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Mini-abstract 

Four machine learning models were developed and compared to predict risk of a future Major Osteoporotic Fracture 

(MOF), defined as hip-, wrist-, spine- and humerus-fractures, in patients with a prior fracture. We developed a user-

friendly tool for risk calculation of subsequent MOF in osteopenia patients, using the best performing model.  

 

Abstract 

Purpose: 

Major osteoporotic fractures (MOFs), defined as hip-, wrist-, spine- and humerus-fractures, can have serious 

consequences regarding morbidity and mortality. Machine learning provides new opportunities for fracture prediction 

and may aid in targeting preventive interventions to patients at risk of MOF. Primary objective is to develop and 

compare several models, capable of predicting risk of MOF as a function of time in patients seen at the Fracture and 

Osteoporosis Outpatient Clinic (FO-clinic) after sustaining a fracture. 

Methods: 

Patients aged >50 years visiting an FO-clinic were included in this retrospective study. We compared discriminative 

ability (concordance-index) for predicting the risk on MOF with a Cox regression, Random Survival Forests (RSF) 

and an artificial neural network (ANN)-DeepSurv model. Missing data was imputed using multiple imputation by 

chained equations (MICE) or RSF’s imputation function. Analyses were performed for the total cohort and a subset of 

osteopenia patients without vertebral fracture. 

Results: 

7578 patients were included, 805 (11%) patients sustained a subsequent MOF. Highest concordance-index in the total 

dataset was 0.697 (0.664-0.730) for Cox regression, no significant difference was determined between the models. In 

the osteopenia subset, Cox regression outperformed RSF (p=0.043 and p=0.023) and ANN-DeepSurv (p=0.043) with 

a c-index of 0.625 (0.562-0.689). Cox regression was used to develop a MOF risk calculator on this subset. 

Conclusion: 

We show that predicting risk of MOF in patients who already sustained a fracture can be done with adequate 

discriminative performance. We developed a user-friendly tool for risk calculation of subsequent MOF in patients with 

osteopenia.  
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Introduction 

Osteoporosis is a major cause of fractures in elderly. Globally, 158 million individuals older than 50 years of age are 

estimated to be at high risk of osteoporotic fractures [1]. Consequently, 1 in 3 women and 1 in 5 men older than 50 

years of age will suffer from an osteoporotic fracture [2]. The risk of sustaining an osteoporotic fracture is expected to 

have doubled in 2045 due to progressive ageing [1]. Major osteoporotic fractures (MOFs), defined as fractures of the 

hip, wrist, spine and humerus [3], have the highest incidence in osteoporotic patients and can have serious 

consequences. For example, hip fractures have a high rate of both morbidity and mortality [4]. Twenty to thirty-five 

percent of the patients admitted to the hospital with a hip fracture die within one year [5]. 

 

Patients with a prior fracture of any nature are known to be at risk for a future fracture. Warriner et al. (2011) described 

a relative risk of subsequent fracture at any site of 2.1 (1.6 – 2.7) compared to patients without a previous fracture, 

while the relative risk for a subsequent fracture after hip fracture, vertebral fracture or radius/ulna fracture is 

respectively 3.2 (2.3 – 4.5), 3.0 (2.0 – 4.3), and 2.7 (1.9 – 3.7) compared to patients without a previous fracture [6]. 

The current Dutch guideline ‘Osteoporosis and fracture prevention’ recommends bone mineral density (BMD) 

screening by means of a dual-energy X-ray absorptiometry (DXA scan) in patients older than 50 with a recent non-

vertebral fracture [7]. Treatment decision for these patients is currently based on general classification of patients. 

Patients with a T-score < -2.5 and/or a vertebral fracture are treated with anti-osteoporotic medication, while other 

patients not meeting this criterion are not [7]. Recently, healthcare made a shift towards targeted prevention using more 

personalised medicine [8]. In the field of fracture prevention, risk assessment tools aim to personalize the prediction 

of future fracture risk to support treatment decisions. Risk identification for patients with osteopenia in absence of 

vertebral fracture is most relevant, as these patients are not standardly treated with anti-osteoporotic medication. Forty-

eight fracture risk assessment tools were available in 2017. Three of those (FRAX®, Garvan and QFracture) have been 

tested in a population-based setting and focus on predicting direct fracture risk, with FRAX® being the most validated 

and used tool worldwide for hip fractures [9]. FRAX® uses twelve input parameters and is based on linear and non-

linear combinations of risk-factors for future fracture [9]. However, it does not consider several important proven risk 

factors such as relevant comorbidities, patient’s history and prior fall(s). Furthermore, it only incorporates the BMD 

of the hip, while measurement of BMD of the lumbar spine is more correlated to the risk of vertebral fractures [7]. The 

current guideline in the Netherlands does not advice to use FRAX® or any other fracture risk assessment tool for 

clinical decision making, but only in risk-communication to patients with osteopenia [7].  

 

Recent advances in machine learning provide new opportunities for fracture prediction because of their ability to 

handle large numbers of input variables simultaneously. Especially, Artificial Neural Networks (ANNs) have shown 

promising results in different studies. For example, Tseng et al. (2013) designed an ANN outperforming standard 

logistic regression in the assessment of hip fracture risk in elderly patients [10]. Besides, Ho-le et al. (2017) showed 

that their ANN outperformed k-nearest-neighbour, support vector machines and logistic regression in the prediction of 
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hip fracture in post-menopausal women [11]. Artificial intelligence (AI) based models will potentially capture 

underlying trends and patterns, making predictions more accurate and therefore more useful in clinical practice [12].  

 

The primary objective of this study is to develop and compare several traditional and non-traditional models, capable 

of predicting the risk of a subsequent MOF over time in patients who are seen at a Fracture and Osteoporosis Outpatient 

Clinic (FO-clinic) [13] after sustaining a fracture. The best performing model could serve as a risk-assessment tool in 

clinical practice for patients visiting an FO-clinic. To the best of our knowledge, this is the first study to design a model 

applicable to this specific population. Such risk-assessment tool may be helpful in targeting treatment to patients at 

high risk of MOF who do not currently meet the criteria for this treatment. Secondary aim of this study is to identify 

predictors of subsequent fractures in this population. 

 

Methods 

Study design 

This retrospective cohort study was performed at the Ziekenhuisgroep Twente (ZGT) and was approved by the local 

ethics review committee. All patients aged >50 years who sustained a fracture and visited the FO-clinic of the ZGT 

between July 2011 and November 2019 were included. Primary endpoint of the study was the time to occurrence of a 

subsequent MOF, defined in line with Briot et al. (2013) as humerus-, wrist, clinical spine- or hip fracture [3]. Two 

separate datasets were created for analysis. The first dataset comprises all patients and will from now on be referred to 

as ‘complete dataset’. The second dataset is a subset of the complete dataset. It contains only patients with osteopenia 

in the absence of a vertebral fracture as these patients are not standardly treated with anti-osteoporotic medication. 

This dataset will be referred to as the ‘osteopenia subset’. All statistical procedures were performed for both datasets 

separately. 

 

Data extraction 

Data were extracted from the electronic health record database using structured query language (SQL) queries. Time 

till to occurrence of a MOF was extracted using diagnosis treatment combinations (DBCs in Dutch) as defined and 

labelled by the Dutch healthcare authority [14]. DBCs are healthcare products used for financial administration. The 

starting date for all patients was their visit to the FO-clinic. For patients with a DBC because of a MOF following their 

visit to the FO-clinic, the registration date of the DBC was used to calculate the time to occurrence of a MOF. Patients 

with no DBC of MOF were considered censored for the analysis, meaning that during the study time they had no 

subsequent MOF. Either the date of death or, when alive, the date of the end of the study (Nov. 2019) was used to 

calculate the follow-up time of censored patients. DBCs and completed forms from the FO-clinic were used to 

determine relevant comorbidities. DBCs do not provide information on the potential recovery of a comorbidity. Hence, 

we could not distinguish between history of a comorbidity and presence of a comorbidity. Therefore, the corresponding 

variables were combined into one single variable. Both clinical parameters and parameters regarding lifestyle were 
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extracted using FO-clinic forms. Biochemical parameters were extracted using a time window of 6 months prior to the 

visit at the FO-clinic until 1-week post visit. 

Predictors 

Demographic study parameters included age and gender of the patient. Relevant comorbidities selected are diabetes 

mellitus, cardiovascular diseases, inflammatory bowel disease, cerebral vascular accident, epilepsy, systemic auto-

immune disease, rheumatoid arthritis, malabsorption disorder, renal insufficiency, collapse, delirium or dementia and 

vertigo. A history of fall(s), continuously being bedridden and a positive family history of a first-degree relative with 

either hip fracture or osteoporosis were collected for all patients. Number of children, use of combined oral 

contraceptive pill (COCP), breastfeeding to infants and duration of menopause (years) were collected for all female 

patients. Clinical parameters included use of corticosteroids, presence of vertebral fracture, reporting back pain, weight 

<67 kg, weight <60 kg, diminished height in recent years, height (cm), weight (kg) and moderate active hours per 

week. Radiographic variables collected were T-scores of the hip and lumbar spine. Parameters regarding lifestyle 

included dietary daily calcium intake (mg), >6 cups of coffee per day, frequent exposure to sunlight, diet includes fat 

fish (≥twice a week), vegetarian diet, use of vitamin supplements, and daily use of margarine. Biochemical parameters 

included erythrocyte sedimentation rate (ESR), plasma calcium, plasma albumin, plasma thyroid stimulating hormone 

(TSH), serum vitamin D3 and estimated glomerular filtration rate (eGFR1). Categorical variables are dichotomously 

described as yes/no, except for gender which is given as male/female.  

 

Data preparation 

Variables which only apply to a subset of the patients were transformed to two-part variables as described by Dziak 

and Henry (2017) [15]. This method was applied for the variables number of children, use COCP, breastfeeding to 

infants and duration of menopause as these were only relevant for female patients. Additionally, it was applied on 

eGFR as this variable contained both, data points defined as ‘>90’ as well as numeric data points. Interactions terms 

were created after standardizing the continuous variables by mean centring. Unrealistic values were identified using 

boxplots, removed from the dataset and handled as missing data. Missing data was imputed using the MICE package 

in R [16], a total of 30 imputed datasets were used. More details are provided in Supplementary material 1.  

 

Statistical analysis and modelling 

Descriptive statistics are provided for both datasets and were compared between cases (occurrence of MOF) and 

controls (no occurrence of MOF) using the χ2-square test for nominal variables and Mann-Whitney U test for 

continuous variables.  

 

Our main outcome measure is the time to event, which is right censored survival data. We therefore used three survival 

modelling approaches to predict the risk of MOF as a function of time: Cox proportional hazard regression [17], 

Random Survival Forest (RSF) [18] and ANN Deepsurv [19]. 

 
1 Determined with the CKD-EPI formula 
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The Cox proportional hazard regression is a traditional choice in survival modelling [17]. Cox regression assumes the 

hazards to remain constant over time (proportionality) and assumes linear effects of continuous variables on the log 

hazard function (linearity). Proportionality was checked using the Schoenfeld’s residual correlation test [20]s. The 

linearity assumption was tested using the likelihood ratio test. Several transformations of continuous variables were 

considered and compared using the χ2-statistic of the univariate Wald test [21]. We considered the following 

transformations for variables x: log(x), log(x)2, x2, √x, and restricted cubic splines of x with 3 or 4 degrees of freedom. 

The coefficients of the variables transformed by a restricted cubic spline were calculated as demonstrated by Shepherd 

and Rebeiro (2018) using a reference category [22]. Variables for the final model were selected using Least Absolute 

Shrinkage and Selection Operator (LASSO), a modern variable selection technique which is preferable to stepwise 

selection methods [21]. It optimizes the bias-variance trade-off by determining an optimum for the penalty factor (λ) 

using cross-validation. In line with Steyerberg (2011), the penalty factor λ (or λ + 1 standard error) was determined 

using tenfold cross-validation and subsequently averaged [21]. 

 

RSF, developed by Ishwaran et al (2008), uses multiple decision trees for predictive modelling and is designed for 

right-censored survival data [18]. We implemented two RSF models. The first model was trained and validated on 

every single dataset created by the MICE imputation, from now on referred to as RSF-MICE. The second model used 

the imputation method of the RSF algorithm itself and will be referred to as RSF-regular. The hyperparameters used 

for RSF can be found in Supplementary material 2. RSF can give insight in the prediction models and its variates by 

calculating variable importance of every variable [23]. The variable importance of every specific variable is determined 

by analysing out-of-bag samples, detailed information is given in Supplementary material 1. Due to incompatibility 

problems with the pool function of MICE, a single imputed dataset was used to determine variable importance for 

RSF-MICE. 

 

Deepsurv is a Cox proportional hazards deep neural network designed by Katzman et al (2018) [19]. We used Python 

to implement the DeepSurv model (ANN-DeepSurv). Data was standardized prior to model development.  To identify 

the best hyperparameters [24], we applied grid search with tenfold cross-validation on a single imputed dataset. 

Constraints for the hyperparameters were set manually, weighing both computational time and model performance. 

We used the Adaptive Moment Estimation (Adam) optimizer [25] for training ANN-Deepsurv and left the L2-

regularization to the default value (1e-4). L2 regularization is frequently used in ANN’s to reduce model complexity 

during training and reduce overfitting. It can be viewed as an implicit (latent) feature selection method [26]. 

Hyperparameters and their constraints can be found in Supplementary material 3. Hyperparameters of the model with 

the largest c-index were selected for final evaluation. As the ANN-DeepSurv model showed large variance in the c-

index, 10 final models were constructed per dataset and subsequently averaged. 
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Evaluation of model performance 

Discriminative performance of the four models was evaluated using the concordance index (c-index), the most 

commonly used performance measure to indicate discriminative ability for survival models [21]. Like AUC, a c-index 

of 0.5 is comparable to random guessing while a c-index of 1.0 reflects perfect discrimination. Tenfold cross-validation 

was used to assess the c-index and its confidence interval. The c-indexes were tested for statistically significant 

differences using two-sample Mann-Whitney U tests (two-sided). To contextualise the predictive accuracy of the best 

performing models, we additionally constructed receiver operating curves at different points in time. 

 

Summary of methods 

Four different models (Cox regression, RSF-MICE, RSF-regular and ANN-DeepSurv) were constructed and their c-

indexes were compared. All models used a form of feature selection, thereby reducing complexity of the models and 

returning a feasible number of risk factors for use in clinical practice. Missing data points were imputed using MICE 

before applying Cox regression, RSF-MICE and ANN-DeepSurv, while RSF-regular used its integrated imputation 

method. All models were trained and tested on two datasets: the complete dataset and the osteopenia subset. The best 

performing model in the osteopenia subset was used to construct a risk calculator predicting the three- and five-year 

risk of MOF. This risk calculator was designed using Shiny, a R package to implement interactive web applications. 

 

P-values <0.05 are considered statistically significant. Software used for data preparation and analysis in this research 

were R (R Core Team 2019, version 3.6.1) [16] and Python 3.7 (Scikitlearn and PySurvival) [27, 28]. 

 

Results 

In this study 7578 patients were included, 5014 (74%) were female. A total of 805 (11%) patients sustained a 

subsequent MOF. Median time to sustaining an MOF was 114 weeks (Interquartile range (IQR) = 153), while the 

median follow-up time of patients with no MOF was 192 weeks (IQR = 224). Median age for all patients was 68 years 

(IQR = 17), and 74 (IQR = 15) and 67 (IQR = 16) for patients who sustained a subsequent MOF and censored patients, 

respectively. The osteopenia subset consists of 1770 patients of which 1367 (77%) were female. In this subset, 165 

(9%) patients sustained a subsequent MOF. Median time to sustaining an MOF was 118 weeks (IQR = 147), while the 

median follow-up time of patients with no MOF was 159 weeks (IQR = 217). Median age for all patients in the 

osteopenia subset was 67 years (IQR = 17), and 72 (IQR = 15) and 67 (IQR=16) for patients who sustained a subsequent 

MOF and censored patients, respectively. 

 

Overall, 2271 (30%) cases had missing data, while for the osteopenia subset 590 (33%) cases were incomplete. The 

percentage of missing values across all variables varied between 0% and 23% (for history of fall(s)). The primary 

endpoints, occurrence of a MOF and time to occurrence of a MOF, were complete in both datasets. Significant 

correlation with MOF in univariate analysis was found in various covariates in both datasets. Detailed information on 

descriptive statistics and missing data of each variable are shown in Table 1. 
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Table 1: Descriptive statistics for both the complete dataset (left) and the osteopenia dataset (right) 

  
Missing No MOF (n=6773) MOF (n=805) p-value Missing No MOF (n=1605) MOF (n=165) p-value 

>6 cups of coffee per day 5,2% 732 (11.4) 58 (7.7) 0.002 3,5% 166 (10.7) 15 (9.6) 0.757 

Age (years) 0,0% 67 [60, 76] 74 [66, 81] <0.001 0,0% 67 [59, 75] 72 [65, 80] <0.001 

Breastfeeding to infants 7,5% 2725 (43.4) 395 (53.4) <0.001 6,8% 688 (46.0) 74 (48.1) 0.692 

Cardiovascular disease 0,0% 2560 (37.8) 347 (43.1) 0.004 0,0% 590 (36.8) 74 (44.8) 0.05 

Cerebral vascular accident 0,0% 733 (10.8) 106 (13.2) 0.052 0,0% 165 (10.3) 17 (10.3) 1.000 

Daily use of margarine 3,8% 5979 (91.7) 709 (92.4) 0.511 3,2% 1416 (91.0) 142 (89.9) 0.745 

Decreased renal function 1,7% 4741 (71.2) 567 (71.8) 0.772 1,1% 1128 (71.1) 116 (71.2) 1.000 

Delirium or dementia 0,0% 202 (3.0) 46 (5.7) <0.001 0,0% 45 (2.8) 12 (7.3) 0.004 

Diabetes Mellitus 0,0% 837 (12.4) 119 (14.8) 0.057 0,0% 167 (10.4) 24 (14.5) 0.133 

Diet includes fat fish 6,8% 2376 (37.6) 248 (33.5) 0.031 5,8% 568 (37.5) 62 (40.8) 0.473 

Dietary daily calcium intake (milligram) 0,5% 865 [625, 1015] 845 [655, 1015] 0.804 0,2% 845 [625, 985] 810 [630, 970] 0.664 

Diminished length in recent years 8,6% 3498 (56.5) 526 (71.0) <0.001 7,4% 782 (52.6) 107 (70.4) <0.001 

Duration of menopause (years) 11,8% 13 [0, 24] 21 [9, 30] <0.001 11,1% 13 [0, 24] 19 [4, 29] 0.001 

eGFR 1,7% 79 [67, 90] 76 [63, 90] 0.001 1,1% 79 [68, 90] 77 [62, 90] 0.243 

Epilepsy 0,0% 122 (1.8) 37 (4.6) <0.001 0,0% 29 (1.8) 6 (3.6) 0.189 

Erythrocyte sedimentation rate 3,1% 9 [5, 18] 11 [5, 21] <0.001 2,1% 9 [5, 16] 8 [3, 15.50] 0.296 

Ever being bedridden 2,6% 618 (9.4) 83 (10.7) 0.249 1,8% 152 (9.7) 17 (10.4) 0.857 

Frequent exposure to sunlight 2,7% 5918 (89.7) 633 (82.2) <0.001 1,9% 1432 (90.9) 140 (87.0) 0.134 

Gender (female) 0,0% 5014 (74.0) 673 (83.6) <0.001 0,0% 1237 (77.1) 130 (78.8) 0.687 

History of collapse 0,0% 145 (2.1) 18 (2.2) 0.962 0,0% 40 (2.5) 5 (3.0) 0.874 

History of fall(s) 22,7% 1301 (24.8) 197 (32.2) <0.001 21,4% 293 (23.1) 40 (32.5) 0.026 

Inflammatory bowel disease 0,0% 79 (1.2) 7 (0.9) 0.565 0,0% 20 (1.2) 2 (1.2) 1.000 

Length (cm) 15,0% 168 [162, 174] 165 [160, 170.50] <0.001 16,7% 168 [162, 173] 166 [161, 171] 0.052 

Malabsorption disorder 0,0% 31 (0.5) 5 (0.6) 0.714 0,0% 12 (0.7) 1 (0.6) 1.000 

Moderate active hours per week 2,8% 21 [14, 40] 21 [14, 40] 0.009 2,0% 21 [14, 40] 21 [14, 40] 0.514 

Number of children 7,6% 2 [0, 3] 2 [1, 3] <0.001 7,5% 2 [0, 3] 2 [0, 3] 0.155 

Plasma albumin 3,3% 38 [36, 40] 38 [35.50, 40] <0.001 2,2% 38 [36, 40] 38 [36, 40] 0.878 

Plasma calcium 2,9% 2.38 [2.32, 2.45] 2.37 [2.31, 2.45] 0.017 2,1% 2.39 [2.33, 2.45] 2.39 [2.31, 2.46] 0.721 

Plasma TSH 2,5% 1.80 [1.20, 2.60] 1.80 [1.11, 2.70] 0.260 1,6% 1.80 [1.20, 2.60] 1.80 [1.10, 2.70] 0.938 

Positive family history 1,9% 1631 (24.6) 201 (25.3) 0.679 1,9% 429 (27.3) 39 (23.8) 0.384 

Presence of vertebral fracture 1,6% 1264 (19.0) 227 (28.5) <0.001 n.a. n.a n.a. n.a. 

Renal insufficiency 0,0% 129 (1.9) 21 (2.6) 0.222 0,0% 32 (2.0) 4 (2.4) 0.934 

Reporting back pain 8,5% 2888 (46.5) 378 (51.9) 0.006 8,5% 526 (35.8) 57 (38.0) 0.657 

Rheumatoid arthritis 0,0% 249 (3.7) 42 (5.2) 0.040 0,0% 54 (3.4) 9 (5.5) 0.246 

Serum vitamin D3 9,7% 52 [36, 67] 47 [30, 65] <0.001 7,2% 53 [37, 68] 46 [32, 68] 0.082 

Systemic autoimmune disease 0,0% 268 (4.0) 26 (3.2) 0.361 0,0% 64 (4.0) 2 (1.2) 0.115 

T-score hip 3,8% -1.30 [-1.90, -0.60] -1.50 [-2.10, -0.90] <0.001 0,0% -1.60 [-1.90, -1.20] -1.70 [-2, -1.30] 0.019 

T-score lumbar spine 1,7% -1.50 [-2.30, -0.70] -1.70 [-2.50, -0.92] <0.001 0,0% -1.80 [-2.20, -1.40] -1.80 [-2.10, -1.50] 0.497 

Use of COCP 9,1% 2830 (45.8) 295 (41.6) 0.038 7,9% 736 (49.6) 63 (42.6) 0.121 

Use of corticosteroids 4,2% 415 (6.4) 55 (7.3) 0.364 3,8% 101 (6.5) 11 (6.9) 0.99 

Use of vitamin supplements 4,2% 2789 (42.9) 307 (40.8) 0.289 3,1% 713 (45.9) 62 (38.5) 0.089 

Vegetarian diet 5,2% 159 (2.5) 19 (2.5) 1.000 4,4% 46 (3.0) 3 (1.9) 0.592 

Vertigo 0,0% 125 (1.8) 14 (1.7) 0.941 0,0% 35 (2.2) 1 (0.6) 0.282 

Weight (kg) 13,8% 73.35 [65, 84] 70 [62, 80] <0.001 15,8% 70.60 [63, 80] 70.50 [64, 78] 0.758 

Weight <60 kg 2,5% 797 (12.1) 137 (17.7) <0.001 2,0% 205 (13.0) 18 (11.2) 0.586 

Weight <67 kg 2,7% 1845 (28.0) 273 (35.1) <0.001 2,1% 526 (33.5) 52 (31.9) 0.745 

Abbreviations: COCP = Combined Oral Contraceptive Pill, CI = Confidence Interval, eGFR = estimated Glomerular Filtration Rate. Categorical variables are described as number (percentage) while continuous variables 
are described as median [1st quartile – 3rd quartile]. 
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The overall survival rate with MOF as event at year 1, year 3 and year 5 were respectively 0.967 (0.963-0.971), 0.914 

(0.907-0.922), 0.866 (0.857-0.876) in the complete dataset. For the osteopenia subset, this rate was determined as 

0.974 (0.966-0.982) for year 1, 0.922 (0.908-0.937) for year 3 and 0.865 (0.844-0.887) for year 5.  

 

Cox regression 

To meet the linearity assumption, the variables number of children and moderate active hours per week were 

transformed by the square root function, while ESR was log squared. Continuous variables duration of menopause, 

dietary daily calcium intake, plasma TSH and serum vitamin D were transformed to linear using restricted cubic splines 

with 3 degrees of freedom. Plasma calcium was transformed using restricted cubic splines with 4 degrees of freedom. 

Cox proportional hazard assumptions were met: global χ2 was 53.3 (p-value 0.777) for the complete dataset and global 

χ2 was 59.9 (p-value 0.516) for the osteopenia subset implying no deviation of the proportional hazard assumption. 

The penalty factor λ of LASSO was determined to be log(-4.14) and log(-4.41) for the complete dataset and osteopenia 

subset, respectively.  

 

Age, prior fall(s), current vertebral fracture, history of epilepsy and duration of menopause were all independently 

associated with occurrence of MOF in the complete dataset. Hazard ratio of these variables ranged from 1.010 to 2.159. 

Moreover, interaction of age and T-score of the hip was also independently associated with this primary outcome 

measure with a hazard ratio of 1.010 (1.003 – 1.017). The variables frequent exposure to sunlight and T-score of the 

hip showed a reduction of risk for MOF, with a hazard ratio of 0.731 (0.602-0.888) and 0.386 (0.233-0.639), 

respectively. Both 0 and 50 years of menopause showed a reduction of risk for MOF (hazard ratio of 0.875 (0.836-

0.917) and 0.853 (0.779-0.994) compared to 10 years, respectively). Results of the Cox regression in the complete 

dataset are shown in Table 2.  

 

For patients in the osteopenia subset, prior fall(s), change in length in recent years, fat fish diet and a decreased renal 

function were significantly correlated with occurrence of MOF. The hazard ratio increased for diminishing renal 

function to 3.268 (2.672-3.997) for an eGFR of 10 mL/min/1.73m2 compared to 70 mL/min/1.73m2. Results of the 

Cox regression of the osteopenia subset are shown in Table 2. The hazard function of the variables transformed using 

restricted cubic splines are plotted in Supplementary material 3. 

 

The Cox regression model returned a tenfold cross validated c-index of 0.697 (0.664 – 0.730) for the complete dataset 

and 0.625 (0.562 – 0.689) for the osteopenia subset.  
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Table 2: Results of cox proportional hazard regression of a) the complete dataset and b) the osteopenia subset 

a) Complete dataset 

Variable 
 

Hazard Ratio (CI) p-value 

Age 1.052 (1.035-1.069) <0.001 

Gender (female) 1.329 (0.751-2.353) 0.329 

History of fall(s) 1.357 (1.128-1.631) 0.001 

Presence of vertebral fracture 1.425 (1.215-1.671) <0.001 

Epilepsy 2.159 (1.545-3.018) <0.001 

Frequent exposure to sunlight 0.731 (0.602-0.888) 0.002 

T-score hip 0.386 (0.233-0.639) <0.001 

Duration of menopause (years) <0.001  
 0 0.875 (0.836-0.917) 

 

 
10* 1.000  

 

 
20 1.075 (1.040-1.110) 

 

 
30 1.034 (0.986-1.083) 

 

 
40 0.941 (0.881-1.004) 

 

 
50 0.853 (0.779-0.994) 

 

Interaction of age and T-score hip 1.010 (1.003-1.017) 0.004 
* used as reference category 

b) Osteopenia subset 

Variable 
 

Hazard Ratio (CI) p-value 

Age 1.025 (0.963-1.092) 0.430 

Gender (female) 0.907 (0.615-1.337) 0.620 

History of fall(s) 1.577 (1.060-2.347) 0.025 

Cardiovascular disease 1.233 (0.885-1.718) 0.216 

Delirium or dementia  1.544 (0.823-2.895) 0.176 

Diminished length in recent years  1.558 (1.073-2.262) 0.020 

Moderate active hours per week 0.997 (0.986-1.008) 0.619 

Diet includes fat fish 1.495 (1.069-2.090) 0.019 

Decreased renal function 3.218 (1.496-6.293) 0.003 

eGFR  <0.001  
70* 1.000 

 

 50 1.343 (1.270-1.421)   
30 2.095 (1.843-2.382) 

 

 
10 3.268 (2.672-3.997) 

 

T-score hip 0.828 (0.059-11.56) 0.889 

Interaction of age and T-score hip 0.999 (0.964-1.035) 0.943 
* used as reference category 

 

RSF – MICE  

Cross-validation (tenfold) returned a c-index of 0.688 (0.652-0.723) and 0.594 (0.536-0.651) for the complete dataset 

and osteopenia subset respectively. Age (0.022), T-score of the hip (0.014) and duration of the menopause (0.013) 

showed highest variable importance in the complete dataset. In the osteopenia dataset, age (0.020), duration of 

menopause (0.007) and the comorbidity delirium or dementia returned (0.006) the highest variable importance. The 

fifteen variables with largest variable importance are plotted in Figure 1 for both datasets.  
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RSF – regular 

A c-index of 0.687 (0.679-0.695) for the complete dataset and 0.593 (0.577 – 0.608) for the osteopenia subset was 

determined with tenfold cross-validation. Most important variables in the complete dataset were age (0.024), T-score 

of the hip (0.013) and current vertebral fracture (0.007). Age (0.019), cardiovascular disease (0.008) and eGFR (0.005) 

showed highest variable importance in the osteopenia subset. The fifteen variables with largest variable importance 

are plotted in Figure 1 for both datasets.  

 

 

Figure 1: Variable importance (VIMP) of the fifteen variables with highest variable importance for every RSF model 

ANN-Deepsurv 

A c-index of 0.670 (0.592 – 0.747) for the complete dataset and 0.588 (0.506 – 0.671) for the osteopenia subset were 

determined using tenfold cross-validation. Results of the optimal hyperparameters returned by grid-search are shown 

in Supplementary material 4 for both datasets. 

 

Model comparison 

For the complete dataset, no significant difference was found between discriminative ability of the models. In the 

osteopenia subset, the Cox regression model significantly outperformed the RSF-MICE model (p=0.043), the RSF-

regular model (p=0.023) and the ANN-DeepSurv model (p=0.043) on discriminative ability. Comparison of the c-
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indexes of the four models are given in Figure 2 for each dataset. Receiver operating curves with corresponding area 

under the curve of the Cox regression models at different time points are given in figure 3.  

 
Figure 2: Boxplot of the c-index of the predictive models: Cox regression, RSF-MICE, RSF-regular and ANN-DeepSurv. 

Corresponding p-value of the unpaired two-sample Mann Whitney U test for every individual comparison is shown. Sign * 

indicates statistical significance (p<0.05). 
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Figure 3: Receiver operating curves at different time points for the Cox regression models. The corresponding area under 

the curve at that specific time point is given in the centre of each plot.   
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Major Osteoporotic Fracture Risk Calculator 

In the osteopenia subset, Cox regression model was used to develop a risk calculator, giving the 3- and 5-year risk of 

a MOF as an output. To construct the major osteoporotic risk calculator, we used the hazard ratio of the variables and 

the baseline function of the cox regression model of the osteopenia subset. An example of this risk calculator is shown 

in Figure 4. 

 

 

Figure 4: Major Osteoporotic Fracture Risk Calculator 

 

Discussion 

This retrospective pilot study is, to the best of our knowledge, the first study to compare both traditional and non-

traditional models capable of predicting the risk of sustaining a subsequent MOF in patients who were seen at the FO-

clinic after already sustaining a fracture. We developed four models that adequately predict the risk of MOF over time 

in these patients and determined the predictive ability of Cox regression model, two RSF models and ANN-DeepSurv 

model for patients at the FO-clinic to be comparable. The discriminative ability of all models in the osteopenia subset 

is found to be lower compared to the total dataset, with the Cox regression model outperforming the RSF and ANN-

DeepSurv models in osteopenia dataset. Finally, we designed a MOF risk calculator for fracture patients with 

osteopenia presenting themselves at a FO-clinic.  

 

The non-traditional models ANN-DeepSurv (c-index 0.670, CI: 0.592 – 0.747) and RSF (c-index 0.687, CI: 0.679-

0.695 / c-index: 0.688, CI: 0.652-0.723) did not outperform Cox regression (c-index: 0.697, CI: 0.664 – 0.730) in our 

complete dataset and returned significantly lower c-indexes in the osteopenia subset. This in contrast to the original 

DeepSurv study of Katzman et al. (2018), which showed a higher c-index on real life datasets for both RSF and 
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DeepSurv [19]. Likewise, Kim et al. (2019) showed that RSF and DeepSurv outperformed Cox regression in survival 

prediction of oral cancer patients [29]. A possible explanation for this contrary finding might be the number of variables 

used in this research. We used 46 and 45 variables for the complete dataset and osteopenia subset respectively, while 

aforementioned studies used 5 to 14 variables. Besides, our dataset (event rate = 11%) was more imbalanced compared 

to the datasets of these studies, with event rates ranging from 17% to 68%. Furthermore, we used models in the context 

of fracture prediction, while Katzman et al. (2018) predicted survival in the fields of cardiology and oncology. These 

factors might have resulted in lower discriminative ability of these models. Another explanation might be the 

differences in development of the Cox regression model. In our study, we used both LASSO and restricted cubic 

splines to optimize the bias-variance trade-off in the Cox regression model and met its assumption of linearity. In this 

way we were able to include non-linear effects into the Cox regression model. Katzman et al. (2018) and Kim et al. 

(2019) did not specify if they optimized the Cox regression model, nor if they transformed variables to meet the 

linearity assumptions [19, 29]. Therefore, the Cox regression models in their studies may not perform optimally. Cox 

regression outperforming the other models in the osteopenia subset may be caused by the lower sample size in this 

dataset compared to the complete dataset, as both RSF and ANN-DeepSurv showed more overfitting in the osteopenia 

subset compared to the complete dataset.  

 

Literature comparing machine learning principles with traditional statistics for prediction of MOF is scarce. Forgetta 

(2018) and Nissinen (2019) both used machine learning models to predict osteoporotic fractures, but limited 

themselves to use of genotypes and DXA imaging respectively [30, 31]. Kruse (2017) and Tseng (2013) used multiple 

sources of information but focused solely on hip fracture. However, they both concluded that machine learning 

techniques can outperform traditional statistics in hip fracture prediction [10, 32]. Standard logistic regression analysis, 

although not able to handle censored data, is more often used to assess risk of MOF. Briot et al. (2013) analysed the 

predictive ability of the FRAX® tool for MOF over 6 years in postmenopausal women [3], while Ensrud et al. (2009) 

compared the FRAX®-tool to the use of BMD and age alone for 10-years of follow-up [33]. The incidence rate of 

11% of MOF in our study was relatively high compared to the 4.9% of Briot et al. (2013), most likely due to the 

selection of our population at the FO-clinic. All patients who visited this clinic sustained a recent fracture and are 

therefore known to be at risk of a new fracture [34]. Ensrud et al. (2009) reported an even higher incidence of 16.6% 

but considered a longer follow-up period. Briot et al. (2013) returned a c-index of 0.69 (0.63-0.75) for the FRAX®-

tool, while Ensrud et al. (2009) report a likewise c-index of 0.69 (0.67-0.70) for their model. These results are 

comparable to our models, with a maximum c-index of 0.70 (0.66 – 0.73) [3]. Reber et al. (2018) used survival analysis 

by the means of a Cox proportional hazard regression model to develop a fracture risk assessment tool based on claims 

data. They report a low MOF incidence (2.6%), probably due to their short follow-up period of 2 years. They 

determined a c-statistic of 0.70 (0.69-0.71), but also noted a decrease in c-statistic for 5 year follow-up [35]. Again, 

this is comparable to our results. The main difference, however, is that our model is applicable to a selected population 

of the Fracture and Osteoporosis outpatient clinic where all patients have a T-score < -1.0 or a vertebral fracture and 

sustained a fracture. The FRAX®-tool and the other studies considered a more general population. 
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Most risk factors for MOF as identified in this study, such as history of fall(s) or presence of vertebral fracture, are 

well-known risk factors for future fracture [3, 36–38]. An explanation for the increased hazard ratio of patients with 

epilepsy is given by Zhao et al. (2015). They stated that these patients are at risk mostly due to (myoclonic) seizures 

[39]. Dietary use of fat fish as a risk factor for subsequent fracture, however, is not in line with current literature. Perna 

et al. (2017) performed a systematic review and concluded that a fish dietary pattern has no negative effect on bone 

quality [40]. The negative effect of dietary use of fat fish on sustaining a MOF in this study may be caused by specific 

advice given to patients prior to sustaining the fracture which led to a visit to the FO-clinic. Reasons for this advice 

could be a history of fractures, a diminished T-score or a lower serum vitamin D in order to increase the vitamin D 

level. As these patients may have received this advice in the years prior to inclusion in this study, this effect may 

therefore mimic a lower bone quality. However, this could not be verified as no data regarding this issue was available. 

 

At a FO-clinic, risk identification for patients with osteopenia in absence of vertebral fracture is most relevant, as these 

patients are not standardly treated with anti-osteoporotic medication. Anti-osteoporotic medication, such as 

bisphosphonates, is well-known to prevent osteoporotic fractures with relative risk reduction ranging from 45% to 

53% [41]. In our study, 165 osteopenia patients (9%) sustained a subsequent MOF. As these patients could possibly 

benefit from anti-osteoporotic medication, identification of these patients is important. To the best of our knowledge, 

this is the first study to develop and compare several models capable of predicting the risk of a subsequent MOF for 

this specific group. The discriminative ability of our models in this population was lower compared to the total 

population at the FO-clinic. Less distinctive patient characteristics could explain this finding, as patients were pre-

selected on their T-scores and absence of vertebral fracture. Both variables were important for the predictive models 

of the complete dataset, as reflected by their hazard ratio and variable importance. This study is a first step in the 

development of models predicting the risk of a subsequent MOF for patients with osteopenia who already sustained a 

fracture. We translated the best performing model to a user-friendly calculator for 3- and 5-year risk of a MOF. If 

further refined and both prospectively and externally confirmed in larger datasets, this risk calculator might aid in the 

identification of patients at risk of subsequent fracture in this population and therefore help targeting treatment to 

patients at highest need. 

 

This study includes several limitations, which should be acknowledged. At first, several important variables, such as 

the number of falls in the last year, were not available due to the retrospective design of the studies. Both vertebral 

fracture assessment (VFA) and intoxications including smoking and alcohol use were not uniformly extractable from 

the electronic health record and could therefore not be considered. When clearly registered, several important variables 

including VFA might be added in future (prospective) research and may increase the discriminative ability of the 

models. Besides, the treatment decision for every patient was registered using free text and therefore not suitable for 

analysis. We therefore assumed that, in line with the protocol in our hospital, all patients with a T-score < -2.5 or a 

vertebral fracture were treated with anti-osteoporotic medication while all patients with osteopenia were not. However, 

individual circumstances may have led to treatment in osteopenia patients and thereby our results may be troubled. 
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Future research, with a categorical registration of the initiated therapy, is needed to confirm and improve our results. 

Natural language processing may be a future solution to determine treatment choice retrospectively.   

Secondly, we experienced serious technical constraints of different software and packages in combination with survival 

data. Especially the ANN-DeepSurv model may have suffered from this constraint, as the hyperparameter search was 

performed on a single dataset. Technical development of functions for survival data is required to be able to deal with 

these problems properly in future research.  

Lastly, using financial information of DBCs of our hospital has some drawbacks. Although most patients are loyal to 

our hospital, patients on the border of our catchment area might have been treated for a MOF in a nearby hospital and 

therefore incorrectly been labelled as event-free. Besides, using DBCs may result in a bias towards severe 

comorbidities, as patients with mild comorbidities are treated by the general practitioner (GP). GPs in the Netherlands 

do not make use of DBCs. Hence, mild comorbidities were not registered. Financial data on the other hand is verified 

by several institutions and might be more reliable than questionnaires, as the latter depends on patients’ memory in an 

aging population. We suggest that results of the comorbidities are interpreted with caution and acknowledge the need 

of verification in future research. 

 

In our study, the traditional model (Cox regression) outperformed the non-traditional models (RSF and ANN-

DeepSurv) in the osteopenia subset, while no difference was found in the complete dataset. However, we need to 

consider that the Cox regression model was combined with new techniques like LASSO and restricted cubic splines. 

Nowadays, more and more innovations are used in traditional statistics, thereby blurring the line with non-traditional 

models such as RSF’s and ANN’s. As both RSF and ANN-DeepSurv showed more overfitting compared to the Cox 

regression model in the osteopenia subset, we recommend future studies with more data when applying non-traditional 

models as these techniques are promising. Our advice is to include more cases and use data of different hospitals. For 

future studies with more cases, we also recommend dividing the osteopenia patients in three tertiles based on their T-

score. As relatively more events may occur in the group with the lowest T-score, a model based on this subgroup may 

return a higher predictive ability. A preliminary analysis in our dataset using three tertiles in the osteopenia subset 

showed promising results. 

 

In conclusion, this study is the first study to compare both traditional and non-traditional models capable of predicting 

the risk of sustaining a subsequent MOF in patients who were seen at the FO-clinic after already sustaining a fracture. 

We show adequate and comparable discriminative performance of a Cox regression model, RSF models and ANN-

DeepSurv model in a large population of a FO-clinic. In patients with osteopenia, Cox regression outperformed both 

RSF and ANN-DeepSurv and we developed a user-friendly tool for risk calculation of a subsequent MOF within 3- 

and 5-years. Further research, with a clear registration of important variables, is recommended to refine and validate 

this risk calculator and confirm our results. Although we acknowledge several limitations in our research, this study 

may be the starting point for models which identify patients with osteopenia at significant risk of subsequent fracture 

and therefore in need for a patient tailored treatment strategy. 
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