
2020 IEEE 20th International Conference on BioInformatics and BioEngineering (BIBE)

qLD: High-performance Computation of
Linkage Disequilibrium on CPU and GPU

Charalampos Theodoris* , Nikolaos Alachiotis§, Tze Meng Low 11 and Pavlos Pavlidis^
* Technical University of Crete, Greece
§ University of Twente, The Netherlands

II Carnegie Mellon University, USA
^ Foundation for Reseach and Technology-Hellas, Greece

Email: *ctheodoris@isc.tuc.gr, §n.alachiotis@utwente.nl, IIlowt@andrew.cmu.edu, ^ pavlidis@ics.forth.gr

Abstract—Linkage disequilibrium (LD) is the non-random
association between alleles at different loci. Assessing LD in
thousands of genomes and/or millions of single-nucleotide poly­
morphisms (SNPs) exhibits excessive time and memory re­
quirements that can potentially hinder future large-scale ge­
nomic analyses. To this end, we introduce qLD (quickLD)
(https://github.com/StrayLamb2/qLD), a highly optimized open-
source software that assesses LD based on Pearson’s correlation
coefficient. qLD exploits the fact that the computational kernel
for calculating LD can be cast in terms of dense linear algebra
operations. In addition, the software employs memory-aware
techniques to lower memory requirements, and parallel GPU
architectures to further shorten analysis times. qLD delivers
up to 5x faster processing than the current state-of-the-art
software implementation when run on the same CPU, and up
to 29x when computation is offloaded to a GPU. Furthermore,
the software is designed to quantify allele associations between
arbitrarily distant loci in a time- and memory-efficient way,
thereby facilitating the evaluation of long-range LD and the
detection of co-evolved genes. We showcase qLD on the analysis
of 22,554 complete SARS-CoV-2 genomes.

Index Terms—Linkage disequilibrium, Software, GPU

I. In t r o d u c t i o n

Genomic dataset sizes currently grow at an unprecedented
pace, yielding the deployment of memory- and performance-
optimized computational approaches a prerequisite for the
analysis of future large-scale datasets. In population genetics,
linkage disequilibrium (LD), defined as the non-random asso­
ciation between alleles at different loci, has several practical
applications. LD is used to identify interactions among co­
evolved genes by identifying complementary mutations [1],
or to search for traces of positive selection by revealing
particular patterns in subgenomic regions [2]. In genome-wide
association studies (GWAS), LD facilitates the detection of
polymorphisms of interest, e.g., associated with human dis­
eases [3], thereby contributing to the design of more effective
drug treatments [4]. Recently, LD was used to locate recombi­
nation hotspots in the SARS-CoV-2 genome by assessing the
reduction of association between mutations with an increasing
genomic distance [5].

The preliminary steps of an LD study include a) DNA
sequencing for a set of individuals of interest and b) short-
read mapping to a reference genome to create a multiple-
sequence alignment (MSA). These are followed by a so-

called SNP calling step that identifies the polymorphic sites
in the MSA, which are commonly referred to as single­
nucleotide polymorphisms (SNPs). Computing LD requires
the calculation of allele and haplotype frequencies per SNP
and pair of SNPs, respectively. Thus, compute and memory
requirements increase linearly with the number of genomes
(sample size) and quadratically with the number of SNPs.
While the number of SNPs is limited by the chromosomal
length, sample sizes continue to increase rapidly, fueled by
advances in DNA sequencing technologies that have improved
accuracy and throughput and reduced costs. To put the sample-
size growth into perspective, the 1000Genomes [6] project
that was launched in January 2008 sequenced 2,504 human
genomes in an 8-year span [6], while well over 50,000 SARS-
CoV-2 complete genomes are already available on GISAID [7]
since the beginning of the ongoing coronavirus disease 2019
(COVID-19) pandemic (December 2019).

High-performance software implementations that employ
the underlying hardware efficiently and scale well with an
increasing number of samples are required to ensure that future
scientific discoveries in the fields of population genetics and
computational biology will not be obstructed by computa­
tional inefficiencies and/or excessive memory requirements.
To this end, this work presents qLD (quickLD), an open-
source software that couples highly optimized kernels for
modern microprocessor [8] and GPU architectures [9] with a
custom LD-specific compressed file format, which collectively
allow large-scale LD analyses to be conducted on off-the-shelf
workstations in a fraction of the time required by state-of-
the-art software. qLD outperforms the widely used software
PLINK 1.9 [10] as the sample size increases, achieving up to
5x faster processing when the two CPU implementations are
compared. When qLD offloads the compute-intensive task of
calculating haplotype frequencies to a GPU, analyses complete
up to 29x faster than PLINK 1.9, which does not have the
capacity to employ a GPU.

The remainder of this paper is organized as follows. Sec­
tion II provides the mathematical background, while Sec­
tion III presents related work on computing LD on various
platforms. Section IV describes the design and use of qLD,
while Section V evaluates performance and scalability against
the state of the art. Finally, we conclude in Section VII.

2471-7819/20/$31.00 ©2020 IEEE
DOI 10.1109/BIBE50027.2020.00019

65

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2021 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

II. L inkage Disequilibrium (LD)

Population genetics employ LD as a statistical measure to
identify mutated alleles that are co-inherited more frequently
that one would expect if these alleles were inherited indepen­
dently. From a computational point of view, the input to an LD
study is either a multiple sequence alignment (MSA), i.e., a
n x m matrix that comprises n rows (one row per genome) of
m columns each (also referred to as alignment sites), or a file
that only comprises sites of interest, e.g., SNPs in a Variant
Call Format (VCF [11]) file. A SNP is essentially an alignment
site with two or more DNA states, i.e., at least one mutation
has occurred at that site, whereas monomorphic sites are non­
informative for computing LD and therefore are discarded.

A. Genomic Data Representation

A widely adopted evolutionary model in real-world analyses
as well as in silico simulations is the infinite-site model
(ISM) [12]. It assumes an infinite number of possible genomic
locations where a mutation can occur, which leads to at most
one mutation per site. In other words, every mutation appears
on a site where no mutation has previously ocurred. The ISM
allows SNPs to be represented by binary vectors, where a ‘0’
describes the allele state prior to a mutation (ancestral state)
while ‘ 1’ indicates the new state after a mutation (derived
state). To reduce the amount of memory accesses, we store
each SNP as a group of Nint w-bit-long unsigned integers
with Nint defined as follows:

N in t
N eq

w

with zero padding if Nseq mod w = 0, and w = 64. The
entire set of SNPs that collectively describe a genomic region
of interest for computing LD is represented by a (k x w) x n
matrix, G, where k = Nint. An example of the matrix G,
which we henceforth refer to as the genomic matrix, is shown
in Figure 1. The genomic matrix G exclusively comprises
SNPs. All monomorphic sites are already discarded during
a preceding format conversion step, discussed in detail in
Section IV. For clarity reasons, Figure 1 does not show the site
locations, which are stored in a separate memory space, but
note that adjacent SNPs in G can be thousands of sites apart
in the genome. We henceforth represent a SNP as a column
vector s.

B. Computing LD using Pearson’s correlation coefficient

LD deals with the probability of independent events. The
event that two mutations appear at different loci in the same
sequence is said to be not independent, or in other words
the corresponding pair of SNPs are in linkage disequilibrium,
when the probability of the two mutations occurring at differ­
ent loci in the same sequence is not the same as the product of
the probabilities of these mutations occurring independently.
Therefore, we compute

Di,j = P ij _ P iP j, (1)

0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 1 1 1 1 0 1 1 0 0
0 1 0 0 1 0 1 0 1 1 0 1 Sample

1 0 1 0 0 1 1 0 1 0 1 0
1 0 0 1 0 1 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ft
0 0 0 0 0 0 0 0 0 0 0 0 0 padding
0 0 0 0 0 0 0 0 0 0 0 0 0 ft

SNP

Fig. 1: Pictorial representation of the (kxw)xn genomic ma­
trix G. The rows represent samples and the columns represent
SNPs at different genomic locations. Adapted from [13].

for every pair of SNPs, si and sj, where Pi , j represents the
probability that a sample has mutations in both SNPs, si and
Sj, and Pi and Pj are the probabilities for the independent
events that a mutation has occured in si and Sj, respectively.
When D = 0, Si and Sj are in linkage equilibrium, i.e.,
mutations in Si and Sj occur independently of each other. The
two SNPs are in linkage disequilibrium when D = 0.

For Nseq number of genomes, the probability that a muta­
tion occurs in a SNP s x, denoted as Px , can be obtained with
the following equation:

Px

T
S t S x

Nseq
(2)

which counts the number of ‘ 1’s in s x and then divides it
with the total number of bits in the sx . This is practically the
derived allele frequency in SNP s x .

Pi , j, which is the haplotype frequency, is computed by
counting the number of samples that have mutations in both
SNPs, Si and Sj , and then dividing that number by Nseq, as
follows:

T
P = S_Sj
P ij nN seq

(3)

Using Equations 2 and 3, we can compute Di ,j for all
possible pairs of SNPs Si and Sj in the following manner:

Di = P . _ PP-J i , j x i x j

N1 (sTsj) _1W ^ (sTSi)(STSj)N 2seq
(4)

The LD formulation in Equation 1 is not widely employed
because the sign and range of Di,j vary with the frequency at
which different mutations occur, which hinders Di ,j compar­
isons across different SNP pairs. Therefore, several standard­
ization methods for D have been proposed. To the best of the

66

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2021 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

authors’ knowledge, the most commonly used measure is the
squared Pearson coefficient r?-:

2 _ ~ - ^ - P j) 2p̂ -a-poa-Pi)
D2 ■

= ------------- ^ ----------- (5)pp î-poa-Pi)
It has the advantage that all r? values are between 0 and 1,
with higher values suggesting stronger association. Regardless
of the employed measure, note that the cost of computing re ­
values for all pairs of SNPs is dominated by the cost of D.

III. Related Work

Next-generation sequencing technologies currently generate
a plethora of DNA data for population genomics, gradually
establishing the need for high-performance tools that are
capable of efficiently conducting large-scale analyses.

Pfeifer et al. [14] released PopGenome, an R package for
population genetic analyses that can compute a wide range
of statistics, including LD. Yet, the deployed LD kernel does
not exploit the cache hierarchy. Alachiotis et al. [15] released
OmegaPlus, which computes the squared Pearson coefficient
as a measure of LD, and deploys an intrinsic popcount instruc­
tion supported in hardware to count the number of derived
alleles per SNP and SNP pair. Similarly to PopGenome,
OmegaPlus does not fully exploit the cache hierarchy either.

Chang et al. [16] released a comprehensive update to the
widely used PLINK software [10] for whole-genome associa­
tion and population-based linkage analyses. The updated im­
plementation (PLINK 1.9/2.0) exhibits significant performance
and scalability improvements over the initial software. It relies
on bitwise operations, multithreading, and high-level algo­
rithmic improvements for the most compute-demanding func­
tions, such as distance-based clustering and LD-based pruning.
PLINK 1.9 implements the squared Pearson coefficient as a
measure of LD and deploys the SSE2-based Lauradoux/Walish
popcount algorithm to achieve high performance.

Alachiotis et al. [8] observed that the computational ker­
nel for calculating LD can be cast in terms of dense lin­
ear algebra (DLA) operations. This allowed to leverage the
collective knowledge in the DLA community in developing
high-performance implementations for various microprocessor
architectures, leading to the design of a highly efficient CPU
kernel for LD that achieves between between 84% and 95%
of the theoretical peak performance of the machine.

Building upon the aforementioned DLA-based approach,
which targeted modern CPU architectures. Binder et al. [9]
presented a generic SNP-comparison framework that cal­
culates LD on GPU architectures. The authors ported the
proposed framework onto a variety of GPU platforms from
different vendors, reporting between 55% and 97% of the
theoretical peak throughput of each specific GPU architecture.

Both of the aforementioned DLA-based approaches for
computing LD on CPUs [8] and GPUs [9] solely focused on
the LD kernel itself, thereby requiring significant development

VCF Input Files (Several GB)

Fig. 2: The qLD workflow: Step 1 includes parsing of VCF
files and generation of pools of MDF files, while Step 2 in­
cludes processing of several compute tasks (region pairs) using
an optimized LD micro-kernel within the BLIS framework.

effort to allow their deployment in real-world population ge­
netics analyses. qLD eliminates this requirement by coupling
specially adapted versions of the two kernels with a memory
efficient mechanism for parsing SNP data in the widely used
VCF file format, thereby yielding a high-performance ready-
to-use software implementation for large-scale LD studies.

TV. Design and Usage

A. Computational workflow
In addition to performance, a major concern in designing

an efficient software for large-scale LD studies is the memory
management, since requirements grow quadratically with the
number of SNPs. For this reason, qLD implements a two-
step process that separates parsing from processing, which
allows pairwise LD calculations between arbitrarily distant
SNPs to be conducted without increasing the memory space.
We henceforth refer to the parsing and the processing modes
of qLD as qLD-parse and qLD-compute, respectively.

Figure 2 illustrates the qLD workflow for calculating all
pairwise LD scores between pairs of subgenomic regions on
different chromosomes. The first step (qLD-parse in the fig­
ure) focuses on converting each-potentially large-VCF input
file to an intermediate data representation that allows faster
subsequent parsing and processing. The conversion process is
performed once per VCF file and list of samples of interest.
During this step, each VCF is split into a series of fixed-size

67

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2021 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

files (Chromosome Pool in the figure) in a custom, LD-
specific data format dubbed Matrix Data Format (MDF, see
Listing 1). The genomic coordinates (start and end position)
of the subgenomic region stored in each MDF file are part
of the filename. This convenient naming convention facilitates
backward mapping of MDF files to the chromosomal region of
the input VCF. Each MDF file is typically a few MB in size,
regardless of the number of samples or SNPs in the VCF, with
larger sample sizes leading to fewer SNPs per file.

and qLD-parse-2MDF (converts each chunk to an MDF
file). Listings 2 and 3 provide the basic input arguments.

./b in /q L D - parse-VCF
- in p u tL is t $STRING **
- in p u t $STRING **
-o u tp u t $STRING *
-s iz e $INTEGER *

Listing 2: qLD-parse-VCF command line

1 # # f i le fo rm a t= V C F
2 . . . smp0 smp1 smp2 smp3 smp4 smp5
3 . . . 1 1 0 0 1 1
4 . . . 1 0 1 0 1 1
5 . . . 0 0 0 1 0 1

1 ## f i le form at= M DF
2 . . . B i t c o u n t packed0
3 . . . 4 15
4 . . . 3 11
5 . . . 1 1

Listing 1: VCF-to-MDF conversion using the sample list
“ smp0 smp1 smp4 smp5” and assuming 4-bit MDF words
for convenience. LD-parse-2MDF parses the VCF file
and converts the valid samples (in the sample list) into 4-bit
unsigned words. A larger number of samples leads to a larger
sequence of 4-bit words per MDF row. Note that MDF files
to be processed using qLD contain 64-bit words. Each line
also contains the total bitcount per SNP (MDF row).

The second step (qLD-compute in the figure) focuses on
computing all LD scores between SNPs in pairs of genomic
regions. A region pair, e.g., regions A and B in Figure 2, rep­
resents a compute task. qLD relies on the genomic coordinates
that appear in the MDF filenames to parse the right subsets of
MDF files and load the two chromosomal regions of a compute
task to main memory. For region A in Figure 2, for instance,
only the MDF files x, y, and z are parsed. When the region
pair is represented in main memory, a highly optimized LD
micro-kernel is employed within the BLAS-Like Instantiation
Software (BLIS) [17], [18] framework to compute haplotype
frequencies on the CPU, as described by Alachiotis et al. [8].
The BLIS framework is also employed for SNP processing on
the GPU, as described by Binder et al. [9]. Thereafter, allele
frequencies and the final r 2 scores are computed according to
Equations 2 and 5, respectively. qLD produces a separate LD
report per compute task.

B. Usage

The following listings provide the required command lines
for using qLD. A single asterisk indicates a required argument,
while double asterisks indicate mutually exclusive arguments.

a) qLD-parse: The first step of the qLD workflow is
implemented through qLD-parse, which itself consists of
two subfunctions: qLD-parse-VCF (splits a VCF to chunks)

./b in /qLD-parse-2M DF
- in p u t $STRING *
-o u tp u t $STRING *
-sa m p le L is t $STRING

Listing 3: qLD-parse-2MDF command line

qLD-parse-VCF receives an input file that is either a
single VCF (-input) or a list of several VCF files (-inputList)
and creates a directory (-output) that contains VCF chunks
of fixed size in MB (-size). The path to the produced output
folder is input to qLD-parse-2MDF (-input), along with
the list of samples of interest (-sampleList), which stores the
generated MDF files in a user-given directory (-output).

b) qLD-compute: In the second step, qLD-compute is
launched to conduct the required LD calculations. Listing 4
provides the basic input arguments.

./b in /qLD -com pute
- in p u t $STRING **
- in p u t2 $STRING **
- in p u tL is t $STRING **
-o u tp u t $STRING *
-p lo id y $STRING *
- r 2 l im i t $FLOAT
-mdf
- gpu

Listing 4: qLD-compute command line

Using VCF chunks or, preferably, MDF files (-mdf) as
input, qLD-compute generates LD reports. Similarly to
qLD-parse-VCF, either a pair of inputs (-input,-input2)
are provided, in which case a single report is produced, or a
list of several tasks (-inputList), in which case a report per
task is stored to the output directory (-output). The ploidy is
also required (-ploidy). Optional parameters allow to deploy a
GPU (-gpu), and/or apply a threshold to the output (-r2limit).

V. Pe r f o r m a n c e Ev a l u a ti o n

A. Experimental setup
For evaluation purposes, we performed experiments on an

off-the-shelf personal laptop and the ARIS supercomputer
(https://hpc.grnet.gr/en/). Table I provides the specifications
of the employed test platforms. We compare performance
with the widely used software PLINK 1.9 [16], both in terms
of execution times and throughput, based on the analysis of
simulated datasets with an increasing number of SNPs and

68

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2021 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

samples. All runs were performed using the default r 2 limit
of PLINK 1.9 (r2iniU = 0.2).

TABLE I: System Specifications

System 1 System 2
Description Off-the-shelf laptop Aris supercomputer

CPU Model Core i5-8300H Xeon E5-2660v3
Microarchitecture Coffee Lake Haswell

Nominal Frequency 2.3 GHz 2.6 GHz
Max. Turbo Frequency 4.0 GHz 3.3 GHz

Processors 1 2
Cores/Processor 4 10

Total Cores 4 20
Memory 8 GB 32 GB

GPU Model GTX 1050-M Tesla K40
Streaming Multiprocessors 5 15

Cuda Cores 640 2880
GPU Memory 4 GB 12 GB

B. Execution time comparison
Figure 3 illustrates execution times of qLD and PLINK 1.9

when the sample size increases up to 100k (Fig. 3A), and
the number of SNPs increases up to 10k for fixed sample
sizes of 2,5k (Fig. 3B), 10k (Fig. 3C), and 100k (Fig. 3D).
Expectedly, execution times increase linearly with the number
of samples and quadratically with the number of SNPs. We can
also observe that System 1 (off-the-shelf laptop) outperforms
System 2 (ARIS supercomputer), exhibiting shorter execution
times over all runs. This is expected because qLD is a sequen­
tial software (future work will focus on parallel processing
on multiple CPUs and GPUs), and the operating frequency
of System 1 (3.8 GHz turbo frequency) is about 40% higher
than the nominal frequency of System 2 (2.6 GHz). Tables II
and III summarize these results in terms of speedup (discussed
in detail in Section V-C).

C. Throughput comparison
A major difference between qLD and PLINK 1.9 is the

way pairwise LD scores are computed. As previously men­
tioned, qLD relies on the BLIS framework and exploits the
observation that pairwise LD computations can be cast as a
matrix-multiply operation. Computing all pairwise LD scores
between all SNPs in a single region using BLIS results in
the calculation of a symmetric output matrix, thus having
evaluated the same scores twice. PLINK 1.9, on the other hand,
only processes a single file/region and calculates a diagonal
matrix with all the pairwise LD scores. Because of this, when a
single region is processed, qLD computes twice the amount of
scores that PLINK 1.9 computes. To perform a fair throughput
comparison, since qLD can not compute only the diagonal
matrix when a single region is processed, and PLINK 1.9
does not support two different regions as input, we report
effective throughput performance for an increasing number
of samples (Table II) and SNPs (Table III), distinguishing
between processing a single region and a pair of regions of

A. Execution times for increasing sample size (5k SNPs)

B. Execution times for increasing number of SNPs (2.5k samples)

C. Execution times for increasing number of SNPs (10k samples)

D. Execution times for increasing number of SNPs (100k samples)

SNPs (k)

Fig. 3: Execution times on System 2 for increasing number
of samples (from 2,500 to 100,000 sequences, Fig. 3A) and
increasing numbers of SNPs (from 1,000 to 10,000 SNPs)
when the sample size is 2,500 sequences (Fig. 3B), 10,000
sequences (Fig. 3C), and 100,000 sequences (Fig. 3D). We
observe linear and quadratic increase with the number of
samples and the number of SNPs, respectively. qLD_CPU and
qLD_GPU are up to 5.3x and 29.3x faster than PLINK 1.9
running on the CPU, respectively.

69

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2021 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Throughput performance on System 2 for increasing number of samples when a single SNP region and a pair of
regions are processed by qLD_CPU, qLD_GPU, and PLINK 1.9. The table also provides the observed speedups of qLD_CPU
and qLD_GPU versus PLINK 1.9. The region size is 5,000 SNPs, thus 12.5 x 106 and 25 x 106 LD scores are computed when
a single SNP region and a pair of regions are processed, respectively.

Samples
Single Region Pair of regions

Throughput (LD x106/sec) Speedup (x) over PLINK 1.9 Throughput (LD x 106/sec)
(x103) qLD_CPU qLD_GPU PLINK 1.9 qLD_CPU qLD_GPU qLD_CPU qLD_GPU

2.5 8.679 11.466 3.306 2.625 3.468 17.361 22.936
10.0 3.967 8.560 0.942 4.210 9.082 7.937 17.123
20.0 2.155 5.813 0.478 4.510 12.167 4.310 11.628
30.0 1.497 4.416 0.319 4.685 13.823 2.994 8.834
40.0 1.133 3.581 0.241 4.706 14.874 2.267 7.163
50.0 0.912 2.983 0.193 4.726 15.465 1.823 5.967
60.0 0.770 2.572 0.161 4.773 15.940 1.540 5.144
70.0 0.657 2.200 0.137 4.782 16.012 1.314 4.401
80.0 0.583 1.965 0.121 4.812 16.228 1.166 3.931
90.0 0.518 1.758 0.108 4.804 16.312 1.036 3.516
100.0 0.465 1.558 0.096 4.822 16.157 0.930 3.117

TABLE III: Throughput performance on System 2 for increasing region size (number of SNPs) when a single SNP region and
a pair of regions are processed by qLD_CPU, qLD_GPU, and PLINK 1.9. The table also provides the observed speedups of
qLD_CPU and qLD_GPU versus PLINK 1.9. The sample size is 100,000 sequences.

Single Region Pair of regions
Region size

(SNPs) number of
LD scores

Throughput (LD x106/sec) Speedup (x) over PLINK 1.9 number of
LD scores

Throughput (LD x106/sec)

(x103) (x106) qLD_CPU qLD_GPU PLINK 1.9 qLD_CPU qLD_GPU (x103) qLD_CPU qLD_GPU
1.0 0.500 0.257 0.284 0.095 2.701 2.977 1.000 0.515 0.568
2.0 1.999 0.359 0.645 0.097 3.713 6.671 4.000 0.718 1.290
3.0 4.499 0.414 0.953 0.097 4.279 9.845 9.000 0.829 1.907
4.0 7.998 0.444 1.303 0.097 4.568 13.414 16.000 0.887 2.606
5.0 12.498 0.466 1.580 0.097 4.822 16.363 25.000 0.931 3.161
6.0 17.997 0.480 1.902 0.097 4.934 19.562 36.000 0.960 3.805
7.0 24.497 0.492 2.181 0.097 5.060 22.443 49.000 0.984 4.363
8.0 31.996 0.498 2.439 0.097 5.140 25.176 64.000 0.996 4.878
9.0 40.496 0.507 2.616 0.097 5.220 26.951 81.000 1.013 5.233
10.0 49.995 0.512 2.842 0.097 5.272 29.254 100.000 1.024 5.685

the same size in terms of SNPs. As can be observed in the
tables, qLD is between 2.63x and 4.82x faster than PLINK
1.9 when the sample sizes increases from 2,500 sequences to
100,000 sequences, and between 2,70x and 5,27x faster when
the region size increases from 1,000 SNPs to 10,000 SNPs.
When qLD offloads computations to a GPU, qLD is between
3.47x and 16.31x faster than PLINK 1.9 (running on the CPU)
when the sample size increases, and between 2.98x and 29.25x
faster when the number of SNPs increases.

D. Execution time breakdown
Figure 4 presents execution time breakdowns for the pro­

cessing step of qLD when the number of samples and the
number of SNPs increase. qLD-compute consists of 4 main
stages that collectively contribute to its total execution time:

• Memory Layout Transformation (MLT): transposition
of one of the two input genomic regions, as required by
BLIS for computing LD as a marix-multiply operation.

This stage is not performance-critical as it only relocates
SNP data in memory.

• General Matrix-Multiply (GEMM): Invocation of the
CPU/GPU LD micro-kernel through BLIS for computing
haplotype frequencies as a matrix-multiply operation.
This stage is performance-critical and dominates the total
execution time in all CPU runs.

• Linkage Disequilibrium (LD) score computation: Cal­
culation of the allele frequencies for all SNPs in the two
regions and the final LD scores. This stage heavily relies
on floating-point operations, but the amount of time spent
on floating-point operations for computing LD scores
becomes negligible as the sample sizes grow because the
overall execution time is dominated by GEMM. When
qLD deploys a GPU, however, the GPU-based GEMM
stage is between 2 and 20 times faster than the CPU one,
which leads to the LD time dominating execution times
for sample sizes as low as 10,000 sequences.

70

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2021 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

B. qLDGPU time breakdown for increasing sample size (5k SNPs)

0 20 40 60 80 100
Samples (k)

G. qLD CPU time breakdown for increasing number of SNPs (100k samples)

SNPs (k)

D. qLD GPU time breakdown for increasing number of SNPs (2.5k samples)

4 6
SNPs (k)

F. qLD GPU time breakdown for increasing number of SNPs (10k samples)

4 6
SNPs (k)

H. qLD GPU time breakdown for increasing number of SNPs (100k samples)

SNPs (k)

Fig. 4: Execution time breakdown of qLD-compute when executing on a CPU (left column) and a GPU (right column) on
System 2. The total processing time is spent on four discrete stages: a) Memory Layout Transposition (MLT), b) General
Matrix-Multiply (GEMM), c) Linkage Disequilibrium (LD) score calculation, and d) Output generation (Write).

• Write Output: Storing LD scores in a text file. Note
that we apply the default cutoff threshold for LD scores
(■rfimit = 0-2) to discard very low scores and prevent out­
put reports from exploding in size. Since disk input/output
is critical to performance for large-scale LD studies,
we devised a simple lookup-table-based approach for
printing. Based on the fact that the output is dominated

by floating-point values (FPVs), we map each FPV to a
character array from ‘0’ to ‘9’ , where each digit points to
its representation. This simple optimization achieves up to
1.7x faster printing, with 106 FPVs with 9-digit precision
stored in a file in 0.123 seconds, while requiring 0.208
seconds when the standard C library function f p r i n t f
is used.

71

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2021 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

C/)OPU

Hexbin plot of LD based on r2 for
22,554 SARS-CoV-2 genomes

25000

20000

15000

10000

5000

5000 10000 15000 20000 25000

1.0

0.9

0.8

u
0.7 O o cz
0.6 Q

0.5

0.4

Position

Fig. 5: Hexbin plot (gridsize=16) of LD scores calculated using
qLD on System I (laptop) in 18 seconds.

VI. A pplication on SARS-CoV-2 Genomes

To showcase qLD, we used 39,941 high-coverage SARS-
CoV-2 genomes from the GISAID database (https://www.
gisaid.org/), downloaded on July 9, 2020. We kept only
complete sequences (genomes with base pair lengths greater
than 29,000), and trimmed the ambiguous states (Ns) from
both the beginning and the end of the genomes. Thereafter, we
excluded all sequences that contained Ns, and employed the
experimental version of MAFFT [19] for closely-related viral
genomes to create a multiple sequence alignment in FASTA
format. The final dataset, after discarding the sequences that
did not pass the aforementioned filters, comprised 22,554
genomes. We used snp-sites [20] to convert the FASTA to VCF
for processing with qLD, invoking the tool’s built-in option for
omitting columns that did not exclusively contain A, C, G, T.

Figure 5 illustrates qLD scores (r2) in a hexbin plot with
grid=16. The two highest-score bins shown in the figure cor­
respond to regions 15, 042—15,517 and 22, 684—23,198 with
scores 1.0 and 0.92, respectively. Both regions are UniProt
highlighted regions of interest as shown in the UCSC genome
browser view of SARS-CoV-2 genomic datasets (https:
/ /genome.ucsc.edu/cgi-bin/hgTracks?db=wuhCorl), with the
first region found in the non-structural protein 12 and is known
to interact with RMP Rendemsivir, while the second region
found in the Spike protein SI and is a motif in the Receptor
Binding Domain that binds to human ACE2.

V II. Conclusion

In this paper, we presented a new scalable platform for
calculating pairwise LD scores in heterogeneous environ­
ments. Using optimized kernels based on the BLIS framework
(qLD_CPU) and the OpenCL framework (qLD_GPU), we
achieved speedup in all test-cases (up to 29x) over the widely
used state-of-the-art Plink 1.9. Based on HPC practices, the
platform works on par with the theoretical performance of
these computation kernels with minimal overhead from the
rest of the processing steps.

Based on the outcome of our experiments, our future work
will focus on parallelization techniques that will lead to even

higher performance and scalability. A parallel heterogeneous
approach will take advantage of the high CPU core count of
modern computers and couple the two (now separate) modes
of execution, i.e., qLD_CPU and qLD_GPU.

VIII. A c k n o w l e d g e m e n t s

This research has been partially funded by a FORTH
Synergy Grant (2019) to Pavlos Pavlidis.

References

[1] R. V. Rohlfs, W. J. Swanson, and B. S. Weir. Detecting coevolution
through allelic association between physically unlinked loci. The
American Journal of Human Genetics, 86(5):674-685, 2010.

[2] J. M. Smith and J. Haigh. The hitch-hiking effect of a favourable gene.
Genetics Research, 23(1):23—35, 1974.

[3] D. E. Reich, M. Cargill, S. Bolk, J. Ireland, P. C. Sabeti, D. J. Richter,
T. Lavery, R. Kouyoumjian, S. F. Farhadian, R. Ward, et al. Linkage
disequilibrium in the human genome. Nature, 411(6834): 199-204, 2001.

[4] M. T. Alam, D. K. De Souza, S. Vinayak, S. M. Griffing, A. C. Poe,
N. O. Duah, A. Ghansah, K. Asamoa, L. Slutsker, et al. Selective sweeps
and genetic lineages of plasmodium falciparum drug-resistant alleles in
ghana. Journal of Infectious Diseases, 203(2):220-227, 2011.

[5] M. Vasilarou, N. Alachiotis, J. Garefalaki, A. Beloukas, and P. Pavlidis.
Population genomics insights into the recent evolution of sars-cov-2.
BioRxiv, 2020.

[6] 1000 Genomes Project Consortium and others. A global reference for
human genetic variation. Nature, 526(7571):68—74, 2015.

[7] S. Elbe and G. Buckland-Merrett. Data, disease and diplomacy: Gisaid’s
innovative contribution to global health. Global Challenges, 1(1):33—46,
2017.

[8] N. Alachiotis, T. Popovici, and T. M. Low. Efficient computation of
linkage disequilibria as dense linear algebra operations. In 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 418-427. IEEE, 2016.

[9] E. Binder, T. M. Low, and D. T. Popovici. A portable gpu framework for
snp comparisons. In 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops, pages 199-208. IEEE, 2019.

[10] S. Purcell et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. The American Journal of Human
Genetics, 81(3):559-575, 2007.

[11] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A.
DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, et al. The variant
call format and vcftools. Bioinformatics, 27(15):2156—2158, 2011.

[12] M. Kimura. The number of heterozygous nucleotide sites maintained in
a finite population due to steady flux of mutations. Genetics, 61(4):893,
1969.

[13] N. Alachiotis and G. Weisz. High performance linkage disequilibrium:
Fpgas hold the key. In Proceedings of 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 118-127, 2016.

[14] B. Pfeifer, U. Wittelsbiirger, S. E. Ramos-Onsins, and M. J. Lercher.
PopGenome: An Efficient Swiss Army Knife for Population Genomic
Analyses in R. Molecular biology and evolution, 31(7): 1929-36, 2014.

[15] N. Alachiotis et al. OmegaPlus: a scalable tool for rapid detection of
selective sweeps in whole-genome datasets. Bioinf, 28(17):2274—2275,
2012.

[16] C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell, and
J. I. Lee. Second-generation PLINK: rising to the challenge of larger
and richer datasets. Gigascience, (4), 2015.

[17] F G. Van Zee and R. A. Van De Geijn. Blis: A framework for rapidly
instantiating bias functionality. ACM Transactions on Mathematical
Software (TOMS), 41(3): 1-33, 2015.

[18] F. G. V. Zee. T. M. Smith, B. Marker, T. M. Low, R. A. V. D. Geijn,
F. D. Igual, M. Smelyanskiy, X. Zhang, M. Kistler, V. Austel, et al.
The blis framework: Experiments in portability. ACM Transactions on
Mathematical Software (TOMS), 42(2): 1—19, 2016.

[19] K. Katoh and D. M. Standley. MAFFT multiple sequence alignment
software version 7: improvements in performance and usability. Molec­
ular biology and evolution, 30(4):772-780, 2013.

[20] A. I. Page, B. Taylor, A. J. Delaney, J. Soares, T. Seemann, J. A. Keane,
and S. R. Harris. Snp-sites: rapid efficient extraction of snps from multi-
fasta alignments. Microbial genomics, 2(4), 2016.

72

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2021 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

