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Abstract—Linkage disequilibrium (LD) is the non-random 
association between alleles at different loci. Assessing LD in 
thousands of genomes and/or millions of single-nucleotide poly­
morphisms (SNPs) exhibits excessive time and memory re­
quirements that can potentially hinder future large-scale ge­
nomic analyses. To this end, we introduce qLD (quickLD) 
(https://github.com/StrayLamb2/qLD), a highly optimized open- 
source software that assesses LD based on Pearson’s correlation 
coefficient. qLD exploits the fact that the computational kernel 
for calculating LD can be cast in terms of dense linear algebra 
operations. In addition, the software employs memory-aware 
techniques to lower memory requirements, and parallel GPU 
architectures to further shorten analysis times. qLD delivers 
up to 5x faster processing than the current state-of-the-art 
software implementation when run on the same CPU, and up 
to 29x when computation is offloaded to a GPU. Furthermore, 
the software is designed to quantify allele associations between 
arbitrarily distant loci in a time- and memory-efficient way, 
thereby facilitating the evaluation of long-range LD and the 
detection of co-evolved genes. We showcase qLD on the analysis 
of 22,554 complete SARS-CoV-2 genomes.

Index Terms—Linkage disequilibrium, Software, GPU

I. In t r o d u c t i o n

Genomic dataset sizes currently grow at an unprecedented 
pace, yielding the deployment of memory- and performance- 
optimized computational approaches a prerequisite for the 
analysis of future large-scale datasets. In population genetics, 
linkage disequilibrium (LD), defined as the non-random asso­
ciation between alleles at different loci, has several practical 
applications. LD is used to identify interactions among co­
evolved genes by identifying complementary mutations [1], 
or to search for traces of positive selection by revealing 
particular patterns in subgenomic regions [2]. In genome-wide 
association studies (GWAS), LD facilitates the detection of 
polymorphisms of interest, e.g., associated with human dis­
eases [3], thereby contributing to the design of more effective 
drug treatments [4]. Recently, LD was used to locate recombi­
nation hotspots in the SARS-CoV-2 genome by assessing the 
reduction of association between mutations with an increasing 
genomic distance [5].

The preliminary steps of an LD study include a) DNA 
sequencing for a set of individuals of interest and b) short- 
read mapping to a reference genome to create a multiple- 
sequence alignment (MSA). These are followed by a so-

called SNP calling step that identifies the polymorphic sites 
in the MSA, which are commonly referred to as single­
nucleotide polymorphisms (SNPs). Computing LD requires 
the calculation of allele and haplotype frequencies per SNP 
and pair of SNPs, respectively. Thus, compute and memory 
requirements increase linearly with the number of genomes 
(sample size) and quadratically with the number of SNPs. 
While the number of SNPs is limited by the chromosomal 
length, sample sizes continue to increase rapidly, fueled by 
advances in DNA sequencing technologies that have improved 
accuracy and throughput and reduced costs. To put the sample- 
size growth into perspective, the 1000Genomes [6] project 
that was launched in January 2008 sequenced 2,504 human 
genomes in an 8-year span [6], while well over 50,000 SARS- 
CoV-2 complete genomes are already available on GISAID [7] 
since the beginning of the ongoing coronavirus disease 2019 
(COVID-19) pandemic (December 2019).

High-performance software implementations that employ 
the underlying hardware efficiently and scale well with an 
increasing number of samples are required to ensure that future 
scientific discoveries in the fields of population genetics and 
computational biology will not be obstructed by computa­
tional inefficiencies and/or excessive memory requirements. 
To this end, this work presents qLD (quickLD), an open- 
source software that couples highly optimized kernels for 
modern microprocessor [8] and GPU architectures [9] with a 
custom LD-specific compressed file format, which collectively 
allow large-scale LD analyses to be conducted on off-the-shelf 
workstations in a fraction of the time required by state-of- 
the-art software. qLD outperforms the widely used software 
PLINK 1.9 [10] as the sample size increases, achieving up to 
5x faster processing when the two CPU implementations are 
compared. When qLD offloads the compute-intensive task of 
calculating haplotype frequencies to a GPU, analyses complete 
up to 29x faster than PLINK 1.9, which does not have the 
capacity to employ a GPU.

The remainder of this paper is organized as follows. Sec­
tion II provides the mathematical background, while Sec­
tion III presents related work on computing LD on various 
platforms. Section IV describes the design and use of qLD, 
while Section V evaluates performance and scalability against 
the state of the art. Finally, we conclude in Section VII.
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II. L inkage Disequilibrium  (LD)

Population genetics employ LD as a statistical measure to 
identify mutated alleles that are co-inherited more frequently 
that one would expect if  these alleles were inherited indepen­
dently. From a computational point of view, the input to an LD 
study is either a multiple sequence alignment (MSA), i.e., a 
n x m matrix that comprises n rows (one row per genome) of 
m columns each (also referred to as alignment sites), or a file 
that only comprises sites of interest, e.g., SNPs in a Variant 
Call Format (VCF [11]) file. A SNP is essentially an alignment 
site with two or more DNA states, i.e., at least one mutation 
has occurred at that site, whereas monomorphic sites are non­
informative for computing LD and therefore are discarded.

A. Genomic Data Representation

A widely adopted evolutionary model in real-world analyses 
as well as in silico simulations is the infinite-site model 
(ISM) [12]. It assumes an infinite number of possible genomic 
locations where a mutation can occur, which leads to at most 
one mutation per site. In other words, every mutation appears 
on a site where no mutation has previously ocurred. The ISM 
allows SNPs to be represented by binary vectors, where a ‘0’ 
describes the allele state prior to a mutation (ancestral state) 
while ‘ 1’ indicates the new state after a mutation (derived 
state). To reduce the amount of memory accesses, we store 
each SNP as a group of Nint w-bit-long unsigned integers 
with Nint defined as follows:

N in t
N eq

w

with zero padding if  Nseq mod w =  0, and w =  64. The 
entire set of SNPs that collectively describe a genomic region 
of interest for computing LD is represented by a (k x w) x n 
matrix, G, where k =  Nint. An example of the matrix G, 
which we henceforth refer to as the genomic matrix, is shown 
in Figure 1. The genomic matrix G exclusively comprises 
SNPs. All monomorphic sites are already discarded during 
a preceding format conversion step, discussed in detail in 
Section IV. For clarity reasons, Figure 1 does not show the site 
locations, which are stored in a separate memory space, but 
note that adjacent SNPs in G can be thousands of sites apart 
in the genome. We henceforth represent a SNP as a column 
vector s.

B. Computing LD using Pearson’s correlation coefficient

LD deals with the probability of independent events. The 
event that two mutations appear at different loci in the same 
sequence is said to be not independent, or in other words 
the corresponding pair of SNPs are in linkage disequilibrium, 
when the probability of the two mutations occurring at differ­
ent loci in the same sequence is not the same as the product of 
the probabilities of these mutations occurring independently. 
Therefore, we compute

Di,j =  P ij _ P iP j, (1)

0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 1 1 1 1 0 1 1 0 0
0 1 0 0 1 0 1 0 1 1 0 1 Sample

1 0 1 0 0 1 1 0 1 0 1 0
1 0 0 1 0 1 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ft
0 0 0 0 0 0 0 0 0 0 0 0 0 padding
0 0 0 0 0 0 0 0 0 0 0 0 0 ft

SNP

Fig. 1: Pictorial representation of the (kxw)xn genomic ma­
trix G. The rows represent samples and the columns represent 
SNPs at different genomic locations. Adapted from [13].

for every pair of SNPs, si and sj, where Pi , j  represents the 
probability that a sample has mutations in both SNPs, si and 
Sj, and Pi and Pj are the probabilities for the independent 
events that a mutation has occured in si and Sj, respectively. 
When D =  0, Si and Sj are in linkage equilibrium, i.e., 
mutations in Si and Sj occur independently of each other. The 
two SNPs are in linkage disequilibrium when D = 0.

For Nseq number of genomes, the probability that a muta­
tion occurs in a SNP s x, denoted as Px , can be obtained with 
the following equation:

Px

T
S t  S x  

Nseq
(2)

which counts the number of ‘ 1’s in s x and then divides it 
with the total number of bits in the sx . This is practically the 
derived allele frequency in SNP s x .

Pi , j, which is the haplotype frequency, is computed by 
counting the number of samples that have mutations in both 
SNPs, Si and Sj , and then dividing that number by Nseq, as 
follows:

T
P =  S_Sj 
P ij nN seq

(3)

Using Equations 2 and 3, we can compute Di ,j for all 
possible pairs of SNPs Si and Sj in the following manner:

Di = P . _ PP-J i , j  x i x j

N1 (sTsj ) _1W ^ (sTSi )(STSj )N 2seq
(4)

The LD formulation in Equation 1 is not widely employed 
because the sign and range of Di,j vary with the frequency at 
which different mutations occur, which hinders Di ,j compar­
isons across different SNP pairs. Therefore, several standard­
ization methods for D have been proposed. To the best of the
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authors’ knowledge, the most commonly used measure is the 
squared Pearson coefficient r?-:

2 _  ~  - ^ - P j ) 2p̂ -a-poa-Pi)
D2 ■

= ------------- ^ -----------  (5)pp î-poa-Pi)
It has the advantage that all r? values are between 0 and 1, 
with higher values suggesting stronger association. Regardless 
of the employed measure, note that the cost of computing re ­
values for all pairs of SNPs is dominated by the cost of D.

III. Related Work

Next-generation sequencing technologies currently generate 
a plethora of DNA data for population genomics, gradually 
establishing the need for high-performance tools that are 
capable of efficiently conducting large-scale analyses.

Pfeifer et al. [14] released PopGenome, an R package for 
population genetic analyses that can compute a wide range 
of statistics, including LD. Yet, the deployed LD kernel does 
not exploit the cache hierarchy. Alachiotis et al. [15] released 
OmegaPlus, which computes the squared Pearson coefficient 
as a measure of LD, and deploys an intrinsic popcount instruc­
tion supported in hardware to count the number of derived 
alleles per SNP and SNP pair. Similarly to PopGenome, 
OmegaPlus does not fully exploit the cache hierarchy either.

Chang et al. [16] released a comprehensive update to the 
widely used PLINK software [10] for whole-genome associa­
tion and population-based linkage analyses. The updated im­
plementation (PLINK 1.9/2.0) exhibits significant performance 
and scalability improvements over the initial software. It relies 
on bitwise operations, multithreading, and high-level algo­
rithmic improvements for the most compute-demanding func­
tions, such as distance-based clustering and LD-based pruning. 
PLINK 1.9 implements the squared Pearson coefficient as a 
measure of LD and deploys the SSE2-based Lauradoux/Walish 
popcount algorithm to achieve high performance.

Alachiotis et al. [8] observed that the computational ker­
nel for calculating LD can be cast in terms of dense lin­
ear algebra (DLA) operations. This allowed to leverage the 
collective knowledge in the DLA community in developing 
high-performance implementations for various microprocessor 
architectures, leading to the design of a highly efficient CPU 
kernel for LD that achieves between between 84% and 95% 
of the theoretical peak performance of the machine.

Building upon the aforementioned DLA-based approach, 
which targeted modern CPU architectures. Binder et al. [9] 
presented a generic SNP-comparison framework that cal­
culates LD on GPU architectures. The authors ported the 
proposed framework onto a variety of GPU platforms from 
different vendors, reporting between 55% and 97% of the 
theoretical peak throughput of each specific GPU architecture.

Both of the aforementioned DLA-based approaches for 
computing LD on CPUs [8] and GPUs [9] solely focused on 
the LD kernel itself, thereby requiring significant development

VCF Input Files (Several GB)

Fig. 2: The qLD workflow: Step 1 includes parsing of VCF 
files and generation of pools of MDF files, while Step 2 in­
cludes processing of several compute tasks (region pairs) using 
an optimized LD micro-kernel within the BLIS framework.

effort to allow their deployment in real-world population ge­
netics analyses. qLD eliminates this requirement by coupling 
specially adapted versions of the two kernels with a memory 
efficient mechanism for parsing SNP data in the widely used 
VCF file format, thereby yielding a high-performance ready- 
to-use software implementation for large-scale LD studies.

TV. Design and Usage 

A. Computational workflow
In addition to performance, a major concern in designing 

an efficient software for large-scale LD studies is the memory 
management, since requirements grow quadratically with the 
number of SNPs. For this reason, qLD implements a two- 
step process that separates parsing from processing, which 
allows pairwise LD calculations between arbitrarily distant 
SNPs to be conducted without increasing the memory space. 
We henceforth refer to the parsing and the processing modes 
of qLD as qLD-parse and qLD-compute, respectively.

Figure 2 illustrates the qLD workflow for calculating all 
pairwise LD scores between pairs of subgenomic regions on 
different chromosomes. The first step (qLD-parse in the fig­
ure) focuses on converting each-potentially large-VCF input 
file to an intermediate data representation that allows faster 
subsequent parsing and processing. The conversion process is 
performed once per VCF file and list of samples of interest. 
During this step, each VCF is split into a series of fixed-size
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files (Chromosome Pool in the figure) in a custom, LD- 
specific data format dubbed Matrix Data Format (MDF, see 
Listing 1). The genomic coordinates (start and end position) 
of the subgenomic region stored in each MDF file are part 
of the filename. This convenient naming convention facilitates 
backward mapping of MDF files to the chromosomal region of 
the input VCF. Each MDF file is typically a few MB in size, 
regardless of the number of samples or SNPs in the VCF, with 
larger sample sizes leading to fewer SNPs per file.

and qLD-parse-2MDF (converts each chunk to an MDF 
file). Listings 2 and 3 provide the basic input arguments.

./b in /q L D - parse-VCF
- in p u tL is t $STRING **
- in p u t $STRING **
-o u tp u t $STRING *
-s iz e $INTEGER *

Listing 2: qLD-parse-VCF command line

1 # # f i le fo rm a t= V C F
2 . . .  smp0 smp1 smp2 smp3 smp4 smp5
3 . . .  1 1 0  0 1 1
4 . . .  1 0 1 0  1 1
5 . . .  0 0 0 1 0 1

1 ## f i le form at= M DF
2 . . .  B i t c o u n t  packed0
3 . . .  4 15
4 . . .  3 11
5 . . .  1 1

Listing 1: VCF-to-MDF conversion using the sample list
“ smp0 smp1 smp4 smp5” and assuming 4-bit MDF words 
for convenience. LD-parse-2MDF parses the VCF file 
and converts the valid samples (in the sample list) into 4-bit 
unsigned words. A larger number of samples leads to a larger 
sequence of 4-bit words per MDF row. Note that MDF files 
to be processed using qLD contain 64-bit words. Each line 
also contains the total bitcount per SNP (MDF row).

The second step (qLD-compute in the figure) focuses on 
computing all LD scores between SNPs in pairs of genomic 
regions. A region pair, e.g., regions A and B in Figure 2, rep­
resents a compute task. qLD relies on the genomic coordinates 
that appear in the MDF filenames to parse the right subsets of 
MDF files and load the two chromosomal regions of a compute 
task to main memory. For region A in Figure 2, for instance, 
only the MDF files x, y, and z are parsed. When the region 
pair is represented in main memory, a highly optimized LD 
micro-kernel is employed within the BLAS-Like Instantiation 
Software (BLIS) [17], [18] framework to compute haplotype 
frequencies on the CPU, as described by Alachiotis et al. [8]. 
The BLIS framework is also employed for SNP processing on 
the GPU, as described by Binder et al. [9]. Thereafter, allele 
frequencies and the final r 2 scores are computed according to 
Equations 2 and 5, respectively. qLD produces a separate LD 
report per compute task.

B. Usage

The following listings provide the required command lines 
for using qLD. A single asterisk indicates a required argument, 
while double asterisks indicate mutually exclusive arguments.

a) qLD-parse: The first step of the qLD workflow is 
implemented through qLD-parse, which itself consists of 
two subfunctions: qLD-parse-VCF (splits a VCF to chunks)

./b in /qLD-parse-2M DF 
- in p u t  $STRING *
-o u tp u t $STRING *
-sa m p le L is t $STRING

Listing 3: qLD-parse-2MDF command line

qLD-parse-VCF receives an input file that is either a 
single VCF (-input) or a list of several VCF files (-inputList) 
and creates a directory (-output) that contains VCF chunks 
of fixed size in MB (-size). The path to the produced output 
folder is input to qLD-parse-2MDF (-input), along with 
the list of samples of interest (-sampleList), which stores the 
generated MDF files in a user-given directory (-output).

b) qLD-compute: In the second step, qLD-compute is 
launched to conduct the required LD calculations. Listing 4 
provides the basic input arguments.

./b in /qLD -com pute
- in p u t $STRING **
- in p u t2 $STRING **
- in p u tL is t $STRING **
-o u tp u t $STRING *
-p lo id y $STRING *
- r 2 l im i t $FLOAT
-mdf
- gpu

Listing 4: qLD-compute command line

Using VCF chunks or, preferably, MDF files (-mdf) as 
input, qLD-compute generates LD reports. Similarly to 
qLD-parse-VCF, either a pair of inputs (-input,-input2) 
are provided, in which case a single report is produced, or a 
list of several tasks (-inputList), in which case a report per 
task is stored to the output directory (-output). The ploidy is 
also required (-ploidy). Optional parameters allow to deploy a 
GPU (-gpu), and/or apply a threshold to the output (-r2limit).

V. Pe r f o r m a n c e  Ev a l u a ti o n  

A. Experimental setup
For evaluation purposes, we performed experiments on an 

off-the-shelf personal laptop and the ARIS supercomputer 
(https://hpc.grnet.gr/en/ ). Table I provides the specifications 
of the employed test platforms. We compare performance 
with the widely used software PLINK 1.9 [16], both in terms 
of execution times and throughput, based on the analysis of 
simulated datasets with an increasing number of SNPs and
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samples. All runs were performed using the default r 2 limit 
of PLINK 1.9 (r2iniU =  0.2).

TABLE I: System Specifications

System 1 System 2
Description Off-the-shelf laptop Aris supercomputer

CPU Model Core i5-8300H Xeon E5-2660v3
Microarchitecture Coffee Lake Haswell

Nominal Frequency 2.3 GHz 2.6 GHz
Max. Turbo Frequency 4.0 GHz 3.3 GHz

Processors 1 2
Cores/Processor 4 10

Total Cores 4 20
Memory 8 GB 32 GB

GPU Model GTX 1050-M Tesla K40
Streaming Multiprocessors 5 15

Cuda Cores 640 2880
GPU Memory 4 GB 12 GB

B. Execution time comparison
Figure 3 illustrates execution times of qLD and PLINK 1.9 

when the sample size increases up to 100k (Fig. 3A), and 
the number of SNPs increases up to 10k for fixed sample 
sizes of 2,5k (Fig. 3B), 10k (Fig. 3C), and 100k (Fig. 3D). 
Expectedly, execution times increase linearly with the number 
of samples and quadratically with the number of SNPs. We can 
also observe that System 1 (off-the-shelf laptop) outperforms 
System 2 (ARIS supercomputer), exhibiting shorter execution 
times over all runs. This is expected because qLD is a sequen­
tial software (future work will focus on parallel processing 
on multiple CPUs and GPUs), and the operating frequency 
of System 1 (3.8 GHz turbo frequency) is about 40% higher 
than the nominal frequency of System 2 (2.6 GHz). Tables II 
and III summarize these results in terms of speedup (discussed 
in detail in Section V-C).

C. Throughput comparison
A major difference between qLD and PLINK 1.9 is the 

way pairwise LD scores are computed. As previously men­
tioned, qLD relies on the BLIS framework and exploits the 
observation that pairwise LD computations can be cast as a 
matrix-multiply operation. Computing all pairwise LD scores 
between all SNPs in a single region using BLIS results in 
the calculation of a symmetric output matrix, thus having 
evaluated the same scores twice. PLINK 1.9, on the other hand, 
only processes a single file/region and calculates a diagonal 
matrix with all the pairwise LD scores. Because of this, when a 
single region is processed, qLD computes twice the amount of 
scores that PLINK 1.9 computes. To perform a fair throughput 
comparison, since qLD can not compute only the diagonal 
matrix when a single region is processed, and PLINK 1.9 
does not support two different regions as input, we report 
effective throughput performance for an increasing number 
of samples (Table II) and SNPs (Table III), distinguishing 
between processing a single region and a pair of regions of

A. Execution times for increasing sample size (5k SNPs)

B. Execution times for increasing number of SNPs (2.5k samples)

C. Execution times for increasing number of SNPs (10k samples)

D. Execution times for increasing number of SNPs (100k samples)

SNPs (k)

Fig. 3: Execution times on System 2 for increasing number 
of samples (from 2,500 to 100,000 sequences, Fig. 3A) and 
increasing numbers of SNPs (from 1,000 to 10,000 SNPs) 
when the sample size is 2,500 sequences (Fig. 3B), 10,000 
sequences (Fig. 3C), and 100,000 sequences (Fig. 3D). We 
observe linear and quadratic increase with the number of 
samples and the number of SNPs, respectively. qLD_CPU and 
qLD_GPU are up to 5.3x and 29.3x faster than PLINK 1.9 
running on the CPU, respectively.
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TABLE II: Throughput performance on System 2 for increasing number of samples when a single SNP region and a pair of 
regions are processed by qLD_CPU, qLD_GPU, and PLINK 1.9. The table also provides the observed speedups of qLD_CPU 
and qLD_GPU versus PLINK 1.9. The region size is 5,000 SNPs, thus 12.5 x 106 and 25 x 106 LD scores are computed when 
a single SNP region and a pair of regions are processed, respectively.

Samples
Single Region Pair of regions

Throughput (LD x106/sec) Speedup (x) over PLINK 1.9 Throughput (LD x 106/sec)
( x103) qLD_CPU qLD_GPU PLINK 1.9 qLD_CPU qLD_GPU qLD_CPU qLD_GPU

2.5 8.679 11.466 3.306 2.625 3.468 17.361 22.936
10.0 3.967 8.560 0.942 4.210 9.082 7.937 17.123
20.0 2.155 5.813 0.478 4.510 12.167 4.310 11.628
30.0 1.497 4.416 0.319 4.685 13.823 2.994 8.834
40.0 1.133 3.581 0.241 4.706 14.874 2.267 7.163
50.0 0.912 2.983 0.193 4.726 15.465 1.823 5.967
60.0 0.770 2.572 0.161 4.773 15.940 1.540 5.144
70.0 0.657 2.200 0.137 4.782 16.012 1.314 4.401
80.0 0.583 1.965 0.121 4.812 16.228 1.166 3.931
90.0 0.518 1.758 0.108 4.804 16.312 1.036 3.516
100.0 0.465 1.558 0.096 4.822 16.157 0.930 3.117

TABLE III: Throughput performance on System 2 for increasing region size (number of SNPs) when a single SNP region and 
a pair of regions are processed by qLD_CPU, qLD_GPU, and PLINK 1.9. The table also provides the observed speedups of 
qLD_CPU and qLD_GPU versus PLINK 1.9. The sample size is 100,000 sequences.

Single Region Pair of regions
Region size

(SNPs) number of 
LD scores

Throughput (LD x106/sec) Speedup (x) over PLINK 1.9 number of 
LD scores

Throughput (LD x106/sec)

(x103) ( x106) qLD_CPU qLD_GPU PLINK 1.9 qLD_CPU qLD_GPU (x103) qLD_CPU qLD_GPU
1.0 0.500 0.257 0.284 0.095 2.701 2.977 1.000 0.515 0.568
2.0 1.999 0.359 0.645 0.097 3.713 6.671 4.000 0.718 1.290
3.0 4.499 0.414 0.953 0.097 4.279 9.845 9.000 0.829 1.907
4.0 7.998 0.444 1.303 0.097 4.568 13.414 16.000 0.887 2.606
5.0 12.498 0.466 1.580 0.097 4.822 16.363 25.000 0.931 3.161
6.0 17.997 0.480 1.902 0.097 4.934 19.562 36.000 0.960 3.805
7.0 24.497 0.492 2.181 0.097 5.060 22.443 49.000 0.984 4.363
8.0 31.996 0.498 2.439 0.097 5.140 25.176 64.000 0.996 4.878
9.0 40.496 0.507 2.616 0.097 5.220 26.951 81.000 1.013 5.233
10.0 49.995 0.512 2.842 0.097 5.272 29.254 100.000 1.024 5.685

the same size in terms of SNPs. As can be observed in the 
tables, qLD is between 2.63x and 4.82x faster than PLINK 
1.9 when the sample sizes increases from 2,500 sequences to 
100,000 sequences, and between 2,70x and 5,27x faster when 
the region size increases from 1,000 SNPs to 10,000 SNPs. 
When qLD offloads computations to a GPU, qLD is between 
3.47x and 16.31x faster than PLINK 1.9 (running on the CPU) 
when the sample size increases, and between 2.98x and 29.25x 
faster when the number of SNPs increases.

D. Execution time breakdown
Figure 4 presents execution time breakdowns for the pro­

cessing step of qLD when the number of samples and the 
number of SNPs increase. qLD-compute consists of 4 main 
stages that collectively contribute to its total execution time:

• Memory Layout Transformation (MLT): transposition 
of one of the two input genomic regions, as required by 
BLIS for computing LD as a marix-multiply operation.

This stage is not performance-critical as it only relocates 
SNP data in memory.

• General Matrix-Multiply (GEMM): Invocation of the 
CPU/GPU LD micro-kernel through BLIS for computing 
haplotype frequencies as a matrix-multiply operation. 
This stage is performance-critical and dominates the total 
execution time in all CPU runs.

• Linkage Disequilibrium (LD) score computation: Cal­
culation of the allele frequencies for all SNPs in the two 
regions and the final LD scores. This stage heavily relies 
on floating-point operations, but the amount of time spent 
on floating-point operations for computing LD scores 
becomes negligible as the sample sizes grow because the 
overall execution time is dominated by GEMM. When 
qLD deploys a GPU, however, the GPU-based GEMM 
stage is between 2 and 20 times faster than the CPU one, 
which leads to the LD time dominating execution times 
for sample sizes as low as 10,000 sequences.
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B. qLDGPU time breakdown for increasing sample size (5k SNPs)

0 20 40 60 80 100
Samples (k)

G. qLD CPU time breakdown for increasing number of SNPs (100k samples)
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Fig. 4: Execution time breakdown of qLD-compute when executing on a CPU (left column) and a GPU (right column) on 
System 2. The total processing time is spent on four discrete stages: a) Memory Layout Transposition (MLT), b) General 
Matrix-Multiply (GEMM), c) Linkage Disequilibrium (LD) score calculation, and d) Output generation (Write).

• Write Output: Storing LD scores in a text file. Note 
that we apply the default cutoff threshold for LD scores 
(■rfimit =  0-2) to discard very low scores and prevent out­
put reports from exploding in size. Since disk input/output 
is critical to performance for large-scale LD studies, 
we devised a simple lookup-table-based approach for 
printing. Based on the fact that the output is dominated

by floating-point values (FPVs), we map each FPV to a 
character array from ‘0’ to ‘9’ , where each digit points to 
its representation. This simple optimization achieves up to 
1.7x faster printing, with 106 FPVs with 9-digit precision 
stored in a file in 0.123 seconds, while requiring 0.208 
seconds when the standard C library function f p r i n t f  
is used.
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Hexbin plot of LD based on r2 for 
22,554 SARS-CoV-2 genomes
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Fig. 5: Hexbin plot (gridsize=16) of LD scores calculated using 
qLD on System I (laptop) in 18 seconds.

VI. A pplication  on SARS-CoV-2 Genomes

To showcase qLD, we used 39,941 high-coverage SARS- 
CoV-2 genomes from the GISAID database (https://www. 
gisaid.org/ ), downloaded on July 9, 2020. We kept only 
complete sequences (genomes with base pair lengths greater 
than 29,000), and trimmed the ambiguous states (Ns) from 
both the beginning and the end of the genomes. Thereafter, we 
excluded all sequences that contained Ns, and employed the 
experimental version of MAFFT [19] for closely-related viral 
genomes to create a multiple sequence alignment in FASTA 
format. The final dataset, after discarding the sequences that 
did not pass the aforementioned filters, comprised 22,554 
genomes. We used snp-sites [20] to convert the FASTA to VCF 
for processing with qLD, invoking the tool’s built-in option for 
omitting columns that did not exclusively contain A, C, G, T.

Figure 5 illustrates qLD scores (r2) in a hexbin plot with 
grid=16. The two highest-score bins shown in the figure cor­
respond to regions 15, 042—15,517 and 22, 684—23,198 with 
scores 1.0 and 0.92, respectively. Both regions are UniProt 
highlighted regions of interest as shown in the UCSC genome 
browser view of SARS-CoV-2 genomic datasets (https: 
/ /genome.ucsc.edu/cgi-bin/hgTracks?db=wuhCorl), with the 
first region found in the non-structural protein 12 and is known 
to interact with RMP Rendemsivir, while the second region 
found in the Spike protein SI and is a motif in the Receptor 
Binding Domain that binds to human ACE2.

V II. Conclusion

In this paper, we presented a new scalable platform for 
calculating pairwise LD scores in heterogeneous environ­
ments. Using optimized kernels based on the BLIS framework 
(qLD_CPU) and the OpenCL framework (qLD_GPU), we 
achieved speedup in all test-cases (up to 29x) over the widely 
used state-of-the-art Plink 1.9. Based on HPC practices, the 
platform works on par with the theoretical performance of 
these computation kernels with minimal overhead from the 
rest of the processing steps.

Based on the outcome of our experiments, our future work 
will focus on parallelization techniques that will lead to even

higher performance and scalability. A parallel heterogeneous 
approach will take advantage of the high CPU core count of 
modern computers and couple the two (now separate) modes 
of execution, i.e., qLD_CPU and qLD_GPU.
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