
A Tutorial on Graph Transformation

Barbara König1 , Dennis Nolte1(B) , Julia Padberg2, and Arend Rensink3

1 Universität Duisburg-Essen, Duisburg, Germany
dennis.nolte@uni-due.de

2 Hochschule für Angewandte Wissenschaften Hamburg, Hamburg, Germany
3 University of Twente, Enschede, Netherlands

Abstract. Graph transformation or graph rewriting has been developed
for nearly 50 years and has become a mature and manifold formal tech-
nique. Basically, rewrite rules are used to manipulate graphs. These rules
are given by a left-hand side and a right-hand side graph and the appli-
cation comprises matching the left-hand side and replacing it with the
right-hand side of the rule.

In this contribution we give a tutorial on graph transformation that
explains the so-called double-pushout approach to graph transformation
in a rigorous, but non-categorical way, using a gluing construction. We
explicate the definitions with several small examples.

We also introduce attributes and attributed graph transformation in
a lightweight form. The paper is concluded by a more extensive example
on a leader election protocol, the description of tool support and pointers
to related work.

1 Introduction

A substantial part of computer science is concerned with the transformation
of structures, the most well-known example being the rewriting of words via
Chomsky grammars, string rewriting systems [9] or transformations of the tape
of a Turing machine. We focus on systems where transformations are rule-based
and rules consist of a left-hand side (the structure to be deleted) and a right-hand
side (the structure to be added).

If we increase the complexity of the structures being rewritten, wse next
encounter trees or terms, leading to term rewriting systems [2]. The next level is
concerned with graph rewriting [42], which – as we will see below – differs from
string and term rewriting in the sense that we need a notion of interface between
left-hand and right-hand side, detailing how the right-hand side is to be glued
to the remaining graph.

Graph rewriting is a flexible and intuitive, yet formally rigorous, framework
for modelling and reasoning about dynamical structures and networks. Such
dynamical structures arise in many contexts, be it object graphs and heaps, UML
diagrams (in the context of model transformations [13]), computer networks,
the world wide web, distributed systems, etc. They also occur in other domains,

c© Springer International Publishing AG, part of Springer Nature 2018
R. Heckel and G. Taentzer (Eds.): Ehrig Festschrift, LNCS 10800, pp. 83–104, 2018.
https://doi.org/10.1007/978-3-319-75396-6_5

http://orcid.org/0000-0002-4193-2889
http://orcid.org/0000-0002-6170-6600
http://orcid.org/0000-0002-1714-6319


84 B. König et al.

where computer science methods are employed: social networks, as well as chem-
ical and biological structures. Specifically concurrent non-sequential systems are
well-suited for modelling via graph transformation, since non-overlapping occur-
rences of left-hand sides can be replaced in parallel. For a more extensive list of
applications see [12].

Graph rewriting has been introduced in the early 1970’s, where one of the
seminal initial contributions was the paper by Ehrig et al. [17]. Since then, there
have been countless articles in the field: many of them are foundational, describ-
ing and comparing different graph transformation approaches and working out
the (categorical) semantics. Others are more algorithmic in nature, describing
for instance methods for analysing and verifying graph transformation. Further-
more, as mentioned above, there have been a large number of contributions on
applications, many of them in software engineering [12], but in other areas as
well, such as the recent growing interest from the area of biology in connection
with the Kappa calculus (see for instance [7]).

Naturally, there are many other formalisms for describing concurrent systems,
we just mention a few: Petri nets [38] can be viewed as a special case of graph
transformation, missing the ability to model dynamic reconfigurations. There
are however extensions such as reconfigurable Petri nets that extend nets with
additional rules so that the net structure can be changed. An overview can be
found in this collection [35]. Graph transformation is similar in expressiveness
to process algebra [19,32,43], but is often more flexible, since a different choice
of rules leads to different behaviours. Furthermore, behavioural equivalences,
well-known from process algebra, can also be defined for graph transformation
[14,24,29].

The aim of this paper is not to give a full overview over all possible approaches
to graph transformation and all application scenarios. Instead, we plan to do
quite the opposite: in the wealth of papers on graph transformation it is often
difficult to discover the essence. Furthermore, readers who are not familiar with
the categorical concepts (especially pushouts) used in the field can get easily
intimidated. This is true for basic graph rewriting and is even more pronounced
for enriched forms, such as attributed graph rewriting [11,18,34].

To solve this, in this paper we give a condensed version that can be easily
and concisely defined and explained. For basic graph rewriting, we rely on the
double-pushout (DPO) approach [4,17], which is one of the most well-known
approaches to graph transformation, although clearly not the only one. In the
definition we do not use the notion of pushouts, although we will afterwards
explain their role.

For attributed graphs, we chose to give a lightweight, but still expressive
version, which captures the spirit of related approaches.

Apart from spelling out the definitions, we will also motivate why they have
a specific form. Afterwards, we will give an application example and introduce
tool support.

Note that in the context of this paper we use the terms graph rewriting and
graph transformation interchangeably. We will avoid the term graph grammar,



A Tutorial on Graph Transformation 85

since that emphasizes the use of graph transformation to generate a graph lan-
guage, here the focus is just on the rewriting aspect.

2 A Formal Introduction to Graph Transformation

We start by defining graphs, where we choose to consider directed, edge-labelled
graphs where parallel edges are allowed.

Other choices would be to use hypergraphs (where an edge can be connected
to any number of nodes) or to add node labels. Both versions can be easily
treated by our rewriting approach.1

Throughout the paper, we assume the existence of a fixed set Λ from which
we take our labels.

Definition 1 (Graph). A graph G is a tuple G = (V,E, s, t, �), where

– V is a set of nodes,
– E is a set of edges,
– s : E → V is the source function,
– t : E → V is the target function and
– � : E → Λ is the labelling function.

Given a graph G, we denote its components by VG, EG, sG, tG, �G. Given an
edge e ∈ EG, the nodes sG(e), tG(e) are called incident to e.

A central notion in graph rewriting is a graph morphism. Just as a function
is a mapping from a set to another set, a graph morphism is a mapping from a
graph to a graph. It maps nodes to nodes and edges to edges, while preserving
the structure of a graph. This means that if an edge is mapped to an edge,
there must be a mapping between the source and target nodes of the two edges.
Furthermore, labels must be preserved.

Graph morphisms are needed to identify the match of a left-hand side of
a rule in a (potentially larger) host graph. As we will see below, they are also
required for other purposes, such as graph gluing and graph transformation rules.

Definition 2 (Graph morphism). Let G, H be two graphs. A graph mor-
phism ϕ : G → H is a pair of mappings ϕV : VG → VH , ϕE : EG → EH such
that for all e ∈ EG it holds that

– sH(ϕE(e)) = ϕV (sG(e)),
– tH(ϕE(e)) = ϕV (tG(e)) and
– �H(ϕE(e)) = �G(e).

1 Note that considerable part of graph transformation theory is concerned with making
the results independent of the specific graph structure under consideration (see [28,
30]). This however depends on the use of category theory and we will not follow this
path here.



86 B. König et al.

A graph morphism ϕ is called injective (surjective) if both mappings ϕV , ϕE

are injective (surjective). Whenever ϕV and ϕE are bijective, ϕ is called an
isomorphism. In this case we say that G1, G2 are isomorphic and write G1

∼= G2.
Graph morphisms are composed by composing both component mappings.

Composition of graph morphisms is denoted by ◦.
In the following we omit the subscripts in the functions ϕV , ϕE and simply

write ϕ.

Example 1. Consider the following graphs G and H. Note that the numbers
written at the nodes are not part of the graph: they are just there to indicate
the morphism from G to H.

G =
1 2 3 4

A B

B

C ϕ
−→

1

2

3,4

A
B

D

C = H

Here the edges of G are mapped with respect to their corresponding source and
target node mappings. Note that the graph morphism ϕ is not surjective, since
the D-labelled edge in H is not targeted. Furthermore, the morphism ϕ is not
injective since the nodes 3 and 4 of the graph G are mapped to the same node
in H and the two B-labelled edges in G are mapped to the same edge in H.

Now we come to another central concept that we here call graph gluing, but
which is more conventionally called pushout in the literature. We will stick with
the name graph gluing for now and will later explain the relation to categorical
pushouts.

An intuitive explanation for the following construction is to think of two
graphs G1, G2 with an overlap I. Now we glue G1 and G2 together over this
common interface I, obtaining a new graph G1 +I G2. This intuition is adequate
in the case where the embeddings of I into the two graphs (called ϕ1, ϕ2 below)
are injective, but not entirely when they are not. In this case one can observe
some kind of merging effect that is illustrated in the examples below.

Graph gluing is described via factoring through an equivalence relation. We
use the following notation: given a set X and an equivalence ≡ on X, let X/ ≡
denote the set of all equivalence classes of ≡. Furthermore [x]≡ denotes the
equivalence class of x ∈ X.

Definition 3 (Graph gluing). Let I,G1, G2 be graphs with graph morphisms
ϕ1 : I → G1, ϕ2 : I → G2, where I is called the interface. We assume that all
node and edge sets are disjoint.

Let ≡ be the smallest equivalence relation on VG1 ∪ EG1 ∪ VG2 ∪ EG2 which
satisfies ϕ1(x) ≡ ϕ2(x) for all x ∈ VI ∪ EI .



A Tutorial on Graph Transformation 87

The gluing of G1, G2 over I (written as G = G1 +ϕ1,ϕ2 G2, or G = G1 +I G2

if the ϕi morphisms are clear from the context) is a graph G with:

VG = (VG1 ∪ VG2)/ ≡ EG = (EG1 ∪ EG2)/ ≡

sG([e]≡) =
{

[sG1(e)]≡ if e ∈ EG1

[sG2(e)]≡ if e ∈ EG2

tG([e]≡) =
{

[tG1(e)]≡ if e ∈ EG1

[tG2(e)]≡ if e ∈ EG2

�G([e]≡) =
{

�G1(e) if e ∈ EG1

�G2(e) if e ∈ EG2

where e ∈ EG1 ∪ EG2 .

Note that the gluing is well-defined, which is not immediately obvious since
the mappings sG, tG, �G are defined on representatives of equivalence classes.
The underlying reason for this is that ϕ1, ϕ2 are morphisms.

Example 2. We now explain this gluing construction via some examples.

– Let the two graph morphisms
ϕ1 : I → G1 and ϕ2 : I → G2 to the
right be given, where both ϕ1 and ϕ2 are
injective. Since the interface I is present
in both graphs G1 and G2, we can glue
the two graphs together to construct a
graph G1 +I G2 depicted on the bottom
right of the square.

1 2

B

1 2

B
C

1 2

B

A

1 2

B

A

C

ϕ1

ϕ2

I G1

G2 G1 +I G2

1 2 1,2
B

1 2

A

1,2

A

B

ϕ1

ϕ2

I G1

G2 G1 +I G2

– Now let the graph morphisms
ϕ1 : I → G1 and ϕ2 : I → G2 to the
left be given, where only ϕ2 is injective.
In the graph G1, the interface nodes of
I are merged via ϕ1. The gluing graph
G1 +I G2 is constructed by merging
all nodes in G1, G2, resulting in an A-
labelled loop, together with the original
B-labelled loop. This graph is depicted
at the bottom right of the square.

We are now ready to define graph transformation rules, also called produc-
tions. Such a rule consists of a left-hand side graph L and a right-hand side graph
R. However, as indicated in the introduction, this is not enough. The problem
is that, if we simply removed (a match of) L from a host graph, we would typi-
cally have dangling edges, i.e., edges where either the source or the target node
(or both) have been deleted. Furthermore, there would be no way to specify how
the right-hand side R should be attached to the remaining graph.



88 B. König et al.

Hence, there is also an interface graph I related to L and R via graph mor-
phisms, which specify what is preserved by a rule.

Definition 4 (Graph transformation rule). A (graph transformation) rule
r consists of three graphs L, I,R and two graph morphisms L

ϕL← I
ϕR→ R.

Given a rule r, all nodes and edges in L that are not in the image of ϕL are
called obsolete. Similarly, all nodes and edges in R that are not in the image of
ϕR are called fresh.

After finding an occurrence of a left-hand side L in a host graph (a so-called
match), the effect of applying a rule is to remove all obsolete elements and add
all fresh elements. As indicated above, the elements of I are preserved, providing
us with well-defined attachment points for R.

While this explanation is valid for injective matches and rule morphisms, it
does not tell the full story in case of non-injective morphisms. Here rules might
split or merge graph elements. Using the graph gluing defined earlier, it is easy
to give a formal semantics of rewriting.

The intuition is as follows: given a rule as in Definition 4 and a graph G, we
ask whether G can be seen as a gluing of L and an (unknown) context C over
interface I, i.e., whether there exists C such that G ∼= L+I C. If this is the case,
G can be transformed into H ∼= R +I C.

Definition 5 (Graph transformation). Let r = (L
ϕL← I

ϕR→ R) be a rule. We
say that a graph G is transformed via r into a graph H (symbolically: G

r⇒ H)
if there is a graph C (the so-called context) and a graph morphism ψ : I → C
such that:

G ∼= L +ϕL,ψ C H ∼= R +ϕR,ψ C

This situation can be depicted by the diagram to the
right (also called double-pushout diagram).
The morphism m is called the match, n the co-
match.

L

m

��

I
ϕL�� ϕR ��

ψ

��

R

n

��
G C

ηL

��
ηR

�� H

Depending on the morphisms ϕL and ϕR one can obtain different effects:
whenever both ϕL and ϕR are injective, we obtain standard replacement. When-
ever ϕL is non-injective we specify splitting, whereas a non-injective ϕR results
in merging.

We now consider some examples. First, we illustrate the straightforward case
where indeed the obsolete items are removed and the fresh ones are added, see
Fig. 1a. Somewhat more elaborate is the case when the right leg ϕR of a rule is
non-injective, which causes the merging of nodes, see Fig. 1b.

Different from string or term rewriting, in graph rewriting it may happen that
we find a match of the left-hand side, but the rule is not applicable, because no
context as required by Definition 5 exists. There are basically two reasons for



A Tutorial on Graph Transformation 89

1 21 2
A

1 2
B

1

2A

C
1

2

C
1

2B

C

ϕL ϕR

m ψ

ηRηL

n

L I R

G C H

(a) Application of a GTS rule

1 21 2 1,2

1 2
A

1 2
A

1,2
A

ϕL ϕR

m ψ

ηRηL

n

L I R

G C H

(b) Non-injective right leg ϕR

Fig. 1. GTS rule examples

11
A

1A

C

1

C

ϕL

m ψ

ηL

L I

G C

(a) Dangling edge condition example

11
A

1
A ?

ϕL

m ψ

ηL

L I

G C

(b) Identification condition example

Fig. 2. Gluing condition examples

this: either the rule removes a node, without removing all edges connected to
that node (dangling edge condition, see Fig. 2a), or the match identifies two
graph elements which are not preserved (identification condition) (see Fig. 2b).

The following proposition [10] states under which circumstances the context
exists.

Proposition 1 (Existence of a context, gluing condition). Let L
ϕL← I

ϕR→
R be a graph transformation rule and let m : L → G be a match. Then a context
C and a morphism ψ : I → C such that G ∼= L +ϕL,ψ C exist if and only if the
following holds:

– Every node v ∈ VL, whose image m(v) is incident to an edge e ∈ EG which
is not in the image of m, is not obsolete (i.e. in the image of ϕL).

– Whenever two elements x, y ∈ VL ∪EL with x 
= y satisfy m(x) = m(y), then
neither of them is obsolete.

However, even if the context exists, there might be cases where it is non-
unique. This happens in cases where ϕL, the left leg of a rule, is non-injective.
In this case one can for instance split nodes (see the rule in Fig. 3a) and the



90 B. König et al.

question is what happens to the incident edges. By spelling out the definition
above, one determines that this must result in non-determinism. Either, we do
not split (Fig. 3b) or we split and each edge can non-deterministically “choose”
to stay either with the first or the second node (Fig. 3c and d). Each resulting
combination is a valid context and this means that a rule application may be
non-deterministic and generate several (non-isomorphic) graphs. In many papers
such complications are avoided by requiring the injectivity of ϕL.

1

2
3

A

1,2 3
A 1

2
3

A

A

ϕL ϕR

L
I R

(a) Rule with non-injective left leg ϕL

1

2
3

A

1,2 3
A

1,2
3

A

B 1,2
3

A

B

ϕL

m ψ

ηL

L
I

G C

(b) Valid context (i)

1

2
3

A

1,2 3
A

1,2
3

A

B

1 3

2

A

B

ϕL

m ψ

ηL

L
I

G C

(c) Valid context (ii)

1

2
3

A

1,2 3
A

1,2
3

A

B

1 3

2

A

B

ϕL

m ψ

ηL

L
I

G C

(d) Valid context (iii)

Fig. 3. Non-injective left leg rule with three valid contexts

Note that the specifics such as the dangling edge condition are typical to
the double-pushout (or DPO) approach that we are following here. In other
approaches (such as SPO, which we only discuss briefly in Sect. 7.2), whenever
a node is deleted, all its incident edges are deleted as well (deletion in unknown
contexts).

Finally, we can introduce the notion of a graph transformation system that
is frequently used. Here we fix a start graph and a set of rules. This enables us
to ask questions such as: Which graphs are reachable from the start graph via
the given rules?



A Tutorial on Graph Transformation 91

Definition 6 (Graph transformation system). A graph transformation
system is a tuple G = (G0,R) where

– G0 is an arbitrary graph, the so-called initial graph or start graph, and
– R is a set of graph transformation rules.

3 Attributed Graph Transformation

For many applications one requires more than graphs labelled over a finite alpha-
bet that we considered up to now. For instance, in Sect. 4 we will consider leader
election on a ring where edges, representing processes, are labelled with natural
numbers as Ids. Hence graphs should be attributed with elements of given data
types (e.g. integer, string, boolean) and it should be possible to perform compu-
tations (e.g. add two integers) and define guards that restrict the applicability
of rules (e.g. apply the rule only if a certain attribute is above some threshold).

In order to achieve this aim we now introduce attributed graph transforma-
tion. Choosing data types (also called sorts), carrier sets and operations amounts
to defining a signature and a corresponding algebra [16,46] and we will start by
introducing these concepts.

Definition 7 (Signature, Algebra). A signature Σ is a pair (S,F) where S
is a set of sorts and F is a set of function symbols equipped with a mapping
σ : F → S∗ × S. Sorts are also called types. We require that S contains the sort
bool .

A Σ-algebra A consists of carrier sets (As)s∈S for each sort and a function
fA : As1 ×· · ·×Asn

→ As for every function symbol f with σ(f) = (s1 . . . sn, s).
By T (Σ,X) we denote the Σ-term algebra, where X is a set of variables,

each equipped with a fixed sort. That is, the carrier sets of the term algebra
consist of all terms of the corresponding sort.

For an algebra A we denote by AS the set AS =
⊎

s∈S As, i.e., the union of
all carrier sets (under the implicit assumption that they are all disjoint).

Example 3. As a typical example for an algebra assume that we have two sorts
S = {int , bool} and function symbols add , mult , eq with σ(add) = σ(mult) =
(int int , int) and σ(eq) = (int int , bool) (representing addition, multiplication
and the equality predicate).

The carrier sets in an algebra A could be Aint = Z, Abool = {true, false} and
functions would be interpreted in the usual way, e.g. addA(z1, z2) = z1 + z2 and
eqA(z1, z2) = true whenever z1 = z2 and false otherwise.

On the other hand, in the term algebra T (Σ,X) the carrier sets consist
of terms, for instance T (Σ,X)int contains add(mult(x, y), y) and T (Σ,X)bool
contains eq(add(x, x), y), where x, y ∈ X are variables of sort int .

Algebras come equipped with their notion of morphism, so-called algebra
homomorphisms. These are mappings between the carrier sets that are compat-
ible with the operations.



92 B. König et al.

Definition 8 (Algebra homomorphism). Let A,B be two Σ-algebras. An
algebra homomorphism h : A → B is a family of maps (hs : As → Bs)s∈S such
that for each f ∈ F with σ(f) = (s1 . . . sn, s) we have

hs(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn
(an)).

The next step is straightforward: add attributes, i.e., elements of a carrier
set, to (the nodes or edges of) a graph. In the following we add attributes only
to edges, however nothing prevents us from adding attributes also to nodes. In
order to have a clean separation, we require that the edge label determines the
sort of the corresponding attribute.

Definition 9 (Attributed graph). Let A be a Σ-algebra with Abool =
{true, false}. Let type : Λ → S be a function that assigns a sort to every edge
label. An attributed graph over A (G, att) consists of a graph G = (V,E, s, t, �),
together with a function att : EG → AS such that att(e) ∈ Atype(�(e)).

We first define the notion of attributed graph transformation rule, where left-
hand side and right-hand side are attributed over the term algebra. Furthermore
there is a guard condition of sort bool . We require that in the left-hand side terms
are always single unique variables, which can then be used in terms in the right-
hand side and in the guard.

Definition 10 (Attributed graph transformation rule). Let Σ be a sig-
nature and let X be a set of variables. An attributed rule is a graph transforma-
tion rule L

ϕL← I
ϕR→ R with two functions attL : EL → T (Σ,X)S , attR : ER →

T (Σ,X)S and a guard g ∈ T (Σ,X)bool . These attribution functions must respect
sorts, i.e., for every e ∈ EL it holds that attL(e) ∈ T (Σ,X)type(�L(e)) and ana-
logusly for e ∈ ER.

We require that each term attL(e) for e ∈ EL is a single variable and all these
variables occurring in the left-hand side are pairwise different. Furthermore, each
variable in attR(e) for e ∈ ER and each variable in g occurs in the left-hand side.

Now we are ready to define attributed graph transformation: while the rule
graphs L and R are attributed with elements from the term algebra, the graphs
to be rewritten are attributed with elements from a carrier set that represents a
primitive data type (such as integers or booleans).

Then a match determines the evaluation of the variables in the left-hand
side, giving us a corresponding algebra homomorphism. This homomorphism is
then used to evaluate the terms in the right hand sides and to generate the
corresponding values. All other edges keep their attribute values.

Definition 11 (Graph transformation with attributed rules). Given an
attributed rule L

ϕL← I
ϕR→ R with functions attL, attR and guard g, it can be

applied to a graph (G, attG) attributed over A as follows: G is transformed to
H as described in Definition 5. The match m : L → G induces an algebra homo-
morphism hm : T (Σ,X) → A by defining hm(x) = attG(m(e)) if e ∈ EL and
attL(e) = x. For each variable y not occurring in L the value hm(y) is arbitrary.



A Tutorial on Graph Transformation 93

The rule can be applied whenever hm(g) = true. In this case we define

attH(e′) =
{

hm(attR(e)) if e′ = n(e), e ∈ ER

attG(ηL(e)) otherwise, if e′ = ηR(e), e ∈ EC

where e′ ∈ EH . Whenever attH is not well-defined, the rule can not be applied.2

Note that the algebra homomorphism hm above is well-defined due to the
requirement that each occurrence of a variable in the left-hand side is unique.

We start with a straightforward case where we apply an attributed graph
transformation rule, see Fig. 4. The given rule shifts a B-labelled loop (which
has an attribute y) over an A-labelled edge with corresponding attribute x.
After the rule application the edge is attributed with the sum add(x, y) and the
loop inherits the former attribute x. (Note that in order to have a more compact
notation we slightly abuse notation and write x + y instead of add(x, y).)

1 2
A

1 2
A:xB:y

1 2

A:x+y
B:x

1 2
A:7

A:5

B:6
1 2

A

A
1 2
A:13

A:5

B:7

ϕL ϕR

m ψ

ηRηL

n

L I R

G C H

guard:x>y

Fig. 4. Attributed graph transformation rule application example

Note that in the definition above, we have to require that the attribution
function attH of H is well-defined, here is an example that illustrates why:
imagine a rule with two (equally labelled) edges in the left-hand side, which
have attributes x, y. The edges are preserved and in the right-hand side they are
attributed with the sum add(x, y) and the product mult(x, y) (see Fig. 5). Now,
since we allow non-injective matches, such a rule can be applied to a single edge
with attribute value 1 in the host graph.

The (preserved) edge has two different preimages under the co-match n. The
first preimage would require to set the value attH(e) to addA(1, 1) = 2, the
second to multA(1, 1) = 1.

Here, the straightforward solution is to say that the rule is not applicable,
since it would create an inconsistent situation. Such issues can be avoided by
requiring that all morphisms (rule morphisms, match, etc.) are injective.
2 The morphism n need not be injective, hence an edge e might have several preimages

under n. In this case, it is possible that the new attribute of an edge cannot be
uniquely determined.



94 B. König et al.

1 2

3 4
A

A

1 2

3 4

A:y

A:x
1 2

3 4

A:x+y

A:x·y

1,3 2,4
A:1

1,3 2,4
A

1,3 2,4

A:2|1?

ϕL ϕR

m ψ

ηRηL

n

L I R

G C H

Fig. 5. Example for a non-applicable rule

4 Example: Leader Election

We now demonstrate the modelling power of attributed graph transformation
systems, by modelling a variation of the leader election protocol. The protocol
(according to Chang and Roberts [3]) works as follows: there is a set of processes
arranged in a ring, i.e., every process has a unique predecessor and a unique
successor. Furthermore, each process has a unique Id and there exists a total
order on the Ids (which is easily achieved by assuming that Ids are natural
numbers).

The leader will be the process with the smallest Id, however no process knows
what is the smallest Id at the start of the protocol. Hence every process generates
a message with its own Id and sends it to its successor. A received message with
content MId is treated as follows by a process with Id PId :

– if MId < PId , then the message is forwarded to the successor
– if MId = PId , then the process declares itself the leader
– If MId > PId , then the message is not passed on (or alternatively discarded).

Whenever the Ids are unique, it can be shown that the protocol terminates
with the election of a unique leader.

In this example we additionally assume that the topology of the ring changes.
We extend the protocol allowing processes to enter and to leave the ring. Pro-
cesses entering the ring obtain a unique Id via a central counter, larger than all
other Ids existing so far in the ring. This additional feature does not interfere
with the election of the leader, since we elect the process with the minimal Id.
As any process might be deleted, we can not resort to the simplistic (and non-
distributed) solution of choosing the first process that is created and has thus
the lowest Id.

We now model this protocol as a graph transformation system (see Fig. 6).
The start graph S consists of a single node and a loop labelled count which
represents the counter, the current counter value 0 is stored in the attribute
(where all attributes are natural numbers). In a first step, modelled by rule



A Tutorial on Graph Transformation 95

first proc, if the counter attribute count satisfies the rule’s guard i=0, then the
first process labelled proc:i+1 is created and the counter is set to count:i+1.
Remember, only the edges are equipped with labels and corresponding terms.
As required in Definition 10 the left-hand side is attributed only by variables.
Again, the numbers in the nodes denote the morphisms from the interface to the
left-hand and right-hand side. Then, in subsequent steps (rule add proc) other
processes are created (incrementing the current counter and using it as the Id of
the process) and are inserted after an arbitrary existing process. Processes may
leave the ring, provided at least one other process is present, see rule del proc.

Fig. 6. Leader election in dynamic ring



96 B. König et al.

Processes can create messages as described above, represented by msg-labelled
loops (rule create msg). The attribute of the msg-loop is the Id of the sending
process. The message is forwarded if its Id is less than the Id of the receiving
process (rule forward) and if it is greater the message is discarded (rule discard).
If a process receives a message with its own Id, it declares itself the leader (rule
leader). Once the leader has been chosen, it cannot be deleted any longer since
the rule del proc requires the label proc. Moreover, all subsequent messages
arriving at the leader are discarded as well (rule discard2 ).

The application of rules may yield a graph G as given in Fig. 7. The match
morphism m induces the algebra homomorphism hm : T (Σ,X) → A with
hm(i) = 2 and hm(j) = 2. Obviously the guard is satisfied, so the edges
with label msg:2 and prc:2 are deleted, yielding the graph C. The graph H
is obtained by gluing an edge with label leader:2 between the two nodes.

Fig. 7. Transformation step: declaring the leader process

The state space of this system is infinite, due to the capability of creating new
processes with ever higher numbers, as well as unbounded numbers of messages.
There are techniques for verifying infinite-state graph transformation systems
(see for instance [26] where a similar system is analysed), but those are out of
scope for this tutorial. Alternatively, if we restrict the number of processes to a
fixed bound, then model checking becomes available as a technique, for instance
as implemented in the tool groove (see Sect. 5.1). Here are some example desir-
able properties, expressed in Computation Tree Logic (CTL) respectively Linear
Temporal Logic (LTL):

1. Safety (CTL): AG ! twoLeaders
2. Reachability (CTL): AG EF hasLeader
3. Termination (LTL): G F hasLeader



A Tutorial on Graph Transformation 97

Here, twoLeaders and hasLeader are propositions that are fulfilled by a given
state graph if it contains, respectively, at least two leader-edges or at least one
leader-edge. Those propositions can themselves be formulated as transformation
rules that do not actually change the graph, but only check for applicability.
Property 1 expresses the crucial safety property that there can never be two or
more leaders elected; property 2 expresses that from every state, a future state is
reachable in which a leader has been elected. Finally, property 3 expresses that
all paths will eventually actually reach a point where a leader has been elected.

The protocol encoded in the rule system at hand satisfies properties 1 and 2,
but not 3. Two reasons why termination fails to hold are that the process with
the lowest number may forever be deleted before it receives back its own message
and so is elected leader, or one process creates an infinite number of messages
which are never forwarded.

The protocol satisfies the reachability property 2 even in the case of changes
in topology. This can be reasoned out as follows: Since the added processes have
higher Ids than already inserted processes, the message which the new process
sends, will be discarded by the subsequent process. Another consequence of the
changing topology could be that the process proc:min1 with the minimal Id
min1 sends its message and is deleted before becoming leader. Then its message
is forwarded along the ring as it always satisfies the condition of rule forward.
But at some point the next minimal Id min2 is sent by some other process and
leads to the leader with Id min2. Then the message with min1 will be eventually
discarded with discard2.

5 Tools

Here, we merely hint at some of graph transformation tools that are available
for many different purposes and describe two of them in more detail. We intro-
duce AGG and GROOVE, since both of them can be considered to be general
purpose graph transformation tools. Other graph transformation tools that are
actively maintained are, Atom3 [8], Viatra [6], Fujaba [33] and Augur [25].

5.1 GROOVE: Graphs for Object-Oriented Verification

The tool groove3 was originally created to support the use of graphs for mod-
elling the design-time, compile-time, and run-time structure of object-oriented
systems [39], but since then has grown to be a full-fledged general-purpose graph
transformation tool. The emphasis lies on the efficient exploration of the state
space, given a particular graph transformation system; see, for instance, [20].
While doing so, groove recognises previously visited graphs modulo (graph)
isomorphism, avoiding duplication during their exploration. groove has a built-
in model checker that can run temporal logic queries (LTL or CTL) over the
resulting state space.

3 http://groove.cs.utwente.nl/.

http://groove.cs.utwente.nl/


98 B. König et al.

groove has a very rich set of features to enable the powerful and flexible
specification of transformation rules, including quantified rules [41] (so that a
single rule may be applied in one shot to all subgraphs that satisfy a given
property) and an extensive language to schedule rule applications (so that the
default strategy of applying every rule to all reachable graphs can be modified).

groove graphs do not conform precisely to the definition in this paper. Some
important differences are:

– groove graphs are typed; that is, all nodes have one of a set of types from
a user-defined type graph (and so do all edges, but an edge type essentially
corresponds to its label).

– More importantly, in groove attributes are associated with nodes rather
than edges; moreover, they are always named. Thus, rather than an edge
proc:1 between two untyped process nodes, one would have an unnumbered
edge next (say) between two Proc-type nodes, in combination with a named
attribute nr = 1 on its target node.

However, the graphs of this paper can be easily mimicked. A rule system for
leader election that corresponds to Sect. 4 is provided together with this paper.4

The results reported in the previous section on the safety, reachability and
termination properties 1–3 can easily be checked on this rule system by disabling
the rule add proc and starting with a graph that already has a given number of
processes (so that the state space is finite), and then invoking the LTL or CTL
model checker with the formulas given above. As stated before, the outcome is
that properties 1 and 2 are satisfied, whereas 3 is violated.

5.2 AGG: The Attributed Graph Grammar System

The Attributed Graph Grammar System (AGG) [45] is a development environ-
ment for attributed graph transformation systems and aims at specifying and
rapidly prototyping applications with complex, graph structured data. AGG5

supports the editing of graphs and rules that can be attributed by Java objects
and types. Basic data types as well as object classes already available in Java
class libraries may be used. The graph rules may be attributed by Java expres-
sions which are evaluated during rule applications. Additionally, rules may have
attribute conditions that are boolean Java expressions. AGG provides simula-
tion and analysis techniques, namely critical pair analysis and consistency check-
ing. The application of rules can be manipulated using control structures such
as negative application conditions to express requirements for non-existence of
substructures. Further control over the rules is given by rule layers that fix the
order in which rules are applied. The interpretation process applies rules of lower
layers first, which means applying the rules of a layer as long as possible before
applying those of the next layer. These rule layers allow the specification of a
simple control flow.
4 http://groove.cs.utwente.nl/wp-content/uploads/leader-electiongps.zip.
5 http://www.user.tu-berlin.de/o.runge/agg/.

http://groove.cs.utwente.nl/wp-content/uploads/leader-electiongps.zip
http://www.user.tu-berlin.de/o.runge/agg/


A Tutorial on Graph Transformation 99

6 Some Remarks on the Categorical Background

In this section, we explain the name double-pushout approach. It gives some
background information that is useful for understanding papers on the topic, but
is not required for the formal definition of graph transformation given earlier.

Graph gluing as in Definition 3 can alternatively be characterized via the cate-
gorical notion of pushout. Category theory relies on so-called universal properties
where, given some objects, one defines another object that is in some relation
to the given object and is – in some sense – the most general object which is in
this relation. The prototypical example is the supremum or join, where – given
two elements x, y of a partially ordered set (X,≤) – we ask for a third element
z with x ≤ z, y ≤ z and such that z is the smallest element which satisfies both
inequalities. There is at most one such z, namely z = x ∨ y, the join of x, y.

In the case of graphs, the order relation ≤ is replaced by graph morphisms.

Proposition 2. Let I,G1, G2 be graphs with graph morphisms ϕ1 : I → G1,
ϕ2 : I → G2 as in Definition 3. Assume further that G = G1 +ϕ1,ϕ2 G2 is the
gluing and that ψi : G1 → G, i = 1, 2, are graph morphisms that map each
element x ∈ VGi

∪ EGi
to its equivalence class ψi(x) = [x]≡.

The gluing diagram consisting of the morphisms
ϕ1, ϕ2, ψ1, ψ2 commutes, i.e., ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2

and it has the following universal property: for
any two morphisms ψ′

1 : G1 → H, ψ′
2 : G2 → H

satisfying ψ′
1 ◦ ϕ1 = ψ′

2 ◦ ϕ2, there exists a unique
morphism η : G1+I G2 → H such that η◦ψ1 = ψ′

1

and η ◦ ψ2 = ψ′
2.

Squares which commute and satisfy the univer-
sal property spelled out above are called pushouts.
The graph G is unique up to isomorphism.

I
ϕ1

����
��
��
�� ϕ2

���
��

��
��

�

G1

ψ1

���
��

��
��

�

ψ′
1

��

G2

ψ2

����
��
��
��

ψ′
2

��

G

η

��
H

Intuitively, the pushout characterization says that G should be a graph where
the “common” parts of G1, G2 must be merged (since the square commutes), but
it should be obtained in the most general way by merging only what is absolutely
necessary and adding nothing superfluous. This corresponds to saying that for
any other merge H, G is more general and H can be obtained from G by further
merging or addition of graph elements (expressed by a morphism from G to H).

7 Literature Overview

7.1 Introductory Papers

This paper is by no means the first introductory paper to graph transformation.
It was our aim to write a paper that fills a niche and gives precise formal defi-
nitions, but does not rely on category theory. At the same time, we wanted to
treat general rules and not restrict to injective matches or rule spans, which is
often done in tutorial papers.



100 B. König et al.

Since not all introductory papers are well-known, it is worth to make a meta-
survey and to provide a list.

Of the original papers, the survey paper by Ehrig [10] is in any case worth a
read, however the notation has evolved since the seventies.

A standard reference is of course the “Handbook of Graph Grammars and
Computing by Graph Transformation”, which appeared in three volumes (foun-
dations [42] – applications, languages and tools [12] – concurrency, parallelism
and distribution [15]). Strongly related to our exposition is the chapter on DPO
rewriting by Corradini et al. [4], which is based on categorical definitions.

The well-known book by Ehrig et al. [11] revisits the theory of graph rewriting
from the point of view of adhesive categories, a general categorical framework for
abstract transformations. In an introductory section it defines the construction
of pushouts via factorization, equivalent to our notion of graph gluing.

Nicely written overview papers that however do not give formal definitions
are by Heckel [23] and by Andries et al. [1]. The paper by Giese et al. [21] is
aimed towards software engineers and gives a detailed railcab example.

The habilitation thesis by Plump [36] and the introductory paper by Kreowski
et al. [27] give very clear formal, but non-categorical, introductions. Both make
injectivity requirements, either on the rule spans or on the match.

The paper by Löwe and Müller [31] makes a non-categorical, but slightly
non-standard, introduction to graph transformation, while the introduction by
Schürr and Westfechtel [44] is very detailed and treats set-theoretical, categorical
and logical approaches. Both articles are however written in German.

7.2 Further Issues

Deletion in unknown contexts: In the DPO approach that was treated in this
note, it is forbidden to remove a node that is still attached to an edge, which
is not deleted. In this case, the rule is not applicable. In the single-pushout (or
SPO) approach [30] however, the deletion of a node to which an undeleted edge
is attached, is possible. In this case all incident edges are deleted as well. In
contrast to DPO, SPO is based on partial graph morphisms.

Attributed graph rewriting: Our way of defining attributed graph rewriting was
inspired by [26,37]. We provide some remarks on alternative approaches to
attributed graph transformation: in an ideal world one would like to extend all
the notions that we introduced previously (graph morphisms, gluing, rules, etc.)
to this new setting. This would mean to extend graph morphisms to attributed
graph morphisms by requiring algebra homomorphisms on the attributes.

This has been done [11,18,34], but unfortunately there are some complica-
tions. The first problem is that, as explained above, we want to work with two
different algebras: the term algebra and an algebra representing primitive data
types. This means that in the double-pushout diagrams, we would need alge-
bra homomorphisms between different algebras on the vertical axis and identity
algebra homomorphisms on the horizontal axis.



A Tutorial on Graph Transformation 101

But this causes another problem: nodes or edges that are preserved by a
rule, i.e., items that are in the interface usually should not keep their attribute
value. Otherwise it would be impossible to specify attribute changes. (Note that
it is possible to delete and recreate an edge, but not a node, since it is usually
connected to unknown edges and the dangling condition would forbid this.) But
this is contrary to the idea of having identity homomorphisms horizontally.

Hence, as announced above, we here opted for a lightweight approach where
we do not define a new notion of attributed graph morphism, but only add alge-
bra homomorphisms as required (for the match and co-match). Other options,
which we do not pursue here, is to add the carrier sets to the graphs and add
pointers from edges to the attribute values [18]. However, this formally turns
graphs into infinite objects.

As a side remark, we would also like to mention that graphs themselves are
two-sorted algebras with sorts node and edge and two function symbols (source
and target). This view has been exploited in order to generalize the structures
that can be transformed [30].

Application conditions: As we saw in the section on attributed graph transfor-
mation (Sect. 3) and in the example (Sect. 4), it is often useful to specify guards
that restrict the applicability of rules. So far our guards talked about attributes,
but it is also very useful to consider guards that refer to the structural properties
of a graph, so-called application conditions [11,22].

A special case are negative applications conditions that inhibit the application
of a rule whenever a certain structure is present in the vicinity of the left-hand side.
This can for instance be used to specify rules for computing the transitive closure
of a graph: whenever there exists an edge from node s to v and from v to t, add a
direct edge from s to t, but only if such an edge is not already present. In order to
gain expressiveness, application conditions can be nested and it has been shown
that such conditions are equal in expressiveness to first-order logic [40].

8 Conclusion

Naturally, there are many topics related to graph transformation that we did
not treat in this short tutorial. For instance, there exists a substantial amount
of work on theory, generalizing graph transformation by means of category the-
ory [11,28]. Furthermore, confluence or Church-Rosser theorems, in connection
with critical pair analysis have been extensively studied. Other verification and
analysis techniques have been studied as well (termination analysis, reachability
analysis, model checking, etc.). Work on graph transformation is also closely con-
nected to work on specification languages on graphs, such as nested application
conditions [22] and monadic second-order logic [5].

Acknowledgements. We would like to thank all the participants of the North
German GraTra Day in February 2017 in Hamburg for the discussion about this
paper. Especially, we would like to acknowledge Berthold Hoffmann, Leen Lambers
and Hans-Jörg Kreowski who contributed by commenting on our paper and giving
valuable suggestions and hints.



102 B. König et al.

References

1. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske, S.,
Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and
programming. Sci. Comput. Program. 34(1), 1–54 (1999)

2. Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems. Cambridge
University Press, Cambridge (2003)

3. Chang, E.J.H., Roberts, R.: An improved algorithm for decentralized extrema-
finding in circular configurations of processes. Commun. ACM 22(5), 281–283
(1979)

4. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation–part I: basic concepts and double pushout
approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Comput-
ing by Graph Transformation, Volume 1: Foundations. World Scientific (1997).
Chapter 3

5. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic, A
Language-Theoretic Approach. Cambridge University Press, New York (2012)

6. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: VIATRA
- visual automated transformations for formal verification and validation of UML
models. In: 17th IEEE International Conference on Automated Software Engineer-
ing, pp. 267–270. IEEE Computer Society (2002)

7. Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-
Walsh, C.D., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-
based models. In: Proceedings of the FSTTCS 2012. LIPIcs, vol. 18. Schloss
Dagstuhl - Leibniz Center for Informatics (2012)

8. Lara, J., Vangheluwe, H.: AToM3: a tool for multi-formalism and meta-modelling.
In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45923-5 12

9. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (eds.)
Formal Models and Semantics. Handbook of Theoretical Computer Science, vol.
B, pp. 243–320. Elsevier (1990). Chapter 6

10. Ehrig, H.: Introduction to the algebraic theory of graph grammars (a survey). In:
Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73,
pp. 1–69. Springer, Heidelberg (1979). https://doi.org/10.1007/BFb0025714

11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. Springer, Heidel-
berg (2006). https://doi.org/10.1007/3-540-31188-2

12. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformation. Applications Languages and
Tools. World Scientific, Singapore (1999)

13. Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and Model Transformation -
General Framework and Applications. Monographs in Theoretical Computer Sci-
ence. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47980-3

14. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to
graph rewriting with borrowed contexts. Math. Struct. Comput. Sci. 16(6), 1133–
1163 (2006)

15. Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of
Graph Grammars and Computing by Graph Transformation. Concurrency, Paral-
lellism, and Distribution. World Scientific, Singapore (1999)

https://doi.org/10.1007/3-540-45923-5_12
https://doi.org/10.1007/BFb0025714
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-662-47980-3


A Tutorial on Graph Transformation 103

16. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1, Equations and Ini-
tial Semantics. Monographs in Theoretical Computer Science. Springer, Heidelberg
(1985). https://doi.org/10.1007/978-3-642-69962-7

17. Ehrig, H., Pfender, M., Schneider, H.: Graph grammars: an algebraic approach. In:
Proceedings of the 14th IEEE Symposium on Switching and Automata Theory, pp.
167–180 (1973)

18. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph
transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.)
ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30203-2 13

19. Fokkink, W.: Introduction to Process Algebra. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-662-04293-9

20. Ghamarian, A.H., de Mol, M.J., Rensink, A., Zambon, E., Zimakova, M.V.: Mod-
elling and analysis using groove. Int. J. Soft. Tools Technol. Transf. 14(1), 15–40
(2012)

21. Giese, H., Lambers, L., Becker, B., Hildebrandt, S., Neumann, S., Vogel, T.,
Wätzoldt, S.: Graph transformations for MDE, adaptation, and models at run-
time. In: Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) SFM 2012. LNCS,
vol. 7320, pp. 137–191. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30982-3 5

22. Habel, A., Pennemann, K.-H.: Nested constraints and application conditions for
high-level structures. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg,
G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS,
vol. 3393, pp. 293–308. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31847-7 17

23. Heckel, R.: Graph transformation in a nutshell. In: Bezivin, J., Heckel, R. (eds.)
Language Engineering for Model-Driven Software Development, number 04101 in
Dagstuhl Seminar Proceedings (2005)

24. Høgh Jensen, O., Milner, R.: Bigraphs and mobile processes (revised). Technical
report UCAM-CL-TR-580, University of Cambridge (2004)

25. König, B., Kozioura, V.: Augur - a tool for the analysis of graph transformation
systems. Bull. EATCS 87, 126–137 (2005)

26. König, B., Kozioura, V.: Towards the verification of attributed graph transforma-
tion systems. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT
2008. LNCS, vol. 5214, pp. 305–320. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-87405-8 21

27. Kreowski, H.-J., Klempien-Hinrichs, R., Kuske, S.: Some essentials of graph trans-
formation. In: Ésik, Z., Martin-Vide, C., Mitrana, V. (eds.) Recent Advances in
Formal Languages and Applications, pp. 229–254. Springer, Heidelberg (2006).
https://doi.org/10.1007/978-3-540-33461-3 9

28. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO - Theor.
Inf. Appl. 39(3), 511–545 (2005)

29. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4 19

30. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109, 181–224 (1993)

31. Löwe, M., Müller, J.: Algebraische Graphersetzung: mathematische Modellierung
und Konfluenz. Forschungsbericht des Fachbereichs Informatik, TU Berlin, Berlin
(1993)

https://doi.org/10.1007/978-3-642-69962-7
https://doi.org/10.1007/978-3-540-30203-2_13
https://doi.org/10.1007/978-3-540-30203-2_13
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/978-3-642-30982-3_5
https://doi.org/10.1007/978-3-642-30982-3_5
https://doi.org/10.1007/978-3-540-31847-7_17
https://doi.org/10.1007/978-3-540-31847-7_17
https://doi.org/10.1007/978-3-540-87405-8_21
https://doi.org/10.1007/978-3-540-87405-8_21
https://doi.org/10.1007/978-3-540-33461-3_9
https://doi.org/10.1007/3-540-44618-4_19


104 B. König et al.

32. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

33. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Ghezzi, C.,
Jazayeri, M., Wolf, A.L. (eds.) Proceedings of the 22nd International Conference
on on Software Engineering, pp. 742–745. ACM (2000)

34. Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symbolic Comput.
46(3), 294–315 (2011)

35. Padberg, J., Kahloul, L.: Overview of reconfigurable Petri nets. In: Heckel, R.,
Taentzer, G. (eds.) Ehrig Festschrift. LNCS, vol. 10800, pp. 201–222. Springer,
Cham (2018)

36. Plump, D.: Computing by Graph Rewriting. Habilitation thesis, Universität Bre-
men (1999)

37. Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig,
H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol.
3256, pp. 128–143. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30203-2 11

38. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-
69968-9

39. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25959-6 40

40. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2 23

41. Rensink, A., Kuperus, J.-H.: Repotting the geraniums: on nested graph transfor-
mation rules. In: Boronat, A., Heckel, R. (eds.) Graph Transformation and Visual
Modelling Techniques (GT-VMT). Electronic Communications of the EASST, vol.
18 (2009)

42. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific, Singapore (1997)

43. Sangiorgi, D., Walker, D.: The π-calculus-A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

44. Schürr, A., Westfechtel, B.: Graph grammars and graph rewriting systems (in
German). Technical report AIB 92–15, RWTH Aachen (1992)

45. Taentzer, G.: AGG: a tool environment for algebraic graph transformation. In:
Nagl, M., Schürr, A., Münch, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 481–
488. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45104-8 41

46. Wirsing, M.: Algebraic specification. In: van Leeuwen, J. (ed.) Formal Models
and Semantics. Handbook of Theoretical Computer Science, vol. B, pp. 675–788.
Elsevier (1990). Chapter 13

https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-540-30203-2_11
https://doi.org/10.1007/978-3-540-30203-2_11
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-540-25959-6_40
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1007/3-540-45104-8_41

	A Tutorial on Graph Transformation
	1 Introduction
	2 A Formal Introduction to Graph Transformation
	3 Attributed Graph Transformation
	4 Example: Leader Election
	5 Tools
	5.1 GROOVE: Graphs for Object-Oriented Verification
	5.2 AGG: The Attributed Graph Grammar System

	6 Some Remarks on the Categorical Background
	7 Literature Overview
	7.1 Introductory Papers
	7.2 Further Issues

	8 Conclusion
	References




