
Applied Energy 291 (2021) 116798

Available online 25 March 2021
0306-2619/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Usage impact on data center electricity needs: A system dynamic 
forecasting model 
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H I G H L I G H T S  

• A system dynamic model for policy makers and researchers to simulate data center energy scenarios. 
• A user behavior perspective on data center energy needs. 
• User behavior increases data center energy needs from 292 TWh in 2016 to 353 TWh in 2030. 
• The end of Moore’s law and IoT combined cause data center energy needs going up to 1287 TWh in 2030.  
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A B S T R A C T   

This article presents a forecasting model of data center electricity needs based on understanding usage growth 
and we conclude that this growth is not fully compensated by efficiency gains of data center technological in
novations. We predict a combined growth of data center electricity needs of 286 TWh in 2016 until about 321 
TWh in 2030, if all currently known growth factors remain the same. We next run simulations for the end of 
Moore’s law and the growth of industrial Internet of Things (IoT). The end of Moore’s law results in about 658 
TWh for 2030 and an increase of the share of global data center electricity consumption from about 1.15% in 
2016 to 1.86% in 2030. A rise of the Industrial IoT may result into total energy consumption of about 364 TWh 
(about 1.03%) in 2030. Moore’s law and IoT combined cause data center energy needs going up to 752 TWh in 
2030, and about 2.13% of global electricity available. Our sensitivity analysis reveals that the future impact of 
the data centers’ electricity consumption is vulnerable to behavioral usage trends, since the 95% confidence 
interval of [343, 1031] TWh is relatively wide. Our forecasts, however, exclude the energy needs of mobile 
devices, edge and fog computing. We offer a system dynamic model and simulation input data selected from the 
existing literature for replicating this study and applying alternative parameters to it. We further suggest multiple 
research directions on usage impact on data center energy consumption.   

1. Introduction 

The increasing usage of consumer and business applications is 
associated with more computational tasks and higher storage demands 
by data centers, resulting into higher data center electricity consump
tion. Masanet et al. [1] conclude that despite a massive growth of data 
storage (25-fold with only 3-fold increase in energy), IP traffic (10-fold 
growth with only a marginal increase in energy used), and data center 
compute instances (6.5-fold with 25% energy usage increase), the total 
energy consumption of data centers increased only 6% between 2010 
and 2018 (from 194TWh to 205TWh). This remarkable result is nearly 
fully explained by the large energy efficiency gains of data processing 

and data center infrastructures (mainly cooling and uninterrupted 
power supplies (UPS), but their predictions exclude data center external 
energy needs for “user-to-data center” and “data center-to-data-center” 
IP traffic. 

The speedy growth of data center usage may result in a growth of 
energy needs of data centers when energy efficiency gains do not 
continue as well as they did in the past. Moore’s law –which predicts a 
25% annual energy decline per processing unit (or as often said a per
formance doubling each 2 years)– is expected to stop having an influ
ence by 2021 and 2023 [2]. Given this trend, one may wonder if Internet 
users will be confronted with a scarcity of internet energy resources in 
the future [3]. Data center energy needs predictions for the next decade, 
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however, lack consensus as some authors suggest a stable energy need of 
about 200 TWh in 2030 and others forecast about 10 times as much [4]. 
This article, therefore, aims at answering the research question: How 
will future data center energy demand evolve as a consequence of its 
growing usage? 

An extensive review of data center energy consumption models is 
from Dayarathna et al [5]. They identify studies that focus on hardware- 
centric and software-centric power models. The hardware-centric 
approach starts from the digital circuit level and moves on to describe 
higher-level energy consumption models at the hardware component 
level, server level, data center level, and system-of-systems level. The 
software-centric approach describes power models developed for oper
ating systems, virtual machines, and software applications. This means 
that these models do not analyze the usage side of data center energy 
consumption. In our view, this is comparable to understanding the en
ergy efficiency of a car as-a-machine versus understanding the driver’s 
behavior that causes an even extremely efficient machine to consume 
much. Increasing consumer demand also will need more machines doing 
the processing. Our study thus delivers an important usage perspective 
to previous data center modelling work. 

With usage here we mean both industrial and consumers requests for 
IT storage, networking, and processing. These requests enter data cen
ters to a large part via “user-to-data center” IP traffic, which next causes 
storage, processing, and networking activities by data centers. The usage 
demand growth has an exponential nature because of mutual growth 
reinforcement effects between capabilities being offered, like hardware, 
storage and communication speed, and opportunities of using these for 
new applications and software. Such reinforcements between techno
logical innovations have been observed frequently as explanations for 
the exponential growth of technological markets [6] and internet-based 
services [7]. Exponential growth patterns at a certain stage of industrial 
maturity result in a balancing force because of the development of 
resource scarcity and market saturation [8], which are typical system 
dynamic model patterns [9]. A similar pattern of resource scarcity, 
especially electric power, may slow down the exponential growth of the 
data center market as well. 

This article is structured as follows. First, previous research in the 
field of data center energy consumption is presented. After that, the 
system dynamic methodology is explained by which we model and 
simulate user driven data center energy consumption. This is followed 
by two results sections, one section about the design of the model and 
one section about simulations until 2030. We next discuss our results 
with outcomes of previous studies and present a list of approaches for 
coping with potential problems in the future. 

2. Literature review 

We studied a variety of future estimations of data center usage 
behavior, data center energy use, and electricity production capacity via 
a systematic literature search in Scopus, Web of Science and Google 
Scholar and present them in their sequence of publication. 

Hinton et al. [10] state that in 2011, the ICT sector is responsible for 
about 5% of the total electric power consumption in developed econo
mies. 1% of the total electric power consumption was caused by the 
Internet, but this percentage was expected to rapidly increase under the 
influence of increasing data access rates. This may become an untenable 
development, because the expected 10% efficiency gains will not 
compensate for the predicted 40% traffic growth [10]. Consequently, 
they express an urgent need for reducing data center power consump
tion when workload is low, further improving the energy efficiency of 
core routers, and the deployment of more energy-efficient access 
network technologies. 

Van Heddeghem et al. [11] analyzed the electricity consumption of 
ICT worldwide. They estimated that global electricity demand is 
growing slower than the electricity consumed by digital devices and 
infrastructure. They assess how ICT electricity consumption in the use 

phase has evolved from 2007 until 2012. Following their estimates, the 
yearly growth of communication networks, personal computers, and 
data centers is 10%, 5%, and 4% respectively, and thus is higher than the 
growth of worldwide electricity consumption in the same time frame 
(3%). The relative share of these three ICT products and services in the 
total worldwide electricity consumption has increased from about 3.9% 
in 2007 to 4.6% in 2012. 

For analyzing the volume of greenhouse gas emissions (GHGE), 
Belkhir and Elmeligi [3] estimated the energy needed for ICT component 
manufacturing, i.e., production energy (PE), which is a fixed single time 
emission per device produced, and use phase energy (UPE) costs, which 
is an annual recurring volume. A third parameter they use for estimating 
GHGE is the useful life (UL) of devices, which if shorter causes a more 
frequent rebuy and therefore more production energy consumption. 
Belkhir and Elmeligi [3] determined the UL and the installed base of 
each device. The combined data resulted in estimations that the ICT 
GHGE relative contribution could grow from roughly 1–1.6% in 2007 to 
exceed 14% of the 2016-level worldwide GHGE by 2040, accounting for 
more than half of the current relative contribution of the whole trans
portation sector. Their study also highlights the contribution of smart 
phones and shows that by 2020, the footprint of smart phones alone 
would surpass the individual contribution of desktops, laptops and dis
plays. Finally, they offer actionable recommendations for mitigating the 
ICT explosive GHGE footprint through a combination of renewable en
ergy use, tax policies, managerial actions, and alternative business 
models. 

The growing data center electricity demand is also discussed by 
Morley et al [12], who focused on determining the daily peak demand 
for data and therefore the peak of the electricity demand of data centers. 
These demand peaks are especially caused by the large volume of data 
transfer for video streaming and video interaction, i.e., user-to-data 
center IP traffic. Their study calculates that containing the overall 
growth in energy demand across digital infrastructures depends on more 
than technological efficiency alone; it also requires limiting the growth 
in traffic to at least keep in step with efficiency improvements, a balance 
which has not so far been the case. 

Much of this discussion has also been described and analyzed in a 
2015 paper of Andrae and Edler [13]. For the electricity usage of the 
total communication technology sector, they predicted an absolute rise 
from 2,000 TWh in 2010 to 8,000 TWh in 2030. Data centers’ energy 
usage alone would consequently grow from 200 TWh in 2016 to 2,967 
TWh in 2030. However, their predictions have high uncertainty and 
have been revised in 2019 to 974 TWh for data centers in 2030 [14]. 
Additionally, Andrae [15] expects 3,234 TWh in 2030 for the full 
Internet (i.e., fixed and mobile Internet, devices and WIFI). Andrae and 
Edler state that for the worst-case scenario, the different communication 
technology components —i.e., use and production of consumer devices, 
communication networks, and data centers— could use as much as 51% 
of global electricity in 2030 if not enough improvement in electricity 
efficiency of wireless access networks and fixed access networks/data 
centers is realized. In the worst-case scenario, communication technol
ogy electricity usage could contribute up to 23% of the globally released 
GHGE in 2030. These insights have been much debated by experts from 
the data center industry, who point at the efficiency gains by Moore’s 
law and improvements in data center infrastructure of about 20% 
annually [1], but the gains from Moore’s law flatten according to Shalf 
[2] and Markov [16], who predict Moore’s law to be fully out of order by 
2021, a view shared by Shahidi [17] later. 

Clearly, there is much diversity on these forecasts. Hintemann and 
Hinterholzer [4] state that in the “best case” the energy consumption of 
data centers can remain constant, but if the current developments 
continue, the energy consumption of data centers will double by 2030 
compared to 2019. 

The diversity of these predictions is large and calls for a transparent 
and public model that researchers and policy makers can use to work 
with their own assumptions. Additionally, such a model should not stick 
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at being at a top-down level but needs to open up the black box of data 
centers and allow predictions for different data center components and 
different usage categories of data centers. 

3. Methodology 

Our goal is to develop an energy forecasting model for global data 
centers, with a focus on data center usage impact. In contrast to natural 
science predictions, forecasting human behavior and usage of data 
centers is difficult as diverse economic, cultural, and technological de
velopments may change people’s preferences [18]. The strategic man
agement discipline, which also tries to understand longer term human 
behavior, therefore has developed so-called scenario development 
methods that are used to produce multiple competing but plausible 
scenarios of the future [19,20]. System dynamic models are thinking 
machines for answering “what if” questions about possible futures that 
are hard to create and experiment with in a non-virtual way [21,22] and 
aim at representing the nonlinear behavior of complex systems over time 
using variables that influence the flows (i.e., the volume changes) of 
stocks [23,24]. Non-linear systems have no proportionality and no 
simple causality between the magnitude of responses and the strength of 
their stimuli: small changes can have striking effects, whereas great 
stimuli will not always lead to drastic changes. This way of viewing and 
modeling is appropriate for many systems when multiple influences 
have reinforcing and balancing effects, which we assume in data center 
energy forecasting. 

There are many tools for system dynamics modeling, but throughout 
this article we will work with Insight Maker, which is a free-ware, Web 
2.0-based, multi-user, general-purpose, online modeling, and simulation 
environment. For introductions and illustrations of Insight Maker, the 
reader may be interested in [25,26] and the free interactive Insight 
Maker tutorial http://beyondconnectingthedots.com/. 

System dynamic modeler Insight Maker presents stocks, like mate
rials, customers, or money, graphically by rectangles. Flows are pre
sented by bolded solid lines with arrows that give the direction of the 
‘material’ flows. Variables are graphically portrayed by ovals; they can 
be dynamically calculated values that change over time or they can be 
constants, e.g., IP growth rates. Links are graphically shown by dashed 
lines with arrows that show the transfer of information between the 
different primitives in the model. Thus, we can express data center en
ergy system dynamics in a general top-down way by the Insight Maker 
language as we do in Fig. 1. In our data center usage impact model, we 
see a stock volume of application behavior as initiated by users as the 
start for all internet traffic and data center activities. 

In the top-down model of Fig. 1, we start with a certain stock of IP 

traffic expressed in Exabytes (EB) that correspond with different user 
applications. The IP traffic stock is annually increased by a growth factor 
and causes a certain level of electricity need not only for its own energy 
but also for the server workload and required storage. Additionally, this 
processing, traffic and storage produces heat as a by-product and thus 
needs cooling. Besides of this need for cooling, a data center’s infra
structure has energy needs for its building, light, security, and other 
building-associated energy needs. Moore’s law is supposed to directly 
reduce the energy needs of servers and this variable is presented as a 
converter variable in our model, i.e., we define the level of Moore’s law 
influence differently for different years between 2016 and the end of the 
simulation. We next can determine the share of electricity consumption 
of the data centers per year by comparing the energy needs of the data 
centers with the total global electricity production capacity, which we 
believe to be growing each year with a certain percentage. In system 
dynamic terms, we may see a growth of energy consumption of data 
centers by increased server loads, traffic, and storage, but we may also 
see balancing mechanisms like Moore’s law and infrastructure efficiency 
gains. 

Clearly, such a top-down model is simplistic as more external factors 
may influence data center energy needs and different components of a 
data center will use different levels of energy. Consequently, in the next 
sections we present a more bottom-up model for data center energy 
needs. Such a bottom-up approach will model energy needs per data 
center component (i.e., server, network, storage, and infrastructure) and 
summarize these results for a data center total. Per component also other 
variables than IP traffic may cause its energy need. Besides of further 
elaborating on the structure of such a model, values for variables, stocks 
and flows will have to be found from reliable information sources, like 
[1]. To implement our focus on application behavior, we added Cisco 
Systems [27] data on workloads per application, and we added data 
from Aslan et al. [28]. to cover data on IP traffic between data centers 
and between data centers and users. Very likely, these values will be 
open for debate and thus a point prediction will be much under debate. 
Consequently, as common in system dynamic studies [9], the model will 
be used to calculate-through multiple usage growth scenarios. This 
article thus will further continue with the design of our model in Section 
4, the simulations in Section 5, and finally a discussion and conclusions 
Sections 6 and 7. 

4. Design of a system dynamic model for data center energy 
forecasting 

For developing a bottom-up model, we further decompose the high- 
level data center model of Fig. 1, and further describe each of its 

Fig. 1. A conceptual model for Internet traffic, energy needs, and CO2 emissions.  
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components, i.e., application behavior, servers’ application workload, 
networking, storage, and infrastructure. At the end of this section, we 
integrate the resulting sub-models into one integrated model for fore
casting the global data centers’ electricity consumption (Fig. 2). 

4.1 Application behavior parameters 

Application behavior consists of activities like the use of data pro
cessing servers that cause workloads, the storage of data, and data 
transfers within and between data centers. Indirectly, workloads cause 
needs for cooling and other infrastructure services. Following Cisco 
Systems [27], we identify 8 types of application behavior. The first 4 are 
consumer-oriented behaviors consisting of search, social networking, 
video streaming and several other consumer apps. The last four are 
(smart) industry behaviors, consisting of cloud-ERP and business ap
plications, databases, analytics and IoT, collaboration software and 
computations. Table 1 gives a selection of the Cisco Systems data for 
data center application workload, storage, and networking from 2016 
until 2021 for consumer and business usage. 

The annual growth rates (CAGR’s) for application workloads, stor
age, and networking are 18.6%, 31.2% and 24.7% respectively. These 
parameters will be further detailed per data center component in the 
following subsections. 

4.2 Servers’ application workload parameters 

Server electricity needs are caused by the volume of workloads that 
data centers process and the total number of servers needed for these 
processing workloads. Our assumption here is that a server disk runs at 
full capacity, but we adjust the watt used per server following [29] to 
compensate for idle time. To calculate the electricity consumption, the 
value of electricity consumption of a server disk is needed. The relation 
between the total volume of server power consumed depends on the 
total number of workloads, which is increasing as a consequence of more 
intensive use of data processing servers and the productivity of servers 
which enables more workload to be processed by the same unit of server. 

Cisco Systems [27] identified 42.1 million of workloads for tradi
tional data centers with a negative growth rate of 5% on the total 
amount of workloads, which is consistent with the shift away from 

traditional data centers in the industry. Traditional data centers have 2.4 
workloads per server disk and the efficiency growth rate of workloads 
per server is 6.9%. Cloud data centers had 199.4 million of workloads in 
2016 and a growth rate of 22%. The number of workloads per server disk 
are 8.8 and efficiency growth rate is 8.5%. This would mean that cloud 
data centers are more efficient in their server services than traditional 
data centers. The number of workloads also differs between applications 
(see Table 2). Shehabi et al. [29] found different industry electricity 
consumption parameters for different server ranges, where traditional 
data centers, –i.e., those datacenters run internally by an organization 
and mostly with a size of less than 2,000ft2 in size – on average had 
severs that consume 229.84 W per server in 2016, which increased by 
3.6% per year since then. Non hyperscale cloud data centers, which have 
a size of between 2,000 and 20,000ft2 mostly run by specialist data 
center services providers, have servers that use on average 302.75 W per 
server in 2016 and became 1.9% more efficient per year since then. For 
the very large scale hyperscale data centers, these number are respec
tively 253.49 and − 0.4%. 

4.3 Networking parameters 

The total data center data traffic combines the traffic between data 
centers and users, data centers and data centers, and within data centers. 
The first two is named IP traffic. According to Cisco Systems [27], mo
bile traffic will seven-fold between 2017 and 2022, assuming that there 
will be 1.5 mobile devices per capita. By 2022, 5G will generate 2.6 
more traffic than a 4G connection on average [27]. Using these insights, 
Cisco predicts a compound annual IP traffic growth (CAGR) of 22%, 
starting with 1,153 EB for 2016. Besides, Masanet et al. [1] base the 
electricity consumption of data center networking on the number of data 
center networking ports used. However, there is more involved in 
networking energy usage of data centers than port traffic power (see 
Table 3). 

Aslan et al. [28] searched for a value for the electricity consumption 
of IP traffic that takes both the time used and the data volume. They 
conclude an electricity consumption of 0.06 TWh/EB that also decreases 
by half every 2 years [28]. When taking the electricity consumption of 
Aslan et al. and the total IP traffic according to Cisco Systems, we 
calculate (998 + 679) EB with 0.06 being the TWh/EB factor [28], 

Fig. 2. Simulation model for global data center electricity consumption.  
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resulting in 100.62 TWh used for IP traffic towards data centers for 
2016. Cisco estimates an average growth rate of 25.2% for data-to-user 
traffic and 32.7% annual growth rates for data center-to-data center 
traffic. 

4.4 Storage parameters 

Data center storage demand in exabytes is determined by multi
plying the number of exabytes per workload with the application 
workloads requested and dividing this by the capacity per driver (no idle 
capacity assumed). Masanet et al. [1] give that different applications 
have different storage volume needs, where search has the lowest stor
age need of 23 EB with an annual growth rate of 26.7% until 2021, and 
social networking and video streaming with the highest growing storage 
needs of 35.6% and 37% annually until 2021 (Table 4). Regarding an 
estimate of actual energy costs of storage, the type of storage medium is 
important. Shehabi et al. [29] mention a 40–50% division of HDD and 
SSD drivers in data centers. The energy consumption of SSD drives re
duces each year by about 2.3% and for HDD it reduces by 5.3% and SSD 
start with an average of 6.0 W per drive in 2016 and HDD starts with an 
average of 8.1 W per driver. The number of SSD increases with 9.5% 
annually and the number of HDD decreases by 2.9% annually. 

Table 1 
5-year CAGR for datacenter workload, storage and networking.  

Application workload in millions 2016 2017 2018 2019 2020 2021 5-year CAGR 

Consumer total 58 77 98 115 133 152 21.3% 
Business total 184 226 274 318 362 416 17.7% 
Total 242 303 372 433 495 568 18.6% 
Application storage in EB 2016 2017 2018 2019 2020 2021 5-year CAGR 
Consumer total 143 193 265 342 455 591 32.8% 
Business total 520 697 915 1,156 1,516 1,982 30.7% 
Total 663 890 1,180 1,498 1,971 2,573 31.2% 
Application network in EB 2016 2017 2018 2019 2020 2021 5-year CAGR 
Consumer total 4,501 6,156 8,052 10,054 12,401 15,107 27.4% 
Business total 2,319 2,931 3,505 4,070 4,716 5,449 18.6% 
Total 6,820 9,087 11,557 14,124 17,117 20,556 24.7% 

Source [27]. 

Table 2 
Server parameters.  

Class Sub-class Year 
2016 

5-year 
CAGR 

Source 

Application workload 
(millions) 

Search 10 14.9% [27] 
Social Networking 12 25.9% 
Video Streaming 18 23.6% 
Other consumer 
apps 

18 18.5% 

ERP & business 
apps 

57 18.6% 

Database, 
analytics, IoT 

33 21.4% 

Collaboration 48 14.4% 
Compute 46 17.0% 
Total 242 18.6% 

DC type workload 
(millions) 

Traditional 42.1 − 4.8% [27] 
Cloud 103.9 12.9% 
Hyperscale 95.5 29.2% 
Total 242 18.6% 

DC type workload 
(frequency) 

Traditional 17% − 19.7% [27] 
Cloud 43% − 4.8% 
Hyperscale 40% 8.9% 

Server productivity Traditional 2.4 9.6% [27] 
Cloud 8.8 8.4% 
Hyperscale 8.8 8.4% 

Average server power Traditional 230 3.6% [29] 
Cloud 303 − 1.9% 
Hyperscale 253 − 0.4%  

Table 3 
Networking parameters.  

Class Sub-class Year 
2016 

5-year 
CAGR 

sources 

Application traffic in 
EB 

Search 776 20.7% [27] 
Social Networking 931 32.3% 
Video Streaming 1,397 29.9% 
Other consumer 
apps 

1397 24.5% 

ERP & business 
apps 

718 19.6% 

Database, analytics, 
IoT 

416 22.3% 

Collaboration 605 15.3% 
Compute 580 17.9% 
Total 6,820 24.7% 

Network traffic in EB Data center to user 998 25.2% [27] 
Data center to data 
center 

679 32.7% 

Within data center 5,143 23.4% 
Total 6,820 24.7% 

Traffic energy rate in 
TWh/EB 

Data center to user 0.06 − 28.5% [28] 
Data center to data 
center 

0.06 − 28.5% 

Within data center = port power. 
Average port power 

in W/port 
Traditional 1.71 − 5.9% [30] 
Cloud 2.58 − 9.5% 
Hyperscale 3.19 − 6.5% 

Ports per server Average 4.53 1.3% [30]  

Table 4 
Storage parameters.  

Class Sub-class Year 
2016 

5-year 
CAGR 

Source 

Application 
storage in EB 

Search 23 26.7% [27] 
Social Networking 29 37.0% 
Video Streaming 48 35.6% 
Other consumer apps 43 29.4% 
ERP & business apps 148 31.5% 
Database, analytics, IoT 128 30.6% 
Collaboration 90 33.3% 
Compute 154 28.2% 
Total 663 31.2% 

Driver capacity in 
TB/drive 

Solid state drives (SSD) 1.38 35.3% [30] 
Hard disk drives (HDD) 3.78 27.0% 

Internal storage 
proportion 

Operational energy as a 
fraction of storage energy 

28.5% − 3.6% [30] 

Driver capacity 
frequency 

Solid state drives (SSD) 
(=100%-HDD%) 

19% 9.5% [30] 

Hard disk drives (HDD) 81% − 2.9% 
Driver power in 

W 
Solid state drives (SSD) 6.0 − 2.3% [30] 
Hard disk drives (HDD) 8.1 − 5.3%  
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4.5. Infrastructure parameters 

Infrastructure energy needs consist of all data center energy needs 
that are not directly caused by server processing, storage, or network 
activities. Some of the main infrastructure components are cooling, 
light, security and building heating. The most common measure for data 
center infrastructure energy performance is power usage effectiveness 
(PUE) measured by the total amount of energy used by a data center 
divided by the energy used by its IT equipment [31]. Data centers differ 
highly per PUE, as given in Table 5. Much infrastructure energy costs 
reductions are gained by the generation of economies of scale, but there 
is no proof that this will continue in the same speed as for 2010–2018, 
and PUE’s of 1.2 for hyperscale data centers cannot go better as 1.0, 
which would indicate zero infrastructure energy consumption. 

4.6 Total data center energy consumption calculation 

The total data center energy usage is a sum of its sub-model outcomes 
and their interaction, reinforcements, and balancing effects. We calcu
late the total energy costs with the complete model of Fig. 2. The users’ 
behavior implicates that the data centers’ electricity needs arise from 
the number of workloads demanded by customers and business practi
tioners. Therefore, we first calculate the storage capacity and corre
sponding IP traffic required to process one workload only. Second, we 
aggregate all these workloads to determine the impact in terms of server, 
storage, and network activities. Finally, the PUE values from Table 5 are 
added to conclude the total data centers’ electricity needs with the in
frastructures’ share. The share of data center electricity consumption is 
calculated by dividing the predicted datacenter electricity needs for 
each scenario with the product of the actual electricity production vol
ume for 2016 of 25,000TWh and the annual 2.5% growth factor of 
electricity production. Electricity production volumes and growth rates 
are taken from [32]. 

5. Simulations 

The simulation model in Fig. 2 is used for two objectives. First, we 
predict how the data center electricity demand evolves if both today’s 
technological and behavioral developments remain, i.e., the baseline 
model. Second, the model allows us to run a variety of scenarios and 
sensitivity analyzes. In Section 5.1, we first elaborate on the model’s 
input parameters. The results of the baseline model are presented in 
Section 5.2, while a sensitivity analysis regarding the user’s application 
behavior is discussed in Section 5.3. Finally, we propose two alternative 
scenarios referring to Moore’s law and the rise of the Industrial IoT in 
Section 5.4. 

5.1. Simulation settings 

For simulating the future energy consumption of data centers, we use 
a time window until 2030, because the electricity suppliers’ demand 
response time is between 5 and 8 years [33]. Additionally, we expect 
much of energy scarcity issues to show up after 2025, as will be shown 
later in the simulations. For these simulations, we present the input 
values for all variables of our model in Tables 2–5. Each variable is 
associated with an initial value originating from 2016, and a 5-year 
CAGR value. 

5.2. Data center energy forecast – Baseline model 

We simulate the data centers’ energy consumption for the period 
2016–2030 with the model of Fig. 2 and assuming that future techno
logical and behavioral trends are maintained. Fig. 3 gives the annual 
data center energy consumption (in TWh) for the baseline model. 

The majority of the applications’ workloads are processed by 
hyperscale servers, increasing their relative share from less than 50% in 
2016 to over 80% in 2030.The total workload starts with 242 million in 
2016 and ends with 2,760 million in 2030. For traditional, cloud and 
hyperscale, the starting values for 2016 electricity consumption are 
respectively 35.48, 25.21, 29.25 TWh and move to 9.18, 32.29, and 
177.59 TWh in 2030. 

The data centers’ networking is represented by IP traffic and will 
become larger over time [27], starting with 5,143 EB in 2016 and 
growing to 97,640 EB in 2030. The data centers’ external IP traffic will 
also accelerate growing from 998 EB for data center-user traffic and 679 
EB data center-data center traffic in 2016 to 23,210 EB and 35,650 EB in 
2030 respectively. Because of the declining energy costs of the data 
centers’ external IP traffic (about 28.5% per year) and the increased 
energy efficiency of server ports (about 7.3% annually), the high traffic 
growths do not contribute much to the energy needs of data centers. The 
different data centers however do have different total energy costs 
internally due to the global workload allocations, for hyperscale we 
predict about 5.02 TWh in 2030, for traditional and cloud respectively 
0.10 and 0.48 TWh. 

The increase in data storage demand is for traditional, cloud and 
hyperscale data centers respectively from 118.93, 235.63, and 309.14 
EB in 2016 to 368.47, 5,023.40 and 24,840.67 EB in 2030. This sharp 
increase in storage demand does not result into a rising electricity de
mand for storage devices, mainly due to the implementation of more 
energy efficient SSD devices. Consequently, the storage-related elec
tricity consumption drops from 18.33 TWh in 2016 to 15.23 TWh in 
2030. Because of the global workload allocations, hyperscale data cen
ters consume the largest part of the storage related energy consumption. 
Hyperscale data centers will consume 12.72 TWh in 2030, while tradi
tional and cloud data centers only consume 0.13 and 2.39 TWh 
respectively. 

The data centers’ total energy predictions thus differ for traditional, 
cloud and hyperscale data centers and goes from 83.73, 53.98, and 
48.06 TWh in 2016 to 17.16, 50.71, and 220.32 TWh in 2030. The global 
data centers’ energy consumption thus will grow with approximately 
12% in between 2016 and 2030, if (and only if) today’s technological 
and behavioral trends remain unchanged for the upcoming decade. 

5.3. Sensitivity analysis of the baseline model 

A major contribution of our simulation model is the association of 
the data centers’ electricity consumption with the users’ application 
behavior. A comparison of multiple Cisco Systems forecasts indicates 
that estimations of users’ demand for data center servers depend on both 
technological and behavioral trends [34,34–37]. The observed sto
chasticity of the user’s application behavior makes it hard to give a 
reliable estimate of the data center electricity consumption in 2030 (see 
Table 7). However, we can derive the sample variance and standard 
deviation for the model’s CAGR values by comparing Cisco Systems 
behavioral forecasts over several years [34,34–37]. This procedure en
ables us to simulate the baseline model with a randomized set of growth 
values for the users’ workloads, IP traffic, and storage activities per 
application. 

The growth projections in Table 7 allows us to randomly generate a 
future scenario by slightly altering the users’ application CAGR values. 
For each application, we add a random error value to the application’s 
average CAGR values. The error is normally distributed with μ = 0%, 
and either σ = 3.163%, σ = 2.091%, or σ = 1.469% for the application’s 
workloads, IP traffic, or storage activities respectively. The result of a 

Table 5 
Infrastructure parameters.  

Average PUE value 2016 5-year CAGR source 

Traditional 2.10 − 1.0% [27] 
Cloud 1.66 − 1.0% 
Hyperscale 1.21 − 0.5%  
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Monte Carlo simulation with 10,000 replications is given in Fig. 4. The 
sensitivity analysis results into a 95% confidence interval of [267, 422] 
TWh for the global data centers’ electricity consumption. Our pro
jections are similar to the estimations made by [3] while the forecasts 
from [38] are more fluctuating. The discrepancy between the forecast 
results is mainly explained by the assumptions made regarding the 
technological developments. Section 5.4 presents alternative scenarios. 

5.4. Scenarios 

The main power of our model is to run scenarios and validate several 
“what-if” hypotheses. In this section, we discuss two alternative sce
narios for the baseline model:  

• Scenario 1: End of Moore’s law (Section 5.4.1);  
• Scenario 2: The rise of the Industrial IoT (Section 5.4.2). 

Table 8 gives the differences in data center electricity demand for the 
baseline model and the two scenarios, including the nonlinear trends of 
data centers’ share of the available electricity. We will elaborate on 
these results in the following subsections. Note that the simulation 
model is published online for other researchers to use the model for 
other scenarios as well (e.g., the introduction of 5G networks, the rise of 
edge and/or fog computing, and the implementation of smaller public 
service providers,). 

5.4.1. Impact of Moore’s law 
As stated earlier, Moore’s law is expected to stop having an influence 

between 2021 and 2023 [2]. We will adjust the server productivity 
CAGR values to slow down the annual energy decline per same pro
cessing unit. Therefore, the possible end of Moore’s law is modeled as a 
declining trend from 2016 (25% efficiency increase) until 2023 (zero) 
following [2]. The impact of ending Moore’s law is given in Fig. 5, 
including a recalculating of data center energy needs. In 2016, servers 

Fig. 3. Energy consumption per end-user category predicted with the baseline model.  

Table 7 
Cisco Systems forecasts of the users’ application behavior [34,34–37].  

Workload in millions 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 5-year CAGR 

Forecast in 2011 57.5 70.2 85.8 107.4 131.2 154.8 – – – – – – 21.9% 
Forecast in 2012 – 71.1 86.6 108 131.6 155.1 180.6 – – – – – 20.5% 
Forecast in 2013 – – 83 99.3 119.5 140.4 163.2 188.2 – – – – 14.5% 
Forecast in 2014 – – – 108.3 125.2 143.6 163.4 184.8 211.5 – – – 14.3% 
Forecast in 2015 – – – – 129.5 161.8 194.2 232.7 276.6 319.7 – – 19.8% 
Forecast in 2016 – – – – – 175 225 290 355 410 465 – 21.6% 
Forecast in 2018 – – – – – – 242 303 372 433 495 568 18.6% 
IP traffic/ workload in EB 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 5-year CAGR 
Forecast in 2011 19.8 23.5 26.1 27.5 28.5 30.7 – – – – – – 9.1% 
Forecast in 2012 – 24.7 29.5 30.1 31.3 33.8 36.8 – – – – – 8.3% 
Forecast in 2013 – – 30.9 33.6 35.3 37.1 39.1 41.1 – – – – 4.8% 
Forecast in 2014 – – – 28.3 30.6 32.9 35.5 38.3 40.5 – – – 7.5% 
Forecast in 2015 – – – – 26.6 27.3 28.9 30.0 31.0 32.4 – – 4.0% 
Forecast in 2016 – – – – – 26.7 29.0 29.7 30.3 31.5 33.0 – 4.3% 
Forecast in 2018 – – – – – – 28.2 30.0 31.1 32.6 34.6 36.2 5.1% 
Storage/workload in EB 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 5-year CAGR 
Forecast in 2016 – – – – – 2.2 2.4 2.7 3.0 3.4 4.0 – 12.7% 
Forecast in 2018 – – – – – – 2.7 2.9 3.2 3.5 4.0 4.5 10.6% 

Note: Users’ application behavior in million workloads, storage demand per workload EB, and corresponding IP traffic per workload EB. 
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are the largest energy consumers in data centers (approximately 
31.40%), but the end of Moore’s law will increase the server’s electricity 
demand further. Data centers will have to expend the installed server 

base in order to process the increasing number of workloads. The lack of 
processing efficiency gains results in a total server energy consumption 
of 491 TWh in 2030, while only 219 TWh is required if Moore’s law 
continues existing during the upcoming decade. Therefore, the server 
category represents 74.66% (or 68.27%) from the global data centers’ 
electricity demand in case Moore’s law ends (or not). Doubling the 
server’s energy consumption will inflate the data centers’ total energy 
need up to 658 TWh in 2030 (see Fig. 5), which will also increment the 
data centers’ share in the global energy consumption from 1.15% up to 
1.86% in 2030. 

The median electricity forecast in Fig. 5 relies on the assumption that 
the server’s productivity improvements will start declining in between 
2016 and 2023, as indicated by [2]. Most scientists predict that Moore’s 

Fig. 4. A sensitivity analysis of the baseline model, including 10,000 replications. Note: Including 75%, 95%, and 99% confidence intervals for the randomized user 
profiles. Three benchmark values from other researchers [1,38] are added for comparison. 

Table 8 
Comparison of the data center electricity forecasts per scenario.  

Electricity need Baseline model Scenario 1 Scenario 2 

Electricity need 2016 286.42 TWh 286.42 TWh 286.42 TWh 
Electricity need 2030 320.87 TWh 658.03TWh 364.00 TWh 
Relative difference +12.03% +129.74% +27.08% 
Electricity share 2016 1.15% 1.15% 1.15% 
Electricity share 2030 0.91% 1.86% 1.03% 
Relative difference − 20.72% +62.59% –10.06%  

Fig. 5. Data center electricity needs effects of ending Moore’s law.  
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law will end quite soon due to technical limitations, but it remains un
certain when the end of Moore’s law will take place. Therefore, we 
perform a Monte Carlo simulation with 10,000 replications where the 
ending of Moore’s law is generated randomly. This means that the first 
year of the server’s productivity decline is uniformly distributed with U 
(2016, 2030), while the point of zero efficiency gains is uniformly 
distributed with U(“Year start decline”, 2030). The server’s productivity 
will drop linearly once the decline is initiated. This procedure results 
into a 95% confidence interval of [326, 713] TWh for the global data 
centers’ electricity consumption, if and only if the end of Moore’s law is 
randomly distributed. The inclusion of the uncertainty associated with 
the users’ application behavior will slightly alter both lower- and upper 
bounds (see Section 5.3), resulting into a 95% confidence interval of 
[307, 776] TWh. This means that the end of Moore’s law has a signifi
cant worse impact on the global data centers’ electricity forecast in 
comparison with the alternative scenarios for the users’ application 
behavior. 

5.4.2. Rise of the Industrial IoT 
In 2015, only 15 billion of the world’s 1.5 trillion physical objects 

were connected to the internet [39]. During the upcoming decade, we 
expect to see a sharp rise in the number of connected devices, due to 
Industry 4.0 IoT developments [40]. The number of devices connected 
to the internet, i.e., IoT, grew with 333% between 2012 and 2015 [39], 
which is equivalent to a CAGR value of 49.33%. This high growth per
centage is consistent with recent predictions of IoT growth. For example 
IDC estimates data generated from connected IoT devices will grow from 
18.3 ZB in 2019 to 73.1 ZB by 2025, which is about a 400% increase in 5 
year and a CAGR of about 32% (https://www.idc.com/getdoc.jsp?cont 
ainerId = prAP46737220). In the baseline model, we mentioned a 
CAGR for workloads of databases, analytics, and IoT devices altogether 
of + 21.4% (see Table 2 from [27]). We adjust the CAGR values for 
database, analytics, and IoT application workloads to simulate the rise of 
the Industrial IoT by slowly and linearly increasing this growth per
centage up to the 31.91% in 2030, which represents the growth factor of 
the IoT’s installed base given by [39]. 

The workloads released by physical objects have to be processed by 
data centers due to the cloud-based architectures installed, resulting into 
a total of 249 TWh consumed by the installed server base in 2030. In 
comparison with the baseline scenario, the Industrial IoT paradigm will 

cause the global server electricity consumption to grow with 13.82% till 
2030. More servers also require more internal traffic and larger sup
porting infrastructures, which results into an additional electricity 
consumption of 1 TWh (+12.39%) and 9 TWh (+19.02%) respectively. 
The increased use of IoT devices will also inflate the storage related 
energy demand for 2030 (+13.03%) because business related applica
tions require more database capacity in comparison with user applica
tions. The baseline scenario predicts that storage devices will consume 
less electricity due to energy efficient storage devices, but the rise of the 
Industrial IoT will cause the storage related electricity consumption to 
go up again, mainly due to the increased demand for storage capacity in 
total. Therefore, we can conclude that the Industrial IoT will result in an 
exponential growth of data center electricity consumption if business 
applications still rely on cloud or hyperscale-based architectures. These 
growth projections will accumulate towards a global data center energy 
consumption of 364 TWh in 2030 (see Fig. 6), while the data centers’ 
share in the global energy consumption will drop from 1.15% down to 
1.03% in 2030. 

The benefits from the Industrial IoT seem to be very promising [39], 
but it remains unknown when business practitioners will implement the 
required platforms to support their daily operations at full scale. For 
example, [43] revealed that number of IoT devices grew with a CAGR of 
49% between 2012 and 2015, while [41] predicts a lower CAGR value 
(+19%) for the number of machine to machine connections. We will 
embrace this uncertainty into our model by randomly generating a 
growth factor for the CAGR value associated with the Industrial IoT. A 
uniform distribution is used for the generation of a yearly growth per
centage, ranging from today’s CAGR value (+21%) up to a maximum 
CAGR value found in literature (+49%). This procedure results into a 
95% confidence interval of [322, 489] TWh for the global data centers’ 
electricity consumption, if the growth expectations for Industrial IoT 
applications are randomly distributed. It appears that the IoT’s addi
tional energy demand is quite modest in comparison with the 95% 
growth projections of the baseline model (see Fig. 4, or the discussion in 
Section 5.3). However, the inclusion of all uncertainty associated with 
the users’ application behavior will significantly stretch up the gap in 
between the lower- and upper bounds, resulting into a 95% confidence 
interval of [290, 577] TWh. Therefore, the rise of the Industrial IoT 
could significantly speed up the global data centers’ electricity needs for 
2030, especially if businesses require more server and storage capacity 

Fig. 6. Data center energy needs effects of the Industrial IoT.  
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for each IoT device installed. 

5.4.3. Combined effects of Moore’s law and IoT 
The combined effects of an end to Moore’s law and an increase of IoT 

applications for our model and using our expected behavioral usage 
trends is given in Fig. 7. Both scenarios will significantly increase the 
number of servers required to process all workloads. In 2030, 74% of all 
the global data centers’ electricity is only consumed by servers. The 
infrastructure category is also responsible for a large part of the total 
energy consumption (17%), while the impact of all network and storage 
categories is quite negligible (9% only). Our sensitivity analysis reveals 
that the future impact of the data centers’ electricity consumption is 
vulnerable to both technological and behavioral developments, since the 
95% confidence interval of [343, 1031] TWh for all three scenarios is 
relatively wide. The end of Moore’s law is the main cause for the 
exponential growth projections, while the uncertainty in the behavioral 
usage trends explains the discrepancies found in the literature (e.g., the 
benchmark values reported by [2,39]). 

6. Discussion 

Our study had to work with a number of assumptions and simplifi
cations, which may be studied in further. 

One assumption is our focus on global data as a relevant approach for 
any prediction. In reality, data centers tend to become more concen
trated in very large cloud centers, named hyperscale centers, which will 
do most of the data center services now and especially in the future. 
Because hyperscale centers have very low PUE’s, this may be an 
economically good development but also implies that energy con
sumption of all data centers is highly local, especially in highly indus
trialized geographical areas. This may make the percentage of electricity 
consumption in these areas very high and resulting in large energy de
livery problems. For example, in the Amsterdam region, data centers’ 
growing demand for electricity has become problematic ([42;43] 
Accessed: 26.01.2020.) Any percentage of electricity capacity that data 
centers claim make the share smaller for other increasing electrifications 
of life, like traffic and heating. The difference in time horizons for the 
rapidly developing data center industry and the less agile response of 
electricity distribution channels (requiring large and complex infra
structure changes that may take about 8–10 years) is a challenging 

practical planning problem with as yet little academic interest [29,44]. 
A second assumption was our limitation to server power predictions 

with only average server power values. Although we follow Shehabi 
et al. [29] in this by calculating the average sum product of all server 
types’ wattages per data center type, server power usage may be highly 
different over a day. Working with usage peaks thus will be more real
istic and is an important subject for further research. Morley et al. [12] 
argue for a focus on peak load estimations, which are stronger predictor 
of energy capacity needs than the annual volumes we discussed in here. 
In contracting with electricity suppliers, data centers have to negotiate 
electricity for their peak moments to remain fully operational and thus 
in fact needs much more than the average. Economies of scale and vir
tualization are important developments that reduce the total electricity 
demand of data centers. 

A third assumption is our simplification on IoT and related to that 5 g 
networks. IoT is expected to further increase the usage of the Internet in 
an yet unpredictable way [45,46]. 5 g could result in less data travel 
distances and may reduce the load for data centers by edge computing, 
but at the same time will require data processing in more decentralized 
units with less efficient electricity usage. We hypothesize that data 
centers will remain their central position in IT infrastructures because of 
their ability to exploit economies of scale (especially cooling, UPS and 
processing virtualization) [1]. 

A fourth assumption is our limitation to data centers. IDC [47] pre
dicts the size of the global datasphere – i.e., the total volume of digital 
content stored on core, edge and endpoint computing locations and 
devices – to grow from 33 Zettabyte (ZB) in 2018 to 175 ZB in 2025. 
Compared to data center storage volume, which is about 1.180 ZB in 
2018, 31 ZB in 2030 (CGAR of 31.31%), information storage and 
possible related traffic seems to be just a small part of the total size of 
data stored, processed, and shared between all the possible electronic 
device we have nowadays. 

7. Conclusions and further considerations 

Our research question “How will future data center energy demand 
evolve as a consequence of its growing usage?” now is answered by a 
simulation model and a set of simulation parameters found from the 
literature. We expect a combined growth of data center electricity needs 
of 286 TWh in 2016 up to 321 TWh in 2030, if today’s technological and 

Fig. 7. Effect of both Industrial IoT and Moore’s law on data center electricity consumption.  
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behavioral trends remain the same. The end of Moore’s law results in a 
total of 658 TWh for 2030, and an increase of the global data centers’
share electricity consumption from 1.15% in 2016 to 1.86% in 2030. 
The rise of Industrial IoT applications may consume a total of 364 TWh 
(about 1.03%) in 2030. Moore’s law and IoT combined cause data center 
energy needs going up to 752 TWh in 2030, and about 2.13% of global 
electricity available. However, looking into the future is difficult and 
must be accompanied with uncertainty levels, and thus we performed 
Monte Carlo simulations with 10,000 replications for all the baseline, 
Moore’s law, IoT, and combined scenarios. The outcomes for the aver
ages, lower and upper bounds of these scenarios is given in Table 9. 

Our sensitivity analysis in Table 9 reveals that the future impact of 
the data centers’ electricity consumption is vulnerable to behavioral 
usage trends, since the 95% confidence interval of [343, 1031] TWh is 
relatively wide. We conclude that the global data centers’ future energy 
demands are kept reasonably constant due to technological innovations, 
even when both consumers and business workloads seem to grow 
exponentially during the upcoming decade. However, the end of 
Moore’s law will most likely cause an exponential growth of the data 
centers’ electricity consumption, while the uncertainty in both techno
logical and behavioral developments explains the discrepancies found in 
today’s literature (e.g., the benchmark values reported by [2,39]). 

We further discuss the academic contributions of this article and next 
the challenges for the future from a data center supply and a data center 
usage perspective. 

7.1. Contribution to the literature 

The goal of this article is to discuss the impact of user demand 
growths for data center electricity needs. The simulation of this model 
shows exponential growths of data center usage. This results in about 
approximately 2 or 3 times more energy needs in 14 years. This insight is 
less than Andrae [14] and Belkhir and Elmeligi [3] who predicted about 
2,000 TWh for 2030 but more than Borderstep who predict a bit less 
than 1,000 TWh for 2030. Whatever the differences in numbers, we 
developed a system dynamic model on basis of existing literature that 
defined the stock, flows and variables that determine the outcome of 
TWh from data center usage. This model is also publicly available via 
this publication [Note: to remain anonymous, we publish the link after 
acceptance of this article; Insight Maker file though is available] and can 
be used by any researcher or decision maker with alternative parameters 
and settings to replicate our findings. Instead of comparing estimates, 
our work goes into what is behind estimates by a transparent simulation 
model based on state-of-the-art literature. 

Two alternative approaches to estimating electricity consumption of 
data centers and communication technology result in comparable find
ings but have a different dependent variable, i.e., not only electricity 
consumption but greenhouse gas estimations (GHGE) and a broader 
scope, i.e., not only data centers but also other components of the 
Datasphere. For example Belkhir and Emelgidi [3] have focused on the 
production and utilization of electronic devices. They state that the 
production of devices is also highly influenced by their life cycle length 
and thus is responsible for additional energy usage and CO2 emissions, 
but the main part is the actual number of devices and its intensity of use. 

Data center utilization in their model is only one part of the energy costs 
of use, and as addition to ecological effects they extend their impact 
analysis on greenhouse gas emissions (GHGE) instead of CO2 alone. 
Their analysis predicts a growth of GHGE effects of communication 
technologies from a bit more as about 1 to 1.6% in 2007 to about 14% of 
the 2016 vol in 2040 in 33 years in 14 years for data center CO2 emis
sions according to our prediction. These analyses may be hard to 
compare because CO2 is only one part of all GHGE and Belhir and 
Emelgidi also include the manufacturing and usage of smaller devices, 
like smart phones, in their analysis. Although both analyses indicate 
alarming GHGE effects, we kept this out of our analysis because the 
calculation and simulation of GHGE implications of electricity produc
tion requires an intensive and complex additional study on a subject that 
is highly influenced by new energy generation technologies. 

Going more in depth on user behavior, we further describe the de
mand and supply sides of data center services in the following sections. 

7.2. Data center supply perspective implications 

Data centers are highly technological and innovative organizations. 
Especially regarding their electricity consumption, they have high in
centives to innovate as about 70% of their costs contain the electricity 
bill (https://info.siteselectiongroup.com/blog/power-in-the-data-ce 
nter-and-its-costs-across-the-united-states, accessed April 2, 2020). 
This study has kept the technological side of data centers as a given but 
important technological innovations may make this become irrelevant. 
The following innovations have been mentioned in the literature may 
impact our forecasts of the coming decade:  

1. Photonic computing is especially seen as contributing to very low 
energy costs of data transmission and data processing [2]. Cyber- 
optic transmission is already common at many places but photonic 
data processing is still met with controversy and doubts regarding its 
applicability [48]. The possible contribution of photonic computing 
thus needs further research.  

2. Immersion computing allows all processing units to work in a basin 
of oil, resulting in low levels of heat production and the reduction of 
cooling costs of data centers by about 90% [49]. This technology is 
still in an experimental stage but could be fully operational within 
the next 5–10 years. The contribution to energy costs however is 
limited to reducing infrastructure cooling costs that may be less than 
20% of the total energy costs of a modern data center [1]. 

3. Quantum computing may expand our ability to solve combinatori
cally complex problems in polynomial time, but it will not be much 
good for word processing or graphics rendering [2]. The technology 
itself will probably become available in the mid of this decade, but its 
application opportunities are restricted [50].  

4. Instead of thinking solely about having all data stored and processed 
in central cloud data centers, much data processing is better done on 
decentralized edge units in combination with 5 g communication 
[40]. This will reduce the energy costs of central data center servers 
and networking but will reduce the opportunities of exploiting 
economies of scale that are easier to realize via large data centers. 
Edge computing is also less useful for data transmissions that will 
have to go via the Internet core, like large scale video services and 
social media, but will be especially useful for regional smart industry 
and transportation development [51]. Edge computing also has an 
energy costs and it is not sure if edge processing is more efficient than 
data center processing.  

5. Heat nets. Instead of focusing on data centers as energy consumers, 
they also can be seen as energy suppliers to local households and 
industry. The heat produced by data centers can be sent through a 
city heating network, and when at the end heat has been given to 
houses, the cooler liquid is used for cooling the data center again. 
This may reduce the cooling energy costs to nearly zero for a data 

Table 9 
Sensitivity analysis for all data center electricity forecasts.  

Data center 
electricity 
consumption 
(TWh) 

Scenario 0: 
Baseline 

Scenario 1: 
Moore’s 
law 

Scenario 
2: IIoT 

All 
scenarios 
combined 

Number of 
replications 

10,000 10,000 10,000 10,000 

95% Lower bound 266.75 326.22 322.86 343.25 
Median 334.26 445.03 382.00 565.87 
95% Upper bound 421.59 712.63 489.17 1031.27  
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center, although it does not reduce the energy costs of storage, 
processing and transmission of data [52,53]. 

7.3. Data center demand side perspective 

Besides of more energy efficient data centers also user behavior 
changes may contribute to handling the energy scarcity problem. The 
key idea that motivates our selection of mitigation options is the historic 
awareness that each innovation after a stage of unlimited growth and 
explored opportunities comes in a stage of large scale adoption, diffusion 
and maturity (if successful) that generates scarcity of resources 
[8,54,55]. Given this scarcity concept, we can think of strategies that 
disallow certain types of behavior, that encourage certain types of 
behavior, and that allow certain types of consumption if compensating 
something worse. 

Some highly energy intensive data center usages have an unclear 
contribution and could be considered to be disallowed. One of them is 
the block chain, which although without a large diffusion yet, is energy- 
intense in its code generation and verification networks [56–58] 

Another, but more radical, option is the disallowance of electronic 
advertising. Experiments with adblockers show that about 40% of the 
energy consumption of mobile phones can be avoided with applying 
adblockers [59]. The impact of adblockers on the profitability of internet 
content however is large and may be destructive of content business 
models [60]. Consequently, content owners need to develop attractive 
alternative business models that may combine public sponsorship with 
payments. The feasibility of these new business models however is still 
in need of research. 

A growing and high energy consumption industry is the gaming in
dustry, which also can be defined as a variant of interactive video, the 
probably most IP traffic consuming variant of data center usage [12]. 
Some limitations to the growth of this industry may be needed. 

For realizing more energy saving behavior, positive encouragements 
may be useful. Such encouragements can be realized by creating users’ 
energy awareness and given positive feedbacks for efficient users. 
Creating awareness can be realized by public campaigns, but alterna
tively we also suggest a metering system that can give users an energy 
usage report of what they were doing, possibly including a recom
mender or gamification system to avoid high avoidable usage [61]. 
Positive feedback can also be created as feed forwards like a pricing 
system that informs the user before actual consumption about the en
ergy and GHGE report or giving information about a monetary price. For 
the pricing “solution” a price elasticity must be known, or a behavioral 
impact prediction must be known before such a strategy would be rec
ommended for practice. For GHGE reporting and feedback, more 
research is needed on the future ecological footprint that data center 
usage causes. 

As a follow up on euro commissioner Vestager’s call for “technology 
with a purpose” [62], we believe that technology is great if it helps to 
make life better. So, if data centers cause energy and ecological prob
lems, there would not be a problem if following the next two principles:  

1. The service gives a strong and demonstrably great contribution to 
social goods, like the generally well accepted United Nations 
Challenges.  

2. The service’s energy consumption by far should reduce energy needs 
of other activities (e.g., large improvements in traffic mileages or 
production energy use avoided), resulting in energy neutral or en
ergy reduction applications. 

Both these two principles require research for developing a useful 
decision method. 
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