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Abstract
Purpose  Our aim was to develop and validate a machine learning (ML)-based approach for interpretation of I-123 FP-CIT 
SPECT scans to discriminate Parkinson’s disease (PD) from non-PD and to determine its generalizability and clinical value 
in two centers.
Methods  We retrospectively included 210 consecutive patients who underwent I-123 FP-CIT SPECT imaging and had a 
clinically confirmed diagnosis. Linear support vector machine (SVM) was used to build a classification model to discriminate 
PD from non-PD based on I-123-FP-CIT striatal uptake ratios, age and gender of 90 patients. The model was validated on 
unseen data from the same center where the model was developed (n = 40) and consecutively on data from a different center 
(n = 80). Prediction performance was assessed and compared to the scan interpretation by expert physicians.
Results  Testing the derived SVM model on the unseen dataset (n = 40) from the same center resulted in an accuracy of 
95.0%, sensitivity of 96.0% and specificity of 93.3%. This was identical to the classification accuracy of nuclear medicine 
physicians. The model was generalizable towards the other center as prediction performance did not differ thereby obtain-
ing an accuracy of 82.5%, sensitivity of 88.5% and specificity of 71.4% (p = NS). This was comparable to that of nuclear 
medicine physicians (p = NS).
Conclusion  ML-based interpretation of I-123-FP-CIT scans results in accurate discrimination of PD from non-PD similar 
to visual assessment in both centers. The derived SVM model is therefore generalizable towards centers using comparable 
acquisition and image processing methods and implementation as diagnostic aid in clinical practice is encouraged.
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Introduction

Single positron emission computer tomography (SPECT) 
with I-123  N-ω-fluoropropyl 2β-carbomethoxy-3β-(4-
iodophenyl)nortropane (FP-CIT) allows for visualization of 

striatal dopamine deficiency due to the loss of dopaminer-
gic neurons which is characteristic of Parkinson’s disease 
(PD) [1]. This imaging technique aids in the diagnostic 
process as it enhances diagnostic confidence, especially in 
patients with clinically uncertain parkinsonian syndromes 
[2, 3]. Re-evaluation of diagnosis is evident in up to 35% 
of these patients and changes in management and treatment 
are induced in approximately 70% [2, 4]. Current guide-
lines recommend the combination of visual assessment 
and semi-quantitative analysis for adequate interpretation 
of I-123 FP-CIT scans [5, 6]. Semi-quantitative analysis 
comprises the assessment of radiopharmaceutical-specific 
uptake in regions of interest (striatum, caudate nucleus and 
putamen) and non-specific uptake in reference areas as the 
occipital lobe. The addition of semi-quantification to visual 
assessment results in an increased reader confidence and 
superior diagnostic accuracy when compared to standalone 
visual assessment [7]. However, no universal cutoff values 
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are available to determine whether semi-quantitative results 
are normal or abnormal as acquisition, reconstruction and 
quantification methods are known to influence these striatal 
uptake ratios [8, 9].

A trend is currently seen towards machine learning (ML)-
based approaches for automated classification of I-123 
FP-CIT scans to improve interpretation [10, 11]. These 
approaches have the potential to be exploited as diagnos-
tic aid to nuclear medicine physicians, thereby improving 
interpretation of these scans and overcoming the limitations 
of semi-quantitative analysis [10, 11]. Yet usage of devel-
oped models in clinical practice is limited as generalizability 
towards previously unseen data in different centers is often 
not determined. Assessment of the model’s performance 
in independent validation datasets is necessary to ensure a 
model is valid for clinical use which is more and more recog-
nized and addressed in the field. Widespread adoption of ML 
models requires a robust external validation and assessment 
of its clinical utility [12]. The aim of this study is therefore 
to develop a machine-learning based approach for interpre-
tation of I-123 FP-CIT scans to detect PD and to determine 
its generalizability and clinical value in two centers using 
independent validation datasets from two centers.

Materials and methods

Study population

We retrospectively included a consecutive cohort of 210 
patients with clinically confirmed diagnosis that underwent 
I-123 FP-CIT SPECT imaging between 2014 and 2018 
in two medical centers in the Netherlands: Isala hospital, 
Zwolle (further referred by hospital 1) and Treant Zorggroep, 
Scheper hospital, Emmen (hospital 2). Patients’ diagnoses 
were assessed by the attending neurologist according to 
standard diagnostic criteria. Clinical and demographic data 
including diagnosis, gender and age at the time of SPECT 
acquisition were retrieved from patients’ medical records 
and patients were labelled as either having PD or a diagnosis 
other than PD (non-PD). The hospital 1 data was split into a 
group of 90 patients for model development (further referred 
by group A) and a group of 40 patients for validation (further 
referred by group B) using stratified random sampling. Data 
of the Scheper hospital (n = 80, further referred by group C) 
were used to assess the generalizability of the model. Both 
group B and C were used in the clinical evaluation. This 
study was retrospective and approval by the medical ethics 
committee was therefore not required according to the Dutch 
law. However, all procedures performed were in accordance 
with the ethical standards of the institutional and/or national 
research committee and with the 1964 Helsinki declaration 
and its later amendments or comparable ethical standards.

Image acquisition and reconstruction

Patients were instructed to discontinue medication inter-
fering with I-123 FP-CIT binding to dopamine transport-
ers prior to scanning. SPECT studies were carried out 
according to standard clinical procedure using two dual-
headed gamma cameras (Infinia Hawkeye, GE Healthcare) 
equipped with a low energy, high resolution collimator. 
Three to six hours before SPECT acquisition, patients 
were intravenously administered 185 MBq of I-123 FP-
CIT. A total of 64 projections over a circular 360° orbit 
(rotational radius of approximately 13 cm) were acquired 
on a 128 × 128 matrix (1.23–1.28 acquisition zoom, 
3.45–3.59 mm pixel size) with an overall scanning time 
of 32 min (30 s per projection). A 10% energy window 
centered on the photopeak of I-123 at 159 keV was used.

Image reconstruction was performed by filtered back 
projection using a Butterworth pre-filter (cut-off 0.65 
cycles/cm, order 10) and uniform Chang attenuation cor-
rection (coefficient 0.11 cm−1). Attenuation correction was 
based on a variable ellipsoid map that followed the contour 
of the head, manually defined using thresholding. Images 
were reformatted into slices in axial, coronal and transver-
sal planes (3.45–3.59 mm slice thickness) and axial slices 
were reoriented along the acanthomeatal line. The acquisi-
tion and reconstruction procedures and settings mentioned 
above were used in both centers.

Semi‑quantitative analysis

Semi-quantitative analysis was performed using a func-
tional imaging workstation (Xeleris version 4.0; GE 
Healthcare) to assess specific I-123 FP-CIT binding in the 
striatum and striatal sub-regions including both right and 
left caudate nucleus and putamen. Non-specific binding 
was assessed using the occipital cortex as reference region 
[6]. Five pre-defined fixed regions of interest (ROIs) were 
manually positioned over caudate nucleus, putamen and 
occipital cortex on three consecutive slices that were 
selected best representative of the activity and shape of 
the striatum. An example of a non-PD and PD patient with 
correct positioning of all predefined regions is shown in 
Fig. 1. The mean photon counts in each region was cal-
culated over the three slices after which specific binding 
ratios (SBRs) were obtained according to the formula:

(1)SBR =

Cstr − Cocc

Cocc
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where Cstr are the mean counts in the striatum or striatal 
sub-region and Cocc the mean counts in the occipital cortex. 
SBRs for both left and right striatum, caudate nucleus and 
putamen were assessed, resulting in six different ratios: StrR, 
StrL, CaudR, CaudL, PutR and PutL. Furthermore, a putamen/
caudate index was calculated by dividing the mean photon 
counts within the putamen by the mean photon counts within 
the caudate nucleus, thereby obtaining ratios PutR/CaudR 
and PutL/CaudL.

SVM classifier development and validation analysis

Support vector machine (SVM) is a widely used ML algo-
rithm to build predictive models for classification problems. 
SVM attempts to find an optimal separation between classes 
by searching for a hyperplane or decision boundary that is 
able to separate the given data with minimal errors and that 
maximizes the margin between the classes. In this study, 
SVM was used as a classification method to discriminate PD 
from non-PD based on input features that included patient’s 
age, gender and all eight I-123 FP-CIT striatal uptake ratios; 
StrR, StrL, CaudR, CaudL, PutR, PutL PutR/CaudR and PutL/
CaudL. Prior to training and validation procedures, ratios 
and age were normalized such that the mean value was 0 
and standard deviation was 1. All procedures were per-
formed using Matlab software (MATLAB and Statistics and 
Machine learning Toolbox Release 2018b, the Mathworks 
Inc.).

Group A was used to build a linear SVM and to per-
form hyperparameter optimization. A grid search was con-
ducted, thereby evaluating regularization parameter values 
of 2−6, 2−5, 2–4, …, 28. For each value, a stratified, 10-times 
repeated tenfold cross-validation was performed after which 

the mean F1-score was determined. The F1-score is defined 
as:

The value providing the highest mean F1-score was used 
to derive the final model. This model was then validated in 
group B and C, assessing both predicted class and the prob-
ability that test data belongs to PD. For the latter, an inbuilt 
function for converting SVM scores to probabilities based 
on logistic regression was used. Given the probabilities, the 
validation datasets (group B and C) were divided into four 
categories (< 20%, 20–49%, 50–80%,  > 80% probability of 
PD). Furthermore, prediction performance was determined 
by assessing F1-score, accuracy, sensitivity and specificity.

Clinical value

Whether and to what extent I-123 FP-CIT images and ratios 
were typical or characteristic for PD was assessed by two 
nuclear medicine physicians according to a 4-point scale. 
This scale consisted of the following categories: unlikely, 
not probable, probable and certain PD and comprised an 
expected probability of PD of < 20%, 20–49%, 50–80% 
and > 80%, respectively. Images were scored visually, tak-
ing into account the magnitude and homogeneity of I-123 
FP-CIT distribution, striatal shape and symmetry, definition 
of striatal borders and the amount of background activity. 
Images were first scored without ratios after which ratios 
were presented to the nuclear medicine physician and a sec-
ond score was obtained. In case of disagreement, overread 
from a third nuclear medicine physician was performed. 
Images were presented in random order and all readers were 

(2)F
1
= 2 ⋅

positive predictive value ⋅ sensitivity

positive predictive value + sensitivity

Fig. 1   Representative slice of a 
I-123 FP-CIT scan of a non-PD 
(a) and PD (b) patient with 
predefined regions for semi-
quantitative analysis, including 
regions for the left and right 
caudate nuclei (Cau-L and 
Cau-R) and putamen (Put-R and 
Put-L) and the occipital cortex 
(Occ)
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blinded to patient characteristics and clinical information 
except age and gender. After scoring images of group B and 
C, accuracy, sensitivity and specificity to discriminate PD 
from non-PD were assessed for the nuclear medicine physi-
cians and compared to the performance of the derived SVM 
model. Patients assigned to categories 1 or 2 (≤ 49% chance 
on PD) were categorized as non-PD and patients assigned to 
categories 3 and 4 (≥ 50% chance on PD) as PD.

Statistical analysis

Statistical analysis was performed using R Studio software 
[13]. To assess differences between group B and C in age, 
ratios and gender, the Mann–Whitney U test or χ2-test were 
performed. Accuracies, sensitivities and specificities of the 
classifier for group B and C were compared using Fisher’s 
exact test. McNemar’s test was used to compare prediction 
performance of the SVM model and nuclear medicine physi-
cian’s. Differences in frequencies of scores comprising the 

probability of PD, either determined by the model or scored 
by nuclear medicine physicians, were assessed using a χ2 
test. A significance level at 0.05 was used and Bonferroni 
correction was applied when necessary.

Results

Patient characteristics

Patient characteristics and the various ratios are summarized 
for PD and non-PD patients in Tables 1, 2, respectively. For 
PD patients, no differences in characteristics and ratios were 
found between the training dataset and validation datasets 
from both hospital 1 (p > 0.09) and hospital 2 (p > 0.16). 
Likewise, characteristics and ratios of non-PD patients in 
group B were similar to group A (p > 0.2). No differences 
were found between non-PD patients in group A and C, 
except for the PutL/CaudL index which was significantly 

Table 1   Patient characteristics 
including age, male, SBRs and 
putamen/caudate index per 
center for PD patients

Data are presented as median (interquartile range) or percentage; str striatum; caud caudate nucleus; put 
putamen; L left; R right
The p values are given for either the χ2 test or Mann–Whitney U test

Group A (n = 58) Group B (n = 25) Group C (n = 52) p value A vs. B p value A vs. C

Age 68 (61–74) 67 (60–74) 73 (60–78) 0.7 0.2
Male 56.9% 68.0% 69.2% 0.5 0.3
Str. L 2.54 (2.28–2.90) 2.73 (2.41–3.08) 2.67 (2.36–2.95) 0.12 0.2
Str. R 2.52 (2.35–2.71) 2.61 (2.49–2.87) 2.61 (2.34–3.11) 0.14 0.16
Caud. L 3.14 (2.74–3.48) 3.16 (2.95–3.67) 3.32 (2.86–3.68) 0.2 0.16
Caud. R 3.07 (2.81–3.29) 3.16 (2.90–3.52) 3.10 (2.81–3.80) 0.2 0.3
Put. L 2.04 (1.85–2.37) 2.21 (1.93–2.59) 2.04 (1.82–2.45) 0.09 0.9
Put. R 2.05 (1.90–2.25) 2.15 (1.98–2.30) 2.12 (1.82–2.42) 0.3 0.5
Put/caud. L 0.67 (0.62–0.74) 0.66 (0.60–0.77) 0.66 (0.57–0.73) 0.8 0.3
Put/caud. R 0.69 (0.65–0.76) 0.67 (0.63–0.73) 0.68 (0.62–0.75) 0.3 0.5

Table 2   Patient characteristics 
including age, male, SBRs and 
putamen/caudate index per 
center for non-PD patients

The p values are given for either the χ2 test or Mann–Whitney U test
Data are presented as median (interquartile range) or percentage; str striatum; caud caudate nucleus; put 
putamen; L left; R right

Group A (n = 32) Group B (n = 15) Group C (n = 28) p value A vs. B p value A vs. C

Age 69 (60–78) 71 (66–77) 74 (69–78) 0.7 0.16
Male 37.5% 40% 57.1%  > 0.99 0.2
Str. L 3.87 (3.44–4.36) 3.76 (3.46–4.07) 3.64 (3.23–4.00) 0.5 0.08
Str. R 3.84 (3.31–4.24) 3.78 (3.44–4.01) 3.60 (3.20–3.83) 0.6 0.13
Caud. L 4.31 (3.80–4.95) 3.94 (3.57–4.43) 4.08 (3.73–4.47) 0.2 0.3
Caud. R 4.07 (3.49–4.64) 4.08 (3.50–4.27) 4.04 (3.63–4.32) 0.6 0.3
Put. L 3.60 (3.13–4.13) 3.44 (3.13–4.01) 3.27 (2.58–4.32) 0.8 0.014
Put. R 3.55 (3.07–3.56) 3.51 (3.25–3.75) 3.16 (2.96–3.45) 0.8 0.030
Put/caud. L 0.83 (0.78–0.89) 0.88 (0.83–0.94) 0.76 (0.70–0.82) 0.10 0.002
Put/caud. R 0.87 (0.80–0.90) 0.88 (0.79–0.92) 0.80 (0.73–0.85) 0.7 0.014
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lower in group C after Bonferroni correction was applied 
(p = 0.002).

SVM classifier development and validation

A regularization parameter value of 2−4 was selected 
to derive the final model, providing a mean F1-score of 
0.956 ± 0.002 as determined by the 10-times repeated, strati-
fied tenfold cross-validation. A corresponding mean clas-
sification accuracy of 94.3% was found for this parameter 
value. Validation of the derived model resulted in accura-
cies of 95.0% and 82.5% for group B and C, respectively, as 
shown in Fig. 2. The sensitivity, specificity and accuracy of 
the SVM-model for all three groups are shown in Table 3. 
Prediction performance of the model for group B was com-
parable to group C (p > 0.09).

Clinical value

Using the combination of visual assessment and ratio inter-
pretation, nuclear medicine physicians were able to discrimi-
nate PD from non-PD with an accuracy of 95.0% and 81.3% 
for group B and C, respectively, as shown in Fig. 2. For both 
groups, the presentation of ratios in addition to I-123 FP-CIT 
images to the physician did not provide an increase in accu-
racy (p > 0.5), sensitivity (p > 0.99) or specificity (p > 0.99). 
Additionally, scored probabilities of PD as assessed by the 
physician using only visual assessment was comparable to 
the probabilities of PD scored using the combination of vis-
ual assessment and ratio interpretation (p > 0.2), as shown 
in Fig. 3.

Comparing the prediction performance of the SVM 
model with that of nuclear medicine physicians, similar 
accuracies (p > 0.4), sensitivities (p > 0.3) and specifici-
ties (p > 0.99) were found in both groups when patients 
assigned to categories 1 and 2 (chance on PD ≤ 49%) were 
classified as non-PD and categories 3 and 4 (chance on 
PD ≥ 50%) were classified as PD”, as shown in Fig. 2. 
In group B, the SVM showed an increase in the confi-
dence of diagnosis as shown in Fig. 3. A higher number 
of images was scored as 1 (< 20% probability of PD) or 4 
(> 80% probability of PD) compared to visual assessment 
(p = 0.035). However, this was not observed in group C 
(p = 0.8). Furthermore, no difference in the frequencies 
of the scored probability of PD was found between the 
SVM model and physicians using the combination of vis-
ual assessment and ratio interpretation for both centers 
(p > 0.8).

Fig. 2   Column chart showing the prediction performance of visual 
and semiquantitative interpretation by nuclear medicine physicians 
and interpretation by the SVM model for the validation set of (a) hos-

pital 1 and (b) hospital 2. No significant differences were observed 
between prediction performance variables of the SVM model and 
nuclear medicine physicians (p > 0.25)

Table 3   Prediction performance of the derived SVM model for all 
groups

Group A* Group B Group C p value 
(B vs. C)

F1-score 0.956 0.96 0.85 0.13
Accuracy (%) 94.3 95.0 82.5 0.09
Sensitivity (%) 96.4 96.0 88.5 0.4
Specificity (%) 90.6 93.3 71.4 0.13
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Discussion

In this study, we derived a SVM model to discriminate PD 
from non-PD with high accuracy using striatal uptake ratios, 
age and gender as input features. The model was validated 
using two independent datasets from two different centers. 
Validation of the model using the unseen dataset from the 
same center showed a comparable prediction performance, 
indicating that the model is generalizable towards previ-
ously unseen data. For both centers, the performance was 
similar to that of nuclear medicine physicians who classified 
patients by visual assessment of I-123 FP-CIT images.

The high classification accuracy of 94.3% for the cross-
validation found in this study is in line with several other 
studies that developed linear SVM models to evaluate SBRs 
derived from I-123 FP-CIT images [10, 14–16]. Palumbo 
et al. found an accuracy of 94.2% in a fivefold cross-valida-
tion using 90 patients with SBRs and age as input features 
for discriminating PD from non-PD [14]. Prashanth et al. 
showed that their model was able to correctly discriminate 
healthy controls from early PD in 92.3% of cases (n = 548) 
in a tenfold cross-validation using only SBRs [15]. More 
recently, Taylor et al. compared different ML algorithms 
with a range of semi-quantification methods and showed 
that ML generated equal or higher mean accuracies than 
semi-quantitative analysis, irrespective of the method used. 
Performing a 10-times repeated tenfold cross-validation, 
they obtained a mean accuracy of 95% (n = 657) and 89% 
(n = 304) for their linear SVM models that were able to dis-
criminate healthy controls from PD and Parkinsonian from 

non-Parkinsonian patients, respectively [10]. Though high 
accuracies were found, none of these studies performed a 
subsequent validation using previously unseen data, nor 
did they assess whether derived models were generalizable 
towards other centers.

The prediction performance found for the internal vali-
dation, as described above, is not a guarantee for good gen-
eralizability as derived models usually perform better on 
the dataset used for training. Especially in small datasets, a 
decrease in prediction performance is often seen when the 
model is tested using an independent unseen dataset. This 
can be due to overfitting, the lack of representative data used 
to train the model or the use of different imaging and pro-
cessing protocols [17, 18]. Usage of the derived SVM model 
in different centers requires the use of comparable acquisi-
tion and image processing methods to ensure that findings 
are due to underlying pathology and not due to variability 
in acquisition, reconstruction or quantification settings as 
these are known to influence striatal uptake ratios irrespec-
tive of the presence of a neurodegenerative disease [8, 9, 
19]. The similar model prediction found for both group B 
and C in comparison to group A indicates that overfitting did 
not occur. Since the different centers employed comparable 
acquisition and image processing methods, we assume that 
a decrease in the PutL/CaudL index for non-PD patients in 
group C is due to a difference in patient population.

This study has several limitations. First, a relatively 
small number (n = 80) of patients was used for training 
purposes that is not necessarily representative of all neu-
rodegenerative and non-degenerative diseases that are 

Fig. 3   Column chart showing the percentage of scans for the four different probability-scores for PD as determined by nuclear medicine physi-
cians and the SVM model for the validation set for (a) group B from hospital 1 and (b) group C from hospital 2
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evaluated using I-123 FP-CIT SPECT imaging. Other 
degenerative conditions that also show reduced tracer 
uptake are prone to be misclassified by the derived SVM 
model as I-123 FP-CIT SPECT imaging cannot reliably 
discriminate between neurodegenerative parkinsonian dis-
orders [19]. Likewise, PD patients with scans without evi-
dence for dopaminergic deficit (SWEDD) will presumably 
be incorrectly classified as non-PD. Therefore, comparison 
of the performance of discriminating PD from non-PD by 
the model and nuclear medicine physicians is needed to 
put the performance of the model into perspective. The 
higher number of other neurodegenerative diseases in 
group C such as patients with drug-induced parkinson-
ism, essential tremor, multiple system atrophy, Lewy Body 
dementia and vascular parkinsonism, could explain the 
lower median values of the ratios of non-PD patients in 
group A in comparison to group C and thus lower pre-
diction performance of the derived SVM model but also 
of the physicians as these patients as they are prone to 
misclassification. To identify neurodegenerative subtypes 
and SWEDD patients based on I-123 FP-CIT ratios using 
SVM, a larger patient population is needed with sufficient 
patients of each subtype. Multiple SVM models can then 
be derived to discriminate PD from other neurodegenera-
tive diseases as shown by Nicastro et al. [21].

Second, information beyond the uptake ratios combined 
with gender and age was not considered for input data. 
As PD is a clinical diagnosis, the addition of parameters 
comprising the severity and progression of a patient’s dis-
ease could have allowed better discrimination between PD 
and non-PD. This would require consistent assessment of 
patients suspected for PD, thereby using clinical rating scales 
such as the Movement Disorder Society Unified Parkinson’s 
Disease Rating Scale and Hoehn and Yahr scale [22, 23]. 
Furthermore, imaging features extracted from I-123 FP-CIT 
SPECT scans that comprise striatal shape have shown dis-
criminative power in the identification of PD patients [24]. 
The addition of these features could have provided higher 
classification accuracies, but requires the development and 
validation of quantification methods to extract these features. 
In contrast to this, the current parameters used as input fea-
tures are routinely collected in clinical practice and therefore 
easily available. As clinical parameters and visual features 
of I-123 FP-CIT images can have added value in diagnosing 
PD, the output of the model is merely a diagnostic aid and 
should be linked to these clinical parameters by the treating 
physician for a definitive diagnosis.

Third, different ML approaches including deep learn-
ing were not evaluated in discriminating PD from non-PD. 
Though these approaches could have been superior in per-
formance to that of linear SVM, the derived model is rela-
tively simple and transparent and can be easily exported and 
used in clinical practice.

Finally, one needs to be aware that the derived model 
requires a consistent way of assessing the different ratios in 
order to work properly. Automated approaches could over-
come the variability associated with approaches that require 
manual steps.

Clinical implications

This study provides new insights and has several clinical 
consequences. The derived SVM model is an objective clas-
sification approach for identifying PD patients and has a 
similar prediction performance as that of standard visual 
interpretation by expert nuclear medicine physicians. It can 
therefore facilitate clinical decision-making and diagnosis 
when used in clinical practice. Taylor et al. evaluated the 
impact of the addition of SVM-based interpretation of I-123 
FP-CIT scans on clinical reporting. They found that consist-
ency between reporters improved and that the model gave 
added confidence in terms of diagnostic confidence scores. 
We can therefore assume that usage of our model in clinical 
practice can lead to less interpretation variation and more 
confident diagnosis of PD. This model is assumed to be fea-
sible in centers using similar acquisition and image process-
ing methods. For implementation, we advise that each center 
performs a pilot study to investigate how well the classifier 
can be generalized to one’s own dataset. Ideally, the popu-
lation characteristics are comparable to that of the training 
dataset and the model’s performance is put into perspective 
by comparing it with that of nuclear medicine physicians to 
ensure reliable predictions are generated.

Conclusion

Development of a linear SVM model to interpret I-123 
FP-CIT images allows high-accuracy detection of PD with 
similar classification accuracy as that of expert nuclear 
medicine physicians. The model is able to discriminate PD 
from non-PD based on I-123 FP-CIT uptake ratios, age and 
gender that are collected routinely in clinical practice and 
are therefore easily available. The model is generalizable 
towards previously unseen data and feasible to use in centers 
using comparable acquisition and image processing meth-
ods. The results of this study show that the use of the derived 
SVM model has great potential to be used in the diagnostic 
process of PD, thereby encouraging implementation of this 
SVM model in clinical practice.
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