
Axiomatic Testing of Structure Metria

K. G. van den Berg & P. M. van den Broek

University of Twente, Faculty of Computer Science
P.O.Box 2 17,7500 AE Enschede, the Netherlands

e-mail: vdberg@cs.utwente.nl

In this paper, axiomatic testing of software metrics
will be described, The testing is based on representation
axiomsjfom the measurement theory. In a case study, the
axioms are given for the formal relational structure and
the empirical relational structure. 'livo approaches of
axiomatic testing are elaborated: deterministic and
probabilistic testing.

1. Introduction

In this paper, axioms from representational
measurement theory will be utilized to establish the
theoretical and empirical order of software entities with
respect to some attribute. A simplified model for software
measurement will be used (see Figure 1).

externd attribute lntemol m u t e
I ---

Figure 1. Model for software measurement

Software entities will be considered: products,
processes or resources [4]. Data on an external attribute
(e.g. maintainability, reusability) of these entities are
collected with some measure m'. This external attribute
will be related with some internal attributes, such as size
or structure. The internal attribute is measured with a
metric function m on abstractions of the software entities.
The measure m is. validated to the extent to which it
preserves the order on the software entities obtained
independently of m by the quantified criterion m' [151.

In a case study, axioms from the measurement theury
will be tested, both formally and empirically. The case
itself, comprehensibility and structure of type
declarations, is of interest to researchers in the field of

programming methodology. More general, the case is
used to exemplify the application of representational
measurement theory in software measurement and
validation.

The representational approach has been used in
software measurement [l , 3, 7, 15, 14, 201. Some basic
concepts in this measurement theory [9, 11, 12, 181 will
be defined according to Roberts [17].

A relational srructure is a (n+l)-tuple (A, RI,...,%),
where A is a set, and R1 ,..., are relations on A. A
function f: A + A' is called a homomorphism from
relational structure (A, RI,...,%) into relational structure
(A', RI' ,..., R,.,') if, for each i E l..n,

&(al,a~,...,+~) - Rj'(f(al), f(%), ..., f(i+i)).

A homomorphism is an order preserving mapping.
The triple ((A, RI, ..., R,,) ,(A', RI' ,..., R,.,'),f) is said to be a
scale. If (A,&f) is a scale and cp is a function such that
(A,[B,cp.f) is a scale as well, then cp is said to be an
admissible transformation of scale. The representation d
+ 18 is regular if all scales (A,h',f) are related via an
admissible transformation of scale. The class of
admissible transformations of scale of a regular
representation defines the scale type of the
representation. Some common scale types are: absolute,
ratio, interval, ordinal and nominal scale [17, p. 641. The
focus in the case study is on ordinal scales, which are
defined by monotone increasing transformation
functions.

The aim of software measurement is to enable the
comparison of software entities with respect to some
attribute. As given in the model of figure 1, there are four
relational structures. The outmost structures are
numerical relational structures. The software entities
with their relations form the empirical relational
structure. The fourth relational structure involves the
abstractions. Axioms, that will be tested, state sufficient

45
0-8186-6865-7/94 $4.00 (B 1994 IEEE

conditions for the existence of a regular scale. By
investigating the axioms, the representation and
measurement scale of these structures can be established.

In order to make the discussion of axiomatic testing
concrete, a case study will be presented related to a
specific kind of software documentation: type
declarations. The programmer provides explicit
information about the type of the objects in the program.
This form of documentation not only may have an impact
on the reliability of the software, but also on the
comprehensibility to human readers of the programs
(reviewers, maintenance programmers). The software
entities are type declarations in the functional
programming language Miranda' [19]. Type
declarations themselves have a certain degree of
(cognitive) complexity: they are easy or difficult to
comprehend. 'The comprehensibility' will be taken as the
external attribute. The internal attribute is 'the structure'
of type expressions. The relationship between the
comprehensibility of type expressions and their structural
properties will be investigated: first, by establishing the
scale of measurement of the internal attribute and the
external attribute, and then by investigating the
correspondence between both measurements.

This paper is organised as follows. In section 2, more
details about the software entities in the case study, the
type declarations, will be given. In the subsequent
section, the modelling of the structure of type expressions
is elaborated. The actual collection of data on the
external attribute, the comprehensibility, will be
described in section 4, with an exemplification of the
deterministic and probabilistic testing of axioms. The
final section discusses some results obtained with this
approach.

2. The case study

The software entities considered in the case study,
type expressions, will be introduced. In an imperative
programming language like Modula-2 or Pascal, the
heading of a procedure declares the type. For example,
the heading of the function procedure IsDigit is:

PROCEDURE IsDigit (C : C H A R) : BOOLEAN;

In the case study, type expressions in the functional
programming language Miranda are considered. The
type declaration of the function isdigit is (denoted with ::
and on the right hand side a type expression):

Miranda is a trademark of Research Software Ltd.

isdigit : : char -+ bool

A function type is denoted with the symbol "+". The
function split has a more complex type: split returns a
tuple with two lists of numbers, one with elements of a
given list that satisfy a predicate, and the second list with
elements that do not.

split : : (num -+ bool) -+ [numl -+ ([numl,[num])

The type of the predicate, the first argument of the
function split, is a function type (num + bool). This
argument is enclosed by round grouping brackets. The
type of the second argument [num] is a list type, a list of
elements of type num. A list type is denoted with square
brackets. The type of the result of the function is a tuple
trpe with two components, each of type [num]. A tuple
type is denoted with round brackets and component types
separated by a comma. It is possible to define type
synonyms, e.g. numlist == [num]. The type of function
split with this synonym is:

split : : (num+bool)-+numlist -+(numlist,numlist)

The canonical form of the two given types of the
function split, as used by the type checker, is the same
(and equal to the first one).

Type declarations form an important clue to the
understanding of functions in a program. They give a
partial specification of the function: the type of its
arguments and the type of the result. The complexity of
the type declaration might give an indication of the
complexity of the task to be performed by the function

In the 'real world model' [13], restrictions will be
imposed on the 'real world' entities and phenomena. In
the case study the type expressions will be restricted to
three standard types: char, num and bool, and three type
constructors: the function type, the tuple type, and the list
type (for homogeneous lists). Furthermore, neither type
variables nor abstract data types are considered. Also, the
influence of the naming of types and typographic issues
will not be considered. Type synonyms are not
considered. In other words, these aspects will be kept
invariant in the case study. Type expressions with these
restrictions will be called simple type expressions.

Type expressions are studied in the context of
programs developed in an academic environment. It is
evident that comprehensibility depends on the experience
of the reader. The case study is carried out with novice
Miranda programmers with corresponding proficiency.
Only structural properties of simple type expressions in

(e.g.[51).

46

Miranda in relation with their comptchensibility to
novice programmers are examined.

3. The theoretical order

In this section, the modelling of type expressions is
described. The absmtion of tvpe expressions is defined,
a mlation on a t p a c t type expresskms and a structure
metric (cf. [lS]). Structure mutrics are bssad on the
compitionality of the structural [61. On the basis of
these definitions, the scale of measurement is established.

3.1 Theabstmctlon

A relational structure (A, R1 ,..., R,) is defined. Set A
consists of abstract type expressions; RI, ..., Rn are
relations on abstract type expressions. In some cases, the
corresponding operation of a relation will be used in the
relational structure (cf. [17: p. 411). These operations are
called concatenation operators or consmtors.

First, the mapping of simple type expressions to
abstract type expressions is defined. This abstraction
implies the following rules:
1. the order between components in a tuple type
expression is diaregllrrded
2. grouping brackets around a tuple type expression with
one component are disregarded
3. grouping brackets implied by the right associativity of
the function type constructor are disregarded.
For abtract type expressions the follotving data structure
will be used as model:

texp::- L texp I F [texp] I T Itexp) I C I N I B

with respectively: L the list type constructor; F the
function type constructor; T the tuple type constructor, C
the standard type char, N for n m and B for bool. Next to
the constructors, [texp] denotes an ordered list of abstract
type expressions, and {texp} denotes a multiset. Some
examples of the abstraction am given in Table 1.

I expression 1 abstraction I

Table 1. Example type expremlons with
abstractions

The abstr86tions of ta and tb are the same: the mind
brackets in (mm + fbool]) are disregarded (rule 2), as
the order of cdmponents in the tuple (mle 1). The
abstrrsctione Or% md +j LVS the sme. The abstraction of
tc is not F [N, F [L B, B]], since the m d bm9cet.s in
([boo11 + bool) are disregarded (rule 3). In other words,
the type of the result of a function is not allowed to be a
function type. The abstractions of Q and are different,
since the grouping brtrckets in can not be disregarded
(4 is right associative). With tf, the abstraction of the
type of the example function split is given.

'J%ere @am sltgmative abs&mtk"; @r example, to
restrict the fiyztion type to E3 &ti, t g (d y two types in a
function type); or to disregard the order of the arguments
of functions. Thtse &&nativm %re digcusised in [2]. The
choice betwen abstrecftiotts of entities is' de@rmined by
the actual use d the abbllactions: the 6iSthblishment of a
good correspondence between an internal attribute based
on thwcb Istnrcdonr, and an extctnal attribwe of the
entities.

3.2 Thecantaimnmtrelation

The containment on abstract type expressions, denoted
by 4, will be defined. Let a and b be abstract type
expressions, with concatenation operators 63 and @
respouctively, and with maximal subexpmsions a1 ,...,an
and bl ,... b, respectively, as depicted in Figure 2.

Figure 2. Two ebstmct type expressions

Then a 4 b iff a is contained in b in the following
sense: a is contained in b if a is contained in bi for some
i. Moreover, if @ = @ then a is contained in b if each ai is
contained in some bit, subject to the conditions that
l', ..., n' are pairwise different, and if C3 - F then [l', ..., nl]
is ordered. The containment relation is a partial order.

N N

Figure 3. Example abstract type expremions

47

Consider, for example, the set of abstract type
expressions in Figure 3. The containment relation of
these type expressions, (Bi9t2,t3,t4l. {(tl,t3), (tl,t4),
('2~4))). is given in the partial order diagram (Hasse
diagram) in Figure 4.

tl tz

Figure 4. Partial order with 4 on example type
expressions of FIgure 3

With the definition of this containment relation, the
formal relational structure (texp, 4, L, F, T, C, N, B) for
abstract type expressions has been described.

3.3 Extension of the containment relation and
ordinal scale

For the relational structure from the previous section,
a measurement scale will be considered, based on
theorems from measurement theory [17]. Only ordinal
measurement will be discussed here. The following
theorem will be used

Suppose A is a countable set and R is a binary relation
on A. Iff is a real-valued function on A which satisfies

a R b w f(a> I f(b) (. 1)

then ((A, R), (Re, <), f) is an ordinal scale [17, p. 1101.

function m is defined, with all constants Ci 2 0 :
For abstract type expressions, a linear structure metric

The theorem above is not applicable for this function
m and the containment relation 4 on type expressions,
because equation 1 is not satisfied (4 is a partial order).
Therefore, with this function m a new relation 4,,, on
type expressions is defined as follows:

The relation +,,, is an extension of the containment
relation 4, i.e.

From the theorem above it follows that ((texp,4,,,),
(Re, I), m) is an ordinal scale.

In this section, an abstraction of type expressions and
a containment relation on abstract type expressions have
been defined. An extension of this relation derived from
a structure metric function provides measurement of the
internal attribute structure of type expressions on an
ordinal scale. This allows the investigation of a
correspondence of the extension with the empirical order
as given by the quantified criterion, which also maps on
(Re,l) (see subsequent section). This approach differs
from the one proposed by Fenton [8]. For a partial order
on flowgraphs, Fenton defines a mapping of flowgraphs
to (N,l), where N is the set of natural numbers and I is the
relation 'divides without remainder', instead of a
mapping to (Re,<), in order to satisfy the representation
condition (equation 1). In the following section, the
empirical order of type expressions will be discussed.

4. The empirical order

In this section, the order of type expressions will be
established with respect to the external attribute
comprehensibility. The conditions for an ordinal scale
are investigated.

There are several approaches to the measurement of
comprehensibility of programs. In the case study, one
measure has been chosen for the comprehensibility of
type expressions [2]: the time in seconds needed for a
subject to read a given type expression and to conceive
and typewrite a (function) definition with exactly this
type in the 'standard' programming environment. The
time between showing the type expression on the screen
and the completion of the answer is measured
automatically. Afterwards, with the type checker of the
programming system, the answer is marked as correct or
incorrect. This time measurement will be used as
criterion for the comprehensibility The data have been
collected in controlled experiments. The subjects in the
experiment are novice programmers, all first year
students in computer science. Two data sets are used,
each based on responses of 14 subjects to 42 type
expressions (per data set 588 responses). Datasetl
consists of responses of 14 subjects to 16 type
expressions, with a total of 241 correct responses;
dataset2 is based on responses of 14 other subjects to
another set of 16 type expressions, with a total of 347
correct responses. The type expressions are offered to the
subjects in random order. Of the 42 questions in the

48

original experiment, expressions with type variables have
not b a n considered here, neither have questions with
less than 6 c m t answers. In table 2 the type
expressions of dataset1 arc given. Further details of the
experiments can be found in 12, la].

16
15

based on ths a v q e time. However, the scale type of the
empirical order itself is not yet known from this analysis.
For this purpose, the properties of this order have to be
analysed by examining the axioms, as has been done for
the thooretical onlsr in the pnvious section.

(sec) (sec)
20 bool+char+bool 6 50.0 27.6 ,

27 (num,bool) + 10 44.7 24.7

ra I nr I typeexpression
nk I C O I L I :;; I z I 4.2 Axiomatic adysh of the emp€rical order

Table 2. Ranking of type expressions in detasetl
according to the avlerage tlme

The following approaches in the analysis of the data
will be used. Firstly, a global analysis will be given based
on the average time measured for each type expression.
Secondly, an axiomatic analysis of the relative preference
of each subject between pairs of type expressions will be
described. Finally, an axiomatic analysis based on the
relative frequencies of these preferences will be
considered.

4.1 Global analysis of the empirid order

For each type expression, the average time for all
correct responses has been calculated. The data for the
first set are given in Table 2. In Figure 5 , for a subset of
type expressions of dataset 1, the empirical order based on
the average time and the theoretical partial order are
compared. The empirical order for this subset, except the
value obtained on type expression 41, is an extension of
the partial order of the 9 abstract type expressions.
Taking into account a rather large standard deviation in
the measured values, there is reasonable agreement
between the theoretical order and the empirical order

Two types of axiomatic analysis will be ensued: a
deterministic analysis and a probabilistic analysis. Each
of them aims at establishing the representation of the
empirical order by testing the axioms f" the theorems.
The theory of the deterministic analysis can be found in
Krantz et al. [l 11; of the probabilistic analysis in S u p
et al. [18]. In this section, Roberts [17] will be used as
the main reference. It should be expected that the
comprehensibility measure in the experiment is on an
ordinal scale. In that case the data should be conform a
(strict) weak order.

4.2.1 Deterministic axiomatic analysis
On the basis of the time measurement (in seconds) for

each type expression per subject, it is possible to define
the relation R for all type expressions a, b in the data set
A aRb w ta > $. This relational structure (A&)
represents the 'preference' of each subject in the
indication of the most difficult type expression

The preference structure (A,R) can be represented in
the preference matrix (A,p) defined as, V a,b E A:

Pab-1 maRb and Pab'OWTaRb (,IO)

The ranking of c o m t l y answered questions per
subject is determined. All these individual rankings form
a profile, i.e. a list of k rankings (k is the number of
subjects). In the experiment, not all individual rankings
are completb, since not all questions have been answered
c m t l y . There are only 2 subjects for each data set with
a complete ranking. A reduction of datasetl to a subset of
7 questions (subset1 = (12, 13, 15, 18, 20, 27, 34))
results in 5 complete rankings; also, a reduction of
dataset2 to 7 questions (subset2 = (115, 118, 123, 124,
127, 129, 132)) results in 5 complete rankings.

A group preference structure (A,M) from a list of
complete individual preference structures can be derived,
for example according to the simple majority rule,
dedned as follows [17, p. 1 181:

aMbW#aRb > (#aRb + # bRa)/2 (. 11)

where # xRy is the number of relations R which contain
(X,Y).

49

theoretical partial order empirical order

average

129
132
127
115
118

timc
. _ _ _ . . . _ - - . . _ _ . . _ _ _ 27: (num,bool) -> (num,bool)

m ([char]) - 4
m (bool+char) - 3
m (char+bool+bool) = 2
m (bool) - 1
m (char) = o

3: [(num,bool)] - - - - - ~ - - - - - -

/ I

2 7 1
3 4 0

/ I \ \

0 1 1 0 0 1
0 1 0 0 0 0

sec)

44.7

30.0

28.9

23.3

19.7
18.8

17.7

14.6

13.9 -
Figure 5. Theoretical partial order in Hasse diagram and empirical order of subset of type

expressions in datasetl

The group preference matrix of subset1 based on the
simple majority rule is given in Table 3. In total 35
correct responses have been used.

A group ranking can be obtained from the group
preference structure if the data are consistent: there are
no intransitivity’s (i.e. a preference cycle: Pab = 1 A p h
= I A Pca - 1) allowed.

Table 3. Group preference (A,M) for 7 type
expressions of datasetl (k=5)

For this subset there are inconsistencies in the group
preference structure. The three type expressions that are
not transitive are: 12: (num 4 char + char); 13:
[(num,bool)]; and 27: (num,bool) + (num,bool).

The group preference structure of the second subset is
consistent. It is a strict weak order (asymmetric and

negatively transitive). An ordinal function m for this
subset is defined as follows [17, p. 1051:

m(x) - # { y E A such that x R y } (. 12)

The function m for the subset of type expressions of
dataset2 is given in Table 4.

nr I function I
123 I m ([char] + bool) - 6
124 I m (bool + [char]) = 5

50

4.22 Probabilistic axiomatic analysis
A major disadvantage of the analysis in the p v i o u s

section is that only complete E#d%rance structures CBR be
taken into amount. With a pbabilistic analysis this can
be circumvented. It is possibb to c a l c u b the proMli ty
matrix- [17, p. 2731 with dat ive fresawncies based on all
correctly a"d questions:

27
34

pab-(#BRb)/(#aRb +#+aRb)) , i fa#b (. 13)
pab - 0.5, if a = b (. 14)

.57 .56 1.0 .70 I .40 S O I .89

.29 .36 .58 .46 I .I7 .11 I S O

From this it c8n be seen that: \d a,b E A: Pab + Pba - 1.
Such a probability matrix represents a forced choice parr
comparison structure (A,p). This structure (A,p) is weak
stochastic transitive if, Va,b,c E A :

A weak order (A,"), associated with a weak
stochastic transitive structure (A.p), is given ty W
defined on A by

As an example, in Table 5 the probability matrix is
given for the same subset of type expressions as in the
previous section. The matrix can be comparcd with the
group preference matrix of table 3. However, the matrix
presented here has been calculated with data of all 14
subjects. In total 74 correct responses have been used.
This probability structure is weak stochastic transitive
and hence consistent, contrary to the group preference of
5 subjects.

I
Table 6. Ran- ot 7 typ. aprsrrrlons b a d on

a"d week owr (k=14)

In the previous analysis, no attention has been given
to meusurement errors and the significance of the
experimental data. For the probability matrix from this
data set (Tabhe 5). the significance of the relative
frequencics has been cslculatod. The sign teet has been
used2 [lo]. A significance of a < .09 will be achieved if
10 out of 14 subjects show the same sign of the difference
between the time measured for two type expressions tg
and tb, which presumes a probability pab 2 0.71. For the
probability of the type expmsione in subsetl, the
structure (A,W) is calculated with

with threshold probability h - 0.75. The structure
obtained in this case is not a weak order, however it
satisfies the axioms for a semiortler, which are the
following [17, p. 2501:

aRa
aRb A cRd a (aRd v cRb)
aRb A bRc a (aRd v dRc)

A weak order (A,W) associated with the semiorder
(AB) can be obtained with W defined on A by [17, p.
2561:

awb e V c E A (bRc a aRc) A (cRa * cRb) (. 21)

For the semiorder obtained above, the associated weak
order has been calculated. A ranking for this weak order
is given in Table 7, with ties at ranks 4-5 and 6-7
(resulting respectively in rank 4.5 and 6.5).

The Wilcoxon signed ranks test is not applicable because the rankings
are not complete for all subjects.

61

rank
6.5

4.5

3
2
1

5. Discussion

type expressions
2 0 bool+char+bool
27:
12: num char + char
18: bool + num
13: [(num, bool)]
3 4 (num, bool, char)
15: num+bool

(num, bool) + (num, bool)

It has been shown that type expressions can be
measured on an ordinal scale with respect to the internal
attribute structure by defining an extension of a
containment relation on abstract type expressions.

In the case study, the comprehensibility of simple type
expressions has been operationalized as a time
measurement. The ranking of the average time is in
reasonable agreement with a weak order extension of the
partial order obtained for the corresponding abstract type
expressions. Axiomatic analysis has been used to localise
inconsistencies in the experimental data: an example has
been given of an intransitive group preference. An
ordinal measure has been calculated for a consistent data
set. Incomplete data sets have been analysed with a
probabilistic consistency axiom: the weak stochastic
transitivity. An ordinal measure has been established
based on these probabilistic data. Measurement errors
have been treated with a threshold probability and
semiorders. The order obtained in this way shows a
deviation of the previous order and appears to have more
ties.

Subsequently, the correspondence between the two
measurements can be established now. There are two
steps which have been described in a previous study [2].
Firstly, the structure metric function m defined in section
3.3 is calibrated, resulting in values for ci. This can be
done with standard linear regression techniques.
Secondly, this calibrated function is used in the
prediction of the comprehensibility values. The

forecasting efficiency of the prediction has been
established.

Another important aspect is the use of the approach
outlined in this paper to other software entities with other
attributes. There seems to be at least one important field
where this approach could be successful. This is the
domain of complexity measures based on flowgraph
modelling. An ordering of flowgraphs is given by Bache
(see [7]). A containment based order has been defined by
Melton [8, 151, and a formal axiomatic validation is
presented by Zuse [20]. An experimental axiomatic
testing could be carried out along the framework
described in this paper, e.g. for maintainability and
structural properties.

The main point presented in this paper is the role of
representation axioms in the diagnostic testing [121 of
the order of attributes of software entities. Inconsistencies
can be localised. They may hint at anomalies in the
experiments or weaknesses in the theory: they can be
used in the development of the conceptual domain, e.g. in
the choice of alternative abstractions. It has been shown
that axiomatic testing may well contribute to the
validation of software metrics, both formally and
empirically.

References
1 . Baker, A.L., Bieman, J.M., Fenton, N., Gustafson, D.A.,

Melton, A. & Witty, R. (1990), A Philosophy for software
Measurement, J. Systems SofhYare, 12,277-28 1.

2. Berg, K.G. van den, Broek, P.M. van den & Petersen, G.M.
van (1993), Validation of Structure Metrics: A Case Study.
Proceedings of International Software Metrics Symposium
METRICS 93, Washington: IEEE Computer Society Press,

3. Bieman, J., Fenton, N.E., Gustafson, D., Melton, A. &
Witty, R. (1992), Moving from Philosophy to Practice in
Software Measurement. In: T. Denvir, R. Herman & R.W.
Witty (Eds), Formal Aspects of Measurement, London:
Springer, 38-59.

4. Bush, M.E. & Fenton, N.E. (1990), Software Measurement:
A Conceptual Framework, J . Systems Software, 12, 223-
231.

5. Cardelli, L. & Wegner, P. (1985). On Understanding
Types, Data Abstraction, and Polymorphism. ACM
Computing Surveys, 17 (4) 471-522.

6. Fenton, N.E. & Kaposi, A.A. (1989), An Engineering
Theory of Structure and Measurement. In: B. A.
Kitchenham & B. Littlewood (Eds.). Measurement for
Software Control and Assurance, London: Elsevier, 335-
384.

7. Fenton, N.E. (1991), Software Metrics: A Rigorous
Approach, London: Chapman & Hall.

92-99.

52

8. Fenton, N.E. (1992). When a software measure is not a
measure. Sofhare Engineering Joumal, Sept, 357-362.

9. Finkelstein, L., & Leaning, M.S. (1984). A Review of the
Fundamental Concepts 6f Measurwnent. Measurnncnt,

10. Guilford, J.P. & Fmhter, B. (1978), Fundamental
statistics in psychology and education, London: McGraw-
Hill .

11. h t z , D.H., Luce, R.D., Suppes, P., & Tversky, A.
(1971). Foundations of Measurement, Volume I. New
York: Academic Prtss.

12. Luce, R.D., h t z , D.H., Suppes, P.. & Tverslcy, A.
(1990). Foundations of Mecrruremcnt, Volume XII. San
Diego: Academic Press.

13. Maki, D.P & Thompson M. (1973). Mathemutical Models
and Applications. J3igleuIood Cliffs, Mce-Hall .

14. Melton, A. (1992). Specifying Internal, External, and
Predictive Software Metrics, In: T. qnvir, R. Herman &
R.W. Whig (Eds), Formal Aspects of Measurement,
London: Springer, 194-208.

2(1). 25-34.

15. Melton, A.C., Gustafson, D.A., Bieman, J.M. & Baker,
AL. (1990), A Mathematical Perspective for Software
Measuns Research, m a r t ! Engineering Journal, Sept,

16.Rteraen, G.M. van (1992). Validation of Axiomatic
Structure Metrics fbr the Comprehensibility of Miranda
Type Eapressions. MSc thesis, University Twente.
E n S C h d C .

17. Roberts, F.S. (1979). Measurement Theory with
Applications to Decis ioding, Utility, and the Social
Sciences. Encyclopaedia of Mathematics and Its
Applications, Volume 7, London: Addison-Wesley.

18. Suppe~, P., Krantz, D.H., Luce. R.D., & Tversky, A.
(1989). Foundations of Measurement, Volume E. New
Y& Academic Press.

19. Turner, D. (1986). An Overview of Miranda. Sigplan
Notices, 21 (12), 158-166

20. Zuse, H. (1992). Properties of Software Measures. Sofrware
Quality Journal, 1,225-260.

246-254.

