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Abstract: We report, for the first time, an integrated photonic signal
processor consisting of a reconfigurable optical delay line (ODL) with
a separate carrier tuning (SCT) unit and an optical sideband filter on a
single CMOS compatible photonic chip. The processing functionalities are
carried out with optical ring resonators as building blocks. We show that
the integrated approach together with the use of SCT technique allows the
implementation of a wideband, fully-tunable ODL with reduced complexity.
To highlight the functionalities of the processor, we demonstrate a reconfig-
urable microwave photonic filter where the ODL has been configured in a
bandwidth over 1 GHz.
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1. Introduction

Reconfigurable optical delay lines (ODL) and wideband tunable phase shifters have primary
importance in a number of microwave photonic (MWP) signal processing applications like
filtering [1–4], arbitrary waveform generation [5] or control of wideband phased-array antennas
[6, 7]. Various approaches have been proposed to implement reconfigurable true time delay
(TTD) lines employing photonic crystals [8], semiconductor waveguides [9–11] or exploiting
nonlinear effects in optical fibers, such as the stimulated Brillouin scattering (SBS) [12–14].
Moreover, cascaded optical ring resonators have also been considered to provide tunable time
delay [15–18]. The main advantages of this approach are the continuous tunability with large
instantaneous bandwidth, compactness and CMOS compatibility of the technology.

Many solutions, however, suffer a tradeoff between maximum achievable delay, operating
frequency and bandwidth. For MWP signal processing schemes like filtering or beamforming
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it is advantageous to employ a single sideband with carrier (OSSB+C) modulation scheme to
limit the delay bandwidth [13, 19] without resorting to coherent detection scheme where the
optical carrier is completely removed. Thus, in this scheme, one would employ a delay line that
imposes a linear phase response over the whole frequency range comprised between the optical
carrier and the highest frequency component of the RF sideband (shown as the dashed line in
Fig. 1). In this case the delay bandwidth, defined as the frequency range where the linear phase
response of the ODL is obtained, depends strongly on the absolute frequency of the RF signal.
The separate carrier tuning (SCT) technique [13–14, 19–20] can be used to relax this strin-
gent requirement on the ODL. In this scheme, basically, the ODL would impose a linear phase
response over the RF sideband only. As for the optical carrier, a separate component is used
to apply the correct phase shift as it would experience when an ideal delay unit with a linear
phase slope over the whole frequency range is employed (Fig. 1). With this scheme, the delay
bandwidth of the ODL is independent of the absolute RF frequency. In this work we propose
and experimentally demonstrate a scheme where the ODL, the SCT and the optical sideband
filter (OSBF) necessary to create the OSSB+C spectrum are integrated in a single CMOS com-
patible photonic chip. This approach brings advantages in terms of compactness together with
wideband performance and full tunability. The functionality in terms of full-2π carrier phase
shift and continuously tunable delay is demonstrated by implementing a reconfigurable 2-tap
complex-coefficients microwave photonic notch filter.

2. Theory of separate carrier tuning

Let us consider an OSSB+C modulation where only the upper sideband is kept, as in Fig. 1.
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Fig. 1. Principle of operation of an optical true time delay unit with separate carrier tuning.

The group delay Tgroup applied to the signal at frequency ωc + ωRF is given by the slope of
the optical phase characteristic at the same frequency:

Tgroup =
∂ϕ(ω)

∂ω

∣
∣
∣
∣
ωc+ωRF

(1)

For TTD operation, the RF phase should be a linear function of frequency over the whole
frequency range [19], with the slope Tgroup. The desired carrier phase should then be

ϕ(ωc) = ϕ(ωc +ωRF)−ωRF
∂ϕ(ω)

∂ω

∣
∣
∣
∣
ωc+ωRF

(2)

If a dispersive device is used to add a constant phase slope to the sideband, as in Eq. (1), the
carrier phase will assume a certain value ψ , which can deviate from the desired phase ϕ(ωc), as
illustrated in Fig. 1. Based on the separate carrier tuning approach, to achieve TTD operation,
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the carrier phase should be adjusted to the value given by Eq. (2), by adding a phase shift to the
carrier equal to

Δϕc = ϕ(ωc)−ψ (3)

It should be kept in mind that the carrier phase adjustment should be applied modulus of 2π
since the carrier is monochromatic. The details on SCT technique applied to delay lines based
on SBS in optical fibers can be found in [13].

3. Principle of operation and device realization

The schematic of the MWP processor consisting of the OSBF, the reconfigurable ODL and the
SCT unit is depicted in Fig. 2. The OSBF is a Mach-Zehnder interferometer loaded with an
optical ring resonator in one of its arms (i.e. MZI + ring type) (Fig. 2(a)).

FSR = 6.7 GHz
“MZI + ring” filter

2
output

1CTCT

FSR = 13.4 GHz
delay unit

FSR = 13.4 GHz
carrier tuner

input

(a)(b)c)(

test
input tunable

coupler

OSBF

SCT unit ODL unit

Fig. 2. Schematic of the delay structure employed to demonstrate the single-chip SCT-
based optical delay line: (a) optical sideband filter (OSBF); (b) optical delay line (ODL)
unit; (c) separate carrier tuning (SCT) unit.

The OSBF is used to remove one of the RF sidebands (in this case the lower sideband) of a
double sideband with carrier (DSB+C) modulation signal generated from an intensity modula-
tion of the optical carrier. The DSB+C spectrum and the magnitude response of the OSBF is
depicted in Fig. 3(a). The detail of the OSBF design has been reported elsewhere [6].

The reconfigurable ODL consists a pair of cascaded all-pass ORRs [15] as shown in Fig. 2(b).
These ORRs can be tuned in such a way to approximate a linear phase response over the side-
band, with the specific slope Eq. (1) that gives the desired group delay Tgroup. The desired phase
response is shown in Fig. 3(b).

The SCT unit is implemented using a pair of cascaded ORRs, exploiting the dispersive phase
response of the resonator [19,21]. This is characterized by a 2π optical phase transition centered
at the resonant wavelength. The separate tuning is thus obtained by tuning the phase transition
of an ORR and then simply adjusting the position of its resonant frequency with respect to
the carrier wavelength (see Fig. 3(c)). This approach was demonstrated in [21] where an RF
phase shift up to 336◦ was obtained employing a tunable silicon-on-insulator (SOI) microring
resonator (MRR). Nonetheless, this solution may require a detuning of the resonance of the
MRR in the order of several GHz. Here we use two optical ring resonators, as shown in Fig. 2(c),
in order to achieve a sharper transition in the phase transfer around the resonance frequency,
as visible in Fig. 3(c). This permits to give a complete 360◦ phase shift to the carrier with
moderate detuning of the resonant frequency, thus limiting the dispersion effects only in the
vicinity of the desired wavelength, without sensibly affecting the linear phase transfer desired
in the spectral region occupied by the sideband (Fig. 3(c)). In addition to that, using two ORRs
allows to keep a relatively low quality factor for the resonators, thus minimizing their insertion
loss.

The structure in Fig. 2 is realized in a low-loss CMOS compatible TriPleX™ waveguide
technology [22]. The realized ORRs have a free spectral range of 13.4 GHz and the OSBF has
an FSR of 6.7 GHz. The ORRs and the OSBF are fully tunable using thermo-optical tuning
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Fig. 3. Measured frequency response of subsection (a) and simulated responses of subsec-
tions (b) and (c) of the optical delay line, over one FSR of the OSBF (6.7 GHz).

with chromium heaters that have been deposited on the optical chip. Using these heaters, the
ORRs can be fully tuned in terms of their resonance frequencies and their Q-factors as will be
explained in the next section.

4. Experiment

The measurement setup in Fig. 4 is used to analyze the performance of the OSBF, the ODL
and the SCT sections. We use a DFB laser with an optical power of 100 mW (EM4 Inc.), a
Mach-Zehnder modulator (MZM, Avanex FA20), an erbium-doped fiber amplifier (EDFA) and
a 10 GHz photodetector (PD, Discovery Semiconductor DSC 710). A vector network analyzer
(VNA, Agilent N5230) is used for the amplitude and phase transfer measurements; the optical
responses can be displayed on the VNA by using the phase shift method [23], which is a similar
method to the one implemented in a lightwave component analyzer [8].
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Fig. 4. Schematic of the measurement setup. Polarization maintaining optical fibers (PMF)
are used for the interconnection of laser, modulator and optical chip.
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Fig. 5. (a) Measured (symbols) and theoretical (solid lines) phase responses over the signal
sideband. Different slopes (corresponding to different delays) can be set using the ODL
unit. (b) Phase shift of the RF phase responses. A phase shift over 2π is achieved by chang-
ing the phase of the optical carrier employing the SCT unit. The constant slope for all traces
shows that the amount of delay is not influenced by the carrier tuning.

Figure 3(a) shows the measured magnitude response of the OSBF, in comparison with a
schematic representation of the DSB+C signal spectrum to be processed. Assuming an optical
suppression of at least 22 dB for the undesired sideband, the usable bandwidth in which it is
possible to achieve OSSB+C modulation for the RF signal is between 1.2 GHz and 2.2 GHz as
illustrated in Fig. 3(a).

In Fig. 5 we show how the integrated delay line can be used to provide different values of
group delay to the signal sideband (visible as different slopes of the phase response, Fig. 5(a))
and arbitrary phase shifting to the optical carrier (Fig. 5(b)).

The amount of time delay (i.e. the slope of the phase response) of the ODL unit can be varied
with continuity by means of tuning the resonance frequencies and the coupling factor (hence
the Q-factor) of the ORRs in Fig. 2(b). By properly cascading the ORRs (i.e. adding their group
delay response) in principle a large and wideband true time delay can be achieved. The detail of
this principle is reported in [7, 16]. The phase responses obtained with the ODL are displayed
in Fig. 5(a), and show good agreement with their theoretical responses. In the measurements,
the electrical delay function of the VNA has been employed to compensate for the additional
group delay given by the transmission path external to the tunable ODL (e.g. coax. cables,
fibers, EDFA), in such a way that the slope of the phase response in Fig. 5(a) would represent
the delay provided by the integrated ODL only.

In order to demonstrate the effectiveness of the SCT unit, in Fig. 5(b) we show measured RF
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phase characteristics on the detected sideband when a variable phase shift (PS) between 0 and
2π is imposed to the optical carrier via the ORRs of the CT unit in Fig. 2(c). In a OSSB+C
modulation scheme, the phase shift imparted on the optical carrier generates an equal phase
shift on the detected electrical signal, constant with respect to RF frequency [24]. This effect
is visible in Fig. 5(b), where the constant phase shift over the detected sideband shows that the
carrier phase is effectively being shifted over the whole 2π range, and the fact that the slope
does not change confirms that the carrier phase can be tuned without affecting the linear phase
response at the delay band as suggested in Fig. 3.

5. Microwave photonic filter demonstration

To demonstrate the functionality of the delay line when employed in a specific application, we
built a 2-tap reconfigurable microwave photonic filter (MPF) with complex coefficients. For
2-taps, the general expression of the transfer function [4, 13, 25–27] reduces to

H(ω) = a0 +a1e− jωT (4)

where ω is the microwave frequency, a0 = |a0|e− j0, a1 = |a1|e− jϕ are the real and the complex
tap coefficients, respectively, T is the basic delay of the MPF and ϕ the phase difference be-
tween the taps. In this demonstration we use the ODL unit to change the MPF basic delay and
the SCT unit to adjust the ϕ , thereby fully reconfiguring the MPF response.

MZM

MZM

DFB-LD

DFB-LD

EDFA PDoptical chip

3dB

2.2 m

port 1 port 2

VNA

Fig. 6. Schematic of the 2-tap microwave photonic filter.

The schematic of the incoherent MPF is shown in Fig. 6. The optical frequencies were gen-
erated using two DFB laser diodes (DFB-LDs). The laser wavelengths have been set to have an
offset over 1 nm (corresponding to approximately 125 GHz of frequency difference between
the DFB-LDs) to prevent that a possible beating frequency might fall in the passband of the
photodetector and create signal distortions. The two taps have a length imbalance of 2.2 m,
which gives a delay difference of approximately 10.68 ns and free-spectral range of 93.6 MHz.
One signal tap propagates through the ODL while the other one enters the chip from the OSBF
test input port, thereby bypassing the ODL and the SCT. These taps are combined using a tun-
able coupler prior to entering the OSBF, as depicted in Fig. 2. In this way, if desired, a single
OSBF can be used to suppress the lower sideband for both taps. This is possible by exploiting
the periodic response of the integrated OSBF, by simply setting the frequency spacing between
the carrier wavelenghts to be a multiple of the FSR of the OSBF. The filter taps amplitudes a0

and a1 can be equalized by modifying the coupling ratio of the tunable coupler.
By operating the SCT unit and the ODL, as in Fig. 7, the notch positions and the FSR of the

MPF can be tuned independently. In particular, Fig. 7(a) shows how the MPF notch positions
can be shifted by 360 degrees by operating the SCT unit in Fig. 2(c). A 100% tunability can be
achieved, as expected from the the phase shift capability of the ODL shown in Fig. 5(b). The
equal shape of the individual responses and their constant FSR demonstrates that the carrier
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a) phase shiftertuning

b) delay (ON/OFF)tuning

c) delay ON + phase shiftertuning

delay on

delay off
98.6 MHz

93.6 MHz

Fig. 7. Measured magnitude responses of the MPF. A continuous 100% fractional tuning
can be achieved by the SCT unit, without changing the FSR (a). The FSR can be changed
from 93.6 MHz to 98.6 MHz by setting the tunable delay to 540 ps (b). The fact that the
FSR of the MPF does not vary when shifting the response, shows that operating the carrier
tuner does not disrupt the delay response imposed over the sideband by the delay unit (c).

phase tuning does not influence neither the amplitude nor the delay in the passband, as expected
from the principle of operation of the SCT unit represented in Fig. 3(c).

Figure 7(b) shows the capability the ODL to impose a tunable group delay over the entire
sideband. The solid line represents the MPF response when no delay is applied to the tunable
tap (0 ps line in Fig. 5(a)). This condition is indicated as “delay off”. The dotted line shows
how the response is modified when a group delay of approximately 540 ps is set in the ODL
(“delay on”). The application of this amount of delay reduces the basic delay T of the MPF
from 10.68 ns to 10.14 ns, with a corresponding increase the FSR from 93.6 MHz to 98.6 MHz.

In Fig. 7(c) different measured MPF responses are reported, when both the ODL and the
SCT units are active simultaneously. As described before, here the ODL has been kept on the
“delay on” condition in all traces. It is possible to see that the FSR keeps to the 98.6 MHz value,
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independently by the absolute position of the MPF notches, which can be set applying a phase
shift to the carrier via the SCT section as in Fig. 7(a). This latter measurement confirms that the
SCT section can be operated without affecting the amount of delay in the ODL section.

6. Conclusion

We have experimentally demonstrated a reconfigurable ODL based on the SCT technique
where, for the first time, all the required components are integrated on a single photonic chip.
The functionality was demonstrated over a bandwidth in excess of 1 GHz by employing the
ODL to fully reconfigure the response of a 2-tap complex-valued MPF. The operating band-
width can be readily extended just by adding more ORRs in the delay section of the ODL and
simply increasing the FSR of the OSBF by design.

The ODL proposed here opens a path towards the implementation of a wideband and fully
reconfigurable MPF with multiple taps monolithically integrated on a single chip. The number
of taps can be increased by multiplying the delay sections and SCT units, while sharing a single
OSBF. A schematic of a possible implementation is shown in Fig. 8.
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Fig. 8. Schematic example of a multiple optical delay line (right). This structure could be
used, for example, to implement (a) an incoherent multitap microwave photonic filter with
complex coefficients, or (b) an optical beamforming network (OBFN) for phased array
antennas.

Notably, the same multiple ODL structure could also be operated as an integrated optical
beamforming network (OBFN) for the control of phased array antenna systems, according to
the schematic displayed in Fig. 8(b). In this case, the individual delay lines are used to give the
desired time difference to the RF signals originating from the individual antenna elements (AE)
of the array. This OBFN could use multiple laser sources, each of them acting as a carrier for
the RF signal originated from a different antenna element.
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