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In this paper, axiomatic testing of software metrics 
will be described, The testing is based on representation 
axiomsjfom the measurement theory. In a case study, the 
axioms are given for the formal relational structure and 
the empirical relational structure. 'livo approaches of 
axiomatic testing are elaborated: deterministic and 
probabilistic testing. 

1. Introduction 

In this paper, axioms from representational 
measurement theory will be utilized to establish the 
theoretical and empirical order of software entities with 
respect to some attribute. A simplified model for software 
measurement will be used (see Figure 1). 

externd attribute lntemol m u t e  
I --- 

Figure 1. Model for software measurement 

Software entities will be considered: products, 
processes or resources [4]. Data on an external attribute 
(e.g. maintainability, reusability) of these entities are 
collected with some measure m'. This external attribute 
will be related with some internal attributes, such as size 
or structure. The internal attribute is measured with a 
metric function m on abstractions of the software entities. 
The measure m is. validated to the extent to which it 
preserves the order on the software entities obtained 
independently of m by the quantified criterion m' [ 151. 

In a case study, axioms from the measurement theury 
will be tested, both formally and empirically. The case 
itself, comprehensibility and structure of type 
declarations, is of interest to researchers in the field of 

programming methodology. More general, the case is 
used to exemplify the application of representational 
measurement theory in software measurement and 
validation. 

The representational approach has been used in 
software measurement [l ,  3, 7, 15, 14, 201. Some basic 
concepts in this measurement theory [9, 11, 12, 181 will 
be defined according to Roberts [17]. 

A relational srructure is a (n+l)-tuple (A, RI,...,%), 
where A is a set, and R1 ,..., are relations on A. A 
function f: A + A' is called a homomorphism from 
relational structure (A, RI,...,%) into relational structure 
(A', RI' ,..., R,.,') if, for each i E l..n, 

&(al,a~,...,+~) - Rj'(f(al), f(%), ..., f(i+i)). 

A homomorphism is an order preserving mapping. 
The triple ((A, RI,  ..., R,,) ,(A', RI' ,..., R,.,'),f) is said to be a 
scale. If (A,&f) is a scale and cp is a function such that 
(A,[B,cp.f) is a scale as well, then cp is said to be an 
admissible transformation of scale. The representation d 
+ 18 is regular if all scales (A,h',f) are related via an 
admissible transformation of scale. The class of 
admissible transformations of scale of a regular 
representation defines the scale type of the 
representation. Some common scale types are: absolute, 
ratio, interval, ordinal and nominal scale [ 17, p. 641. The 
focus in the case study is on ordinal scales, which are 
defined by monotone increasing transformation 
functions. 

The aim of software measurement is to enable the 
comparison of software entities with respect to some 
attribute. As given in the model of figure 1, there are four 
relational structures. The outmost structures are 
numerical relational structures. The software entities 
with their relations form the empirical relational 
structure. The fourth relational structure involves the 
abstractions. Axioms, that will be tested, state sufficient 
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conditions for the existence of a regular scale. By 
investigating the axioms, the representation and 
measurement scale of these structures can be established. 

In order to make the discussion of axiomatic testing 
concrete, a case study will be presented related to a 
specific kind of software documentation: type 
declarations. The programmer provides explicit 
information about the type of the objects in the program. 
This form of documentation not only may have an impact 
on the reliability of the software, but also on the 
comprehensibility to human readers of the programs 
(reviewers, maintenance programmers). The software 
entities are type declarations in the functional 
programming language Miranda' [19]. Type 
declarations themselves have a certain degree of 
(cognitive) complexity: they are easy or difficult to 
comprehend. 'The comprehensibility' will be taken as the 
external attribute. The internal attribute is 'the structure' 
of type expressions. The relationship between the 
comprehensibility of type expressions and their structural 
properties will be investigated: first, by establishing the 
scale of measurement of the internal attribute and the 
external attribute, and then by investigating the 
correspondence between both measurements. 

This paper is organised as follows. In section 2, more 
details about the software entities in the case study, the 
type declarations, will be given. In the subsequent 
section, the modelling of the structure of type expressions 
is elaborated. The actual collection of data on the 
external attribute, the comprehensibility, will be 
described in section 4, with an exemplification of the 
deterministic and probabilistic testing of axioms. The 
final section discusses some results obtained with this 
approach. 

2. The case study 

The software entities considered in the case study, 
type expressions, will be introduced. In an imperative 
programming language like Modula-2 or Pascal, the 
heading of a procedure declares the type. For example, 
the heading of the function procedure IsDigit is: 

PROCEDURE IsDigit ( C :  C H A R ) :  BOOLEAN; 

In the case study, type expressions in the functional 
programming language Miranda are considered. The 
type declaration of the function isdigit is (denoted with :: 
and on the right hand side a type expression): 

Miranda is a trademark of Research Software Ltd. 

isdigit : :  char -+ bool 

A function type is denoted with the symbol "+". The 
function split has a more complex type: split returns a 
tuple with two lists of numbers, one with elements of a 
given list that satisfy a predicate, and the second list with 
elements that do not. 

split : :  (num -+ bool) -+ [numl -+ ([numl,[num]) 

The type of the predicate, the first argument of the 
function split, is a function type (num + bool). This 
argument is enclosed by round grouping brackets. The 
type of the second argument [num] is a list type, a list of 
elements of type num. A list type is denoted with square 
brackets. The type of the result of the function is a tuple 
trpe with two components, each of type [num]. A tuple 
type is denoted with round brackets and component types 
separated by a comma. It is possible to define type 
synonyms, e.g. numlist == [num]. The type of function 
split with this synonym is: 

split : :  (num+bool)-+numlist -+(numlist,numlist) 

The canonical form of the two given types of the 
function split, as used by the type checker, is the same 
(and equal to the first one). 

Type declarations form an important clue to the 
understanding of functions in a program. They give a 
partial specification of the function: the type of its 
arguments and the type of the result. The complexity of 
the type declaration might give an indication of the 
complexity of the task to be performed by the function 

In the 'real world model' [13], restrictions will be 
imposed on the 'real world' entities and phenomena. In 
the case study the type expressions will be restricted to 
three standard types: char, num and bool, and three type 
constructors: the function type, the tuple type, and the list 
type (for homogeneous lists). Furthermore, neither type 
variables nor abstract data types are considered. Also, the 
influence of the naming of types and typographic issues 
will not be considered. Type synonyms are not 
considered. In other words, these aspects will be kept 
invariant in the case study. Type expressions with these 
restrictions will be called simple type expressions. 

Type expressions are studied in the context of 
programs developed in an academic environment. It is 
evident that comprehensibility depends on the experience 
of the reader. The case study is carried out with novice 
Miranda programmers with corresponding proficiency. 
Only structural properties of simple type expressions in 

(e.g.[51). 
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Miranda in relation with their comptchensibility to 
novice programmers are examined. 

3. The theoretical order 

In this section, the modelling of type expressions is 
described. The absmtion of tvpe expressions is defined, 
a mlation on a t p a c t  type expresskms and a structure 
metric (cf. [lS]). Structure mutrics are bssad on the 
compitionality of the structural [61. On the basis of 
these definitions, the scale of measurement is established. 

3.1 Theabstmctlon 

A relational structure (A, R1 ,..., R,) is defined. Set A 
consists of abstract type expressions; RI, ..., Rn are 
relations on abstract type expressions. In some cases, the 
corresponding operation of a relation will be used in the 
relational structure (cf. [17: p. 411). These operations are 
called concatenation operators or consmtors. 

First, the mapping of simple type expressions to 
abstract type expressions is defined. This abstraction 
implies the following rules: 
1. the order between components in a tuple type 
expression is diaregllrrded 
2. grouping brackets around a tuple type expression with 
one component are disregarded 
3. grouping brackets implied by the right associativity of 
the function type constructor are disregarded. 
For abtract type expressions the follotving data structure 
will be used as model: 

texp::- L texp I F [texp] I T Itexp) I C I N I B 

with respectively: L the list type constructor; F the 
function type constructor; T the tuple type constructor, C 
the standard type char, N for n m  and B for bool. Next to 
the constructors, [texp] denotes an ordered list of abstract 
type expressions, and {texp} denotes a multiset. Some 
examples of the abstraction am given in Table 1. 

I expression 1 abstraction I 

Table 1. Example type expremlons with 
abstractions 

The abstr86tions of ta and tb are the same: the mind 
brackets in (mm + fbool]) are disregarded (rule 2), as 
the order of cdmponents in the tuple (mle 1). The 
abstrrsctione Or% md +j LVS the sme. The abstraction of 
tc is not F [ N, F [ L B, B]], since the m d  bm9cet.s in 
([boo11 + bool) are disregarded (rule 3). In other words, 
the type of the result of a function is not allowed to be a 
function type. The abstractions of Q and are different, 
since the grouping brtrckets in can not be disregarded 
(4 is right associative). With tf, the abstraction of the 
type of the example function split is given. 

'J%ere @am sltgmative abs&mtk"; @r example, to 
restrict the fiyztion type to E3 &ti, t g  ( d y  two types in a 
function type); or to disregard the order of the arguments 
of functions. Thtse &&nativm %re digcusised in [2]. The 
choice betwen abstrecftiotts of entities is' de@rmined by 
the actual use d the abbllactions: the 6iSthblishment of a 
good correspondence between an internal attribute based 
on thwcb Istnrcdonr, and an extctnal attribwe of the 
entities. 

3.2 Thecantaimnmtrelation 

The containment on abstract type expressions, denoted 
by 4, will be defined. Let a and b be abstract type 
expressions, with concatenation operators 63 and @ 
respouctively, and with maximal subexpmsions a1 ,...,an 
and bl ,... b, respectively, as depicted in Figure 2. 

Figure 2. Two ebstmct type expressions 

Then a 4 b iff a is contained in b in the following 
sense: a is contained in b if a is contained in bi for some 
i. Moreover, if @ = @ then a is contained in b if each ai is 
contained in some bit, subject to the conditions that 
l', ..., n' are pairwise different, and if C3 - F then [ l', ..., nl] 
is ordered. The containment relation is a partial order. 

N N 

Figure 3. Example abstract type expremions 
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Consider, for example, the set of abstract type 
expressions in Figure 3. The containment relation of 
these type expressions, (Bi9t2,t3,t4l. {(tl,t3), (tl,t4), 
('2~4))). is given in the partial order diagram (Hasse 
diagram) in Figure 4. 

tl tz 

Figure 4. Partial order with 4 on example type 
expressions of FIgure 3 

With the definition of this containment relation, the 
formal relational structure (texp, 4, L, F, T, C, N, B) for 
abstract type expressions has been described. 

3.3 Extension of the containment relation and 
ordinal scale 

For the relational structure from the previous section, 
a measurement scale will be considered, based on 
theorems from measurement theory [17]. Only ordinal 
measurement will be discussed here. The following 
theorem will be used 

Suppose A is a countable set and R is a binary relation 
on A. Iff is a real-valued function on A which satisfies 

a R b w f(a> I f(b) (. 1) 

then ((A, R), (Re, <), f )  is an ordinal scale [17, p. 1101. 

function m is defined, with all constants Ci 2 0 : 
For abstract type expressions, a linear structure metric 

The theorem above is not applicable for this function 
m and the containment relation 4 on type expressions, 
because equation 1 is not satisfied (4 is a partial order). 
Therefore, with this function m a new relation 4,,, on 
type expressions is defined as follows: 

The relation +,,, is an extension of the containment 
relation 4, i.e. 

From the theorem above it follows that ((texp,4,,,), 
(Re, I), m) is an ordinal scale. 

In this section, an abstraction of type expressions and 
a containment relation on abstract type expressions have 
been defined. An extension of this relation derived from 
a structure metric function provides measurement of the 
internal attribute structure of type expressions on an 
ordinal scale. This allows the investigation of a 
correspondence of the extension with the empirical order 
as given by the quantified criterion, which also maps on 
(Re,l) (see subsequent section). This approach differs 
from the one proposed by Fenton [8]. For a partial order 
on flowgraphs, Fenton defines a mapping of flowgraphs 
to (N,l), where N is the set of natural numbers and I is the 
relation 'divides without remainder', instead of a 
mapping to (Re,<), in order to satisfy the representation 
condition (equation 1). In the following section, the 
empirical order of type expressions will be discussed. 

4. The empirical order 

In this section, the order of type expressions will be 
established with respect to the external attribute 
comprehensibility. The conditions for an ordinal scale 
are investigated. 

There are several approaches to the measurement of 
comprehensibility of programs. In the case study, one 
measure has been chosen for the comprehensibility of 
type expressions [2]: the time in seconds needed for a 
subject to read a given type expression and to conceive 
and typewrite a (function) definition with exactly this 
type in the 'standard' programming environment. The 
time between showing the type expression on the screen 
and the completion of the answer is measured 
automatically. Afterwards, with the type checker of the 
programming system, the answer is marked as correct or 
incorrect. This time measurement will be used as 
criterion for the comprehensibility The data have been 
collected in controlled experiments. The subjects in the 
experiment are novice programmers, all first year 
students in computer science. Two data sets are used, 
each based on responses of 14 subjects to 42 type 
expressions (per data set 588 responses). Datasetl 
consists of responses of 14 subjects to 16 type 
expressions, with a total of 241 correct responses; 
dataset2 is based on responses of 14 other subjects to 
another set of 16 type expressions, with a total of 347 
correct responses. The type expressions are offered to the 
subjects in random order. Of the 42 questions in the 
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original experiment, expressions with type variables have 
not b a n  considered here, neither have questions with 
less than 6 c m t  answers. In table 2 the type 
expressions of dataset1 arc given. Further details of the 
experiments can be found in 12, la]. 

16 
15 

based on ths a v q e  time. However, the scale type of the 
empirical order itself is not yet known from this analysis. 
For this purpose, the properties of this order have to be 
analysed by examining the axioms, as has been done for 
the thooretical onlsr in the pnvious section. 

(sec) (sec) 
20 bool+char+bool 6 50.0 27.6 , 

27 (num,bool) + 10 44.7 24.7 

ra I nr I typeexpression 
nk I C O I L  I :;; I z I 4.2 Axiomatic adysh  of the emp€rical order 

Table 2. Ranking of type expressions in detasetl 
according to the avlerage tlme 

The following approaches in the analysis of the data 
will be used. Firstly, a global analysis will be given based 
on the average time measured for each type expression. 
Secondly, an axiomatic analysis of the relative preference 
of each subject between pairs of type expressions will be 
described. Finally, an axiomatic analysis based on the 
relative frequencies of these preferences will be 
considered. 

4.1 Global analysis of the empirid order 

For each type expression, the average time for all 
correct responses has been calculated. The data for the 
first set are given in Table 2. In Figure 5 ,  for a subset of 
type expressions of dataset 1, the empirical order based on 
the average time and the theoretical partial order are 
compared. The empirical order for this subset, except the 
value obtained on type expression 41, is an extension of 
the partial order of the 9 abstract type expressions. 
Taking into account a rather large standard deviation in 
the measured values, there is reasonable agreement 
between the theoretical order and the empirical order 

Two types of axiomatic analysis will be ensued: a 
deterministic analysis and a probabilistic analysis. Each 
of them aims at establishing the representation of the 
empirical order by testing the axioms f" the theorems. 
The theory of the deterministic analysis can be found in 
Krantz et al. [l 11; of the probabilistic analysis in S u p  
et al. [18]. In this section, Roberts [17] will be used as 
the main reference. It should be expected that the 
comprehensibility measure in the experiment is on an 
ordinal scale. In that case the data should be conform a 
(strict) weak order. 

4.2.1 Deterministic axiomatic analysis 
On the basis of the time measurement (in seconds) for 

each type expression per subject, it is possible to define 
the relation R for all type expressions a, b in the data set 
A aRb w ta > $. This relational structure (A&) 
represents the 'preference' of each subject in the 
indication of the most difficult type expression 

The preference structure (A,R) can be represented in 
the preference matrix (A,p) defined as, V a,b E A: 

Pab-1 maRb and Pab'OWTaRb (,IO) 

The ranking of c o m t l y  answered questions per 
subject is determined. All these individual rankings form 
a profile, i.e. a list of k rankings (k is the number of 
subjects). In the experiment, not all individual rankings 
are completb, since not all questions have been answered 
c m t l y .  There are only 2 subjects for each data set with 
a complete ranking. A reduction of datasetl to a subset of 
7 questions (subset1 = (12, 13, 15, 18, 20, 27, 34)) 
results in 5 complete rankings; also, a reduction of 
dataset2 to 7 questions (subset2 = (115, 118, 123, 124, 
127, 129, 132)) results in 5 complete rankings. 

A group preference structure (A,M) from a list of 
complete individual preference structures can be derived, 
for example according to the simple majority rule, 
dedned as follows [17, p. 1 181: 

aMbW#aRb > ( #aRb + #  bRa)/2 (. 11) 

where # xRy is the number of relations R which contain 
(X,Y). 
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theoretical partial order empirical order 

average 

129 
132 
127 
115 
118 

timc 
. _ _ _ . . . _ - - . . _ _ . . _ _ _  27: (num,bool) -> (num,bool) 

m ([char]) - 4  
m (bool+char) - 3  
m (char+bool+bool) = 2 
m (bool) - 1  
m (char) = o  

3: [(num,bool)] - - - - - ~ - - - - - - 

/ I 

2 7 1  
3 4 0  

/ I \ \ 

0 1 1 0 0 1  
0 1 0  0 0 0 

sec) 

44.7 

30.0 

28.9 

23.3 

19.7 
18.8 

17.7 

14.6 

13.9 - 
Figure 5. Theoretical partial order in Hasse diagram and empirical order of subset of type 

expressions in datasetl 

The group preference matrix of subset1 based on the 
simple majority rule is given in Table 3. In total 35 
correct responses have been used. 

A group ranking can be obtained from the group 
preference structure if the data are consistent: there are 
no intransitivity’s (i.e. a preference cycle: Pab = 1 A p h  
= I A Pca - 1) allowed. 

Table 3. Group preference (A,M) for 7 type 
expressions of datasetl (k=5) 

For this subset there are inconsistencies in the group 
preference structure. The three type expressions that are 
not transitive are: 12: (num 4 char + char); 13: 
[(num,bool)]; and 27: (num,bool) + (num,bool). 

The group preference structure of the second subset is 
consistent. It is a strict weak order (asymmetric and 

negatively transitive). An ordinal function m for this 
subset is defined as follows [17, p. 1051: 

m(x) - # { y E A such that x R y } (. 12) 

The function m for the subset of type expressions of 
dataset2 is given in Table 4. 

nr I function I 
123 I m ([char] + bool) - 6  
124 I m (bool + [char]) = 5  
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4.22 Probabilistic axiomatic analysis 
A major disadvantage of the analysis in the p v i o u s  

section is that only complete E#d%rance structures CBR be 
taken into amount. With a pbabilistic analysis this can 
be circumvented. It is possibb to c a l c u b  the proMli ty  
matrix- [17, p. 2731 with dat ive  fresawncies based on all 
correctly a"d questions: 

27 
34 

pab-(#BRb)/(#aRb +#+aRb)) , i fa#b (. 13) 
pab - 0.5, if a = b (. 14) 

.57 .56 1.0 .70 I .40 S O  I .89 

.29 .36 .58 .46 I .I7 .11 I S O  

From this it c8n be seen that: \d a,b E A: Pab + Pba - 1.  
Such a probability matrix represents a forced choice parr 
comparison structure (A,p). This structure (A,p) is weak 
stochastic transitive if, Va,b,c E A : 

A weak order (A,"), associated with a weak 
stochastic transitive structure (A.p), is given ty W 
defined on A by 

As an example, in Table 5 the probability matrix is 
given for the same subset of type expressions as in the 
previous section. The matrix can be comparcd with the 
group preference matrix of table 3. However, the matrix 
presented here has been calculated with data of all 14 
subjects. In total 74 correct responses have been used. 
This probability structure is weak stochastic transitive 
and hence consistent, contrary to the group preference of 
5 subjects. 

I 
Table 6. Ran- ot 7 typ. aprsrrrlons b a d  on 

a"d week owr (k=14) 

In the previous analysis, no attention has been given 
to meusurement errors and the significance of the 
experimental data. For the probability matrix from this 
data set (Tabhe 5). the significance of the relative 
frequencics has been cslculatod. The sign teet has been 
used2 [lo]. A significance of a < .09 will be achieved if 
10 out of 14 subjects show the same sign of the difference 
between the time measured for two type expressions tg 
and tb, which presumes a probability pab 2 0.71. For the 
probability of the type expmsione in subsetl, the 
structure (A,W) is calculated with 

with threshold probability h - 0.75. The structure 
obtained in this case is not a weak order, however it 
satisfies the axioms for a semiortler, which are the 
following [ 17, p. 2501: 

aRa 
aRb A cRd a (aRd v cRb) 
aRb A bRc a (aRd v dRc) 

A weak order (A,W) associated with the semiorder 
(AB) can be obtained with W defined on A by [17, p. 
2561: 

awb e V c E A (bRc a aRc) A (cRa * cRb) (. 21) 

For the semiorder obtained above, the associated weak 
order has been calculated. A ranking for this weak order 
is given in Table 7, with ties at ranks 4-5 and 6-7 
(resulting respectively in rank 4.5 and 6.5). 

The Wilcoxon signed ranks test is not applicable because the rankings 
are not complete for all subjects. 
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rank 
6.5 

4.5 

3 
2 
1 

5. Discussion 

type expressions 
2 0  bool+char+bool 
27: 
12: num char + char 
18: bool + num 
13: [(num, bool)] 
3 4  (num, bool, char) 
15: num+bool 

(num, bool) + (num, bool) 

It has been shown that type expressions can be 
measured on an ordinal scale with respect to the internal 
attribute structure by defining an extension of a 
containment relation on abstract type expressions. 

In the case study, the comprehensibility of simple type 
expressions has been operationalized as a time 
measurement. The ranking of the average time is in 
reasonable agreement with a weak order extension of the 
partial order obtained for the corresponding abstract type 
expressions. Axiomatic analysis has been used to localise 
inconsistencies in the experimental data: an example has 
been given of an intransitive group preference. An 
ordinal measure has been calculated for a consistent data 
set. Incomplete data sets have been analysed with a 
probabilistic consistency axiom: the weak stochastic 
transitivity. An ordinal measure has been established 
based on these probabilistic data. Measurement errors 
have been treated with a threshold probability and 
semiorders. The order obtained in this way shows a 
deviation of the previous order and appears to have more 
ties. 

Subsequently, the correspondence between the two 
measurements can be established now. There are two 
steps which have been described in a previous study [2]. 
Firstly, the structure metric function m defined in section 
3.3 is calibrated, resulting in values for ci. This can be 
done with standard linear regression techniques. 
Secondly, this calibrated function is used in the 
prediction of the comprehensibility values. The 

forecasting efficiency of the prediction has been 
established. 

Another important aspect is the use of the approach 
outlined in this paper to other software entities with other 
attributes. There seems to be at least one important field 
where this approach could be successful. This is the 
domain of complexity measures based on flowgraph 
modelling. An ordering of flowgraphs is given by Bache 
(see [7]). A containment based order has been defined by 
Melton [8, 151, and a formal axiomatic validation is 
presented by Zuse [20]. An experimental axiomatic 
testing could be carried out along the framework 
described in this paper, e.g. for maintainability and 
structural properties. 

The main point presented in this paper is the role of 
representation axioms in the diagnostic testing [ 121 of 
the order of attributes of software entities. Inconsistencies 
can be localised. They may hint at anomalies in the 
experiments or weaknesses in the theory: they can be 
used in the development of the conceptual domain, e.g. in 
the choice of alternative abstractions. It has been shown 
that axiomatic testing may well contribute to the 
validation of software metrics, both formally and 
empirically. 
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