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Abstract. Human Activity Recognition is a machine learning task for
the classification of human physical activities. Applications for that task
have been extensively researched in recent literature, specially due to
the benefits of improving quality of life. Since wearable technologies and
smartphones have become more ubiquitous, a large amount of informa-
tion about a person’s life has become available. However, since each per-
son has a unique way of performing physical activities, a Human Activity
Recognition system needs to be adapted to the characteristics of a per-
son in order to maintain or improve accuracy. Additionally, when smart-
phones devices are used to collect data, it is necessary to manage its lim-
ited resources, so the system can efficiently work for long periods of time.
In this paper, we present a semi-supervised ensemble algorithm and an
extensive study of the influence of hyperparameter configuration in clas-
sification accuracy. We also investigate how the classification accuracy is
affected by the person and the activities performed. Experimental results
show that it is possible to maintain classification accuracy by adjusting
hyperparameters, like window size and window overlap, depending on
the person and activity performed. These results motivate the develop-
ment of a system able to automatically adapt hyperparameter settings
for the activity performed by each person.
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1 Introduction

Advanced mobile devices, such as smartphones, are usually integrated with sev-
eral sensors capable of any-time sensing and data collection. The different types
of motions sensors, such as accelerometers, gyroscopes and magnetometers, allow
mobile devices to obtain substantial user-related information by monitoring and
tracking movements of their users [3].

Human Activity Recognition (HAR) is a machine learning task focused on
the use of sensing technologies to classify human activities and to infer human
behavior [1]. Extensive research has been carried out in this area in the last
decade [4-7], for applications like health and well-being [2], mobile security [3,9]
and elderly care [1].

Most approaches of HAR found in the literature are based on supervised
learning algorithms and assume that the data true label is always available.
However, this assumption may not be feasible in real online scenarios, when
labeled data is rare and the system feedback has to occur at runtime. As an
example, in a fall detection system for elderly care, the classification feedback
must occur as close as possible to the real moment of the user’s fall [1].

Besides, as human beings perform activities differently, dissonant input sig-
nals are expected for the same activity [8]. To keep accuracy over time, classi-
fication models, used in HAR systems, need to be adapted to the current user.
However, due to limitations of most mobile devices, different hardware resources
need to be manage, such as battery and execution power, in order to keep the
system efficiently working and accurate over time. Thus, there is a trade-off
between amount of processed information and the resources available.

This work is based on an ensemble classifier firstly described in [15]. This
algorithm has two phases, an offline and an online phase. In the beginning,
the offline phase, the ensemble model is trained with labeled data from several
users. In the online phase, this ensemble is used as a basic model to classify
activities from a specific user, not present in the ensemble training. The ensemble
model can be updated online with the user’s data, if the classification has a high
confidence factor.

The main contributions of this work are the extensive study of two hyperpa-
rameters important for HAR classification: the window size and the overlapping
between windows (overlap factor). We analyze the impact of these hyperparame-
ters in the model classification accuracy. Additionally, we conducted experiments
with an ODROID-XU+E board! to evaluate the impact of these hyperparame-
ters regarding energy consumption and execution time in a hardware similar to
a smartphone.

This paper is structured as follows. Section2 presents the related work on
HAR and window parameterization. In Sect.3 we describe the methodology

! ODROID-XU+E is a board mainly consisting of an Exynos5 Octa SoC, which
includes 2 quad cores ARM CPUs and a PowerVR GPU, and a power measure-
ment circuit to measure CPU, GPU and DRAM power consumption. The Exynosb
Octa SoC has been used in a number of families of smartphones.
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applied in this study. The results obtained with the experiments are presented
and discussed in Sect. 4. Finally, in Sect. 5, we summarize our main conclusions
and point out future work directions.

2 Related Work

Dobbins et al. [2] propose an approach that uses personal data to better infer
lifestyle choices for its users. Considering only labeled data, they evaluate the
predictive performance of 10 supervised HAR classifiers in terms of accuracy
and mobile system performance (execution time and energy consumption). Their
experimental setup is based on a fixed window size of 512 samples and overlap
factor of 0.5, i.e., 256 samples are reused from the previous window and only
256 new samples are used for the current window. They suggest that the sensing
data should be processed in the cloud and not in the device. However, personal
privacy and Internet connection are not considered. Furthermore, all data used is
labeled, which cannot be guaranteed in a real online mobile system. The datasets
used in the experiments contain complex activities and different user’s data, but
the results are not compared in terms of accuracy per user.

Mannini et al. [10] propose an SVM classifier to detect 4 activities from 33
different users. The classifier performance was tested for different window sizes,
but not for the overlap between consecutive windows. Also, they do not compare,
in terms of execution time, the classification task with different window sizes.
The results show large variability among users performing the same activity, due
to the problem of different sensor body location.

Window size has also been discussed by other authors. For example, [11-
14] compare the predictive performance of classifiers over a set of window sizes.
However, most of the studies do not consider the use of overlap factor and the
impact of the user on the obtained accuracy.

In [11] it is presented an extensive review of the literature in window size and
HAR. The accuracy of several classifiers was analyzed for different window sizes,
but not regarding users. Additionally, the experimental setup was not elaborated
with a leave-one-user-out, which would be a more realist approach. Instead, they
used a cross validation approach, which is more affected by user variability than
leave-one-participant-out.

The study conducted in this paper uses the PAMAP2 public dataset [15].
PAMAP2 includes a vast number of sensors and more complex activities than
the data used by many of others studies. This dataset allows the study of the
impact on HAR accuracy for different window sizes, users and activities.

3 Activity Recognition Overview

The HAR classification task can be split into 4 main steps, as illustrated in
Fig.1. The steps 1, 2 and 3 are the training phase with multiples users. The
steps 1, 2 and 4 are used for the online user-specific classification.
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Fig. 1. Overview of the semi-supervised ensemble model for HAR.

Figure 1 shows a batch with raw data extracted from different wearable sen-
sors and/or smartphones. The raw data samples are stored in a sliding window
with fixed size. Ideally, a sliding window should contain data from a unique activ-
ity. However perfect segmentation is not always feasible, so a between-window
overlap factor can be used to include samples from sequential activities. Also the
size of the sliding window is reduced by the overlap factor, allowing a reduction
of stored data. Thus, the step 1 is the window segmentation of the raw data and
the overlapping of sequential windows.

Sensor’s data are usually susceptible to noise, especially the accelerometers
data [2]. Thus, it is important to process and convert the data into meaningful
values. A pre-processing step (step 2) may also include calibration and filtering
of the input signals in order to reduce noise. Sequential to that, a Feature Extrac-
tion (step 2) is used to calculate a single instance containing features that are
then used for building the ensemble model. These features (see, e.g., [16]) include
time-domain calculus, specifically mean and standard deviation for each sensor
signal and correlation (Pearson correlation) between axes for the 3D sensors.

Each new instance is used to train (step 3) an ensemble model composed
by three classifiers: kNN, VFDT and Naive Bayes. The implementation of the
ensemble classifier is the combination of Democratic Co-Learning [17] and Tri-
Training [18].

After training the ensemble model, in the online phase, sensors data are
acquired from a single user. This data is pre-processed and features are extracted
from them, similar to the processes (step 1 and 2) described in training phase.
Each generated instance is classified by the ensemble (step 4), which classifies the
instance and provides a confidence factor for that classification. The instances
classified with high confidence, more than 99% value, are used to update the
ensemble model.
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4 Experimental Results

We conducted several experiments with our approach using the PAMAP2 dataset
[15]. The objectives of these experiments are: compare the accuracy of a super-
vised HAR versus a semi-supervised HAR when using different configurations of
the hyperparameters: window size and overlap factor. We also intend to study
a HAR system behavior with the different hyperparameters configurations in
terms of classification accuracy, energy consumption and execution time.

4.1 The PAMAP2 Dataset

The PAMAP?2 [15] is a public dataset for human physical activities?. The data
was collected from tree devices positioned in different body areas: wrist, chest
and ankle. Each device has three sensors embedded: a 3-axis accelerometer, a
3-axis gyroscope and a 3-axis magnetometer.

The PAMAP2 dataset contains 1.926.896 samples of raw sensor data from 9
different users and 18 different activities. The activities executed by the users are
divided in basic activities (walking, running, Nordic walking and cycling), pos-
ture activities (lying, sitting and standing), everyday activities (ascending and
descending stairs), household (ironing and vacuum cleaning) and fitness activities
(rope jumping). Also, the users were encouraged to perform optional activities
(watching TV, computer work, car driving, folding laundry, house cleaning and
playing soccer).

4.2 Experimental Setup

Using the PAMAP2 dataset [15], each ensemble was trained with data from 8
users and tested with one isolated user, not presented in the training process.
This approach is called leave-one-user-out.

We conducted four experiments with two ensemble models, each one con-
sisting of three classifiers: kNN, Naive Bayes, and Hoeflding Tree (VFDT), as
in [8]. As verified in [2], these three classifiers have good classification perfor-
mance in HAR problems. Thus, we analyze the accuracy performance of one
ensemble model with a semi-supervised approach and another ensemble model
with a supervised approach.

The box-plots correspond to the variance in accuracy for different values of
window size (from 100 to 1000 with increments of 100), overlap factor (from 0.0
to 0.9 with increments of 0.1) and users (from 1 to 9 with increments of 1 user
per experiment).

4.3 HAR Accuracy Results

Figure 2 presents the accuracy (axis y) for each value of the overlap factor, over-
lapping (axis x). The semi-supervised model reduces accuracy variance, com-
pared with supervised model, for most of the overlapping and has average accu-
racy close to 90%. For both models, overlapping has more influence on accuracy

2 http://archive.ics.uci.edu/ml/datasets /pamap2-+physical4-activity-+monitoring.
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for values higher than 0.7, but the semi-supervised model is less susceptible
to that influence than the supervised model. As shown in Fig. 3, variance of
accuracy (axis y) and window size (axis x), the semi-supervised model reduces
accuracy variance for each value of window size. We also notice that windows
with small sizes have worse results, especially for sizes of 100 and 200.

We analyze the models accuracy for each user. For that, we analyze the
variance of accuracy (axis y) when varying the hyperparameters window size
and overlapping for each user (axis x). In Fig.4, for both models, user 5 and
6 have variance higher than users 2 and 1. The semi-supervised model reduces
accuracy variance for users 4 and 8. An interesting case to analyze is user 9. For
most of the cases, the accuracy is 100%, however user 9 only has instances for
the Rope Jumping activity, which means that this user influences the results to
higher values. In some cases, the individual accuracy can be lower, as we can
see with users 2, 8 and 1, justifying the analyzes by user instead of analyzing all
population.

With the results, we can see that window size and overlapping do influence
the accuracy of the models. Based on these results and depending on the HAR
application, one can decide about the window size and overlap factor level that
make possible a certain minimum desired classification accuracy. The exhaustive
exploration allows us to also understand the acceptable ranges to explore within
a runtime autotuning system, e.g., to keep a minimum accuracy (e.g. 80%).
These ranges can be used, at runtime, to search for the best combination of the
hyperparameters that provide the best results, e.g., in terms of execution time
or energy consumption. The following subsection shows the impact on execution
time and energy consumption of different window sizes and overlap factor.

4.4 Execution Time and Energy Consumption

We also analyze the execution time and energy consumption for processing all
the data from the PAMAP2 dataset. For that, we conducted experiments in an
ODROID-XU+E? system running Android. The experiments focus on a single
user, user 6, and the execution time and energy required to process 250.096 raw
samples.

The first experiment is about the execution time necessary to process all
the data of user 6. The execution time was divided into three parts. The first
part, samplingTime, represents the time required to access all the data from
the user and the instantiation of each data window as an instance. The second
part, feature Time is the feature extraction and the “final instance” instantiation,
this part depends on the window size and the overlap factor used. The last
part, classificationTime is the total time required to classify all the instances
calculated in the feature extraction phase.

In Fig. 5, since the feature extraction depends on the window size, the time
to calculate all instances increases as the window size also increases, despite the
decreasing number of calculated features. This means that the feature extraction

3 https://www.hardkernel.com/.
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phase is sensitive to the number of raw instances to process. Furthermore, as we
increase the overlap factor, due to the increased number of instances that are
calculated, the execution time also increases. The classification time is rather
small and slightly increases as the number of calculated features augments.
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Fig. 5. Total execution time required (left axis) to process the PAMAP2 dataset, per
window size and overlap factor, divided in three parts: sampling (data extraction),
features extraction and classification. The number of classifications per configuration
(right axis) is shown as triangle marks.

The second experiment is presented as a heat map representing the energy,
Joules, consumed to process raw data from user 6. For the different window sizes
and owverlap factors. The colors represent a range of Joules, where the red color
depicts higher energy consumed and, reversely, green color depicts less energy
consumed. The accuracy is also shown in the map over each circle depicting the
energy color to compare the energy consumed with the classification accuracy.

In Fig. 6, we can see that smaller windows result in less energy consumption
than bigger windows. This is due to the increased effort to calculate features
for larger window sizes. It is also perceivable that increasing the overlap factor
also increases the energy consumed, essentially due to the increased number of
feature calculations and classifications to be carried out.

Relating the energy consumption with the accuracy achieved for a given con-
figuration, it is observable that the best accuracy values reside in more “heated”
zones, i.e., where energy consumption is higher. Lower window sizes present lower
accuracy while higher window sizes provide higher accuracy. For instance, in con-
figurations without overlapping (i.e., with an overlap factor of 0), the accuracy
rises from 85% for a window of size 500 to 90% for a window of size 1000.

The overlap shows more fluctuations in terms of accuracy, however with the
best factors concentrated between 0.1 and 0.5. This shows that it is not trivial
to select a single window size and overlap factor if it is intended to have two
possible scenarios, one where accuracy is the most important factor and another
one where energy consumption is the top priority but still with a minimum
accuracy value in mind.
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Fig. 6. Energy consumed, in Joules, while processing the PAMAP2 dataset, per win-
dow size and overlap factor. Green values represent less energy consumed while red
values represent higher energy consumed. The values in each configuration represent
the accuracy, in percentage, of that configuration.

5 Conclusion

In this work we presented an analysis of the impact of hyperparameters, as
window size and overlap factor, on HAR classification accuracy, execution time
and energy consumption. The analysis was focused on a public dataset, which
includes raw sensor data from 9 different users and 18 physical activities.

The experimental results confirm the need of adapting the classification
model to the current user. Due to the impact of window size and overlap factor,
each activity requires a specific configuration of these hyperparameters in order
to improve classification accuracy.

Furthermore, the results also motivate the development of a system that is
able to adapt the application at runtime when trade-offs between performance
accuracy and energy consumption need to be considered. Bearing in mind this,
the window size and overlap factor can be used to develop runtime strategies
able to adapt these parameters according to the target goals.

As future work, we plan to implement a system able to dynamically adjust
at runtime the window size and overlap factor and aware of activities and users.
The dynamic adaptation needs to consider an exploration of possible parame-
ter configurations to find the best configurations for each adaptation scenario
and thus the experimental results presented in this paper are also part of that
exploration phase.
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