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Abstract
By now, many copositive reformulations of mixed-binary QPs have been discussed,
triggered by Burer’s seminal characterization from 2009. In conic optimization, it is
very common to use approximation hierarchies based on positive-semidefinite (psd)
matrices where the order increases with the level of the approximation. Our purpose
is to keep the psd matrix orders relatively small to avoid memory size problems in
interior point solvers. Based upon on a recent discussion on various variants of com-
pletely positive reformulations and their relaxations (Bomze et al. in Math Program
166(1–2):159–184, 2017), we here present a small study of the notoriously hard mul-
tidimensional quadratic knapsack problem and quadratic assignment problem. Our
observations add some empirical evidence on performance differences among the
above mentioned variants. We also propose an alternative approach using penalization
of various classes of (aggregated) constraints, alongwith some theoretical convergence
analysis. This approach is in some sense similar in spirit to the alternating projection
method proposed in Burer (Math Program Comput 2:1–19, 2010) which completely
avoids SDPs, but for which no convergence proof is available yet.
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1 Introduction

1.1 Motivation and structure of the paper

Several co(mpletely) positive (CP) reformulations have been widely studied in the
literature since the pioneering work of Burer (2009). It is well known that copositive
problems are NP-hard problems (Murty and Kabadi 1987). Therefore, various relax-
ations are proposed where the co(mpletely) positive cones are replaced by tractable
approximations. In a recent work (Bomze et al. 2017), we studied various CP reformu-
lations and their relaxations. Based upon this, we study in this paper two notoriously
hard optimization problems, namely the multidimensional knapsack problem and
quadratic assignment problem. In addition to the comparison of different CP refor-
mulations, we propose an alternative approach based on the penalization of various
classes of aggregated constraints together with some theoretical convergence analy-
sis. The following subsections present the notations and the CP reformulations. Our
penalization approach is discussed in Sect. 2. Purely binary quadratic problems are
studied in Sect. 3. Numerical results are given in Sect. 4. Section 5, finally, discusses
future work and concludes the paper.

1.2 Basic concepts, notation and terminology

We abbreviate by [m: n] = {m,m + 1, . . . , n} the integer range between two integers
m, n withm ≤ n. By bold-faced lower-case letters we denote vectors in n-dimensional
Euclidean space Rn (e.g., the zero vector o), by upper case boldface letters matrices
(e.g., the zeromatrixO), and by� transposition. The nonnegative orthant is denoted by
R
n+ = {x ∈ R

n : xi ≥ 0 for all i∈[1: n]}. In is the n × n identity matrix with columns
ei , i∈[1: n], while e = ∑n

i=1 ei = [1, . . . , 1]� ∈ R
n . We denote by R

d×p the set of

all d × p matrices, Rd×p
+ the subset of those with no negative entries, and

Sd =
{
X ∈ R

d×d :X = X�} .

The Frobenius inner product is denoted by 〈S,X〉 = trace(SX), where {S,X} ⊂ Sd .
With respect to any duality, we consider the dual cone

A∗ = {b: 〈a,b〉 ≥ 0 for all a ∈ A}

of a given cone A.
For a given symmetric matrix H = H�, we denote the fact that H is positive-

semidefinite by H 
 O. Sometimes we write instead “H is psd.”, and introduce the
cone of all psd matrices of a given order d by

Sd+ =
{
X ∈ Sd :X 
 O

}
.
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Furthermore, N d = {
X ∈ Sd : Xi j ≥ 0 for all i, j

}
, while COPd denotes the cone of

all symmetric d × d copositive matrices:

COPd =
{
M ∈ Sd : x�Mx ≥ 0 for all x ∈ R

d+
}

.

and CPd the cone of all completely positive matrices of order d:

CPd =
⎧
⎨

⎩
X ∈ Sd :X =

p(d)∑

i=1

fi f
�
i for some fi ∈ R

d+

⎫
⎬

⎭
.

where p(d) is an upper bound on the necessary number of summands for X, the so-

called cp-rank of X. One can always use p(d) = max
{(d+1

2

)− 4, d
}
which is tight

when d is large (Bomze et al. 2015; Shaked-Monderer et al. 2015).

1.3 Variants of CP reformulations

In this paper we consider the following mixed-binary quadratic optimization problem:

min x�Qx + 2c�x
s.t. a�

i x = bi for i∈[1:m]
x ∈ R

n+
x j ∈ {0, 1} for j ∈ B,

(P)

where B ⊆ [1: n], Q ∈ Sn , b ∈ R
m , and {c, a1, . . . , am} ⊂ R

n , with a1, . . . , am being
linearly independent.

We define the polyhedron Z = {x ∈ R
n+: a�

i x = bi , i∈[1:m]}, noting that the
feasible set of (P) is contained in Z .

As Burer (2009), we also assume that the following key assumption holds for this
problem:

v ∈ Z �⇒ v j ≤ 1 for all j ∈ B. (1)

Adding slack variables can always make this assumption hold.
Burer (2009) showed that under the key assumption (1), problem (P) has the same

optimal value as problem (CPP) below. Unfortunately, optimizing over the completely
positive cone is a very difficult problem (in fact an NP-hard problem Bomze et al.
2000, 2012; Dickinson and Gijben 2014; Murty and Kabadi 1987). So we need to
consider approximations of this, and these may vary in performance even when the
original alternative reformulations are equivalent. We start with the by now classical
reformulation by Burer (2009):
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min 〈Q,X〉 + 2c�x
s.t. a�

i x = bi for i∈[1:m]
〈aia�

i ,X〉 = b2i for i∈[1:m]
X j j = x j for j ∈ B(
1 x�
x X

)

∈ CPn+1.

(CPP)

A natural relaxation of problem (CPP) would be the following:

min 〈Q,X〉 + 2c�x
s.t. a�

i x = bi for i∈[1:m]
〈aia�

i ,X〉 = b2i for i∈[1:m]
X j j = x j for all j ∈ B(
1 x�
x X

)

∈ Sn+1+ ∩ N n+1.

(2)

From the computational point of view, this problem remains difficult to solve due to
the large positive semidefinite constraints. Moreover, we never have an interior point
for the problem. Indeed, for any feasible (x,X) and any i we have

(−bi
ai

)� (
1 x�
x X

)(−bi
ai

)

= a�
i Xai − 2bi a�

i x + b2i = 0,

which implies that

(
1 x�
x X

)

is on the boundary of the positive semidefinite cone.

In this paper, we study three equivalent alternatives to (CPP) put forward in Bomze
et al. (2017). Here, equivalent means that these alternatives have the same feasible
sets and the same objective function. These alternatives may avoid above-mentioned
drawbacks.

To this end, let {am+1, . . . , an} ⊂ R
n be linearly independent vectors with

a�
i am+ j = 0 for all i∈[1:m], all j∈[1: n − m]. This then implies that

{
x ∈ R

n : a�
i x = 0 for i∈[1:m]

}
=
{
n−m∑

i=1
yiam+i : y ∈ R

n−m
}

and that (3)

{
x ∈ R

n : a�
i x = bi for i∈[1:m]

}
=
{

x0 +
n−m∑

i=1
yiam+i : y ∈ R

n−m
}

. (4)

Next, let x0 ∈ int Rn+ ∩ Z (without loss of generality we may and do assume such an
x0 exists, cf. Bomze et al. 2017) and define a matrix

R =
(
1 0 0 · · · 0
x0 am+1 am+2 · · · an

)

∈ R
(n+1)×(n+1−m).
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We then have
{(

ζ

z

)

∈ R
n+1: a�

i z = biζ for i∈[1:m]
}

=
{
Ry: y ∈ R

n+1−m
}

. (5)

Note that R has full column rank thanks to the linear independence of am+1, . . . , an ,
and thus for any Y ∈ Sn+1−m we have (Bomze et al. 2017)

RYR� ∈ Sn+1+ ⇐⇒ Y ∈ Sn+1−m+ , (6)

RYR� = 0 ⇐⇒ Y = 0. (7)

The first alternative reformulation of (2) reduces the size of the psd matrices:

min 〈Q,X〉 + 2c�x
s.t. X j j = x j for all j ∈ B

RYR� =
(
1 x�
x X

)

(
1 x�
x X

)

∈ N n+1, Y ∈ Sn+1−m+ .

(8)

Still, presence of binary constraints prohibits strict feasibility (and sometimes even
sheer feasibility). Furthermore, computationally (8) still has the problem that if |B|
is large then we have a large number of linear constraints. This can be solved by
aggregating. To the best of our knowledge, the first such aggregated reformulation
was put forward by (Arima et al. 2014):

min 〈Q,X〉 + 2c�x

s.t.
m∑

i=1

(
a�
i Xai − 2bi a�

i x + b2i x0
) = 0

∑

j∈B
(X j j − x j ) = 0

(
1 x�
x X

)

∈ CPn+1

(9)

along with its doubly-nonnegative (DNN) relaxation,

min 〈Q,X〉 + 2c�x

s.t.
m∑

i=1

(
a�
i Xai − 2bi a�

i x + b2i
) = 0

∑

j∈B
(X j j − x j ) = 0

(
1 x�
x X

)

∈ N n+1 ∩ Sn+1+ ,

(10)

againwith a large-order psd constraint. Inspired byBurer (2010) andDickinson (2013),
another reformulation of (2) was recently put forward in Bomze et al. (2017) which
combines both above approaches (and performance advantages):
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min 〈Q,X〉 + 2c�x
s.t.

∑

j∈B
(X j j − x j ) = 0

RYR� =
(
1 x�
x X

)

(
1 x�
x X

)

∈ CPn+1, Y ∈ Sn+1−m,

(11)

along with its relaxation

min 〈Q,X〉 + 2c�x
s.t.

∑

j∈B
(X j j − x j ) = 0

RYR� =
(
1 x�
x X

)

(
1 x�
x X

)

∈ N n+1, Y ∈ Sn+1−m+ .

(12)

For the general case (i.e., also in absence of binary variables where we would have
a Slater point Y = εI+ (1−ε)e0e�

0 ), a comparison to previous approaches is provided
in Bomze et al. (2017), along with a thorough discussion of (strong) conic duality of
all these variants and their relaxations.

In Bomze et al. (2017), the equivalence of problems (CPP), (9) and (11) and similar
results for the relaxation (12) have been shown. For convenient notation, we introduce
the following four linear subspaces of Sn+1:

L1 =
{(

x0 x�
x X

)

∈ Sn+1: ∃Y ∈ Sn+1−m s.t. RYR� =
(
x0 x�
x X

)}

= RSn+1−mR�,

L2 =
{(

x0 x�
x X

)

∈ Sn+1: a
�
i x = bi x0 for i∈[1:m],
a�
i X = bix� for i∈[1:m]

}

,

L3 =
{(

x0 x�
x X

)

∈ Sn+1: a
�
i x = bi x0 for i∈[1:m],
a�
i Xai = b2i x0 for i∈[1:m]

}

,

L4 =
{(

x0 x�
x X

)

∈ Sn+1:
m∑

i=1

(
a�
i Xai − 2bi a�

i x + b2i x0
)

= 0

}

.

Note that from the definition of R, we have (RYR�)00 = (Y)00, and thus for L1, an
additional constraint of x0 = 1 is equivalent to fixing (Y)00 = 1.

As shown in Bomze et al. (2017, Theorem 1), the intersection of each Li with the
positive-semidefinite cone results in the same cone:

L1 = L2 ⊆ L3 ⊆ L4,

L1 ∩ Sn+1+ = L2 ∩ Sn+1+ = L3 ∩ Sn+1+ = L4 ∩ Sn+1+ = RSn+1−m+ R�.
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In spite of these equalities, we still consider these as separate sets, even when inter-
sected with the positive-semidefinite cone. The difference in description is especially
important when considering optimization problems and their duals, along with their
relaxations, for algorithmic and implementation reasons.

Again, we follow the approach in Bomze et al. (2017) in aggregating the binary
constraints of (P). We consider the following cones:

B1 =
{(

x0 x�
x X

)

∈ Sn+1: X j j = x j for j ∈ B

}

,

B2 =
{(

x0 x�
x X

)

∈ Sn+1: ∑
j∈B

(X j j − x j ) = 0

}

.

Then we have Bomze et al. (2017, Proposition 1)

Bk1 ∩ Ll1 ∩ CPn+1 = Bk2 ∩ Ll2 ∩ CPn+1 for all k1, k2∈[1: 2], l1, l2∈[1: 4] and
Bk1 ∩ Ll1 ∩ Sn+1+ ∩ N n+1 = Bk2 ∩ Ll2 ∩ Sn+1+ ∩ N n+1 for all k1, k2∈[1: 2], l1, l2∈[1: 4].

Burer (2009) showed that the problems (P) and (CPP) have the same optimal values.
So problem (CPP) can rewritten as

min

{

〈Q,X〉 + 2c�x:
(
1 x�
x X

)

∈ B1 ∩ L3 ∩ CPn+1
}

,

or as

min

{

〈Q,X〉 + 2c�x:
(
1 x�
x X

)

∈ B2 ∩ L4 ∩ CPn+1
}

or as

min

{

〈Q,X〉 + 2c�x:
(
1 x�
x X

)

∈ B2 ∩ L1 ∩ CPn+1
}

,

which can be expressed explicitly as problems (9) and (11) respectively.

1.4 Duality

In this subsectionwe consider the dual problems to the completely positive and positive
semidefinite problems considered in the paper so far. In particular we will consider
when the optimal solutions in the primal and dual problems are attained and when we
have strong duality, i.e. the primal and dual problems have the same optimal value. In
order to do this we first need the following result on strong duality for a certain class
of conic optimisation problems.

Lemma 1 For a proper cone K ⊆ R
n and a1, . . . , am ∈ K∗ and c ∈ R

n and b ∈ R
m,

consider the following pair of dual problems:
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minx 〈c, x〉
s.t. 〈ai , x〉 = bi for i∈[1:m]

x ∈ K,

(13)

maxy b�y

s.t. c −
m∑

i=1
ai yi ∈ K∗. (14)

Considering the solid convex cone A = K∗ + span{ai : i∈[1:m]}, we have:
1. If c ∈ intA: Then (14) is strictly feasible, i.e., there exists y ∈ R

m such that
c −∑m

i=1 ai yi ∈ intK∗, and thus there is strong duality.
2. If c /∈ clA: Then (14) is strongly infeasible, i.e., there exists x ∈ K and ε > 0 such

that
〈
c −∑m

i=1 ai yi , x
〉 ≤ −ε for all y ∈ R

m. The primal problem (13) is either
unbounded (in which case we have strong duality) or infeasible (in which case we
have an infinite duality gap).

3. If c ∈ bdA: Then (14) is either weakly feasible, i.e., it is feasible but does not have
a strictly feasible point or weakly infeasible, i.e., it is infeasible but not strongly
infeasible.

Proof Before going into the main part of this proof, we will first consider some pre-
liminary results that we will require.

We begin by noting that A∗ = {x ∈ K: 〈ai , x〉 = 0 for all i∈[1:m]}.
In this proof we will consider the following optimization problem for a nonegative

parameter u and a fixed d ∈ intK∗:

νu = min
x

{〈

c + u
m∑

i=1

ai , x

〉

: x ∈ K, 〈d, x〉 = 1

}

.

This is a continuous minimization problem over a compact set. We let xu ∈ K be an
optimal solution of νu and we let x∞ ∈ K be a limiting point as u → ∞.

Moreover letting x∗ ∈ K be an optimal solution ofminx {〈c, x〉 : x ∈ K, 〈d, x〉 = 1},
we have

νu ≥ 〈
c, x∗〉+ u

m∑

i=1

〈ai , xu〉︸ ︷︷ ︸
≥0

.

Therefore, if νu ≤ 0 for all u, then 〈ai , x∞〉 = 0 for all i∈[1:m], and thus x∞ ∈
A∗\{o}. Noting that

∑m
i=1 ai ∈ K∗, we have that νu is monotonically increasing in

u. Therefore if νu ≤ 0 for all u then ν∞ = limu→∞ νu is well defined and we have
ν∞ = limu→∞

〈
c + u

∑m
i=1 ai , xu

〉 ≥ limu→∞ 〈c, xu〉 = 〈c, x∞〉.
We now prove each part of this lemma separately:

1. We will show that in this case, for u large enough, the matrix c + u
∑m

i=1 ai is in
intK. Suppose for the sake of contradiction that this is not the case. Then νu ≤ 0
for all u. Therefore x∞ ∈ A∗\{o} and thus 0 < 〈c, x∞〉 ≤ ν∞ ≤ 0, which is a
contradiction.

2. There exists ε > 0 and z ∈ A∗ ⊆ K such that 〈c, z〉 = −ε. For all y ∈ R
m we

then have
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〈

c −
m∑

i=1

ai yi , z

〉

= 〈c, z〉 = −ε.

This proves strong infeasibility.

If the primal problem (13) has a feasible point x, then for all μ ≥ 0 the points
(x+ μz) are feasible, and considering μ → ∞, we get that the primal problem is
unbounded.

3. We have 〈c, x〉 ≥ 0 for all x ∈ A∗ and there exists x̂ ∈ A∗\{o} such that 〈c, x̂〉 = 0.
For all y ∈ R

m we have

〈

c −
m∑

i=1

ai yi , x̂

〉

= 〈c, x̂〉 = 0.

Therefore there is no strictly feasible point.
Now suppose for the sake of contradiction that (14) is strongly infeasible. Then
there exists ε > 0 such that νu ≤ −ε for all u. This implies that x∞ ∈ A∗ and
thus 0 ≤ 〈c, x∞〉 ≤ −ε < 0, which is a contradiction. ��
This lemma can be trivially extended for problems which can be converted into the

form given in the lemma through linear transformations on the ai ’s. This occurs in the
following theorem. In fact a more general condition, instead of a1, . . . , am ∈ K∗, is
that span{ai : i∈[1:m]} = span (K∗ ∩ span{ai : i∈[1:m]}), however the condition in
the lemma is somewhat simpler to understand.

We are now ready to present the main results of this subsection. In order to do
this we let C ⊆ [1: n]\B be the indices of unbounded variables in (P), we let Q̃ be
the principal submatrix of Q corresponding to C , we let ãi be the subvector of ai
corresponding to C and define the polyhedral cone

R =
{
z ∈ R

|C|
+ : ã�

i z = 0 for all i∈[1:m]
}

. (15)

Theorem 1 Let

COPR =
{
Y ∈ S |C|: z�Yz ≥ 0 for all z ∈ R

}

denote the set of all R-copositive matrices. This is a closed convex solid cone. For
all k∈[1: 2], l∈[1: 4], considering the dual problem tomin{〈Q,X〉+ 2c�x: (1, x,X) ∈
Bk ∩ CP ∩ Ll} we have:
1. If C = ∅ or Q̃ ∈ int COPR, then the dual problem has a strictly feasible point,

and thus there is strong duality.
2. If Q̃ /∈ COPR, then the dual problem is strongly infeasible. The primal problem is

either unbounded (in which case we have strong duality) or infeasible (in which
case we have an infinite duality gap).
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3. If Q̃ ∈ bd COPR, then the dual problem is either weakly infeasible or weakly
feasible.

Proof We will consider the proof for k = 2, l = 4. The proof for the other cases
follows likewise.

The primal problem is equivalent to the following:

min
x

〈(
0 c�
c Q

)

,

(
x0 x�
x X

)〉

s.t.

〈(
1 o�
o O

)

,

(
x0 x�
x X

)〉

= 1,

〈
m∑

i=1

(
bi

−ai

)(
bi

−ai

)�
,

(
x0 x�
x X

)〉

= 0

〈
∑

j∈B

(
1 −e�

i−ei 2e je�
j

)

,

(
x0 x�
x X

)〉

= |B|
(
x0 x�
x X

)

∈ CPn+1.

This problem can thus be seen to abide by the requirements of Lemma 1. Using the
notation from this lemma, we then have

A∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x0 x�
x X

)

∈ CPn+1:

〈(
1 o�
o O

)

,

(
x0 x�
x X

)〉

= 0

〈
m∑

i=1

(
bi

−ai

)(
bi

−ai

)�
,

(
x0 x�
x X

)〉

= 0

〈
∑

j∈B

(
1 −e�

i−ei 2e je�
j

)

,

(
x0 x�
x X

)〉

= 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= conv

{(
0
x

)(
0
x

)�
: x ∈ R

n+, x j = 0 for j ∈ B, a�
i x = 0 for i∈[1:m]

}

We thus have that

(
0 c�
c Q

)

∈ clA

⇔
(
0

x

)� (
0 c�
c Q

)(
0

x

)

≥ 0 for all x ∈ R
n+ x j = 0 for j ∈ B, a�

i x = 0 for i∈[1:m]

⇔ Q̃ ∈ COPR.

Similarly for

(
0 c�
c Q

)

∈ intA and

(
0 c�
c Q

)

∈ bdA. ��
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Remark 1 Consider the case when B = ∅ and the optimal solution to prob-
lem (P) is attained. We consider the completely positive formulation min{〈Q,X〉 +
2c�x: (1, x,X) ∈ CP ∩ L4} and its dual

max
u,v

u

s.t.

(
0 c�
c Q

)

− u

(
1 o�
o O

)

− v

m∑

i=1

(−bi
ai

)(−bi
ai

)�
∈ COPn+1.

Let x̂ be an optimal solution of (P) with corresponding optimal value κ . Further
suppose that x̂ is not a first order local minimizer of f (x) = x�Qx + 2c�x over Rn+,
i.e. the linear constraints play a significant role at the optimal solution. This assumption
is equivalent to the existence of a y ∈ R

n such that x̂ + y ∈ R
n+ and (Q̂x + c)�y < 0.

For all feasible (u, v) of the dual problem and all ε ∈ (0, 1] we have

0 ≤
(

1
x̂ + εy

)� [(
0 c�
c Q

)

− u

(
1 o�
o O

)

− v

m∑

i=1

(−bi
ai

)(−bi
ai

)�]( 1
x̂ + εy

)

= κ − u + 2ε (Q̂x + c)�y
︸ ︷︷ ︸

<0

+ε2y�
(

Q − v

m∑

i=1

aia�
i

)

y.

Considering ε small enough, we thus have u < κ . Therefore, if in such a case there is
no duality gap then the optimal solution set of the dual problem is empty. The difficulty
is that the linear constraints appear in a concise way in the problem, rather than being
used to reduce the size of the problem.

Theorem 2 Let

Q = N |C| + S |C|
+ + span

{
e j ã�

i + ãie�
j : i∈[1:m], j∈[1: |C |]

}
. (16)

This is a convex solid cone, although it is an open question whether it is closed. For
all k∈[1: 2], l∈[1: 4], considering the dual problem tomin{〈Q,X〉+ 2c�x: (1, x,X) ∈
Bk ∩ N ∩ Ll} we have:
1. If C = ∅ or Q̃ ∈ intQ, then the dual problem has a strictly feasible point, and

thus there is strong duality.
2. If Q̃ /∈ clQ, then the dual problem is strongly infeasible. The primal problem is

either unbounded (in which case we have strong duality) or infeasible (in which
case we have an infinite duality gap).

3. If Q̃ ∈ bdQ, then the dual problem is either weakly infeasible or weakly feasible.

Proof This can be proven by reworking the proof from Theorem 1, however this time
we have
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A∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x0 x�
x X

)

∈ Sn+1+ ∩ N n+1:

〈(
1 o�
o O

)

,

(
x0 x�
x X

)〉

= 0

〈
m∑

i=1

(
bi

−ai

)(
bi

−ai

)�
,

(
x0 x�
x X

)〉

= 0

〈
∑

j∈B

(
1 −e�

i−ei 2e je�
j

)

,

(
x0 x�
x X

)〉

= 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
{(

0 o�
o X

)

∈ Sn+1+ ∩ N n+1: Xai = o for all i∈[1:m]
X j j = 0 for all

}

We note that as the variables in [1: n]\C are bounded below, we have the following,
where the equality comes from the fact that the first optimization problemhas a feasible
point x0:

∞ > max
x

{〈
∑

i /∈C
ei , x

〉

: x ∈ R
n+, a�

i x = bi for all i∈[1:m]
}

= min
y

{

y�b:
m∑

i=1

yiai −
∑

i /∈C
ei ∈ R

n+

}

Therefore there exists z ∈ span{ai : i∈[1:m]} ∩R
n+ such that zi > 0 for all i /∈ C , and

thus we have that

X ∈ Sn+ ∩ N n, Xai = o for all i∈[1:m] ⇒ X ∈ Sn+ ∩ N n, Xz = o

⇒ Xi j = 0 for all i∈[1: n], j /∈ C .

Therefore

(
0 c�
c Q

)

∈ clA

⇔
〈(

0 c�
c Q

)

,

(
0 o�
o X

)〉

≥ 0 for all X ∈ Sn+ ∩ N n : Xi j = 0 for i∈[1: n], j /∈ C,

Xai = o for i∈[1:m]
⇔ Q̃ ∈ Q.

Similarly for

(
0 c�
c Q

)

∈ intA and

(
0 c�
c Q

)

∈ bdA. ��

Lemma 2 Letting B̃ = [̃am+1 . . . ãn] and using the notation from the previous two
theorems, we have
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COPR = cl
(
COP |C| + span{̃ai ã�

i : i∈[1:m]}
)

= cl
(
COP |C| + span{̃aie�

j + e j ã�
i : i∈[1:m], j∈[1: |C |]}

)
,

clQ = cl
(
N |C| + S |C|

+ + span{̃ai ã�
i : i∈[1:m]}

)

= cl
(
N |C| +

{
Y ∈ S |C|: B̃�

ỸB ∈ Sn−m+
})

S |C|
+ + N |C| ⊆ Q ⊆ COPR,

COP |C| ⊆ COPR.

Proof The techniques from Bomze et al. (2017, Theorem 1), along with basic results
on dual cones, give us the following, from which we get the results in this lemma:

(COPR)∗ = conv
{
zz�: z ∈ R

n+, ã�
i z = 0 for i∈[1:m]

}

=
{
Z ∈ CP |C|:

〈
Z, ãi ã�

i

〉
= 0 for i∈[1:m]

}

=
{
Z ∈ CP |C|: Z̃ai = o for i∈[1:m]

}
and

Q∗ = N |C| ∩
{
Z ∈ S |C|

+ : Z̃ai = o for i∈[1:m]
}

= N |C| ∩
{
Z ∈ S |C|

+ :
〈
Z, ãi ã�

i

〉
= 0 for i∈[1:m]

}

= N |C| ∩
{
Z ∈ S |C|: ∃W ∈ Sn−m+ s.t. B̃WB̃

� = Z
}

.

��

In the next section, we present our penalization method.

2 Penalizing constraints

We recall from Bomze et al. (2017, (25), (26)) that the dual of the CPP reformulation
and its DNN relaxation can be written as

maxy y

s.t.

(−y c�
c Q

)

∈ B⊥
k + L⊥

l + COPn+1,
(17)

and
maxy y

s.t.

(−y c�
c Q

)

∈ B⊥
k + L⊥

l + Sn+1+ + N n+1,
(18)
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where k∈[1: 2], l∈[1: 4], and

L⊥
1 =

{(
x0 x�
x X

)

∈ Sn+1: BT
(
x0 x�
x X

)

B = O
}

,

L⊥
2 = span

{(
2bi −a�

i−ai O

)

: i∈[1:m]
}

+ span

{(
0 −bie�

j
−bie j aie�

j + e ja�
i

)

: i∈[1:m], j∈[1: n]
}

,

L⊥
3 = span

{(
2bi −a�

i−ai O

)

: i∈[1:m]
}

+ span

{(
b2i o�
o −aia�

i

)

: i∈[1:m]
}

,

L⊥
4 = span

{
m∑

i=1

(
b2i −bia�

i−biai aia�
i

)}

,

B⊥
1 = span

{(
0 −e�

j
−e j 2e je�

j

)

: j ∈ B
}

, and B⊥
2 = span

⎧
⎨

⎩

∑

j∈B

(
0 −e�

j
−e j 2e je�

j

)⎫
⎬

⎭
.

The proof of Bomze et al. (2017, Proposition 1) uses the following facts: first
∑m

i=1

(
a�
i Xai − 2bi a�

i x + b2i
) ≥ 0 for any

(
1 x�
x X

)

∈ Sn+1+ . And second, if
(
1 x�
x X

)

∈ Sn+1+ ∩ N n+1 such that
∑m

i=1

(
a�
i Xai − 2bi a�

i x + b2i
) = 0, then

∑
j∈B(x j − X j j ) ≥ 0, see Bomze et al. (2017, Lemma 2). This suggests that we

can move either one of these constraints into the objective function with a penalty. We
investigate such penalization methods in this section.

2.1 Penalizing linear constraints

For λ ≥ 0 we consider the following penalized problem and its dual

L(λ) = min 〈Q,X〉 + 2c�x + λ
m∑

i=1

(
a�
i Xai − 2bi a�

i x + b2i
)

s.t.

(
1 x�
x X

)

∈ CPn+1 ∩ B2,

(CPP(λ))

L∗(λ) = max y

s.t.

(−y + λ
∑m

i=1 b
2
i c� − λ

∑m
i=1 bia

�
i

c − λ
∑m

i=1 biai Q + λ
∑m

i=1 aia
�
i

)

∈ COPn+1 + B⊥
2 ,

(CPP∗(λ))

We now present the following theorem connecting (CPP(λ))–(CPP), where we use
the notation from Theorem 1.
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Theorem 3 We have the following results on problem (CPP(λ)):

1. We have that L(λ) is a monotonically increasing function in λ and L(λ) ≤
opt (CPP) for all λ.

2. (CPP(λ)) has a strictly feasible point and thus L(λ) = L∗(λ) for all λ.
3. limλ→∞ L∗(λ) is equal to the optimal value of the dual problem (17) to the primal

problem (9) with k = 2, l = 4.
4. If Z is bounded or Q̃ ∈ int COPR then limλ→∞ L(λ) = opt (CPP) and there

exists Λ ∈ R such that

(a) For λ ≥ Λ problem (CPP∗(λ)) is strictly feasible.
(b) For λ ≥ Λ the optimal solutions to the primal and dual problems are attained.
(c) Suppose that (xλ,Xλ) is an optimal solution to (CPP(λ)). If (CPP) is feasible

then there is a compact set Y ⊆ R
n × Sn such that for all λ ≥ Λ we have

(xλ,Xλ) ∈ Y and every limit point of (xλ,Xλ) as λ → ∞ is an optimal solution
to (CPP).

5. IfZ is unbounded and Q̃ /∈ COPR, then problem (CPP∗(λ)) is strongly infeasible
for all λ and L(λ) = L∗(λ) = −∞ for all λ. We then have L(λ) = opt (CPP) if
and only if (CPP) is feasible.

Proof We will prove each part in turn:

1. This is immediate, as (CPP(λ))-feasibility implies
∑m

i=1

(
a�
i Xai −2bi a�

i x + b2i
)≥

0 and (CPP)-feasibility implies
∑m

i=1

(
a�
i Xai − 2bi a�

i x + b2i
) = 0.

2. From the results in Dickinson (2010) we see that

1

n + 1

(
n + 1 2e�
2e ee� + I

)

= 1

n + 1

(
1
e

)(
1
e

)�

+ 1

n + 1

n∑

i=1

(
1
ei

)(
1
ei

)�
∈ int CPn+1,

Therefore x = 2
n+1e, X = 1

n+1 (ee
� + I) is a strictly feasible point of (CPP(λ)).

3. It is trivial to see that if a point is infeasible for (17) with k = 2, l = 4, then it is
infeasible in (CPP∗(λ)) for all λ. Alternatively if in (17) with k = 2, l = 4 we have
a feasible point then for λ large enough this point is also feasible in (CPP∗(λ)).

4. From Theorem 1 we have that in this case the optimal value of (17) is equal to
opt (CPP).

4a. From considering Theorem 1 with B = ∅, we see that there exist Λ,ω ∈ R such
that

Yλ =
(

ω c�
c Q

)

+ λ

m∑

i=1

(
bi

−ai

)(
bi

−ai

)�
∈ int COPn+1 for all λ ≥ Λ.

This provides a strictly feasible point to problem (CPP∗(λ)).
4b. This follows from the fact that both the primal and dual problems have strictly

feasible points.
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4c. If we can prove the compactness of the optimal solutions then the rest will follow
from Bazaraa and Shetty (1979, Thm.9.2.2).
Recall from Theorem 1 that in the case we are considering, problem (17) has a
strictly feasible point. Aswe assume (CPP) is feasible, this implies that problem (9)
is feasible, and thus has a finite optimal value. Let ν equal this optimal value and
let (x,X) be an arbitrary optimal solution of (CPP(λ)) for an arbitrary λ ≥ Λ. We
have

ν + ω≥〈Q,X〉 + 2c�x + λ

m∑

i=1

(
a�
i Xai −2bi a�

i x + b2i

)
+ ω≥

〈

YΛ,

(
1 x�
x X

)〉

.

As YΛ ∈ int COPn+1 is fixed, this restricts

(
1 x�
x X

)

to lie in a compact set.

5. FromTheorem 1we have that in this case problem (17) is strongly infeasible, and it
is trivial to see that this implies that problem (CPP∗(λ)) is also strongly infeasible.
As the primal problem (CPP(λ)) is feasible, this implies that L(λ) = −∞. ��

These arguments hold likewise for the doubly nonnegative approximations with
“COPR” replaced by “Q”, using the last results in Sect. 1.4.

2.2 Penalizing binary constraints

The basic idea of this subsection is that the linear constraints can be considered as
‘helpful’ as they reduce the size of the problem. Instead it is the binary constraints
which are the unpleasant constraints.

For λ ≥ 0, we consider the following penalized problem and its dual

K (λ) = min 〈Q,X〉 + 2c�x + 2λ
∑

j∈B
(x j − X j j )

s.t.

(
1 x�
x X

)

∈ CPn+1 ∩ L1,
(19)

K ∗(λ) = max y

s.t.

⎛

⎜
⎝

−y c� + λ
∑

j∈B
e�
j

c + λ
∑

j∈B
e j Q − 2λ

∑

j∈B
e je�

j

⎞

⎟
⎠ ∈ COPn+1 + L⊥

1 .
(20)

Theorem 4 We have the following results on problem (19):

1. We have that K (λ) is a monotonically increasing function in λ and K (λ) ≤
opt (CPP) for all λ.

2. Problem (19) has a feasible point, however there is no strictly feasible point when
m �= 0.

3. We have that limλ→∞ K ∗(λ) is equal to the optimal value of (17) for k = 2, l = 1.
4. If Z is bounded or Q̃ ∈ int COPR then:
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(a) We have limλ→∞ K (λ) = opt (CPP).
(b) Problem (20) is strictly feasible for all λ ≥ 0.
(c) We have K (λ) = K ∗(λ) and the optimal solution of problem (19) is attained.
(d) Suppose that (xλ,Xλ) is an optimal solution to (19). If (CPP) is feasible then

there is a compact set Y ⊆ R
n ×Sn such that for all λ ≥ 0 we have (xλ,Xλ) ∈

Y , and every limit point of (xλ,Xλ) as λ → ∞ is an optimal solution to (CPP).

5. IfZ is unbounded and Q̃ /∈ COPR, then problem (20) is strongly infeasible for all
λ and K (λ) = −∞ for all λ. We then have K (λ) = opt (CPP) if and only if (P)
([or (CPP)]) is feasible.

Proof Multiple parts of this proof rely on the observation from the proof of Bomze
et al. (2017, Lemma 4) that there exists u ∈ R

n+ and U ∈ N n and θi j ∈ R for
i∈[1:m], j∈[1: n] such that

∑

j∈B

(
0 −e�

j
−e j 2e je�

j

)

=
(
0 u�
u U

)

+
m∑

i=1

n∑

j=1

θi j

(
0 −bie�

j
−bie j aie�

j + e ja�
i

)

∈ N + L⊥
2 ⊆ CP ∗ + L⊥

1 .

This means that if at a feasible point of (20) we increase λ then the feasible set
of (20) will remain feasible [and similarly for (17) with k = 2, l = 1].

We will now prove each part in turn (although not in order):

1. This is trivial to see.
2. For x0 as given in Sect. 1.3, we have that x = x0, X = x0x�

0 is a feasible point
of (19). However, from the discussion in Bomze et al. (2017, Section 2.3), we see
that (19) does not have a strictly feasible point when m �= 0.

3. It is trivial to see that if a point is infeasible for (17) with k = 2, l = 1, then it
is infeasible in (20) for all λ. Alternatively if in (17) for k = 2, l = 1 we have a
feasible point then for λ large enough this point is also feasible in (20).

4b. As in the proof of Theorem 3 part 4a, there exist Λ,ω ∈ R such that

YΛ =
(

ω c�
c Q

)

+ Λ

m∑

i=1

(
bi

−ai

)(
bi

−ai

)�
∈ int COPn+1.

Therefore, for all λ ≥ 0 we have

(
ω c�
c Q

)

+ λ

(
0 e�

j
e j −2e je�

j

)

+ Λ

m∑

i=1

(
bi

−ai

)(
bi

−ai

)�

− λ

m∑

i=1

∑

j∈B
θi j

(
0 −bie�

j
−bie j aie�

j + e ja�
i

)

= YΛ + λ

(
0 u�
u U

)

∈ int COPn+1.
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This then gives us a strictly feasible point of (20).
4c. This follows from the fact that problem (20) is strictly feasible and problem (19)

is feasible.
4a. From Theorem 1 we have that in this case the optimal value of (17) is equal to

opt (CPP). The proof of this part is concluded by considering parts 3 and 4c.
4d. If we can prove the compactness of the optimal solutions then the rest will follow

from Bazaraa and Shetty (1979, Thm.9.2.2).
Recall from Theorem 1 we have that in the case we are considering, problem (17)
has a strictly feasible point. As we assume (CPP) is feasible, this implies that
it has a finite optimal value. Let ν equal this optimal value and let (x,X) be an
arbitrary optimal solution of (19) for an arbitrary λ ≥ 0. We have

ν + ω ≥ 〈Q,X〉 + 2c�x + 2λ
∑

j∈B
(x j − X j j ) + ω ≥ 〈Q,X〉 + 2c�x + ω

=
〈

YΛ,

(
1 x�
x X

)〉

.

As YΛ ∈ int COPn+1 is fixed, this restricts

(
1 x�
x X

)

to lie in a compact set.

5. From Theorem 1 we have that (17) is strongly infeasible, and it is trivial to
see that this implies that problem (20) is also strongly infeasible. As the primal
problem (19) is feasible, this implies that K (λ) = −∞. ��

The doubly nonnegative approximation for (19) is equivalent to:

minY

〈

Y, B�
[(

0 c�
c Q

)

+ λ
∑

j̇∈B

(
0 e�

j
e j −2e je�

j

)]

B

〉

s.t. Y ∈ Sn+1−m+
Y00 = 1
BYB� ∈ N n+1.

(21)

This is a positive semidefinite optimization problemwith one linear equality constraint,
1
2n(n − 1) linear inequality constraints and one positive semidefiniteness constraint
of order n + 1 − m.

Similar as before, almost all of the results and proofs fromTheorem 4, hold likewise
for this approximation, replacing COPR with Q. The only exception is statement of
Theorem 4(2): recall that we assume that x0 is strictly positive, so there exists ε > 0
such that Y = e0e�

0 + ε
∑n−m

i=1 eie�
i is a strictly feasible point of the approxima-

tion (21).

3 Purely binary quadratic problems

We recall the general form of a purely binary quadratic problem (i.e., B = [1: n]),
which includes the notoriously hard multidimensional quadratic knapsack problem.
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Observe that we can get rid of the linear term in the objective easily since x2i = xi
holds for all i . We consider a maximization problemwith linear inequality constraints,
and no continuous variables.

max x�Qx
s.t. ã�

i x ≤ bi for i∈[1:m]
x ∈ {0, 1}n .

(22)

Without loss of generality we shall assume that if x ∈ R
n+ such that ã�

i x ≤ bi for all
i∈[1:m] then x j ≤ 1 for all j∈[1: n].
Theorem 5 The purely binary quadratic problem (22) is equivalent to the copositive
reformulation

max 〈Q,X〉
s.t.

n∑

j=1
(X j j − x j ) = 0

B
(
1 x�
x X

)

B� =
⎛

⎝
1 x� v�
x X U�
v U V

⎞

⎠ ∈ CPn+m+1.

(
1 x�
x X

)

∈ Sn+1.

(23)

where

A = (
ã1, · · · , ãm

) ∈ R
n×m, and B =

⎛

⎝
1 o�
o In
b −A�

⎞

⎠ ∈ R
(n+1+m)×(n+1).

Problem (23) can then be relaxed to the problem

max 〈Q,X〉
s.t.

n∑

j=1
(X j j − x j ) = 0

B
(
1 x�
x X

)

B� =
⎛

⎝
1 x� v�
x X U�
v U V

⎞

⎠ ∈ N n+m+1

(
1 x�
x X

)

∈ Sn+1+ .

(24)

Proof By adding slack variables vi ≥ 0, problem (22) is equivalent to

max x�Qx
s.t. ã�

i x + vi = bi for i∈[1:m]
x ∈ {0, 1}n
v ∈ R

m+.

(25)
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The key assumption (1) then holds for this problem. Now it is easy to see that prob-
lem (22) has the same optimal value as (23), and (24) is clearly its straightforward
DNN relaxation. ��

The relaxation-linearization technique (RLT) (Burer 2015; Sherali and Adams
1990) is a very popular approach to solve hard problems. The next result shows that
our approach is closely connected:

Theorem 6 Problem (22) is equivalent to

max 〈Q, xx�〉
s.t. ã�

i x ≤ bi for i∈[1:m]
ã�
i xx

� ≤ bix� for i∈[1:m]
bi ã�

k x + bk ã�
i x − bibk − ã�

i xx
�ãk ≤ 0 for i ≤ k∈[1:m]

n∑

j=1
(x2j − x j ) = 0

(
1
x

)(
1
x

)�
∈ Sn+1+ ∩ N n+1.

(26)

Relaxing the rank-one constraint, we arrive at the RLT-style relaxation

max 〈Q,X〉
s.t. ã�

i x ≤ bi for i∈[1:m]
ã�
i X ≤ bix� for i∈[1:m]
bi ã�

k x + bk ã�
i x − bibk − ã�

i X̃ak ≤ 0 for i ≤ k∈[1:m]
n∑

j=1
(X j j − x j ) = 0

(
1 x�
x X

)

∈ Sn+1+ ∩ N n+1.

(27)

Proof The equivalence of (26) and (22) follows by writing out the nonnegative con-
straints explicitly, and observing that

bi ã�
k x + bk ã�

i x − bibk − ã�
i xx

�ãk = −(bi − ã�
i x)(bk − ã�

k x),

while the relaxation (27) works exactly as in the classical RLT approach.

4 Numerical study

In this section, we compare the performances of the different proposed DNN
relaxations together with the penalizing relaxations on multidimensional quadratic
knapsack problems and quadratic assignment problems. All algorithms are imple-
mented inMATLAB using the modeling language CVX (Grant and Boyd 2013, 2008)
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and the corresponding SDP instances are solved using SeDuMi (Sturm 1999) with
default parameters on a machine with an Intel Core i7 2.8GHz processor and 16.0GB
RAM.Note that before choosing SeDuMi, we compared several SDP solvers. Accord-
ing to our intensive numerical tests, we noticed that SeDuMi is the most stable solver
from a numerical point of view.

4.1 Multidimensional quadratic knapsack problems

In the literature, the special case of (22) where ai ∈ R
n+ for all i∈[1:m] is frequently

called a multidimensional quadratic knapsack problem. In this section, these mul-
tidimensional quadratic knapsack problems are considered to evaluate numerically
the performance of the different proposed approaches. We perform our tests on eight
different instance sizes characterized by the following parameters: number of items
n ∈ {10, 20, 30, 40, 50, 60, 70, 80}, and number of capacity constraints m ∈ {5, 10},
while the constraint structure ai and bi are taken from the literature (Beasley 2010).
The (homogeneous) objective function is randomly generated: the elements of Q are
uniformly sampled from the interval [100, 400].

The numerical results of six different relaxations are reported in Table 1. The opti-
mal value was determined by CPLEX,1 and used to calculate the gap. The following
columns show optimal values of the respective relaxations as well as their correspond-
ing CPU time. We can observe in Table 1 that the best results in terms of the solution
quality are given by the reduced relaxations where the gap to the optimal solutions is
on average less that 5%. The worst relaxation is the one where we merge both linear
and binary constraints as the gap to the optimal solution averages 15.78%. From the
point of view of the computation time, the reduced relaxations show the best perfor-
mance, and solve instances up to n = 80,m = 5. In parallel, merging both linear and
binary constraints presents the highest CPU time. Notice that only the reduced relax-
ations solve the largest instances within a reasonable CPU time. The combination of
the reduced variant and merging constraints is slightly more efficient than the variant
without merging in terms of CPU time whilst both relaxations have the same objective
values. The comparison between the three first relaxations and the reduced one shows
that the objective values of these three relaxations are similar; the average gap is less
than 1.5%. The worst performance is given by the variant where both linear and binary
constraints aremerged as the average gap is 10.38%. All our instances are solved using
interior point methods implemented in SeDuMi. One of the reasons of the degraded
performances of the variant with both merging might be found in the behaviour of
interior point methods. It is well known that merging the constraints provides better
performances when the subgradient based methods are used (Kiwiel 1983).

Table 2 shows our numerical results for solving the same instances as in Table 1
by the penalization method where the parameter λ takes three values 100, 1000, and
100,000. Similar as the previous results, non merging variants outperform merging
ones. Due to inherent numerical instability problems of the penalized methods, the
solutions provided by SeDuMi are inaccurate which makes any rigorous comparisons
difficult. However, for the instances solved to optimality without numerical perturba-

1 IBM ILOG, CPLEX Optimizer. http://www.ibm.com/software/integration/optimization/cplex/.
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tions, we notice that the CPU time decreases when λ increases for the non merging
reformulations.

4.2 Quadratic assignment problems

We next consider a general quadratic assignment problem as follows:

min 〈X,AXB�〉
s.t. e�Xei = e�

i Xe = 1 for i∈[1: n]
Xi j ∈ {0, 1} for i∈[1: n], j∈[1: n],

(P)

where A, B ∈ R
n×n are given.

We performed our tests on 5 different instance sizes: n ∈ {6, 8, 10, 11, 12} while
A and B are taken from QAPLIB (Burkard et al. 1997). The numerical results of
six different relaxations as well as their corresponding dual problems are reported in
Table 3. The optimal value was determined by CPLEX and used to calculate the gap.
The following columns show optimal values of the respective relaxation as well as
their corresponding CPU time.

Table 3 compares our different relaxations on relatively small instances of QAP
problemswith up to 12 variables. Larger instances cannot be solved bySeDuMi due to
both numerical instability and the high computation time. Unlike themultidimensional
knapsack problems, our reformulations and their respective relaxations close the gap
for all the instances except the variant where both linear and binary constraints are
merged. We solve both the dual and the primal formulations for all the variants in
order to check the numerical stability of our different relaxations. We notice that
the dual, living up to its reputation, shows a better stability than the primal as all
the instances are solved to optimality except one whilst the primal did not succeed
in solving many instances for merging both linear and binary constraints variant.
This shows that the dual formulations are more robust from a numerical point of
view.Moreover, our different relaxations are promising for solving hard combinatorial
optimization problems like QAP for larger instances once new efficient solvers are
available.

5 Conclusion and outlook

In this paper, we present new results of variants of CP reformulations and their
relaxations for solving hard combinatorial optimization problems. We study a new
penalization method in order to reduce the size of the SDP relaxations. Our numerical
results show that the multidimensional knapsack problems can be solved using SDP
relaxations with good quality solutions. As for QAP problems, we closed the gaps for
almost all the considered instances. Our penalization method gives comparable results
with CP reformulations despite the numerical instability of the used solvers. Finally,
our reduction based variant is the most efficient and promising for solving large size
instances. Further research work will focus mainly on using softwares based on sub-
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gradient methods instead of interior point methods, and also extend our approaches to
other combinatorial optimization problems.
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