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THE USE OF SEPARATED REFLECTION COMPONENTS IN ESTIMATING 
GEOMETRICAL PARAMETERS OF CURVED SURFACE ELEMENTS 

J.C. Glas, F. van der Heijden 

University of Twente*, The Netherlands 

ABSTRACT 

Iterative least-squares estimation requires acciirate reflectance 
models to retrieve geometrical pammeters of curved surface 
elements from an image projection. W e  investigate the use of 
.separating the diffuse (body) reflection from the specular (sur- 
face) reflection being re8ponsible for image highlights. Exper- 
zments show that the (smooth) daffuse component yields the 
best convergence properties, while the (sharp) specular com- 
ponent can contribute to the improvement of the noise insen- 
sitivity. 
Key words: shape from shading, reflectance models, p a m m -  
eter estimation, reflection component separntion. 

INTRODUCTION 

Retrieving geometrical parameters of the surface el- 
ements in a 3-D scene from a 2-D image projection 
is a non-linear inverse problem for which iterative 
least,-squares estimation can provide an optimal so- 
lution when assuming additive Gaussian measure- 
inent noise. The method requires a priori knowledge 
about light, material and camera properties applied 
in accurate imaging and reflectance models. Korsten 
et al [l] and De Graaf et a1 [2] have both demon- 
strated that  such a model based approach to  image 
understanding yields good results in estimating pa- 
rameters of 3-D objects. 
The reflectance from a surface can he modelled as 
a linear combination of diffuse (body) reflection and 
specular (surface) reflection. The latter model ac- 
counts for the the occurrence upon curved surfaces of 
the shiny spots called highlights, which we consider to  
he useful clues for shape from shading rather than in- 
convenient image disturbances. Yet the convergence 
properties of an iterative estimator appear to suffer 
nnder the sharp reflectance profile of the specular 
Component when taking direct measurements from a 
highlighted image. We present experiments showing 
that separation of reflection components may solve 
this convergence problem and improves the noise in- 
seiisitivitv as well. 

Reflection component separation 

Inherent differences in spectral distrihution and/or 
polarization of diffuse and specular reflectance of- 
fers possibilities to separate these components in irn- 
ages that contain highlights. The spectral density of 
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FIGURE 1 Reflection component separation of line- 
scan CCD-camera output without noise. 

the diffuse wmponent consists of the product of tlir 
spectral densities of the light source and the surface 
reflectance, while the spectral density of the specu- 
lar component originates from the light source only. 
The colour histogramming techniques of Gershon [3] 
and Klinker [4] utilize this distinction to separate 
reflection components in colour images. Wolff and 
Boult [5] demonstrated how the unpolarized diffuse 
reflectance can be separated from the partially po- 
larized spei:ular reflectance using a rotatable polar- 
ization filter in front of the camera. Nayar et a1 [6] 
have integrated both separation methods. 
Our paper tentatively assumes that the separation 
between the diffuse and specular reflection conipo- 
nents can be established. Figure 1 shows the result 
of this operation on the output of a line-scan camera. 
We concentrate on the use of the separated reflection 
components to  the con,vergence properties and tho 
noise inserrsitivit~ of the estimation of geometricd 
parameters of curved surface elements, upon which 
highlights will occur frequently. 
Based on the image irradiance profiles of  t,he re- 
flection coiriponents, one may impute better convcr- 
gence properties to  the smooth diffuse component 
than to  tho sharp specular component, because a 
small change in parameter values will cause a much 
larger deviation in the measurement of the latt,er 
component, This sharpness however is also respon- 
sible for a smaller sensitivity to  measurement noise, 
because a large deviat,ion in the measurement will 
cause only a small deviation in thr  parameter val- 
lies. Therefore, the specular coniponent inay be nti- 
lized in the final stage of the estimation to improve 
the accuracy of especially those parameters that are 
related to  t.he viewing angle, on which the specu- 
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FIGURE 2: Projection of a scene on the zy-plane. 

lar irradiance unlike the diffuse irradiance depends. 
We have investigated these hypotheses experimen- 
tally and analytically from imaging and reflectance 
models of a cylindrical world. 

MODELLING 

Our world can be conceived of being built from a set 
of curved surface elements. Currently this primitive 
has simply been modelled as (part of) a cylinder sur- 
face, but our experimental results are extendible to  
more general parametric surfaces. The part of the 
world called scene will consist of one solid opaque 
cylinder aligned with the z-axis. Figure 2 shows a 
top view of such a scene. 
The cylinder is irradiated by a single isotropic point 
light source L.  The imaging model supplies a per- 
spective projection of the reflectance onto the CCD- 
elements of a pinhole line-scan camera C aligned with 
the zy-plane (see e.g. Van der Heijden [7]). Figure 1 
shows an example of the camera output without mea- 
surement noise. The occurrence of both a significant 
diffuse and off-specular reflection component requires 
the cylinder to  be made from a non-conducting non- 
homogeneous material such as a plastic. 

Reflectance models 

Figure 3 shows a polar plot of the diffuse and spec- 
ular radiant flux @ [W] from a surface patch as a 
fynction of the angle qb between unit surface normal 
N and unit vector C towar_ds a CCD-element of the 
camera. The unit vector L pointing from the light 
source is kept fixed. Unit vector l? points to the 
prevalent direction of specular reflection making iif 
the bisector of L’ and l? according to Snell’s law. 
The total radiance Ld+s from the surface patch is a 
sum of diffuse radiance L d  and specular radiance L, 
(see e.g. Nayar et a1 [ 8 ] ) :  

Ld+s = Ld + L,  [W/m2sr] (1) 
The diffuse (body) reflection mainly results from the 
scattering of incident radiation inside the material. 
It can be modelled by the well-known Lambertian re- 
flectance model, in which the exitting radiance does 
not depend on the viewing angle 4,  but only on the 
angle of incidence L(2,Z): 

surface 

FIGURE 3: Polar plot of diffuse and specular radiant 
flux @ as function of camera angle @. 

A constant diffuse albedo P d  is supposed. The radi- 
ance LL [W/sr] and solid angle d w ~  [sr] of the light 
source determine the irradiance of the surface. 
The specular (surface) reflection results from inci- 
dent radiation directly reflected by the planar inicro- 
facets of the surface. In this case the exitting radi- 
ance does also depend on the viewing angle $. If the 
wavelength of the radiation is considerably smaller 
than the size of the micro-facets, the geonietrical re- 
flectance model of Torrance and Sparrow [9] for the 
off-specular reflection of roughened surfaces can be 
used: 

The simplification in Eq. (3) applies if the incidence 
and viewing angles are not extremely oblique. The 
specular albedo p d  is supposed to  be constant: As- 
suming that the angle between surface normal N and 
the normal vectors of the planar micro-facets has a 
Gaussian distribution, the specular reflectance a t  an- 
gle p = L(e , l ? )  is proportional to  the Gaussian den- 
sity ’D(D): 

(4) 

The surface roughness is determined by the standard 
deviation a g  . 

PARAMETER ESTIMATION 

The parameter estimation of 3-D elements from a 
2-D image projection can be performed by a general 
method to determine an optimal estimate of an un- 
known parameter vector &! from a measurement vec- 
tor egiven the forward model e(&!) of the non-linear 
relationship between them: 

+ -  
8 = e(&!) + 6 (5) 

The notation has been adopted from Korsten [l]. In 
case the additive measurement noise TZ has a zero- 
mean Gaussian distribution and a priori knowledge 
about &! is unavailable, the optimal estimate of &! re- 
sults from minimization of the weighted least-squares 
error e(&!) of the measurement vector: 

[(a) = (e- @15))~C,’(e- e(&!)) ( 6 )  
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FIGURE 4: Iterative parameter estimation scheme. 

The weighting matrix is made by inversion of the 
measurement covariance niatrix Ci ,  which equals the 
noise covariance Ca. - 
The non-linearity of g(6) makes it difficult to find 
a straightforward solution for the minimization of 
Eq. (6). However, if e ( G )  is piecewise differentiable, 
the Gauss-Newton method can be applied to  s_olve 
this inverse problem hy iterative linearization of O ( 6 )  
around the previous estimate cu', of parameter vec- 
tor 6. Substituting @a') in Eq. (5) by its first order 
Taylor approximation aroiind d,, gives: 

(6 - &) + R, + g (7) I e= e(&)+ - [- 3a' 1 -  O = o n  ~ 

The higher order terms collected in Lagrange's resitl- 
ual R, will be considered negligible. Introducing the 
error vectors 6a, and 68, and Jacobian matrix Btx. 

6& = 6 - &, 63, = e- e(&,) ( 8 )  

f - 

(9) 

Eq. (7) can be rewritten into the linearized matrix 
equation: 

68, = B,ba, + 6 
The possibly complex analytical derivation of the Ja- 
cobian can be avoided by numerical approximation 
of matrix B,, using finite differences [2]. 
If the n priori uncertainty about parameter vector 
a' is expressed by an infinite covariance C,- = col, 
Liebelt [lo] derives the following unbiased weighted 
least-squares estimator for bar, from Eq (10): 

+ d 

(10) 

.+ 

In case of white measurement noise, matrix C;' is 
diagonal and can be dropped. The a posterzorz co- 
variance matrix C,;,, which equals the parameter co- 
variance Cs,, is given by: 

The iterative application of Eq. (11) yields the Gauss- 
Newton method: 

TABLE 1: Mrasurement vectors $and their covari- 
ance matrices C p  

Figure 4 shows a schematic overview. The algorithm 
terminates if the decrease in the least-squares error 
P(d) becomes very small: 

P(&J - e ( & + , )  < ( 1 4  

The measure of non-linearity of model ;(a') and the 
ability to c h o s e  initial estimate & close to  the real 
parameter vector Eu' determines whether the Gauss- 
Newton iteration will converge to  a (not necessarily 
global) minimum of the least-squares error function 
e(a). 

EXPERIMENTAL SET-UP 

All our expc>riments refer to the simultaneous estima- 
tion of the geometrical parameters from the scene of 
Figure 2. The three-dimensional parameter vector n' 
consists of the radius r of the cylinder, its distanw q 
to the carni'ra and its angle 4 with the optical axis. 
Because the, positive quantities radius and distaiice 
are not two-sided unlimited, t,he parameters 11 and r 
have been chosen logarithmic to improve the relia- 
biliy of the estimator (see Tarantola [ l l ] ) .  All other 
parameters in the imaging and reflectance models are 
assumed to IJe known. 
Although tho behaviour of a non-linear estimator is 
varying in it.s parameter space, relevance is preserved 
when confiriiiig the analysis to  a representative point 
in that space. Therefore, our measurement vector e will always originate from the irradianrc profiles 
of Figure 1 that is considered to be a representative 
image of a highlight on the cylinder surface. 

Measurement models 

The use of heparated reflection components has been 
studied by ;ipplying a number of four different mea- 
surement models 8(G) in t,he parameter estimation 
process. Table 1 lists the measurement vectors pro- 
duced by these models in conformity with Eq. (5). 
The irradiance of the reflection components is vec- 
torized according to  (I?...), = E...[i] from Figure 1. 
Measurement vector contains the unseparated 
irradiance, the diffuse component, ea the specu- 
lar componi~nt and the double-sized vector B,+ both 
reflect,ion rI imponents in parallel. 
The model approximations 8(a',) of the nieasure- 
rnent vector are generated by a ray-tracer. The laclc 
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FIGURE 5: Convergence behaviour along the axis of parameter space. 

of a physical s5ene implies that  the process gener- 
ating the real 8 has to be simulated by ray-tracing 
G(Z) and adding noise 3. The measurement vectors 
Gd and are considered to be affected by additive 
zero-mean Gaussian noise with no spatial correla- 
tion and with constant standard deviations Ud and 
os respectively. Thermal and fixed pattern noise in 
CCD-elements satisfies these properties [7]. If the 
separation in reflection components is established by 
means of multiple colour or polarization channels, it 
may be assumed that no correlation exists between 
the noise in 6 d  and GS. This leads to  the definition 
of the covariance matrices C,- as listed in Table 1. 

CONVERGENCE MEASUREMENTS 

The measure of non-linearity of the estimation prob- 
lem mainly determines the convergence speed and 
area of the estimator. These get worse as neglecting 
Lagrange's residue R, in Eq. (7) becomes less justi- 
fiable. The influence of noise becomes less significant 
in that case, which implies that  convergence can be 
measured without adding noise ( u d  = us = 0). The 
choice of initial estimate & has been restricted to 
points on the axes of parameter space, but neverthe- 
less a good impression of the convergence behaviour 
has been obtained. 
Figure 5 shows the number of iterations required 
to converge as function of the distance between ini- 
tial estimate and real solution. The straight ver- 
tical lines indicate divergence. The diffuse compo- 
nent & gives the best convergence properties. Its 
convergence speed especially prevails at initial devi- 
ations in angle 4, because the sharp specular com- 
ponent causes large errors t(Z) in that  case. In some 
cases measurement model O+(Ci) provides a some- 
what larger convergence area which indicates that 
specularities may be helpful in the future to  obtain 
close initial estimates. 

.. 

NOISE SENSITIVITY ANALYSIS 

The noise sensitivity of a model is determined by the 
covariance matrix Cz_ of a mean final estimate 8, 
given a fixed measurement covariance CJ. Instead of 
estimating 13, for a whole set of noise realizations, 

we only have to consider a = 6. This realization 
converges to  the real parameter vector Z which is 
the mean I3, for an unbiased estimator. The cor- 
responding covariance matrix Cz- = Cb;- follows 
from Eq. (12): 

If the error vector &,, has a Gaussian distribution, 
the probability density is defined by the following 
quadratic form (see Sorensen [12]): 

Because C,;' is positive definite, the equation de- 
tribes an error ellipsoid E in parameter space around 
the final estimate a,. This surface of constant prob- 
ability bounds the c-U confidence interval. 
Figure 6 stows principle plane intersections through 
the centre Gm of the error ellipsoids for fixed U d  = os. 
These intersections correspond with the error ellipses 
of estimation problems in which two parameters of 
Z are unknown and the third one is known. The 3-D 
impression of only ellipsoids &d and Ea can be found 
in Figure 7. These ellipsoids scale with the value 
of f fd  and cs respectively. The ellipsoid Edl lS  is al- 
ways enclosed by both the ellipsoids Ed and E,. The 
influence of increasing noise in one reflection c_ompo- 
nent on the sensitivity of measurement model 8dlls(8) 
will be bounded by the other reflection component. 
This principle does not apply for the unseparated 
measurement model G,+s(a), because ellipsoid 
scales with d m .  Again the enclosure of the 
(aligning) ellipsoid &+ is guaranteed so that model 
g+(d) will always yield the best noise insensitiv- 
ity. Its double :mount of measurements makes the 
difference with 8d+,(I3) in case u d  = U,. 

The first two intersections of Figure 6 indeed show 
that the specular component BS significantly con- 
tributes to the the accuracy of angle 4 for Ud = u8. 
This improvement however depends on the u d  to U, 

ratio of the reflection components or actually on their 
signal to noise ratios when considering highlighted 
images in general. The third intersection shows that 
separating reflection components has not solved the 
size-depth (T-q) problem of monocular vision. 

- 
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FIGURE 6: Principle plane intersections of the 1-0 error ellipsoids for Ud = va 

phi v 
FIGURE 7: A 3-D impression of the (dark) diffuse 

and (light) specular 1-U error ellipsoids. 

CONCLUSIONS 

The main conclusion is that separated reflection com- 
ponents benefit the estimation of geonietrical param- 
eters of curved suiface elements. The hest strategy in 
terms of convergence properties and noise insensitiv- 
ity starts estimating with the smooth diffuse com- 
ponent only to attain fast convergence. Modelling 
also the sharp specular reflection appears to be use- 
ful in the ultimate stage of the estimation. A change- 
over to a measurement vector containing the diffusr 
and specular components in parallel will improve the 
insensitivity of the final estimate to  measurement 
noise. 

Discussion 

Uncorrelated additive Gaussian measurement noise 
has been assumed throughout this paper. Only a 
worse separation method results in reflection compo- 
nents with anti-correlated noise that  would weaken 
our conclusions about noise insensitivity. Quantum 

noise has a Poisson distribution and fluctuations with 
respect to  the reflectance model cause multiplicative 
noise [7]. Although a least-squares estimator is not 
optimal for signal-dependent noise, experiments with 
multiplicative noise indicate that the principles of re- 
flection component separation still apply. In the first 
place however, images from a real scene are required 
to define a realistic noise model. 
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