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Abstract

This paper presents an algorithm for cost-bounded
probabilistic reachability in timed automata extended with
prices (on edges and locations) and discrete probabilistic
branching. The algorithm determines whether the probabil-
ity to reach a (set of) goal location(s) within a given price
bound (and time bound) can exceed a threshold p ∈ [0, 1].
We prove that the algorithm is partially correct and show
an example for which termination cannot be guaranteed.

1. Introduction

Timed automata are a prominent model for analyz-
ing real-time systems. Efficient algorithms for timed
reachability—can a certain goal (set of) location(s) be
reached within a given time-bound?—are at the heart of
successful model checkers for timed automata such as Up-
paal [4]. As the state space of timed automata is infinite,
these algorithms are based on finite symbolic representa-
tions such as regions and zones. Verification algorithms
for timed automata have been applied to several applica-
tion areas. Recently, the use of real-time model checkers
for scheduling synthesis has become en vogue [9, 12] and
elsewhere. The basic idea here is to model all resources as
well as all individual tasks together with their (hard) dead-
lines as timed automata. The question whether there exists a
schedule that meets all requirements (such as order of tasks,
timing aspects and deadlines) can be formulated as timed
reachability question and be tackled with model checkers
such as Uppaal.

Scheduling synthesis has been the major motivation to
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enrich timed automata with prices [3, 5, 17]. Such prices
can be interpreted as bonus, gain, or dually, as cost. Price
rates attached to locations indicate the increase of price per
time unit, whereas prices attached to edges indicate instan-
taneous costs. (This is similar to state and impulse rewards,
respectively, in Markov reward models [21].) The problem
of minimal cost reachability on priced timed automata (also
called weighted timed automata) has been shown to be de-
cidable [3,5]. The symbolic algorithms are based on priced
extensions of the symbolic data structures used for timed
automata, such as regions and zones. When interpreting
prices as resource costs, these timed automata can be used to
obtain minimal cost schedules. In combination with the use
of heuristics, scheduling synthesis with (priced) timed au-
tomata can often handle larger problem instances than with
standard approaches using, e. g., mixed-integer linear pro-
gramming [19].

An important restriction, however, of these approaches
is that resources are typically considered to be fully reli-
able. That is to say, resources are assumed to never break
down and (e. g., in case of production machines) never pro-
duce imperfect output. In order to handle such situations,
in this paper we investigate priced probabilistic timed au-
tomata (P2TA, for short), which are a probabilistic exten-
sion of priced timed automata. This model is an orthog-
onal extension of priced as well as probabilistic timed au-
tomata [13]. When prices are omitted, probabilistic timed
automata are obtained, whereas the deletion of probabili-
ties yields priced timed automata. We define this model,
provide its semantics and its symbolic semantics using the
novel concept of multi-priced zones.

The main contribution of the paper is an algorithm for the
problem we call cost-bounded probabilistic reachability.
This backwards algorithm can be used to determine whether
a (set of) goal location(s) can with probability greater than
p be reached with cost at most c.

Although cost-bounded reachability [3, 5] and maximal
probabilistic reachability [13] are decidable, the problem
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of cost-bounded probabilistic reachability is not trivial as
the symbolic state space is not guaranteed to be finite. To
our knowledge, the algorithm presented in this paper is the
first semi-decidable algorithm for cost-bounded probabilis-
tic reachability. In case the answer to the problem is affir-
mative, the algorithm will terminate. Furthermore, in cases
of a finite symbolic state space it will also terminate.

P2TA are a subclass of probabilistic linear hybrid au-
tomata (PLHA), introduced by Sproston [20]. Cost-
bounded probabilistic reachability can be expressed in the
logic used, but this (decidable) model checking algorithm
only treats a subclass of PLHA and P2TA with finitely many
symbolic states, namely those with a finite bisimulation
quotient. The most related work to ours is the recent work
by Mutsuda et al. [18], that considers the maximal probabil-
ity to reach a set of target states via a single path. Instead,
our algorithm considers the total probability to reach the
target via any path.

Organization of the paper. Section 2 defines P2TA
and their concrete semantics. Section 3 formalizes the
cost-bounded probabilistic reachability problem. Section 4
presents the symbolic semantics of P2TA and operators on
the symbolic data structures. Section 5 presents the algo-
rithm in detail and its partial correctness. This is the main
contribution of the paper. Finally, 6 and 7 discusses related
work and concludes the paper. Proofs can be found in [6].

2. Priced Probabilistic Timed Automata

2.1. Clocks and zones

A clock is a real-valued variable that can be used to mea-
sure the elapse of time. In the rest of the paper, X will
be a fixed, finite set of clocks. All clocks in X run at the
same pace. A clock valuation assigns a non-negative value
to each clock. Let IRX

≥0 denote the set of all possible clock

valuations. A clock valuation v ∈ IRX

≥0 is thus a mapping
X → IR≥0. For d ∈ IR≥0, let v+d denote the clock valu-
ation that maps each x ∈ X to v(x) + d. We use 0 for the
clock valuation that assigns the value zero to all clocks. For
r ⊆ X, let v[r := 0] denote the reset of the clocks in r, i. e.

v[r := 0](x) =
{

0 if x ∈ r
v(x) otherwise

A zone is a conjunction of inequalities where the value of
a single clock or the difference between two clocks is com-
pared to an integer. Formally, for the set X of clocks the set
Zones(X) of zones Z is defined by the grammar:

Z ::= x �� b | x − y �� b | Z ∧ Z | true

where x, y ∈ X, b ∈ Z, ��∈ {≤,≥}
(In)equalities such as (x = b) and (2 ≤ x − y ≤ 3)

are abbreviations for a conjunction of multiple inequalities.

2

2 4 60

y

x

x − y ≥ 0x ≥ 2 x − y ≤ 3

y ≥ 1

y ≤ 3

Figure 1. Example zone with clocks x and y

For simplicity our definition of zones does not contain strict
inequalities. We conjecture that strict inequalities can eas-
ily be added by introducing extra book keeping variables
for strictness as in [10]. The semantics of zone Z , denoted
�Z�, is the set of all clock valuations satisfying Z . Note
that several zones may have the same semantics. We will
only consider the canonical zones of [13]. Figure 1 gives an
example zone.

2.2. Model definition

Before defining the priced probabilistic extension
of timed automata, let us recall the notion of a
(sub)distribution. A discrete probability subdistribution
over a finite set Q is a function μ : Q → [0, 1] such that∑

q∈Q μ(q) ≤ 1. μ is called a distribution if the inequality
can be replaced by an equality. For (possibly uncountable)
set Q′, let Dist(Q′) and SubDist(Q′) be the set of distribu-
tions and subdistributions, respectively, over finite subsets
of Q′. The point distribution {q �→ 1} is the discrete prob-
ability distribution such that {q �→ 1}(q) = 1 and all other
elements have probability zero.

P2TA equip timed automata with prices (on edges and lo-
cations) [5] and discrete probabilistic branching [13]. Prices
on edges indicate the cost to evolve from one location to
another, while price rates attached to locations indicate the
cost to reside in a location per time unit. Edges are proba-
bilistic in the sense that a combination of resets and direct
successor location is selected in a random manner.

Definition 1 A priced probabilistic timed automaton
(P2TA) is a tuple W = (L, linit, X, inv, pE, $̇), where:
• L – finite set of locations;
• linit ∈ L – the initial location;
• X – finite set of clocks;
• inv : L → Zones(X) – function assigning an invari-

ant to each location;
• pE ⊆ L × Zones(X) × N × Dist(2X × L) – proba-

bilistic edge relation such that �g� ⊆ �[r := 0]inv(l′)�
for every l′ and r ⊆ X such that p(r, l′) > 0 and
(l, g, h, p) ∈ pE;

• $̇ : L → N – function assigning a price rate to each
location.

For probabilistic edge (l, g, h, p) ∈ pE, l denotes the source
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location, g the guard (which is a zone), h its price, and p
a distribution on pairs of a set of clocks to be reset and a
destination location. The set EW of edges of a P2TA is de-
fined as follows: (l, g, h, p, r, l′) ∈ EW if (l, g, h, p) ∈ pE
and p(r, l′) > 0. The restriction on probabilistic edges
is introduced to prevent performing a transition (in the se-
mantics) to a location for which the invariant does not hold.
Zone [r := 0]Z contains all clock valuations v such that
v[r := 0] ∈ �Z�.

Example 1 Figure 2 provides an example P2TA with a sin-
gle clock: X = {x}. The circles represent the locations
of the P2TA. The initial location is marked by the dangling
incoming arrow. The invariants and price rates are written
inside the locations. Invariants are omitted when true. The
probabilistic edges are denoted by branching arrows be-
tween locations or a single arrow in case of a single branch.
The guard and price are indicated next to the source loca-
tion; the probabilities and reset sets at the branches. Trivial
probabilities (i. e. equal to one) are omitted. The same ap-
plies to guards equal to true, and zero prices. The Greek
letters are only part of the figure (and not of the model), and
are used to mark the probabilistic edges.

The intuitive semantics of P2TA is as follows. Each
P2TA is mapped onto a (typically infinite-state) transition
system. States in these transition systems consist of a lo-
cation, a clock valuation, and the accumulated cost. Only
states that satisfy the invariants are considered. Execution
starts in the initial location (e. g. location l0 in Figure 2),
with all clocks and the accumulated cost equal to zero. As
long as the invariant is satisfied, time may pass in a loca-
tion. As a result, all clocks increment by the same value.
The cost of delaying is determined by the price rate of the
location: residing d time units in location l incurs the cost
$̇(l)·d. To accommodate for the probabilistic branching,
Markov decision processes are used as semantical model
(and not plain transition systems). A probabilistic edge that
emanates from location l may be taken when the state of the
system is in l, the guard is satisfied, and all possible result-
ing states, as discussed below, satisfy their invariants. Tak-
ing the edge implies an increment of the accumulated cost
by the price of the edge. On taking a probabilistic edge,
the destination location and the reset set are chosen prob-
abilistically according to the distribution of the edge. The
reset set determines which clocks are reset. No time elapses
when taking a probabilistic edge.

2.3. Probabilistic Systems

The semantics of P2TA is defined in terms of infinite
state discrete-time Markov decision processes [21] and is
defined along the lines of [15].
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Figure 2. Example P2TA with one clock x

Definition 2 [16]. A probabilistic system (PS) is a tuple
(S, Steps), where S is a possibly infinite set of states, and
Steps ⊆ S × Dist(S) is a probabilistic transition relation
such that for each s ∈ S, there exists a distribution μ such
that (s, μ) ∈ Steps.

A sub-probabilistic system (SPS) is a probabilistic sys-
tem, with the only difference that Steps ⊆ S×SubDist(S).

The restriction of having a distribution for each state is
imposed to ensure that adversaries (defined below) always
exist. For state s in SPS (S, Steps) with (s, μ) ∈ Steps,
the remaining probability 1−∑

s′ μ(s′) may be interpreted
as a deadlock probability. Note that any SPS can easily be
transformed into a PS by adding a trapping state strap that
is equipped with a self-loop with probability 1, such that all
the ‘missing’ probabilities of the subdistributions μ lead to
strap . All definitions on a PS in the rest of this paper are
therefore easily lifted to a SPS.

Intuitively speaking, a (sub-)probabilistic system de-
scribes the following behaviour. Whenever the system is in
some state, s ∈ S say, a distribution μ with (s, μ) ∈ Steps
is selected nondeterministically. Subsequently, the next
state is selected probabilistically according to μ, i. e. the
next state s′ is selected with probability μ(s′). Thus, a
transition involves resolving both a nondeterministic and a
probabilistic choice.

An infinite path in PS (S, Steps) is an infinite alternat-
ing sequence: ω = s0

μ0−→ s1
μ1−→ s2

μ2−→ · · · such that
(si, μi) ∈ Steps and μi(si+1) > 0 for all i. Let ω(i) de-
note the i-th state in the path ω, i. e. ω(i) = si. A finite path
is just a finite prefix of an infinite path. Let last(ω) denote
the last state in the finite path ω. The length of a path is the
number of transitions involved. By definition, the minimal
path of length zero only contains a single state.

To define a probability space corresponding to a PS, we
have to resolve the nondeterministic choices. To this end,
we consider deterministic adversaries, similar to schedulers
or policies in a Markov decision process. An adversary
A is a function mapping every finite path ω in probabilis-
tic system (S, Steps) to a distribution μ ∈ Dist(S) such
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that (last(ω), μ) ∈ Steps. Hereby all nondeterminism is
resolved, therefore a probabilistic system together with an
adversary yields a (discrete-time) Markov chain. For any
adversary A, let PathA

full(s) and PathA
fin(s) respectively de-

note the infinite paths and finite paths that start in s induced
by A. PathA

full and PathA
fin denote the entire set of infinite

paths and finite paths induced by A. ProbA
s denotes the

probability measure on PathA
full(s), defined using classical

techniques [15]. Let AdvM denote all deterministic adver-
saries on probabilistic system M .

The reach probability is the likelihood to reach a certain
set of target states in a finite number of transitions under
some adversary. For PS (S, Steps) with state s ∈ S, target
states ST ⊆ S, and adversary A, the reach probability on
infinite paths is defined as [15]:

ProbReachA(s, ST ) def=

ProbA
s {ω ∈ PathA

full(s) | ∃i ∈ N.ω(i) ∈ ST }

The reach probability depends on the nondeterministic
choices made by the adversary. A nondeterministic choice
models branches in system execution that are not to be re-
solved probabilistically or for which the probability distri-
bution is not known. Therefore the maximal reach prob-
ability is of interest, i. e. the maximal attainable value if
all choices are optimal. The maximal reach probability
for probabilistic system M = (S, Steps) with s ∈ S and
ST ⊆ S is defined as:

MaxProbReachM (s, ST ) def= sup
A∈AdvM

ProbReachA(s, ST )

For finite state probabilistic systems, maximal and
minimal reach probability are computable in polynomial
time [8].

The following definition gives the reach probability us-
ing paths of finite length.

Definition 3 Let M = (S, Steps) be a PS and ST ⊆ S.
For adversary A ∈ AdvM and finite path ω ∈ PathA

fin, let:

PA
0 (ω �

M
ST ) =

{
1 if last(ω) ∈ ST

0 otherwise

and for any n ∈ N, with μ = A(ω):

P A
n+1(ω �

M
ST ) ={

1 if last(ω) ∈ ST∑
s∈S μ(s) · P A

n (ω
μ−→ s �

M
ST ) otherwise.

For arbitrary state s define:

Pmax
n (s �

M
ST ) def= sup

A∈AdvM

PA
n (s �

M
ST ) .

For S finite, the computation of Pmax
n (s �

M
ST ) can be

regarded as a linear optimization problem.

2.4. Timed Probabilistic Systems

Definition 4 [16] A timed probabilistic system (TPS) is a
tuple (S, Steps), where Steps has two extra labels in addi-
tion to the ones in Definition 2:

Steps ⊆ S × IR≥0 × {time, disc, full} × Dist(S) .

For (s, d, ι, μ) ∈ Steps, the real d denotes the duration
that the system remains in state s. time and disc are used
to mark discrete and time transitions respectively, with the
following rules:
• time determinism: if ι = time, then μ is a point distri-

bution, and if s
d,·−−→
time

t and s
d,·−−→
time

t′ then t = t′,

• discrete transitions: if ι = disc then d = 0,

• Wang’s axiom: s
d,·−−→
time

t iff for all 0 ≤ d′ ≤ d there

exists s′ such that s
d′,·−−→
time

s′ and s′
d−d′,·−−−−→
time

t.

A full transition (marked as full) is a timed transition fol-

lowed by a discrete transition. Formally: s
d,μ−−→
full

u if and

only if s
d,{t�→1}−−−−−→

time
t

0,μ−−→
disc

u for some state t.

Labels on transitions are sometimes omitted when they
are clear from the context. A path ω in a TPS has the

form: ω = s0
d0,μ0−−−→

ι0
s1

d1,μ1−−−→
ι1

s2
d2,μ2−−−→

ι2
· · · with

(si, di, ιi, μi) ∈ Stepsi and μi(si+1) > 0 for all i ∈ N.
The probability space corresponding to a TPS is defined
analogously to the probability space of a PS by means of
adversaries. A (deterministic) adversary of TPS (S, Steps)
is a function mapping every finite path ω to an element
(d, ι, μ), i. e. a duration, transition type and distribution,
such that (last(ω), (d, ι, μ)) ∈ Steps. Definition 3 is easily
adapted to a TPS by adding durations to the transitions.

2.5. Semantics

Definition 5 (P2TA Semantics) The semantics of P2TA
W = (L, linit, X, inv, pE, $̇) is the tuple �W � =
(S, Steps), where

S = {(l, v, c) | l ∈ L ∧ v ∈ �inv(l)� ∧ c ∈ IR≥0}
Steps ⊆ S × IR≥0 × {time, disc, full} × Dist(S) .

A probabilistic transition ((l, v, c), d, ι, μ) ∈ Steps if and
only if one of the following conditions holds:
• ι = time, d ≥ 0, v + d ∈ �inv(l)�, and μ(l, v + d, c +

$̇(l)d) = 1 (point distribution);
• ι = disc, d = 0, and there exists (l, g, h, p) ∈ pE such

that v ∈ �g�, and for any (l′, v′, c+h) ∈ S, μ(l′, v′, c+
h) =

∑
r⊆X∧v′=v[r:=0] p(r, l′);

• ι = full and the constituting timed and discrete transi-
tion fulfill the two conditions above.

Lemma 1 For each P2TA W , �W � is a TPS.
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3. Cost-bounded probabilistic reachability

The cost-bounded probabilistic reachability problem is
the question: “Is it possibly to reach a (set of) goal loca-
tion(s) with probability greater than λ with cost at most κ?”
The next definition formalizes this.

Definition 6 Given P2TA W = (L, linit, X, inv, pE, $̇),
target locations LT ⊆ L, a probability λ ∈ [0, 1],
cost bound κ ∈ IR≥0, and initial state sinit =
(linit,0, 0). The cost-bounded probabilistic reacha-
bility problem (W, LT , λ, κ) is the question: “Does
there exist an adversary A ∈ Adv�W � such that

ProbReachA(sinit, S
T ) > λ, with ST = {(l, v, c) | l ∈

LT ∧ v ∈ IRX

≥0 ∧ c ≤ κ}?”

To solve (W, LT , λ, κ), the maximal reach probabil-
ity (Section 2.3) needs to be computed on �W �, where
we are interested in the reach probability on states that
have a location in LT and cost at most κ. Formally, if
MaxProbReach�W �(sinit, S

T ) > λ, with sinit and ST as
above, the answer to the cost-bounded reachability problem
is “yes” and “no” otherwise.

Very related is the case where the cost must be at least
some value. Without further proof we conjecture that all
results in this paper can be altered to treat this case. An-
other variant is where the probability must be less than some
value. We will not treat this variant, note however that it
is more difficult, as we must exclude adversaries that have
Zeno behavior, see e. g. [15].

4. Symbolic states

Symbolic states are used to represent a possibly infinite
set of concrete states of the system. Typically in timed au-
tomata symbolic states consist of a location and a zone.
Because cost is part of the system state, in P2TA we can-
not use zones. In [17] priced zones are introduced, which
are zones augmented with a linear cost function. This cost
function assigns a cost to each clock valuation of the zone.
The problem is that priced zones (even if we allow a rational
price bound), are not closed under intersection; for more de-
tails see [6]. Instead we will introduce multi-priced zones,
which are zones augmented with a conjunction of linear in-
equalities that define an upper bound on the cost that can be
associated with each valuation in the zone. Figure 3 shows
an example. The gray plane is the underlying zone. Clearly
multiple linear upper bounds on cost are allowed.

Definition 7 A Multi-Priced Zone (MP-zone) is a tuple
M = (Z, Φ) where Z is a zone and Φ is a formula defined
by the grammar:

Φ ::= az ≤ b1x1 + · · · + bnxn + b0 | Φ ∧ Φ | true

y

x

cost

Figure 3. Example multi-priced zone

0

11
1 1

2 1 1
4 [+1]M

[x :=0]M

23
4

x

M

2 1
4

cost

M↓1

Figure 4. Predecessor operators applied on M .

where z is the cost variable, x1, . . . , xn are all the clocks in
Z , a, b0, . . . , bn ∈ Z, and a > 0.

We define a valuation to be a pair consisting of a clock
valuation and accumulated cost. The semantics for MP-
zone M are denoted �M� and coincide with the set of all
valuations (v, c) ∈ IRX

≥0×IR≥0 that satisfy formula (Z∧Φ).
From the definition of MP-zones we see that the inequal-

ities of Φ are not equivalent to any inequality of Z , because
a > 0 implies that cost always is a nontrivial variable in the
formula. MP-zones are a conjunction of linear inequalities,
and therefore are a class of convex polyhedra. A zone Z can
easily be converted to the MP-zone (Z, true), that does not
place any constraints on the cost. The conjunction between
two MP-zones (Z1, Φ1) ∧ (Z2, Φ2) is simply the MP-zone
(Z1 ∧ Z2, Φ1 ∧ Φ2).

MP-zones will be used in our backward algorithm for
P2TA. Like classical work on backward methods [11], we
define backward operators. On an arbitrary MP-zone M
three operators can be applied to find the predecessor valu-
ations for the valuations in the semantics of M . MP-zones
are closed under these operators, as stated in Lemma 2. The
operations are computable by using quantifier elimination,
or probably more efficient, as operations on convex polyhe-
dra [2, 10]. We will not describe implementation details.

�M↓q�
def= {(v, c) | ∃d ≥ 0.(v+d, c+qd) ∈ �M�}

�[r := 0]M�
def= {(v, c) | (v[r := 0], c) ∈ �M�}

�[+h]M�
def= {(v, c) | (v, c+h) ∈ �M�}

�M↓q� are the valuations that can reach a valuation in �M�
by delaying an arbitrary amount of time under price rate
q. �[r := 0]M� are the valuations that can reach a valua-
tion in �M� by resetting clocks in set r. �[+h]M� are the
valuations that can reach a valuation in �M� with price h.
Figure 4 gives examples for all operators for an MP-zone
M with one clock.
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Lemma 2 For MP-zone M , q ∈ Z, r ⊆ X, and h ∈ N:
M↓q, [r := 0]M and [+h]M are MP-zones .

Proof. Let M = (Z, Φ). We can construct MP-zone
[+h]M in the following way: for all formulas az ≤ b1x1 +
· · · + bnxn + b0 in Φ, replace b0 with b0 − h.

Following the proof of Lemma 1 in [1], �[r := 0]M� are
all valuations that satisfy (Z ∧ Φ)[r := 0], i. e. the formula
obtained by replacing all occurrences of x ∈ r in (Z ∧ Φ)
with 0. Clearly (Z ∧ Φ)[r := 0] = ((Z[r := 0]) ∧ (Φ[r :=
0])). By theory on timed automata Z[r := 0] is a zone.
Φ[r := 0] satisfies the requirements for cost constraints in
MP-zones, thus [r := 0]M is a MP-zone.

Again let M = (Z, Φ). Let �Φ� denote all valuations
that satisfy Φ. For all valuations (v, c):
(v, c) ∈ �M↓q� ⇔ ∃d ≥ 0.v+d ∈ �Z�∧(v+d, c+qd) ∈ �Φ�

To eliminate the variable d, let’s look at how to change the
constraints in M to get constraints that describe M↓q . The
zone constraints in Z have to be replaced by the constraints
in zone Z↓. Operator ↓ denotes the unpriced version of ↓q

on zones; details can be found in [11]. The cost constraints
az ≤ b1x1 + · · · + bnxn + b0 where aq ≥ b1 + · · · + bn

remain unchanged, because (v + d, c + qd) satisfies such
constraints only if (v, c) does. Other cost constraints have
to be replaced by linear inequalities on the clocks and cost
variable, which can be expressed as cost constraints again.
Therefore, we can find a MP-zone that corresponds to M↓q .
�

A symbolic state is a tuple σ = (l, M), with location l,
MP-zone M . Its semantics is �σ� = {l} × �M�, which is a
set of states. If Ψ is a set of symbolic states, then we let its
pointwise extension be �Ψ� =

⋃{�σ� | σ ∈ Ψ}.
The semantics of the intersection of two symbolic states

is: �(l1, Z1) ∧ (l2, Z2)� = �(l1, Z1)� ∩ �(l2, Z2)�
The next definition gives the time predecessor and dis-

crete predecessor operators on symbolic states. Using
Lemma 2 we get that symbolic states are closed under time
predecessor and discrete predecessor.

Definition 8 (Predecessor of symbolic states) Let W =
(L, linit, X, inv, pE, $̇), l ∈ L with q = $̇(l), M = (Z, Φ)
be a multi-priced zone, and e := (l, g, h, p, r, l′) ∈ EW .
Then:

tpre(l, M) = (l, (M↓q) ∧ (inv(l), true))
dpree(l′, M) = (l, ([r := 0]([+h]M)) ∧ (g∧inv(l), true))

5. Algorithm

Algorithm CBPRalg is used to answer the cost-
bounded probabilistic reachability problem. As we will see
it does not terminate for all instances of the problem. It
takes a problem instance (W, LT , λ, κ), and if it terminates,
it outputs the answer true or false.

Algorithm 1: CBPRalg
1 Input: cost-bounded probabilistic reachability problem

(W, LT , λ, κ), where P2TA W = (L, linit, X, inv, pE, $̇)
Output: boolean

2 short-hand sinit = (linit,0, 0)
3 short-hand Ψ = {(l, inv(l), z ≤ κ) | l ∈ LT }
4 if ∃σ ∈ Ψ.sinit ∈ �σ� then R0 := 1 else R0 := 0
5 foreach (l, g, h, p) ∈ pE //Initialize all edge sets
6 E(l,g,h,p) := ∅
7 Waiting1 := Ψ //Waitingn is the set of symbolic states to

be explored in iteration n.
8 short-hand V isited = Ψ ∪ {τ | ∃(l, g, h, p) ∈

pE.(τ, ·, ·) ∈ E(l,g,h,p)}
9 for n := 1 to ∞
10 if Rn−1 > λ then return true
11 if Waitingn = ∅ then return false
12 Waitingn+1 := ∅
13 foreach τ ∈ Waitingn

14 foreach e = (l, g, h, p, r, l′) ∈ EW , with l′ = loc(τ )
15 σ := dpree(tpre(τ ))
16 if �σ� �= ∅ then
17 if σ /∈ V isited then
18 Waitingn+1 := Waitingn+1 ∪ {σ}
19 E(l,g,h,p) := E(l,g,h,p) ∪ {(σ, r, l′, τ )}
20 foreach (σ̄, r̄, l̄′, τ̄) ∈ E(l,g,h,p)

21 if �σ ∧ σ̄� �= ∅ ∧ (r, l′) �= (r̄, l̄′) then
22 if σ ∧ σ̄ /∈ V isited then
23 Waitingn+1 := Waitingn+1 ∪ {σ ∧ σ̄}
24 E(l,g,h,p) := E(l,g,h,p)∪{(σ∧σ̄, r, l′, τ ), (σ∧

σ̄, r̄, l̄′, τ̄)}
25 Qn := (V isited, Steps), where (σ, π) ∈ Steps if and

only if either σ ∈ Ψ and π = {σ 
→ 1} or there exists
Eπ ⊆ E(l,g,h,p) for some (l, g, h, p) ∈ pE such that

• ∀(σ′, ·, ·, ·) ∈ Eπ.σ′ = σ
• ∀(·, r, l′, τ ), (·, r̄, l̄′, τ ′)∈Eπ.τ �=τ ′ ⇒ (r, l′) �=(r̄, l̄′)
• Eπ is maximal
• ∀τ ∈ V isited.π(τ ) =

P{p(r, l′) | (·, r, l′, τ ) ∈ Eπ}
26 Rn := max σ∈V isited

sinit∈�tpre(σ)�
MaxProbReachQn(σ, Ψ)

Execution of CBPRalg establishes a sequence
[Rn]n=1...∞ of values for each iteration. [Rn]n=1...∞
is nondecreasing and converges to the maximal reach
probability for the states of interest. When the values get
higher than λ, CBPRalg will return true.

CBPRalg is based on earlier backward symbolic algo-
rithms for probabilistic reachability in PTA [14, 15]. Sim-
ilarly to that work, to preserve the probabilistic branch-
ing, one must consider the intersections of symbolic states
that have edges from the same distribution. The intuition
is that by computing intersections, we get representations
for states that have paths via multiple branches of a single
probabilistic edge leading to the target, thereby enlarging
the maximal reach probability. The difference in our algo-
rithm is that we do a breadth-first backward exploration of
the symbolic state space, and compute the probability each
iteration.
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Each iteration has two stages. In the first stage, first ter-
mination conditions are checked. In case of no termina-
tion, the symbolic state space is explored one step further in
depth. A graph, referred to as the symbolic graph, is con-
structed based on the symbolic state space explored so far.
In the second stage, a SPS is constructed from the symbolic
graph. On the SPS the maximal reach probability is com-
puted.

The symbolic state space starts as Ψ, defined by the
equality on line 3. �Ψ� are all target states, for which the
maximal reach probability is of interest. Line 4 gives the
verdict of CBPRalg for zero iterations.

5.1. Stage 1: Symbolic Graph generation

Line 10 compares the last value of the generated se-
quence [Rn]n=1...∞ with λ and may conclude a positive
verdict. When no more symbolic states have to be explored,
line 11 returns false, because the maximal reach probability
will not get any higher.

The set V isited contains the explored symbolic states so
far; it is a short-hand notation, because it can be completely
derived from the sets E(l,g,h,p) (line 8 of CBPRalg). To-
gether, the sets E(l,g,h,p) are the edges of the symbolic
graph. An edge means that for every state in the seman-
tics of the source symbolic state there is a possibility of
taking a probabilistic transition, followed by a time tran-
sition, such that some state in the target symbolic state
is reached. Formally (σ, r, l′, τ) ∈ E(l,g,h,p), if σ ⊆
dpre(l,g,h,p,r,l′)(tpre(τ)).

On line 19 an edge in the symbolic graph is added be-
tween the symbolic state and its predecessor. Lines 20–24
add intersections between the predecessor and previously
explored symbolic states. These intersections are only gen-
erated between symbolic states that can reach Ψ using an
edge in the symbolic graph corresponding to the same prob-
abilistic edge (l, g, h, p) of the P2TA, but another element
from the distribution (condition (r̄, l̄′) �= (r, l′) on line 21).
Only these intersections are of interest, as they can enlarge
the maximal reach probability. On line 24 the intersection
symbolic state gets the two outgoing edges from the inter-
secting symbolic states.

An edge represents a probabilistic transition followed by
a time transition for the following reason: we have to com-
pute intersections of symbolic states immediately before the
probabilistic choices. After the probabilistic choice, an ad-
versary will choose the amount of time to delay. If we
would have chosen otherwise, a transition from an inter-
section could represent different delays depending on the
outcome of the probabilistic choice, while the probabilistic
choice is the last part of such a transition.

Example 2 Given the cost-bounded probabilistic reacha-
bility problem {W, {l3},≥, .99, 3}, with W the P2TA of
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Figure 5. Symbolic graph for P2TA of Figure 2

Figure 2. CBPRalg will terminate when n = 4 on line 10
as we will show later. Figure 5 shows the symbolic graph
that is generated at the moment n becomes 4 on line 9. Next
to each edge the set (Eα, Eβ , Eγ , Eδ or Eε) to which it be-
longs is denoted. The reset set is mentioned when nonempty.
All elements of an edge in the symbolic graph are clear
from the figure. V isited starts as {A}. In the first itera-
tion B, C and A are added. Slightly abusing notation: B =
dpre(γ,{x},l1)(tpre(A)), C = dpre(δ,{x},l2)(tpre(A)), and
A = dpre(ε,{x},l3)(tpre(A)). In the next iteration E, D, F ,
and E ∧ F are added to V isited. Intersection E ∧ F = H
is added because E and F have an outgoing edge both be-
longing to Eα, and condition (r̄, l̄′) �= (r, l′) holds, as the
destination location is different. H gets edges to B and C.
In the last iteration G, E ∧ G, and E ∧ F ∧ G are added
to V isited. E ∧ G is not different from H that was already
explored, but the edge H → D is added. Similarly H∧G is
added, which is also not different from H; note that F ∧ G
is not added because (r, l′) = (r̄, l̄′) in this case.

In general the intersection between e.g., three symbolic
states is computed by first intersecting two symbolic states
and then intersecting the result with the third one. More
generally the intersection of a set of symbolic states is com-
puted by applying pairwise intersection until the intersec-
tion of all symbolic states of the original set is reached.
The order in which symbolic states are intersected does not
make a difference as can be seen from lines 23 and 24.

5.2. Stage 2: SPS construction

On line 25, the sub-probabilistic system Qn is con-
structed from the sets E(l,g,h,p). The state space of Qn is
V isited. For each symbolic state in V isited, probabilis-
tic edges are constructed, by taking together as many edges
from one set E(l,g,h,p) as possible. This set is denoted Eπ .
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Figure 6. SPS for the symbolic graph in Figure 5

The first three bullets after line 25 are the conditions on
edges in Eπ. Condition 1 and 3 are self-explaining. Con-
dition 2 ensures that the edges in Eπ correspond to differ-
ent edges in the P2TA. The fourth bullet describes how to
construct the probabilistic edge with distribution π in Qn.
Finally, Rn is computed on line 26 for the constructed SPS,
using the technique of [8].

Example 3 We continue Example 2. Figure 6 shows the
SPS constructed for the symbolic graph of Figure 5. Of
course the symbolic graph includes all symbolic graphs of
previous iterations, as it is only extended in each iteration.
For this reason the SPS of Figure 6 contains sub-SPSes of
all previous iterations. Nodes E, F, G and H can all serve
as starting node, as the initial state (sinit) is in the time
predecessor of all corresponding symbolic states. For iter-
ations n = 0 . . . 3, we can compute the values of Rn, which
are R0 = 0.0, R1 = 0.0, R2 = 0.97, R3 = 1.0. Clearly
CBPRalg terminates when n = 4. If we would alter the
problem by taking probability threshold 0.9 it terminates
when n = 3. Take our original problem, but assume that
R3 = 0.98. Then CBPRalg terminates on line 11 when
n = 4, because for this P2TA the number of symbolic states
is finite.

5.3. Non-terminating example of CBPRalg

Take the cost-bounded probabilistic reachability prob-
lem (W, {l2},≥, λ, 2), with W the P2TA of Figure 7 and
λ = .374. CBPRalg will terminate on line 11 when
n = 5. Figure 7 also shows the constructed symbolic graph
when n = 5. It becomes clear that CBPRalg would gen-
erate an infinite number of symbolic states. When n = 6
symbolic states with x ≤ 1

8 would be generated, when
n = 7 with x ≤ 1

16 and so on. Figure 8 shows the SPS
generated from the symbolic graph, where the plain proba-
bilistic edges are exactly the ones used by the maximizing
adversaries. As explained before the SPS also contains the
SPS for iterations 0 . . . 4. The dashed arrows are some other
probabilistic edges. sinit is part of the time predecessors of
C, D, E, . . . , I, thus all of these symbolic states may serve

l1
2

l2
2 1

l0

1
l3

x = 1
β

x ≥ 0
α

x := 0

.3
.2

.5

x0

cost

2

1 1

2

1

2

1

1

1

1
2

1
2

1
4

1
4

11

A@l2 B@l1

C@l0

H@l0

F@l0

G@l0 =E∧F

I@l0 =G∧H

E@l0
=C∧D D@l0

Figure 7. Example P2TA [7] and its infinite sym-
bolic graph up to iteration 5

as starting point in computation of the maximal reach prob-
ability on the SPS. For n ≥ 2 we have Rn > 0. The val-
ues together with the symbolic states used as starting point
are: (R2 = .3, C), (R3 = .36, E), (R4 = .372, G), (R5 =
.3744, I).

By observing the P2TA we can see that from the initial
state sinit the optimal adversary will choose the probabilis-
tic edge α arbitrarily often without spending any time in
location l0. When in state (l2,0, 0) the adversary chooses
to spend one time unit and after that it chooses to go to
l2. Such an adversary will yield the cost-bounded maximal
reach probability for cost-bound 2, which is 3

8 = 0.375.
CBPRalg generates a non-decreasing sequence

[Rn]n=0...∞, which approaches 0.375 but will never reach
it. If we choose λ ≥ 0.375, CBPRalg should return
false, but instead it does not terminate, because for an
arbitrary iteration it is unknown if some future iteration
will yield a higher value for Rn letting Rn > λ hold.

5.4. Partial correctness of CBPRalg

The following is our main theorem. It resembles Propo-
sition 14 in [15].
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Theorem 1 Assume cost-bounded probabilistic reachabil-
ity problem (W, LT , λ, κ), where �W � = (S, Steps). Ap-
ply algorithm CBPRalg, where Qn = (Σn, Stepsn) is the
SPS generated in iteration n and Ψ as in CBPRalg. De-
fine in the usual way: max ∅ = 0. For any state s ∈ S and
n ∈ N then:

Pmax
n (s �

�W �
�Ψ�) = max

σ∈Σn

s∈�tpre(σ)�

Pmax
n (σ �

Qn

Ψ)

Proof. The proof is very similar to the proof of Proposition
14 in [15]. We will give a sketch of the proof, by stating the
four parts of which it consists. Qn = (Σn, Stepsn) denotes
the SPS generated by CBPRalg in iteration n. The proof
is split up in proving properties (a), (b), (c) and (d).
(a) From the definition of dpre and tpre, it follows that: If

(σ, r, l′, τ) ∈ E(l,g,h,p) of CBPRalg, and (l, v, c) ∈
�σ�, then v ∈ �inv(l)�, v ∈ �g�, and (l′, v[r := 0], c +
h) ∈ �tpre(τ)�.

(b) From the definition of dpre and tpre, it follows that:
for any s ∈ S, n ∈ N, Pmax

n (s �
�W �

�Ψ�) > 0 if

and only if for some symbolic state σ ∈ Σn, s ∈
�tpre(σ)�.

(c) For all n ∈ N, k ∈ N, B ∈ AdvQk
, σ ∈ Σk and

s ∈ �tpre(σ)�, there exists A ∈ Adv�W � such that:
PA

n (s �
�W �

�Ψ�) ≥ PB
n (σ �

Qk

Ψ).

(d) For all n ∈ N, A ∈ Adv�W � and s ∈ S, if Pmax
n (s �

�W �

�Ψ�) > 0, then there exist σ ∈ Σn and B ∈ AdvQn

such that s ∈ �tpre(σ)� and PB
n (σ �

Qn

Ψ) ≥
PA

n (s �
�W �

�Ψ�).

�
The following corollary states that the sequence of prob-

abilities generated in CBPRalg is ascending.

Corollary 1 Assume given the cost-bounded probabilis-
tic reachability problem (W, LT , λ, κ), with W =
(L, linit, X, inv, pE, $̇). Apply algorithm CBPRalg,
where Qn = (Σn, Stepsn) is the SPS generated in itera-
tion n and Ψ as in CBPRalg. For all n ∈ N, σ ∈ Σn the
following holds:
MaxProbReachQn+1(σ, Ψ) ≥ MaxProbReachQn(σ, Ψ)

We can prove that the sequence of probabili-
ties generated in CBPRalg converges to the ac-
tual maximal reach probability, i. e. limn→∞ Rn =
MaxProbReach�W �(sinit, �Ψ�).

6. Related work

In [5], and independently in [3], decidability of minimal
cost reachability on linear priced timed automata (LPTA)
is proven. LPTA are a subclass of P2TA. All edges in a
LPTA are deterministic. A LPTA can be written as a P2TA
that has probabilistic edges that only use point distributions.
If we want to calculate cost-bounded reachability on P2TA
(disregarding probabilities), we can construct a LPTA by
replacing each probabilistic edge by a set of edges, where
every edge has one possibility of reset and target location
from the distribution on the probabilistic edge.

In [13], maximal probabilistic reachability on proba-
bilistic timed automata (PTA) is shown to be decidable.
PTA are a P2TA without prices. The notion of zenoness does
not interfere with cost, therefore zenoness can be checked
on the PTA obtained from a P2TA by removing all prices,
using the method of [16].

In [14], a semi-decidable algorithm is presented to com-
pute the maximal reach probability for symbolic probabilis-
tic systems. PTA, but also P2TA, are an instance of such
symbolic probabilistic systems. The algorithm of [15] is de-
rived from this algorithm for the special case of PTA. It is a
decidable algorithm and is more efficient than the approach
of [13], because it uses zones in its abstractions, which are
much coarser than the regions used by [13]. Moreover, it is
shown that minimal probabilistic reachability is decidable
for PTA.

Our algorithm is based on that of [15]. Although P2TA
can be handled by the algorithm of [14], our algorithm will
terminate in more cases. This comes at the expense of more
complexity in the form of numerical computation in every
iteration. The problem with [14] is that in the first step a
symbolic state space is generated, and secondly the maxi-
mal reach probability is computed using the symbolic state
space. However, in certain cases, for example that of Fig-
ure 7, the symbolic state space is infinite and the first step
will not terminate. Therefore, in our algorithm the sym-
bolic state space is explored in a breadth-first way and a
lower bound on the maximal reach probability is computed
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in each iteration. Based on this lower bound our algorithm
may terminate.

Our non-terminating example is based on that in [7].
Although in [7] they do not use probabilities, their model
requires also intersections between symbolic states to be
made. An important remark that carries over to this work, is
that from the infinite symbolic state space, we cannot con-
clude that the problem under investigation is undecidable.

7. Conclusion

We introduced the model Priced Probabilistic Timed
Automata (P2TA), automata with prices, probabilities and
(real) time. We investigated cost-bounded probabilistic
reachability properties on P2TA. These properties state that
a location is reachable with cost ≤ κ and with maximal
probability > λ. Although cost-bounded reachability [3, 5]
and maximal probabilistic reachability [13] (both on loca-
tions in P2TA) are known to be decidable, the problem of
cost-bounded probabilistic reachability is not trivial; it may
happen that the generated symbolic state space is infinite.

We constructed a backward algorithm that computes
cost-bounded probabilistic reachability. It is the first (semi-
decidable) algorithm that combines prices and probabilities
for this class of models. In case the answer to the problem
is affirmative, the algorithm will terminate. Furthermore, in
cases of a finite symbolic state space it will also terminate.
Based on this, we can conclude that cost-bounded maximal
probabilistic reachability is at least semi-decidable.

The model can be applied, for example, to solve schedul-
ing problems where the use of resources incurs cost and re-
sources may fail with some probability. Is it still possible to
ensure a high production quality within the given budget?
Another application lies in interpreting cost as energy con-
sumption in a battery-powered system with unreliable parts,
for example a sensor network. Is a high reliability without
depleting batteries achievable?

Directions for further research, and/or improvements are
numerous, see [6] for some ideas.
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