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Abstract
All comatose patients after circulatory arrest initially have a 
severely abnormal disturbed electroencephalogram. The speed 
of normalisation is a robust contributor to prediction of outcome. 
Differences between patients with poor and good outcome are 
largest <24 hours after the arrest. Lasting suppression at ≥12 
hours or synchronised patterns with >50% suppression at ≥24 
hours are invariably associated with poor outcome. This includes 
burst suppression with identical bursts and generalised periodic 
discharges on a suppressed background. Recovery towards 
continuous patterns within 12 hours is strongly associated with 
a good outcome. Predictive values are highest at <24 hours 
despite the use of mild therapeutic hypothermia or sedative 
medication. Additional value of electroencephalography 
reactivity for the prediction of poor outcome is negligible. 
Computer-assisted analysis is equally reliable and may facilitate 
the use of the electroencephalogram at the bedside on intensive 
care units. Whether or not treatment of electrographic status 
epilepticus improves outcome is being studied in the Dutch 
multicentre randomised TELSTAR trial (NCT02056236).

Introduction
Comatose patients after circulatory arrest have an uncertain 
prognosis. Despite treatment on intensive care units, the 
outcome is poor in approximately half of all patients with 
out-of-hospital cardiac arrest as a result of severe postanoxic 
encephalopathy.[1] Early recognition of patients without chances 
of recovery of brain function may prevent continuation of futile 
treatment and contribute to communication between doctors 
and patients.
The electroencephalogram (EEG) measures electrical potential 
differences between pairs of scalp electrodes. These primarily 
result from the sum of post-synaptic potentials, so EEG activity 
mainly reflects cortical synaptic activity.[2] Since cortical 

synaptic activity is very sensitive to the effects of ischaemia, 
the EEG is sensitive to detection of ischaemia-induced cerebral 
malfunctioning.[3] However, the specificity of pathological EEG 
activity for reliable prediction of poor or good outcome has long 
been uncertain.[4] Over the past decade, various specific EEG 
patterns have been associated with poor or good outcome. It has 
become clear that the EEG can contribute to reliable outcome 
prediction if EEG patterns are classified in relation to the 
time since circulatory arrest. Here, we review the evidence of 
reliability of EEG-based outcome prediction, discuss treatment 
of epileptiform patterns and provide future perspectives. 

Dynamics of brain activity after circulatory arrest
Within 10 to 40 seconds after circulatory arrest the EEG becomes 
iso-electric.[5] Just as deep coma in the first hours after the arrest does 
not preclude full functional recovery, recovery of brain functioning is 
possible with iso-electricity on early EEG. In such cases improvement 
of EEG activity within 12 to 24 hours is vital.[6-8] Absence of relevant 
improvement within that time window is invariably associated 
with a poor outcome.[9-11] On the other hand, with recovery 
towards continuous, physiological rhythms within 12 hours, 
neurological prognosis is very good (figure 1).[9,10] 

EEG background pattern is at least as reliable as SSEP for 
prediction of outcome
Studies on the association between the EEG background pattern 
and outcome unrelated to timing of the EEG reported moderate 
predictive values.[12-17] High predictive values have been found by 
EEG classification in relation to the time since circulatory arrest. 
Seven prospective cohort studies report on the value of ongoing 
suppression at 12 to 24 hours after circulatory arrest for prediction of 
poor outcome. Six studies partly overlap and together consist of 864 
patients from five Dutch hospitals.[9,10,18-21] The seventh included 
100 patients from Yale University Hospital.[11] In addition, there 
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is a retrospective cohort study in 211 patients from Italy.[22] In all 
these studies, consecutive, unselected comatose patients after 
cardiac arrest were included. Continuous EEG measurements 
started within 12 to 24 hours and continued for at least three 
days, or until the patient died or recovered. Twenty-one 
electrodes were used according to the international 10-20 
system. Patients were treated according to standard protocols 
for comatose patients after circulatory arrest. This indicated 
targeted temperature management [TTM] at 33°C with the 
necessary sedation [propofol, midazolam] in approximately 
three quarters, and TTM at 36°C in about one quarter of all 
included patients. Withdrawal of treatment was considered 
after ≥48-72 hours, during normothermia, and off sedation. 
Decisions were based on international guidelines including 
incomplete return of brainstem reflexes, treatment-resistant 
myoclonus, and bilateral absence of somatosensory evoked 
potentials [SSEPs].[23] The EEG in the first 2 hours was not 
taken into account. EEG analyses were performed offline, after 
registration. Evaluators were blinded to the time of the epoch 
since the arrest, treatment, and patient outcome. In the Dutch 
studies, outcome at six months was classified as good [cerebral 
performance category [CPC] 1 or 2 indicating no or moderate 
disability] or poor [CPC 3, 4 or 5, indicating severe disability, 

comatose or death]. In the American study, the best achieved 
score on the Glasgow Outcome Scale during admission was 
used [4 or 5 = good, 1, 2 or 3 = poor].
The eight studies together included 1175 patients. The 
proportion of patients with a poor outcome varied from 52-
54% in the Dutch to 71% in the American studies. An iso-
electric, suppressed (<10 μV) or low voltage (<20 μV) EEG at 
≥24 hours after cardiac arrest was invariably associated with a 
poor outcome. Lasting suppression or synchronised patterns 
with >50% suppression at ≥12 hours after cardiac arrest were also 
invariably associated with a poor outcome.[10,11,20] This included 
burst suppression with identical bursts.[24] The sensitivity of 
these patterns together in identifying patients with a poor 
outcome varied between 28 and 84%. With no false positives 
in a total of 1175 patients, these EEG measures are at least as 
reliable as absent SSEP for prediction of poor outcome, since 
SSEP guidelines are based on cohorts that included a total of 678 
patients, and four false positives were reported.[4] In addition, 
a continuous EEG pattern at 12 hours is strongly associated 
with a good neurological outcome.[11,20,22] If patients with such 
a beneficial evolution of the EEG died, it was generally from 
failure of other organs than the brain, mostly the heart. 
At least six other cohort studies, together including 1587 patients, 

Figure 1. Upper panel: EEG pattern evolving from iso-electric to continuous, physiological activity within 12 hours. This evolution is favourable and the 
patient had a good outcome. Lower panel: EEG pattern evolving from nearly iso-electric to burst suppression and beyond 24 hours back to low voltage 
activity. This evolution is 100% unfavourable and the patient had a poor outcome
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confirmed the reliability of EEG measures for prediction of poor 
outcome with false-positive rates of <2%,[25-30] but terminology 
varies. Some researchers use the term ‘highly malignant’ EEG 
patterns. This is ill defined. However, suppressed patterns 
and synchronous patterns with >50% suppression were 
always included in definitions of ‘highly malignant’ patterns 
and invariably associated with a poor outcome. Reliability of 
burst suppression with identical bursts has been confirmed by 
visual EEG analysis in 522 patients with no false positives.[31] A 
small cohort study suggests that repeated routine recordings 
are possibly as reliable as continuous EEG.[32,33] In the group 
of patients with indeterminate outcome perspectives, EEG 
characteristics hold potential to predict the chance of permanent 
eurological deficits after late awakening, but this needs further 
research.[34]

EEG background pattern contributes to multimodal 
prediction of poor outcome
In at least four cohorts, EEG background pattern data were 
combined with clinical, biochemical, or SSEP data.[11,21,25,35] The 
previously established high predictive values of absent pupillary 
light or SSEP responses at 48-72 hours for prediction of poor 
outcome were confirmed. Additionally, EEG parameters were 
found to be complementary to these conventional predictors. 
‘Highly malignant’ EEG patterns are not always associated 
with absent SSEP,[36] and in a substantial proportion of patients 
only one or two predictors of poor outcome were present. This 
indicates that with all tests together, more patients with a poor 
outcome could be identified reliably than with a single modality. 
Only in patients with a continuous EEG pattern with a dominant 
frequency of ≥8 Hz from 12 hours after cardiac arrest the SSEP 
was always present and this test therefore may be withheld.[21,37]

Highest predictive value within 24 hours, despite 
medication
Intuitively, analogous to the clinical course, the value of the EEG 
to predict patient outcome should increase with time elapsing 
since circulatory arrest.[4] However, based on the data, the 
opposite turns out to be the case. Differences between patients 
with and without chances of recovery, as well as predictive values 
for good and poor outcome, are the largest within the first 24 
hours after arrest.[38] An important cause is the evolution towards 
aspecific EEG activity beyond 24 hours in many patients who 
eventually have a poor outcome.[10] Whether or not such activity 
still includes qualitative or quantitative predictive characteristics 
warrants further study.[34] Furthermore, it is generally considered 
that the EEG is not useful as a predictor during treatment with 
hypothermia or sedative medication.[4] This is a misapprehension, 
not supported by data.[10,11,39] Although ion channel kinetics and 
neurotransmitter release are temperature dependent, effects 
of few degrees are small and mild therapeutic hypothermia to 
32ºC affects the EEG only mildly.[40] Furthermore, propofol-
induced EEG changes are well known. With the dosages that 
are mostly used during targeted temperature management, 
patterns remain continuous with anteriorisation of the ‘alpha’ 
rhythm, and iso-electricity will never be induced.[41] If burst 
suppression is observed, bursts are heterogeneous and appear 
and disappear gradually.[42] This is a physiological response 
of a relatively healthy brain to sedation and contrasts sharply 
with the observed pathological burst suppression patterns 
with identical bursts, with flat interburst intervals and abrupt 
transitions between suppression and burst activity (figure 2).[24] 
Moreover, mean doses of sedative medication were lower in 
patients with unfavourable EEG patterns than in those with 
favourable patterns.[9,10,20]

Figure 2. Two examples of burst suppression with identical bursts. The interval between the two epochs is approximately 24s in the left and 15s in the right panel. 
Note the similarity of shapes of subsequent bursts and the iso-electricity of interburst intervals. Burst suppression with identical bursts has only been observed 
after severe hypoxic or ischaemic brain damage and was invariably associated with a poor outcome[24]
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Burst suppression and status epilepticus
Burst suppression and status epilepticus are classically 
considered to be ‘unfavourable’ EEG patterns in patients 
with a postanoxic coma.[11,12,15,17,43-46] However, specificity for 
predictions of poor outcome based on unselected groups of 
burst suppression or status epilepticus EEGs is moderate.[4,47] 

This is because such patterns are also observed in a considerable 
proportion of patients who eventually have a good outcome.[18] 

Only specific, well-defined subgroups of burst suppression or 
status epilepticus reliably predict a poor outcome.

Burst suppression
Burst suppression can be defined as an EEG with high amplitude 
activity of at least four phases and a duration of at least 500 ms 
[bursts], alternated by periods of low [<10μV] or absent activity 
[suppressions] for more than 50% of the time.[48] Such patterns 
can be physiological, for instance during early development, or 
pathological, for example in almost half of all comatose patients 
within the first 48 hours after cardiac arrest.[18] Also, burst 
suppression can be induced by anaesthetics.[49] The mechanisms 
involved in burst suppression are divergent, and range from 
reversible changes in synaptic functioning and Ca2+ homeostasis 
to selective neural death.[50-52]

Characteristics to classify burst suppression patterns into 
subgroups with differences in clinical significance include the 
duration of the bursts and interburst intervals, maximum peak-to-
peak voltage, area under the curve, the ratio of power in high versus 
low frequencies,[53] and combinations with other pathological 
patterns, such as generalised periodic discharges.[54,55] For example, 
longer suppressions are associated with poorer recovery in patients 
with postanoxic coma.[13] Extreme similarity of burst shape is a 
distinct feature of some burst suppression patterns, which are 

classified as ‘burst suppression with identical bursts’ (figure 2): 
subsequent bursts in a particular channel are almost ‘photographic’ 
copies. Burst suppression with identical bursts was not observed in 
a series of 240 EEGs during anaesthesia or traumatic brain injury. 
Otherwise, this pathological EEG pattern may be seen in up to 20% 
of patients with postanoxic encephalopathy and a poor outcome, 
mostly on the first or second day.[24] Burst suppression with identical 
bursts indicates severe encephalopathy and is invariably associated 
with a poor outcome.[9-11,24]

Status epilepticus
The reported incidence of electrographic status epilepticus in 
comatose patients after cardiopulmonary resuscitation varies 
from 10 to 35% and depends on diagnostic criteria.[15,39,56-59] 

Distinct epileptiform patterns, with evolving seizures, are 
rare.[60,61] Other rhythmic activity, such as generalised periodic 
discharges or rhythmic delta activity, is more common.[39,60,62,63] 
It is unclear whether these various patterns all reflect true 
epileptiform activity, with the possibility to return to normal, 
or rather are a direct expression of severe encephalopathy, 
in which treatment with antiepileptic drugs would be futile.
[64,65]  On the EEG, potential reversibility of status epilepticus in 
postanoxic coma is associated with evolution from patterns 
with continuous background activity, as opposed to evolution 
from a discontinuous background pattern.[66] Furthermore, as 
compared with epileptiform patterns of patients with a poor 
outcome, in patients who eventually recovered, such patterns had 
a higher background continuity, higher discharge frequency [0.90 
vs.1.63 Hz], lower relative discharge power, and lower discharge 
periodicity (figure 3).[11,66,67]

Figure 3. EEG fragments with generalised periodic discharges [GPDs]. In the example on the left, GPDs evolved from a background pattern with continuous activity. 
Between GPDs, there appears to be continuous background activity and there is no complete bilateral synchronicity and GPD shapes and inter-GPD intervals vary. This is a 
favourable evolution of GPDs and the patient had a good outcome. In the example on the right, GPDs evolved from an iso-electric pattern. There is no background activity 
between the GPDs and GPDs appear bilaterally synchronous. GPD shapes and inter-GPD intervals are identical. This is an unfavourable evolution of GPDs and the patient 
had a poor outcome.[66] Because of the apparent heterogeneity of GPD patterns, only well-described subgroups have relevant prognostic value 
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Treatment of status epilepticus
Apart from classification, the usefulness of treatment of  
electrographic status epilepticus after circulatory arrest is  
unclear.[68-70] Ambivalence in this respect is reflected by the 
way these patterns are treated by Dutch and American epilepsy 
experts: approximately two thirds give antiepileptic drugs, but 
only one third treats as aggressively as in clinically overt status 
epilepticus.[71,72] For most neurologists the threshold to treat patients 
with overt myoclonia is lower than for patients with non-convulsive 
electrographic seizures. However, irreversible damage is probably 

Figure 4. Case 1 A-C: three EEG epochs at 5, 12 and 20 hours after cardiac arrest [CA], showing a favourable evolution towards a continuous EEG pattern within 24 hours. 
This is strongly associated with a good outcome. Case 2 A-C: Three EEG epochs showing an indeterminate evolution. At t=27 hours after arrest, the EEG still shows significant 
suppressions intermixed with delta and theta activity. Outcome is uncertain. Lower panels: quantitative analysis of the EEG patterns above with the Cerebral Recovery Index 
[CRI]. Corresponding epochs are indicated with A-C. Case 1 shows an increase towards CRI >0.5 within 24 hours, with a final CRI=0.9. This is strongly associated with good 
outcome. For Case 2, CRI ≤0.5 at all points in time and CRI=0.2 at 24 hours. This is strongly associated with a poor outcome. Note that in both patients the EEG is nearly iso-
electric in the first hours of the recording. In case 2, prognosis remains uncertain with visual analysis of the EEG, but can be classified as poor with use of the CRI

even more likely in patients with myoclonia, since the risk of a poor 
outcome is larger and neuronal necrosis more common.[1,4,67,73,74] 
In a retrospective cohort study of 139 patients, non-standardised, 
moderately intensive treatment with antiepileptic drugs did not 
improve outcome of electrographic status epilepticus after cardiac 
arrest.[62] Effects of intensive treatment according to status epilepticus 
guidelines is currently being studied in the randomised, multicentre 
Treatment of Electroencephalographic STatus epilepticus After 
cardiopulmonary Resuscitation [TELSTAR] trial [NCT02056236; 
www.TELSTARtrial.nl].[58]
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EEG reactivity
EEG reactivity can be defined as any change in frequency or 
amplitude of the EEG background pattern resulting from 
application of an external stimulus.[75,76] However, consensus 
about the characteristics of changes in a responsive EEG has 
long been lacking.[77] External stimulation typically consists 
of auditory [shouting or clapping], somatosensory [painful 
pressure to the nail bed or supraorbital nerve], or visual [passive 
eye opening] input.[78] 
Absent reactivity to external stimulation of the EEG background 
pattern is much studied as a potential predictor of poor outcome 
of comatose patients after circulatory arrest. Two prospective 
and one retrospective cohort studies report strong associations 
between absent EEG reactivity and poor outcome.[16] However, 
these results could not be replicated with a recent systematic 
multicentre study, and the additional predictive value of absent 
EEG reactivity testing, in addition to the EEG background 
pattern, was futile.[79] Otherwise, adequate EEG reactivity to 
stimuli within the first 48 hours was strongly associated with 
good recovery.[44,79-82]

Computer-assisted analysis
Application of the EEG on the intensive care unit is limited by the 
complexity of the signal, which typically cannot be interpreted 
by general intensive care nurses or staff. Computer-assisted 
analysis may help.[83] Techniques to assist in the interpretation 
of continuous EEG background patterns include time frequency 
trend curves,[84,85] quantification of hemispheric asymmetry,[86] 
and an explicit classification of the EEG in common categories 
[e.g. iso-electricity, burst suppression or diffusely slowed 
patterns].[87] 
A few articles present techniques specifically aiming at outcome 
prediction in patients with a postanoxic encephalopathy. One 
of the earliest studies is on the use of amplitude-integrated EEG 
[aEEG].[88] In a prospective cohort of 34 patients, all 20 patients 
with a continuous aEEG pattern at normothermia regained 
consciousness. All 14 patients with flat patterns, burst suppression, 
or status epilepticus aEEG patterns died in hospital.[43,88] Other 
quantitative EEG features studied include the burst suppression 
ratio and entropy measures, with differences between patients 
with good and poor outcome on a group level, but limited 
predictive value for individual patients.[13,89] 

The Cerebral Recovery Index [CRI] was introduced in 2013 and 
is based on a combination of features, including amplitude and 
continuity, derived from an 18-channel EEG recording.[90,91] The 
CRI is normalised in the range [0-1], with 0 indicating severe 
encephalopathy and 1 indicating normal brain functioning. In 
independent training and test sets using deep learning, CRI at 
12 and 24 hours after cardiac arrest predicted poor outcome 
without false positives at 58% sensitivity and good outcome at 
a specificity of 95% and a sensitivity of 48% (figure 4).[92] Note 

the importance of evolution in time: in both groups there is 
improvement of the mean EEG pattern. However, in patients 
with a good outcome, mean improvement is twice as fast as in 
patients with a poor outcome. 

Conclusion
In comatose patients after circulatory arrest, the EEG background 
pattern in the first 24 hours provides reliable information on 
the severity of encephalopathy and enables reliable prediction 
of outcome in 40-50% of patients, despite treatment with 
hypothermia or sedative medication. For poor outcome 
prediction, the EEG is as reliable as and complementary to the 
SSEP. The EEG is the first modality to also allow prediction of 
a good outcome. Computer-assisted interpretation of the EEG 
may assist in outcome prediction and facilitate bedside use 
at intensive care units. Epileptiform patterns are of unknown 
significance and effects of treatment with antiepileptic drugs 
are uncertain. Whether or not treatment of electrographic 
status epilepticus improves outcome is being studied in the 
randomised multicentre Treatment of Electroencephalographic 
STatus epilepticus After cardiopulmonary Resuscitation 
[TELSTAR] trial [NCT02056236]. 
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