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A B S T R A C T   

An optimization-based maintenance scheduling framework is an essential tool to plan the necessary investment 
to maintain the required performance of a railway line. In the present study, a methodology is proposed to 
minimize the present value of the life cycle maintenance costs and maximize the life cycle quality level of the 
track-bed considering different levels of reliability. Probabilistic degradation models are developed for predicting 
the evolution of the railway track condition over time. Afterwards, a Genetic Algorithm based optimization 
procedure is applied for obtaining a set of optimal solutions taking into account several constrains. The proposed 
methodology is applied to an Italian railway track-line case study. The results show that it is possible to develop a 
decision support system to help railway managers to schedule railway track maintenance operations based on the 
optimal trade-off between maintenance costs and railway track geometry condition for different levels of 
reliability.   

1. Introduction 

The strategic planning of Maintenance and Rehabilitation (M&R) is 
of upmost importance for infrastructure agencies that need to rationalize 
the scarce available economic resources. Railway track bed materials 
and geometry, which degrade under traffic loads and environmental 
conditions, must satisfy specific quality requirements that are very strict, 
both to avoid speed limitations and to reduce the risk of derailment. 
Therefore, track geometry is inspected periodically to detect defects 
before they reach an unacceptable level. The vertical and lateral 
deformation of the ballast, together with the particle degradation, rep
resents one of the major aspects that govern the maintenance frequency 
and the durability of the ballasted track [1]. Ballast settlement repre
sents the highest contribution to the total track settlement [2] and oc
curs in two phases [3], either as a consequence of initial consolidation 
(after tamping or renewal) or as a further mechanism, such as, for 
instance, densification, distortion and degradation. Densification and 
distortion are characterized by the progressive consolidation and the 
slide and roll of the ballast particles, respectively [4]. In turn, the 
degradation is caused by the attrition that leads to the breakage and the 
change of the particles size [4]. 

In general, two types of maintenance activities can be performed to 

ensure the availability and reliability of the railways: corrective or 
preventive maintenance. Corrective maintenance envisages the inter
vention as soon as a failure appears. In turn, preventive maintenance is 
composed of different interventions performed periodically thanks to a 
pre-determined schedule [5]. In this case, it is possible to apply the 
maintenance activities before the elements deteriorate to an unaccept
able condition. Furthermore, they can be implemented in the intervals 
between trains operations [6]. Normally, track geometry and compo
nents are monitored, and railway authorities decide to perform main
tenance or renewal when certain threshold limits are exceeded without 
regarding the quality of railway investment. The consequence of the 
"business-as-usual’’ practice related to the performance of corrective 
maintenance whenever a failure happens, leads to ignore the quality of 
the railway investment. The efficiency of the railway network system 
can be improved through a higher control on the maintenance processes 
and application timing. It increases the overall quality level of the 
track-bed, reduces the discomfort experienced by the users, decreases 
the environmental impacts [7] and promotes a better allocation of the 
commomly large amount of economic resources needed for maintenance 
and renewal. For instance, the average cost for maintenance and 
renewal of 1 km of track of the West European network is around 50.000 
€ per year considering all the elements [5]. Ballast maintenance plays a 
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significant role over the entire maintenance activity of a track. Indeed, 
track geometry is restored by adjusting the ballast under the sleepers by 
using tamping, which means packing ballast beneath the sleepers in 
order to correct the alignment of the rails and hence improve the track 
quality [8]. 

Reducing the number of M&R activities, thanks to an optimized 
maintenance strategy, allows reducing the ballast contamination 
(fouling) and the use of heavy machines and human resources. 
Furthermore, it also allows reducing the traffic interruptions and 
thereby the discomfort experienced by the users. 

2. Background 

2.1. Optimization-based scheduling of track maintenance 

To understand when and where the M&R actions are required, the 
track geometry is assessed at regular intervals of time by using a diag
nostic train. The information gathered allows evaluating whether the 
geometry falls below an acceptable level. If so, maintenance actions are 
scheduled to restore and bring the geometry to an acceptable range [8]. 
The complex system of all these activities from inspection, data elabo
ration to geometry restoration is time and cost consuming. The 
improvement in the track asset management resulting from performing 
optimization-based maintenance has the potential to help improving the 
quality level of the track-bed and the use of the already limited economic 
resources. 

Optimization problems already formulated for scheduling train 
timetables and setting transit lines as well as for passenger line assign
ment in general networks [9,10] can be solved by exact or metaheuristic 
algorithms. Contrary to exact algorithms, which are able to find exact 
solutions, a metaheuristic is a specific high-level strategy designed to 
generate a satisfactory (approximate) solution for an optimization 
problem [11]. The use of this type of algorithms in lieu of the exact 
algorithms is explained by the fact that for real-world problems the 
former is often unable to find exact solutions within a human compu
tational time. 

Although the design of optimal maintenance strategies for railway 
assets is relatively recent, there are already in the literature several 
studies that investigated the problem of planning maintenance from an 
optimization-based perspective. Budai et al. [12] provided an overview 
of maintenance (preventive, corrective, and opportunistic) to be per
formed in the railway track. They proposed a model for the maintenance 
optimization focused on the medium-term plan. A more complete De
cision Support System (DSS) for track management that incorporates 
new computational optimization models was proposed later [13]. This 
enables more accurate knowledge on the track state and provides a more 
accurate decision support rather than a simple schedule optimization 
[13]. This system was proposed for helping managers to take the most 
appropriate decision for track asset management considering financial 
limitations and other constraints [14]. For instance, in Europe, the In
ternational Union of Railways (UIC) and European Rail Research Insti
tute proposed and adopted a DSS for railway track maintenance and 
renewal called ECOTRACK with the purpose of minimizing the track-bed 
Life Cycle Cost (LCC) [15]. Another advanced management system 
(RAMSYS) was designed by railway engineers for ballasted track [16]. 

Peng et al. [17] proposed a mathematical model to systematically 
solve the Rail Inspection Scheduling Problem (RISP). RISP involves 
several tasks, inspection team, budget and business constrains. Modeling 
these problems with an algorithm increases operational efficiency and 
safety [17]. Other mathematical models were presented to address the 
Track Maintenance Scheduling Problem (TMSP) where the total travel 
costs of the maintenance teams were intended to be minimized [18]. 

Oyama and Miwa [19] built an all-integer linear programming model 
for optimizing the tamping schedule. The optimization process was 
developed in two phases: 1) the modeling of the transition process of 
surface irregularities (degradation and restoration model), and 2) the 

Optimal Track Maintenance Schedule (OTMS). Before solving the OTMS 
model, the authors applied another model for selecting candidate units 
that possibly lead to higher improvements when maintenance is oper
ated. In simple terms, the authors tried to optimize the performance of 
maintenance activities by selecting a number of consecutive lots for the 
maintenance application. More recently, Vale et al. [20] proposed an 
advanced integer programming model to optimize the scheduling of 
preventive maintenance activities in a finite time horizon considering 
track quality and technical aspects related to the operations. Other 
models have also been proposed for the optimal maintenance of 
sleepers, electrical railway components and for scheduling rail mainte
nance [21–23]. 

Given the computational complexity of (1) the existing nonlinear 
mixed-integer programming models designed to solve real large-scale 
problems, (2) the uncertainties characterizing the data gathered from 
the measurement systems and (3) the track degradation models, in this 
paper a probabilistic optimization-based DSS is presented to tackle the 
problem associated with the design of optimal M&R strategies. 

2.2. Track defects, deterioration process and tamping recovery 

The geometrical parameters that commonly define the track-bed 
quality are the following: vertical and horizontal alignment (i.e., VA 
and HA, respectively), gauge, cant and track twist. The existing stan
dards prescribe minimum and maximum acceptable values for these 
parameters based on the type of railway line [24]. 

The VA and HA are the main geometric parameters driving the 
planning of preventive maintenance. They are normally defined as the 
geometrical deviation of the rail from the design configuration, 
measured on the vertical or horizontal plane, respectively. VA is the 
difference in millimetres between the ideal longitudinal profile, as 
established in the project, and the real point on the top of the rail in the 
running plane [25]. It is still the fundamental factor for planning 
maintenance, as stated by UIC [26], despite the trend observed among 
the infrastructure managers of merging it with other defects measure
ments to create a unique track quality index (TQI) [27]. 

VA and HA can be expressed as isolated defects or as the standard 
deviation (SD) for the short wavelength (3–25 m) of these parameters in 
a 200-meter long track segment. The Italian standard [24] and CEN [28] 
prescribes that maintenance has to be planned based on the values 
assumed by the SD of VA and HA and the limit values of their isolated 
defects. An extensive literature review [1,29] revealed that field data of 
track geometry degradation (SD and isolated defects) are best fitted by 
linear empirical laws depending on the traffic volume, expressed in 
Million Grosse Tonnes (MGT), typically. 

A nonlinear behaviour for certain characteristics determining the 
track deterioration process has been highlighted [30,31]. However, the 
linear relationship is widely accepted as a satisfactory approximation by 
Esveld 2001 [32] and more recently confirmed by real data collected 
over the years [8,20]. 

2.3. Uncertainties and reliability in the track geometry degradation 

The majority of the models applied for evaluating the track geometry 
degradation are deterministic. However, the track deterioration process 
is affected by several factors, such as, for instance, weather conditions, 
traffic loads, the geometry of the track-bed and the properties of con
struction materials [27]. These factors are affected by uncertainties and 
variability [32] and even when the same conditions apply, the track 
deterioration might be unexpectedly different. Moreover, the degrada
tion rates of the defects have a significant dispersion for different 
track-bed segments even if they are contiguous [33]. 

Due to this reason, the uncertainties should be properly considered 
when dealing with the development of track-bed degradation models, 
possibly by applying a probabilistic approach. Caetano and Teixeira 
[25] showed that the accuracy of the estimation of the future behavior of 
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the track-bed can be improved by increasing the number of records and 
inspections. A stochastic model responds to the need of integrating into 
the analysis the uncertainties affecting the different input parameters, 
which cannot be captured by a deterministic approach. 

At each time it is possible to define the value of the defect in a certain 
segment that corresponds to a certain probability Pf. That means that the 
track segment at a certain time has the probability Pf of showing a higher 
value of the defect being considered. Thus, it is possible to develop a 
degradation curve corresponding to a certain probability of failure and 
perform preventive maintenance when the probability of failure exceeds 
a maximum limit established at the beginning, thereby ensuring a 
certain level of reliability and quality of the track-bed. 

Applying a maintenance strategy supported by such a stochastic 
predictive modeling of the track geometry degradation allows consid
ering the reliability as an indicator that can ensure that the segment does 
not exceed a certain value of the defect until the next inspection [25]. 
Eq. (1) defines the reliability or the probability of a track segment being 
under the maximum geometric thresholds at a certain time: 

R(t) = 1 − Pf (t) (1)  

3. Problem statement and research objectives 

Uncertainties in the track degradation models have been considered 
recently by means of probabilistic approaches. Among those, Markov 
chain models have received particular attention [8,34]. Nevertheless, 
those models do not take into account a reliability indicator as a measure 
to support decision makers (DMs) when making decisions regarding the 
planning of maintenance activities [25]. One of the few exceptions 
existing in the literature is the work by Caetano and Teixeira [25]. The 
authors went further in the analysis by using these degradation models 
to design optimal maintenance strategies. The formulated 
multi-objective optimization (MOO) problem was solved through a 
Genetic Algorithm (GA). 

Nevertheless, as declared by the authors, selecting a specific solution 
from the Pareto front is one of the main problem at the end of such 
analysis and the solution adopted will depend on the preference and/or 
subjectivity of DMs. This is beacause there is no one single solution that 
can be said to be better than the others. 

The present paper aims to advance the state-of-the art by combining 
a probabilistic approach for the definition of railway track condition 
degradation models for different levels of reliability with a GA for 
identifying a set of optimal solutions for the design of railway track-bed 
maintenance strategies. The GA structure has been specifically tailored 
for the optimization of railway track-bed maintenance strategies by 
incorporating the uncertainties affecting the degradation of the track- 
bed. Thus, it can provide more comprehensive and informed results 
comparetively to those given by conventional deterministic processes, 
thereby responding to the ultimate need of increasing the stakeholders’ 
capacity in the railway sector to make more strategic and informed 
decisions regarding the railway management. 

Therefore, the objective of this paper is to present an optimization- 
based railway track maintenance scheduling framework to help 
designing optimal track maintenance schedules based on probabilistic 
degradation models developed using historical data and a reliability 
indicator. For that purpose, a MOO approach is applied for supporting 
the DMs in scheduling optimization-based preventive maintenance ac
tivities according to different level of reliability, considering different 
objective functions as well as several financial and technical constraints. 
Finally, a methodology is applied to select a unique optimal solution 
among those belong to the Pareto front. 

The steps required to achieve the aforementioned objectives are the 
following:  

1 Analysis of the real data of an Italian railway line to model the 
degradation process of the track-bed geometric parameters (i.e., VA 

and HA) over time by applying the Markov chains approach. The 
time characterizing each step has a duration of three months instead 
of one year to increase the control of the entire process and safety 
level;  

2 Definition of the probabilistic degradation models related to 
different levels of reliability;  

3 Definition of a set of optimal maintenance strategies through the 
application of a GA;  

4 Identification of a unique optimal solution using the criterion of the 
shortest Euclidean distance. 

Based on the research steps presented previously, the rest of this 
paper is organized as follows: the description of the stochastic approach 
employed to develop the degradation models of the railway track-bed 
and the characteristics of the GA employed in the optimization process 
are presented and explained in Section 4. The formulation of the 
optimization-based railway track-bed maintenance strategy selection 
problem is given in Section 5. Section 6 introduces the characteristics of 
the real case study. The results of the application of the developed 
methodology to the case study are described in Section 7. Finally, the 
conclusions and avenues for future research are provided in Section 8. 

4. Methodology 

4.1. Stochastic approach for modeling the ballast degradation: Markov 
chains 

The application of the Markov model to predict the degradation of 
the railway track-bed is based on the following assumptions [35]:  

• The deterioration process has to be conceived in discrete intervals of 
time. The deterioration of the track geometry is continuous over 
time; however, it is possible to consider the condition of the track as 
discrete at a specific time t. This time usually takes the form of one- 
year duty cycles for road infrastructure [36]. However, in the 
framework presented in this paper the time characterizing each duty 
cycle has a duration of three months to increase the control of the 
entire process and the safety level.  

• The track-bed condition is represented by numbered non- 
overlapping performance intervals (discrete state space). The space 
of the possible states is defined as a finite number of condition bands 
represented by the defect under consideration.  

• The process has to satisfy the Markov property, i.e. the future state of 
the system depends on its present state and not on its past states. 
Thus, the probability at t+1 that the state indicator assumes certain 
values depends exclusively on the values of such indicator at time t, 
immediately before t+1. 

Therefore, the deterioration of the track can be modeled by defining 
transition probabilities pij, that represent the probability of the portion of 
the track network in condition i to move to condition j in one interval of 
time (duty cycle). The transition probabilities can be organized in a 
transition probability matrix (TPM), that can be written as shown by Eq. 
(2): 

TPM =

⎡

⎢
⎢
⎣

p11 p12 . . . p1n
p21 p22 . . . p2n
⋮ ⋮ ⋱⋮

pn1 pn2 . . . pnn

⎤

⎥
⎥
⎦ (2) 

The standard approach to define the pij in TPM is to observe the 
historical data, particularly the way in which a track network worsens its 
state indicators over multiple discrete time intervals. Each element of 
TPM is the probability that the state indicators VA or HA remain in the 
same or move to a lower interval. 

Moreover, the process can be modeled through a non-stationary 
approach, i.e. the probability of moving from one track condition to 
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another is dependent on the time at which the step is being made. This 
implies the use of a different transition matrix before and after time t. In 
this case, since the traffic load gradually increases over time, it affects 
the probability distribution in every duty cycle. Therefore, the process is 
described by a non-stationary TPM. Furthermore, following the practice 
adopted for road infrastructure [37,38], in the framework presented in 
this paper, it is assumed that the track-bed condition will not drop by 
more than one state in a single duty cycle, considering that the duty 
cycle is a short period of time (3 months). Thus, the track-bed will either 
stay in its current state or move to the immediately lower state during 
one duty cycle. As such, the TPM will assume a simplified form (semi-
Markov process) [39], which is represented by Eq. (3): 

TPM =

⎡

⎢
⎢
⎣

p11 p12 . . . p1n
0 p22 . . . p2n
⋮ ⋮ ⋱ ⋮
0 0 ⋯ pnn

⎤

⎥
⎥
⎦ (3) 

The probabilities composing the TPM are given by Eq. (4): 

pt,t+1
ij =

Nt, t+1
ij

Ntot
(4) 

Where pt,t+1
ij is the probability of dropping from the state i to the state 

j during a generic duty cycle (t, t+1); Nt, t+1
ij is the number of track 

sections that drop from state i to state j during a generic duty cycle (t, 
t+1); and Ntot is the total number of track-bed sections analyzed. 

In an n-state Markov process, the state of the process at any time t is 
identified by a probability mass function [38] that can be expressed by 
Eq. (5): 

a(t) =
[
at

1, at
2…at

n

]
subjectto

∑n

i=1
= 1 (5) 

Where at
i is the probability that the track-bed is in state i at time t, 

and n is the number of states. 
Considering that the process starts at time t=0, the probability mass 

function of the process at the generic time t can be derived by multi
plying the TPM for each of t transitive steps. Thus, the state vector at a 
specific time t, can be obtained as shown by Eq. (6): 

a(t) = a0 × TPM1,2 × TPM2,3 × … × TPMt− 1,t (6) 

Where a(t) is the state vector at time t, i.e. the vector of the proba
bility mass function; a0 is the state vector at time t=0; and TPMt− 1,t is 
the transition probability matrix characterizing each duty cycle until 
time t. 

In the framework presented in this paper, the initial state vector (a0 ) 
that expresses the initial state of the track-bed represents the optimal 
condition just after a maintenance intervention. Knowing that a(t)
represents the probability mass function for each duty cycle of the state 
of the track-bed, it is possible to develop the degradation function of the 
potential defects for different reliability levels. To do so, the steps listed 
out below were carried out for both defects (i.e., VA and HA). Fig. 1 
illustrates their application for the VA.  

1. For each state vector corresponding to a specific duty cycle, a 
probability density function and the relative cumulative distribution 
function were associated. The different probability distributions 
were obtained by performing goodness-of-fit tests to measure the 
difference between the data and the distribution and to compare the 
`"distance’’ to a threshold value. If the "distance’’ is lower than the 
critical value, the distribution succeeds the test and the fit is 
considered satisfactory. Three different statistical tests were per
formed: Kolmogorov-Smirnov, Anderson Darling and Chi-Squared 
[40,41]. The EasyFit 5.6® software was used to assign a rank to 
each distribution, indicating with higher position in the ranking the 
distribution that shows a lower "distance’’ from the data. Therefore, 
by comparing the fitted models and the ranking for the three tests it 
was possible to select the most appropriate probability distribution.  

2. Once the cumulative distribution functions were defined for each 
state, three different levels of reliability were considered (i.e., 75%, 
85% and 95%);  

3. The values of VA and HA corresponding to the different reliability 
levels were reported in a graph for each duty cycle, leadind to the 
obtention of three different degradation functions. 

The definition of the different degradation functions allows going a 

Fig. 1. Schematic representation of the steps to be performed for defining the degradation functions.  
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step further in optimizing the maintenance strategy for each reliability 
level. 

4.2. Optimization model for scheduling maintenance activities: Genetic 
Algorithms (GA) 

Proposed in 1975 by Holland [42], GA are stochastic search engines 
employed for solving optimization problems. They started to be used in 
the last decades in transportation applications because they (1) do not 
require the objective function to be continuous or differentiable; (2) 
have good robustness for many applications; (3) have outstanding global 
search capabilities for convex and non-convex problems; (4) have 
inherent parallel processing capabilities; (5) are relatively easy to 
implement; and (6) are adaptable and flexible [43–45]. 

While in pavement management engineering GA have been widely 
applied, as documented by the literature [36,46–49], less research 
studies can be found in scheduling optimized M&R activities in railway 
engineering [25,50]. Therefore, one of the objectives of this research 
work is to contribute to the knowledge of the application of GA for 
designing optimal maintenance strategies of railway track-bed, inte
grating a probabilistic approach to predict the evolution of the param
eters representing the quality level of the track-bed. 

4.3. Structure of the GA 

Similar to other Evolutionary Algorithms, the application of GA 

starts by the definition of the size of the population (P), which consists of 
n chromosomes representing potential solutions of the problem. The 
elements that form each string of chromosomes are called genes. In this 
research work each gene represents a different type of maintenance 
intervention performed during a certain duty cycle. The dimension of 
the chromosomes is given by the project planning period. For every 
chromosome it is calculated the fitness value, which is an indicator of the 
appropriateness of a chromosome as a solution for the problem. It en
ables the selection of the best chromosomes and the generation of a new 
population through the recombination of the genes. Once the fitness of 
each chromosome is calculated, a sub-population is selected to generate 
new solutions. There are different techniques for selecting the set of 
solutions for the reproduction (mating pool). The most immediate and 
simple is to order the n chromosomes of the population by sorting their 
fitness function value from the highest to the lowest and select the first 
(in a maximization problem) or the last (in a minimization problem) k 
solutions (with k <n). 

Next, two chromosomes (parents) are randomly selected from the 
mating pool and a cut point (crossover point) is randomly selected. The 
portions of the two chromosomes at the right of the crossover point are 
exchanged, which generates two new chromosomes called children or 
offsprings [47]. After the creation of the children through the applica
tion of the crossover operator, certain elements of new chromosomes are 
randomly changed (mutation). The application of the mutation operator 
is essential because it helps to prevent the potential convergence to a 
local minimum or maximum. 

Fig. 2. Schematic representation of the structure of the algorithm.  
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To preserve the best genetic material, the chromosomes character
ized by the highest fitness values are copied into the subsequent gen
eration [50]. Moreover, before any new chromosomes are added to the 
new population, a given number of old chromosomes are copied from 
the old population according to the so-called elitism rate (Er). The main 
idea of elitism is to preserve the best genetic material, copying the best 
members from each generation to the subsequent generations. 

The process summarily described above is repeated until a termi
nation criterion is met. A flowchart representing the working mecha
nism of the GA is displayed in Fig. 2. 

4.4. Generation of optimal solutions: the Pareto front 

To solve the MOO problem, it is necessary to introduce the concept of 
domination. In light of the Pareto dominance concept extended to so
lutions, a solution x1 is said to dominate another solution, x2, if both 
conditions are true (for a maximization problem):  

• The solution x1 is not worse than x2 for all the objective functions, i. 
e., fi(x1) ≥ fi(x2) for all i ∈ (1,2…,N), where N is the total number of 
objective functions;  

• The solution x1 is strictly better than x2 in at least one objective, i. 
e. fi(x1) > fi(x2), for at least one i ∈ (1, 2…N), where N is the total 
number of objective functions. 

Thus, every solution is directly compared with another to determine 
which one is the best in relation to the objective i. By extending this 
comparison procedure to all the objectives N, it is possible to define a set 
of non-dominated solutions, called Pareto optimal set, which represents 
the solutions of the MOO problem. The objective funtion values of the 
Pareto optimal set in the objective space is named Pareto front [48]. 

There are several optimisation methods that can be used to generate 
the Pareto optimal set. Among other, they include aggregation methods 
(e.g., weighted sum method (WSM)), weighted metric methods (e.g., 
compromise programming methods), goal programming methods, 
achievement functions methods, goal attainment method, ε-constrained 
method, dominance-based approaches (e.g., NSGA-II, SPEA2, PESA-II, 
etc.) [48]. 

According to Marler and Arora [51], there is not a single method that 
is in general superior to the others. In this research work, the MOO 
problem is solved by means of the WSM. According to this method the 
various objective functions are combined into one performance function 
by assigning weights (preferences) to each objective. This results in a 
SOO problem (Eq. (7)). By varying uniformly the values of the set of 
weights (Eq. (8)), the solutions that fall between the objectives’ 
boundaries are obtained. 

min
∑Nobj

i=1
wi ×

OFi

(
X→
)
− OFmin

i

OFmax
i − OFmin

i
(7) 

Subject to 

wi ≥ 0, i = 1,…,Nobj,
∑Nobj

i=1
wi = 1 (8) 

Where wi is the weight assigned to the objective i, which varies from 
0 to 1 according to a given incremental step; OFi(X→) is the value of the 
objective function i for the solution X→; OFmin

i is the minimum value of the 
ith objective function; OFmax

i is the maximum value of the ith objective 
function, and; Nobj is the number of objectives for the MOO problem 
being considered. 

Given that the result of a MOO problem is not a single optimal so
lution, but instead a set of optimal solutions, there is a need for the DM 
to select a particular solution from the Pareto front, depending on his/ 
her own judgment or preference. A methodology that can be applied to 
select a single solution relies on the use of guiding constraints, such as, 

for instance, the total maintenance cost nearest to the available budget. 
If there are no indications about any guiding constraints, the most 
convenient solution that represents a satisfactory balance of the 
different objective functions can be found according to the criterion of 
the shortest Euclidean distance [37]. The main idea of this criterion 
consists of finding the point in the space (P) that represents the ideal best 
optimal solution when the best possible values of both objective func
tions are achieved simultaneously [52]. This solution is often called 
Utopia point. Therefore, the solution to be selected and implemented is 
the closest one to the point P in terms of normalized distance. A sche
matic representation of the criterion of the shortest normalized distance 
is shown in Fig. 3, considering as example a minimization problem. 

Because different objective functions are commonly measured with 
different measurement units, it is necessary, beforehand, to normalize 
the obtained optimal Pareto front. The normalized value for each non- 
dominated solution is calculated based on its objective function 
values. The normalized value of objective function i of a generic solution 
x belonging to the Pareto front is scaled to a value ranging from 0 to 100 
according to Eq. (9) [37]: 

NOFx
i =

OFx
i − OFmin

i

OFmax
i − OFmin

i
× 100, i = 1, …, Nobj (9) 

Where NOFx
i is the normalized value of objective function i of a 

generic x solution belonging to the Pareto Front; OFx
i is actual value of 

objective function i of a generic x solution belonging to the Pareto Front; 
OFmax

i is the maximum value of objective function i of all solutions 
belonging to the Pareto Front, and; OFmin

i is the minimum value of 
objective function i of all solutions belonging to the Pareto Front. 

For a n-objective optimization problem the solution that has the 
shortest Euclidean distance d from the ideal solution is the solution to be 
selected. d can be calculated according to Eq. (10). 

d=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[
NOFx

1 − NOFmin
1

]2
+
[
NOFx

2 − NOFmin
2

]2
+…+

[
NOFx

nobj
− NOFmin

nobj

]2
√

(10)  

5. Problem formulation: the railway track-bed maintenance 
strategy selection problem 

In the research work presented in this paper, the railway track-bed 
maintenance strategy selection problem was formulated as an optimi
zation problem where the aim is to optimize different objectives func
tions concomitantly, while satisfying several technical quality standards 
and budgetary requirements. The main set of decision variables of this 
optimization problem, which are defined by an integer value, is 
conceived to represent all feasible maintenance operations that can be 
performed in each duty cycle of the analysis period. Examples of other 
sets of variables include those describing the railway track-bed condi
tion in each duty cycle of the analysis period. As far as the specification 

Fig. 3. Schematic representation of the criterion of the shortest 
Euclidean distance. 
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of the objective functions is concerned, it is as follows:  

• Objective 1: Minimize the mean vertical alignment (VA) over the 
analysis period 

This objective function can be expressed as follow: 

Min. OF1 =

∑T
t=1YtR

T
for R ∈ {75%, 85%, 95%} (11) 

Where YtR is the value of the degradation function (derived from 
Markov model application) at each time t (duty cycle) for the reliability 
level R considered (i.e., 75, 85 and 95%); T is the analysis period (time) 
expressed in duty cycles, and; OF1 is the objective function value related 
to the mean VA of the railway track-bed.  

• Objective 2: Minimize the present value (PV) of the total M&R costs 
incurred over the analysis period 

This objective function can be expressed by Eq. (12). 

Min. OF2 =
∑T

t=1

∑M

m=1

MCmt

(1 + d)t × Xmt (12) 

Where MCmt is the maintenance cost incurred due to the execution of 
maintenance intervention m to track-bed section at time t; Xmt is equal to 
one if maintenance intervention m is applied to track-bed section at time 
t, otherwise it is equal to zero; d is the discount rate; T is the analysis 
period (time) expressed in duty cycles, and; OF2 is the PV of the total 
M&R costs incurred over the analysis period. 

The optimization problem is subject to the following general set of 
constraints: 

YtR = Φ (Y0R,X11,…,X1t ,…, Xm1,…., Xmt ), m = 1, …, M; t

= 1, …, T (13)  

YtR ≤ Ymax
R , t = 1, …, T (14)  

Xmt ∈ Ω (YtR), m = 1, …, M; t = 1, …, T (15)  

∑M

m=1
Xmt = 1, t = 1, …, T (16)  

∑T

t=1

∑M

m=1

MCmt

(1 + d)t × Xmt ≤ Bmax (17)  

∑T

t=1
Ct = T (18)  

{MCmt} = Ψ (YtR, Xmt ), m = 1, …, M; t = 1, …, T (19) 

Constraints (13) correspond to the railway track-bed conditions 
functions. In this formulation they express the value of the degradation 
function of the railway track-bed section in each time t as a set of 
functions of the initial condition and the maintenance activities previ
ously applied to the section. Constraints (14) are the warning level 
constraints which define the maximum values (Ymax

R ) for the railway 
track-bed condition variables (YtR) for a given reliability level R. Con
straints (15) represent the feasible maintenance sets, i.e. the M&R ac
tivities that can be applied to maintain or rehabilitate the railway track- 
bed section in relation to its quality condition. Constraint (16) indicates 
that only one M&R activity can be performed in each duty cycle. 
Constraint (17) is the budget constraint and specifies the maximum 
budget (Bmax) available to be spent in maintenance activities during the 
total analysis period T. Constraint (18) controls the number of correct 
maintenance activities applied at the right time (Ct), i.e., when certain 
defect thresholds are not exceeded. Constraints (19) represent the 
maintenance costs which are computed in relation to the condition of 

the railway track-bed section and the maintenance activity applied to 
the section in a given duty cycle. 

6. Case study application 

6.1. Development of probabilistic condition degradation models 

The inputs for the development of the probabilistic condition 
degradation models (i.e., VA and HA) of the railway track-bed were 
obtained through an analysis of 5 years (from 2005 to 2010) of historical 
data from the track geometry inspections of the homogeneous traf
ficking Italian railway line Pistoia-Lucca. The Pistoia-Lucca line is a 42- 
km long single track line. The maximum train running speed is 160 km/ 
h. The rails are all long-welded rails type 60 UIC. Prestressed concrete 
sleepers are positioned at a 60 cm center-distance. The fastening systems 
are of the type Pandrol. 

The track data were collected using the "Archimede’’ diagnostic 
train, whereas maintenance interventions were collected at the technical 
office. Among the years of the data analysis, a time span of "non-inter
vention’’ for each section (starting after the implementation of a 
tamping operation) was considered to determine the degradation func
tion without any maintenance intervention. 

The main parameters considered in the development of the models 
were the following: 

• Geometric parameters analysed: Vertical Alignment (VA) and Hori
zontal Alignment (HA);  

• Data acquisition interval: 5 years with no-intervention. Those data 
were used to calculate the Probability Transition matrix (TPM);  

• Number of sections: 25;  
• Duty cycle: 3 months. 

Furthermore, for the sake of an omogeneus partition, the three-by- 
three discretization of intervals was selected and set to be equal for 
VA and HA as shown in Table 1. 

At the beginning of the process (year 2005), tamping was carried out 
in all sections, bringing the VA and HA of each individual section to a 
value of 1.50 mm. Thus, all the sections start the degradation process in 
an excellent condition (state 1). Afterwards, the degradation process 
follows a different evolution for the different sections. Fig. 4 depitcs 
examples of the evolution of the VA defect for different sections. 

Nineteen different TPMs (non-homogeneous Markov chains) were 
obtained for each defect (i.e., VA and HA). The values of the TPMs were 
obtained by dividing the number of the track-bed sections that remained 
in their current conditions from one duty cycle to another by the total 
number of track-bed sections considered in the study (Eq. (4)). Once 
obtained the TPMs, it is possible to obtain the state vectors for each duty 
cycle by applying Eq. (6). The results of the state vectors obtained in 
each duty cycle without applying maintenance interventions are re
ported for VA and HA in Tables 2 and 3, respectively. Figs. 5 and 6 
represent the probability of finding the track-bed sections in a certain 
state at a certain time (duty cycle). 

As can be seen from Figs. 5 and 6, at the beginning of the process the 
probability of finding the track-bed line in state 1 (excellent state) is very 
high. As the time evolves, the probability density function representing 

Table 1 
Discretization of intervals for VA and HA.  

State VA [mm] HA [mm] 

1 ]0; 3] ]0; 3] 
2 ]3; 6] ]3; 6] 
3 ]6; 9] ]6; 9] 
4 ]9; 12] ]9; 12] 
5 ]12; 15] ]12; 15] 
6 ]15; 18] -  
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every state shifts and the standard deviation increases. This means that 
the probability of finding the track-bed in one single state is lower and 
the dispersion higher. Towards the end of the established interval, there 
is a high probability (approximately 63% at the duty cycle 19 for VA) of 
finding the track-bed in state 5. In this state immediate maintenance is 
required. 

Finally, once the distributions of the state vectors were calculated, 
their average can be determined according to the following expression 
[49]: 

y = at⋅cY (20) 

Where cY is a vector consisting of the midpoints of the condition 
states for the defect Y (Table 4). The results of y for both VA (VA ) and 
HA (HA ) are reported in Fig. 7a and b. 

Fig. 7 shows the evolution of the degradation process of VA and HA 
over time. The maintenance interventions are planned based on the 
warning levels established by the Italian Railway Standard [24], which 
are also presented in Fig. 7. The levels within which the railway is 
normally operated are divided into three levels of quality:  

1 First quality level: within this range it is not necessary to execute any 
maintenance intervention (0–6 mm for VA and HA);  

2 Second quality level: within this range it is appropriate to plan the 
possible execution of maintenance interventions (6–10 mm for VA 
and 6–8 mm for HA);  

3 Third quality level: within this range the execution of maintenance 
interventions is expected to take place within a limited time frame 
(10–14.5 mm for VA and 8–10.4 mm for HA). 

Looking at Fig. 7, it is possible to observe that VA remains under the 
limit of the 1st quality level for almost 7 duty cycle (21 months), while 
for HA this value rises to 9 duty cycles, which corresponds to 27 months. 
That means that during this time span the track-bed does not require the 
execution of any corrective action. 

Afterwards, the sections exceed the first quality level, remaining 
under the second quality level approximately until the 14th duty cycle 
for both VA and HA. The second quality level establishes that the geo
metric conditions of the track-bed allow the normal operation of the 
railway without any type of restriction. Nevertheless, for this interval 
the actions presented below are required to be performed:  

• Analysis of the causes of degradation;  
• Evaluation of the progress rate of the geometric parameter;  
• Plan the possible maintenance work on the geometry according to 

the evolution of the defect detected locally. 

The third quality level still allows the railway operation without any 
type of restriction provided that maintenance work is carried out 
shortly, so that the time span that will elapse until the actual execution 
of the maintenance does not exceed the maximum value allowed by the 
third quality level (14.5 mm). If the maximum value is exceeded, it is 
necessary to intervene by imposing speed restrictions. 

For the period considered in the present study, the VA and HA were 
not found to reach the thresholds corresponding to the third level (14.5 
mm for VA and 10.5 mm for HA). Comparing the average degradation of 
VA and HA in Fig. 7, it can be seen that the degradation process is 
approximately similar for both alignments. 

6.2. Railway track condition degradation functions and reliability levels 

A statistical analysis was performed to define the reliability level (i. 
e., 75, 85 and 95%) of the railway track condition degradation functions. 
Tables 5 and 6 show the results of the selection of the probability dis
tributions for each duty cycle and the values of VA and HA corre
sponding to the different reliability levels, also for each duty cycle. 
Table 7 presents the condition degradation functions for VA and HA for 
the different reliability levels. They were defined according to the 
methodology schematically represented in Fig. 1. The resulting uncon
ditional probabilities describe a non-homogeneues and non-stationary 
or invariant process distribution, i.e. the probability distribution does 
not remains constant as the Markov chain evolves over time, even if a 
higher level of stationarity is observed for the HA degradation compared 
to that of the VA. Despite the fact that most agencies that adopt Markov 
chain degradation models rely on static transition probabilities, the 
subjective knowledge of the experts and the high variability of all the 
parameters considered result in the modeling of the degradation process 
that is not completely adequate [39]. Therefore, the probability distri
butions identified in this case study for each duty cycle represent a step 
further towards a model more adherent to the reality of the degradation. 

6.3. Optimization algorithm: parameters setup and constraints handling 
mechanism 

To start the implementation of the GA used to solve the optimization 
model it is necessary to define the value of a set of parameters, such as 
the population size (P), mutation rate (Mr), crossover rate (Cr) and 
elitism rate (Er). 

A large population size improves diversity but slows down the 
convergence process and increases computational time. On the contrary, 
if the population is too small, the risk of a premature convergence of the 
algorithm towards a poor local optimal solution is high [53]. A high 
crossover probability may destroy the structure of important genetic 

Fig. 4. Evolution of VA values for different sections considered in the case study.  
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Fig. 5. Probabilities of finding the track-bed sections in a certain VA state at a certain time.  

Fig. 7. Average of the state vectors (y) for (a) VA (VA) and (b) HA (HA).

Fig. 6. Probabilities of finding the track-bed sections in a certain HA state at a certain time.  

Table 4 
Midpoint of the condition bands for VA and HA.  

Condition state VA range [mm] HA range [mm] cVA [mm]  cHA [mm]  

1 ]0; 3] ]0; 3] 1.5 1.5 
2 ]3; 6] ]3; 6] 4.5 4.5 
3 ]6; 9] ]6; 9] 7.5 7.5 
4 ]9; 12] ]9; 12] 10.5 10.5 
5 ]12; 15] ]12; 15] 13.5 13.5 
6 ]15; 18] - 16.5 -  
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information of some chromosomes, whereas a low value may constraint 
their diversity. The mutation is meant to allow genetic diversity. Its rate 
generally varies between 0.001 and 0.1 and when it is too low some 
useful genes may never be explored [37]. 

Based on the considerations presented above, the values commonly 
reported by the literature, and an exploratory analysis, the parameters 
were set as presented in Table 8. 

Finally, due to the stochastic nature of the search process employed 
by GA, it might happen that the application of the genetic search op
erators produce infeasible solutions, i.e., solutions that do not meet one 
or multiple constraints considered. Therefore, those undesirable solu
tions need to be somehow penalised so that they are not considered as 
good solutions. An intuitive approach to handle those solutions consists 
simply of rejecting them. However, this procedure might lead to the GA 
being stuck in a local optima. In order to prevent this scenario, the 
penalty-based approach presented by Santos et al. [46] was imple
mented in this research work. According to this approach, the fitness 
value of an infeasible solution not only depends on the amount of con
straints violation, but also on the population of individuals of each 
generation. 

6.4. Aspects related to the implementation of the optimization model 

When integrated in the optimization model, the use of the railway 
track condition degradation functions allows the design of optimal long- 

Table 5 
Probability distribution identified for the values of the VA at each duty cycle and 
corresponding values for different reliability levels.  

Duty cycle Month Probability distribution VA [mm]    

75% 85% 95% 

1 3 Nakagami 3.86 4.29 5.03 
2 6 Weibull 6.70 7.38 8.49 
3 9 Log-Logistic 7.04 7.98 10.13 
4 12 Log-Logistic 7.04 7.98 10.13 
5 15 Frechet 7.04 7.98 10.13 
6 18 Frechet 8.22 9.27 11.79 
7 21 Weibull 9.39 9.98 11.79 
8 24 Weibull 9.68 10.22 11.79 
9 27 Uniform 10.00 10.53 11.79 
10 30 Uniform 10.45 11.07 11.79 
11 33 Log Logistic 11.00 11.89 13.80 
12 36 Frechet 11.58 13.01 16.46 
13 39 Weibull 13.25 14.07 16.46 
14 42 Uniform 13.42 14.06 16.46 
15 45 Lognormal 13.60 14.30 16.46 
16 48 Lognormal 13.66 14.60 16.46 
17 51 Lognormal 15.19 16.13 17.33 
18 54 Gumbel Min 16.27 16.92 17.85 
19 57 Weibull 16.54 17.37 18.65  

Table 6 
Probability distribution identified for the values of the HA at each duty cycle and 
corresponding values for different reliability levels.  

Duty cycle Month Probability distribution HA [mm]    

75% 85% 95% 

1 3 Rayleigh 3.00 3.00 3.00 
2 6 Rayleigh 3.00 3.00 3.00 
3 9 Rayleigh 6.18 7.23 9.08 
4 12 Rayleigh 6.18 7.23 9.08 
5 15 Rayleigh 6.18 7.23 9.08 
6 18 Rayleigh 6.18 7.23 9.08 
7 21 Rayleigh 6.18 7.23 9.08 
8 24 Frechet 7.21 7.23 9.59 
9 27 Frechet 8.30 7.92 11.95 
10 30 Weibull 9.28 9.37 11.95 
11 33 Gen. Ext. Value 9.28 9.89 11.95 
12 36 Gen. Ext. Value 9.28 9.89 11.95 
13 39 Gen. Ext. Value 9.28 9.89 11.95 
14 42 Frechet 10.62 11.45 13.32 
15 45 Frechet 11.33 12.35 14.67 
16 48 Weibull 12.03 12.61 14.67 
17 51 Weibull 12.27 12.83 14.67 
18 54 Weibull 12.66 13.14 14.67 
19 57 Gumbel Max 12.72 13.14 14.67  

Table 10 
Summary of the parameters considered in the application of the optimization 
model to the case study.  

Name Value Unit Note 

Maximum 
budget 
available 
(Bmax) 

120 000 (for 75 and 
85% reliability levels) 
and 180 000 (for 95% 
reliability level) 

€/km Parameter considered in 
constraint (17) of the 
optimization model. Its 
value was defined 
according to the values 
found in literature [25]. 

Maximum 
admissible VA 
value 
(YVA, max

R )

14.5 mm Parameter considered in 
constraint (14) of the 
optimization model and 
defined according to the 
Italian standard [26] 

Period of 
analysis 

20 years  

Discount rate 3.5 % [36]  

Table 7 
Railway track condition degradation functions for VA and HA for different 
reliability levels.  

Reliability level 
[%] 

Alignment 
type 

Degradation function [mm] R2 

75 VA y(x) = 0.21x+ 4.19  0.98  
HA y(x) = 0.18x+ 3.21  0.91 

85 VA y(x) = 0.22x+ 4.79  0.97  
HA y(x) = 0.18x+ 3.94  0.92 

95 VA y(x) = 0.0001x3 − 0.0116x2 +

0.57x+ 4.12  
0.94  

HA y(x) = 0.0001x3 − 0.0136x2 +

0.64x+ 1.69  
0.96  

Table 9 
Unit costs of the M&R interventions.  

ID Name M&R cost [€/km] 

1 No intervention 0 
2 Inspection 111 
3 Tamping 7200 

Note: The costs values were taken from the literature [25,54,55]. 

Table 8 
Parameters of the GA adopted in this study.  

Parameter Value 

P 500 
Cr 0.6 
Mr 0.1 
Er 0.1  
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term M&R strategies according to the objective functions and con
straints considered. On this subject, it matters to mention that the 
implementation of tamping intervention corrects the defects related to 
both alignments, i.e., vertical and horizontal. If the intervention to 
restore the VA is applied, the HA is corrected as well. Therefore, since 
the degradation trends of VA and HA were found to be approximately 
similar, only the VA degradation function was used for the design of 
optimal maintenance strategies. 

The applicability of the optimization model was illustrated through a 
track-bed section of the Lucca- Pistoia railway with a standard length of 
1 Km. Moreover, in this case study 3 mutually exclusive maintenance 
interventions were considered: (1) maintenance 1 "no intervention’’, (2) 
maintenance 2 "inspection’’, and; (3) maintenance 3 "tamping’’. These 
interventions were selected based on the warning levels for the defects 
defined by the Italian standards [24]. Their unit costs are presented in 
Table 9. The remaining parameters considered in the application of the 
optimization model to the case study are summarized in Table 10. 
Finally, it should be mentioned that for the analysis period considered in 
the case study (i.e., 20 years) the renewal activity was not considered to 
be available for application based on the criterion that considers the 
30% of particles passing the 22.4 mm sieve as a limit for the application 
of that activity [1,54]. 

7. Results and discussion 

The optimization model was written in MATLAB® programming 
software (MATLAB, 2015), and run on a computational platform Intel 
Core i7-6700HQ 2.60 GHz processor with 16.00 GB of RAM, on the 
Windows 10 Home operating system. 

7.1. Evolution of the stability of solutions 

In order to evaluate the evolution of the fitness value of the best 
solution in the search for the optimal solution, the GA was implemented 
by subjecting the initial population of size 500 to an evolutionary pro
cess considering 100, 200, 500, 1000 and 2000 generations. This is a 
common procedure used in evolutionary computing to decide when 
enough generations have been run based on the stabilisation of results 
[56] in order to avoid excessive and unnecessary computing time. Under 
those circumstances, when no (or residual) changes in the fitness value 
of the best solution are observed, one can say that the optimal solution 
has been reached. 

Fig. 8 shows the fitness value of the best solution when the GA was 
run considering 100, 200, 500, 1000 and 2000 generations and equal 
weighs were assigned to both objective functions. Additionally, Fig. 9 
presents the M&R costs and mean VA over the entire analysis period (i. 
e., 20 years) for the best solution found throughout the search process. 
From the analysis of both figures it can be seen that no considerable 
improvements in the best fitness value was achieved after approximately 
500 generations. As such, 1000 generations have been conservatively 
adopted as the number of generations for this case study. 

The Pareto fronts obtained for the different reliability levels are 
presented in Fig. 10. This Figure shows the existence of a clear trade-off 
between the two objective functions, meaning that a reduction in the PV 
of the life cycle M&R costs can only be achieved at the expense of an 
increase in mean value of the VA. 

After displaying the Pareto fronts, the next and final step of the 
methodology consists of selecting the final solution among the several 
Pareto solutions according to the minimum Euclidean distance criterion 
[37]. For the analyzed problem, the OFmin

i and OFmax
i values represented 

in Eq. (9) are summarized in Table 11 for the different reliability levels. 
The normalized Pareto optimal fronts obtained after applying Eq. (16) 
are illustrated in Fig. 11 for each reliability level. Finally, the optimal 
solution is identified as the solution that has the smallest Euclidean 
distance from the point in the Cartesian plane that ideally represents the 

Fig. 8. Normalized fitness value of the best solution when the GA is run with different number of maximum generations.  

Fig. 9. Objective functions value of the best solution for 100, 200, 500, 1000 
and 2000 generations. 
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minimum life cycle M&R costs and the minimum mean VA. The 
normalized Euclidean distance of those solutions as well as their 
objective function values are summarized in Table 12. 

7.2. Optimal M&R schedules 

The results presented in Table 12 show that the selected Pareto 
optimal solution with the lowest level of reliability entails a total M&R 
cost of € 26191 €/km and a mean VA of 8.53 mm throughout the 20-year 
analysis period. That means that by employing the corresponding M&R 
plan (Fig. 12) in 1 km of the railway line, the probability of keeping the 
mean VA equal to 8.53 mm is equal to 75%. It corresponds to carry out 5 
tamping operations and a consistent number of inspections (35) during 
the 20-year analysis period in order to ensure an adequate level of safety 
and ride comfort. It should be mentioned that the M&R plan is very 
detailed because every duty cycle is equal to three months. 

For the intermediate level of reliability (i.e., 85%) a total M&R cost 
of € 31731 €/km and a mean VA value of 8.97 mm are observed if the 
M&R plan corresponding to the selected Pareto optimal solution is 
implemented (Fig. 13). It requires to perform 5 tamping operations and 
42 inspections during the 20-year analysis period in order to ensure an 
adequate level of safety and ride comfort. By doing so, the probability of 
keeping the mean VA equal to 8.97 mm is 85%. 

Finally, for the highest level of reliability considered (i.e, 95%) the 
selected Pareto optimal solution is associated with a total M&R cost of € 
68359 €/km and a mean VA value of 8.60 mm. That means that by 
employing these economic resources, the probability of keeping a mean 
VA equal to 8.60 mm along 1 km of the railway line is equal to 95%. The 
corresponding M&R plan envisages to execute 12 tamping operations 
and 53 inspections throughout 20-year analysis period in order to 
guarantee an adequate level of safety and driving comfort (Fig. 14). 

Fig. 15 depicts the three Pareto optimal fronts obtained for the 
different reliability levels. From the comparison of the Pareto optimal 
fronts it is possible to observe that as the reliability increases there is a 
diagonal shift (towards the right upper corner) and a flattening of the 
Pareto optimal fronts. In practice that means the worsening of the 
marginal value of the money, in the sense that for each additional euro 
spent in M&R the railway agency can expect less expressive reductions 
in the mean VA, and thereby increase in safety and comfort. The trade- 
off between the two objectives functions (Mean VA and PV of M&R 
costs) follows a nonlinear curve as shown in Fig. 16. This result is in line 
with the results obtained recently by other studies [25]. 

8. Conclusions and future research 

The framework presented in this paper introduces a methodology 
conceived to support the design of optimal preventive maintenance 
strategies that allows maintaining a satisfactory quality level of a rail
way track-bed while minimizing the present value of the life cycle 
maintenance costs. For solving the optimization-based maintenance 
planning problem three main steps were carried out: (1) the degradation 
process over time of the geometric parameters were analyzed according 
with a probabilistic approach; (2) three degradation functions were 
conceived considering three different reliability levels; and (3) an 
optimal maintenance strategy was defined by applying a GA to solve the 

Fig. 10. Pareto optimal fronts obtained when the considered reliability level is 
equal to (a) 75%, (b) 85% and (c) 95%. 

Table 11 
Lower and upper bound values of the Pareto optimal set for the different reli
ability levels.  

Objective Function Reliability level [%] 

Name Nomenclature 75 85 95 

Minimize PV of the life cycle 
M&R 

OFmin
2 [€/km]  19 196 23 032 54 339  

OFmax
2 [€/km]  56 769 63 484 108 

356 
Minimize the life cycle mean VA OFmin

1 [mm]  7.13 7.87 8.50  

OFmax
1 [mm]  11.48 10.96 8.75  
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multi-objective maintenance planning problem. By using real data ob
tained from inspections on the Italian Lucca-Pistoia railway track-bed, it 
was possible to determine the level of reliability for the evaluation of the 
degradation of the geometric parameters considered. 

Based on the characteristics of the case study considered and the 
results obtained, the following main conclusions can be drawn:  

• Through the use of a MOO approach, it is possible to develop a 
decision-making process to support the design of optimal strategies 
for the planning of inspections and tamping operations with a certain 
reliability level. Furthermore, a criterion was applied to establish the 

balance between the objectives involved (i.e., the concomitant 
minimization of the PV of the M&R cost and the mean VA over the 
analysis period). The procedure clearly allowed the identification of 
a specific maintenance strategy for each reliability level.  

• The selected Pareto optimal solution for each reliability level led to 
mean VA values that varies in the range of approximately 8.5 and 9 
mm. To ensure that those values are attained, different economic 
resources are necessary to be spent per km depending on the reli
ability level. In particular, approximately 26200, 32000 and 68500 € 
are necessary when considering 75, 85 and 95% level of reliability. 
The cost-reliability trade-off indicates that to achieve a higher level 
of reliability and control for properly scheduling inspections and 
tamping operations, the necessary investment in maintenance in
creases according to an exponential relationship. In particular, for an 
increase of 10% in the reliability level from 75% to 85%, it is 
necessary to increase the budget allocated to railway track mainte
nance by 22%, whereas an increase in the reliability level from 85% 
to 95% requires an increase of the budget equal to 114%.  

• The optimal maintenance plans require the execution of different 
numbers of inspections and tamping operations depending on the 
reliability level being considered. In particular, 5, 5 and 12 tamping 

Fig. 11. Normalized Pareto optimal front for the different reliability levels.  

Fig. 12. M&R plan corresponding to the optimal solution with 75% of probability of ensuring an average VA equal to 8.53 mm.  

Table 12 
Characteristics of the selected Pareto optimal solutions.  

Item Reliability level [%]  

75 85 95 
Euclidean distance (d) 37.2 41.63 47.80 
Life cycle M&R costs [€/km] 26 191 31 731 68 359 
Life cycle mean VA[mm/km] 8.53 8.97 8.60  
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operations are necessary for the reliability levels of 75, 85 and 95%, 
respectively. Moreover, increasing the reliability level also implies 
an increase in the number of inspections. 

Although the proposed methodology has proved to be useful for real 
applications, its applicability can be further extended either by 
including other geometric parameters or by incorporating additional/ 
different maintenance/renewal operations that have the potential to 

Fig. 15. Comparison of the Pareto optimal fronts of the three different reliability levels.  

Fig. 13. M&R plan corresponding to the optimal solution with 85% of probability of keeping an average VA equal to 8.97 mm.  

Fig. 14. M&R plan corresponding to the optimal solution with 95% of probability of ensuring an average VA equal to 8.60 mm.  

S. Bressi et al.                                                                                                                                                                                                                                   



Reliability Engineering and System Safety 207 (2021) 107359

16

increase the geometric quality of the track, such as, for example, the 
cleaning of the railway track-bed ballast or the improvement of the 
drainage. 
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