and H. S. Chae, “A Metamodel Approach to Architecture Variability in a Product Line”,
, 9th International Conference on Software Reuse, Lecture Notes in Computer Science vol. 4039,
pages 115-126, Springer Verlag, 2006.

9. G. Antoniol et. al.: “Grand Challenges in Traceability”. Technical Report COET-GCT-06-01-0.9,
Center of Excellence for Traceability, September 2006.

10. J. O. Grady. System Requirements Analysis. Academic. ISBN: 978-0120885145, Academic Press,
Inc., Orlando, FL, USA, 2006.

11. S. L. Pfleeger. Software Engineering: Theory and Practice. ISBN: 0131469134 Prentice-Hall,
Inc., 3rd edition, 2005.

12. S. Ambler, “What's up with agile requirements traceability?”, Dr.Dobb's portal,
http://www.ddj.com/architect/184415807, Oct. 18, 2005 (consulted Apr. 18, 2008).

13. M. M. Lehman and J. F. Ramil. “Software Uncertainty”. Soft-Ware 2002: Computing in an
Imperfect World, Lecture Notes in Computer Science vol. 2311, pages 477–514. Springer Verlag,
2002.

14.I. Galvão and A. Goknil, “Survey of Traceability Approaches in Model-Driven Engineering”.
EDOC’07, pages 313-326,.

15. H. Arboleda, R. Casallas, and J.-C. Royer. “Dealing with Constraints during a Feature
Configuration Process in a Model-Driven Software Product Line”. DSM’07, pages 178–183.

16. S. D. Kim, S. H. Chang and H. J. La. “Traceability Map: Foundations to Automate for
 Product Line Engineering”. SERA 2005, pages 340-347
17. W. Jirapanthong and A. Zisman. XTraQue: traceability for product line systems. Journal:
 Software and Systems Modeling. Springer Berlin/Heidelberg, 2007
18. P. Greenwood et. al. “On the Impact of Aspectual Decompositions on Design Stability: An
 Empirical Study”. ECOOP’07, pages 176-200
19. S. S. Khan, et. al.: “On the Interplay of Requirements Dependencies and Architecture”.
 CAiSE’08
20. E. Figueiredo, et. al.: “Evolving Software Product Lines with Aspects: An Empirical Study
 on Design Stability”, ICSE’08
21. B. Ramesh and M. Jarke. “Towards Reference Models for Requirements Traceability”.
 IEEE Transactions on Software Engineering. 27(1), Jan 2001.
22. S. Ajila. Software Maintenance: An Approach to Impact Analysis of Object Change, Software
 Practice and Experience, Vol. 25, No., pp. 1155-1181, 1995.
23. S. Ibrahim et al.: A Requirements Traceability to Support Change Impact Analysis. Asian Journal
 of Information Tech. 2005, Vol. 4, No. 4, pages 345-355

http://www.ddj.com/architect/184415807

