
Neural Networks 137 (2021) 119–126

J
U

f
i
s
s
B
c
‘
i
r

t
u

f

T
a
f

s

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

The Kolmogorov–Arnold representation theorem revisited✩

ohannes Schmidt-Hieber
niversity of Twente and Leiden University, Drienerlolaan 5, 7522 NB Enschede, The Netherlands

a r t i c l e i n f o

Article history:
Received 31 July 2020
Revised and accepted 21 January 2021
Available online 29 January 2021

Keywords:
Kolmogorov–Arnold representation
theorem
Function approximation
Deep ReLU networks
Space-filling curves

a b s t r a c t

There is a longstanding debate whether the Kolmogorov–Arnold representation theorem can explain
the use of more than one hidden layer in neural networks. The Kolmogorov–Arnold representation
decomposes a multivariate function into an interior and an outer function and therefore has indeed a
similar structure as a neural network with two hidden layers. But there are distinctive differences. One
of the main obstacles is that the outer function depends on the represented function and can be wildly
varying even if the represented function is smooth. We derive modifications of the Kolmogorov–Arnold
representation that transfer smoothness properties of the represented function to the outer function
and can be well approximated by ReLU networks. It appears that instead of two hidden layers, a more
natural interpretation of the Kolmogorov–Arnold representation is that of a deep neural network where
most of the layers are required to approximate the interior function.

© 2021 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Why are additional hidden layers in a neural network help-
ul? The Kolmogorov–Arnold representation (KA representation
n the following) seems to offer an answer to this question as it
hows that every continuous function can be represented by a
pecific network with two hidden layers (Hecht-Nielsen, 1987).
ut this interpretation has been highly disputed. Articles dis-
ussing the connection between both concepts have titles such as
‘Representation properties of networks: Kolmogorov’s theorem is
rrelevant’’ (Girosi & Poggio, 1989) and ‘‘Kolmogorov’s theorem is
elevant’’ (Kurkova, 1991).

The original version of the KA representation theorem states
hat for any continuous function f : [0, 1]d → R, there exist
nivariate continuous functions gq, ψp,q such that

(x1, . . . , xd) =

2d∑
q=0

gq
(d∑

p=1

ψp,q(xp)
)
. (1.1)

his means that the (2d + 1)(d + 1) univariate functions gq
nd ψp,q are enough for an exact representation of a d-variate
unction. Kolmogorov published the result in 1957 disproving

✩ The research has been supported by the Dutch STAR network and a Vidi
grant from the Dutch science organization (NWO), The Netherlands. This work
was done while the author was visiting the Simons Institute for the Theory of
Computing. The constructive comments and suggestions shared by the associate
editor and the three referees resulted in a significantly improved version of
the article. The author wants to thank Matus Telgarsky for helpful remarks and
pointing to the article Siegelmann and Sontag (1994).

E-mail addresses: a.j.schmidt-hieber@utwente.nl,
chmidthieberaj@math.leidenuniv.nl.
https://doi.org/10.1016/j.neunet.2021.01.020
0893-6080/© 2021 The Author. Published by Elsevier Ltd. This is an open access arti
the statement of Hilbert’s 13th problem that is concerned with
the solution of algebraic equations. The earliest proposals in the
literature introducing multiple layers in neural networks date
back to the sixties and the link between KA representation and
multilayer neural networks occurred much later.

A ridge function is a function of the form f (x) =
∑m

p=1 gp(w
⊤
p x),

with vectorswp ∈ Rd and univariate functions gp. The structure of
the KA representation can therefore be viewed as the composition
of two ridge functions. There exists no exact representation of
continuous functions by ridge functions and matching upper and
lower bounds for the best approximations are known (Gordon,
Maiorov, Meyer, & Reisner, 2002; Maiorov, 1999; Maiorov, Meir,
& Ratsaby, 1999). The composition structure is thus essential for
the KA representation. A two-hidden-layer feedforward neural
network with activation function σ , hidden layers of width m1
and m2, and one output unit can be written in the form

f (x) =

m1∑
q=1

dq σ
(m2∑

p=1

bpqσ (w⊤

p x + ap) + cq
)
,

with parameters wp ∈ Rd, ap, bpq, cq, dq ∈ R.

Because of the similarity between the KA representation and
neural networks, the argument above suggests that additional
hidden layers can lead to unexpected features of neural network
functions.

There are several reasons why the Kolmogorov–Arnold rep-
resentation theorem has been initially declared as irrelevant for
neural networks in Girosi and Poggio (1989). The original proof
of the KA representation in Kolmogorov (1957) and some later
versions are non-constructive providing very little insight on

how the function representation works. Although the ψp,q are

cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.neunet.2021.01.020
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.01.020&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:a.j.schmidt-hieber@utwente.nl
mailto:schmidthieberaj@math.leidenuniv.nl
https://doi.org/10.1016/j.neunet.2021.01.020
http://creativecommons.org/licenses/by/4.0/

J. Schmidt-Hieber Neural Networks 137 (2021) 119–126

c
t
t
n
1
t
l
σ
f

T
r
R
t

f

T
ψ
o
s
w
a
2

f
s
L
t
s
t
K
e
p

i
t
n
a
t
n

t
t
t
n
h
a
t
s
w
K
t
a
i
v
Y
o
t
β
l
o

Z
f
c
a

2

t
&
c

[

f

ontinuous, they are still rough functions sharing similarities with
he Cantor function. Meanwhile more refined KA representation
heorems have been derived strengthening the connection to
eural networks (Braun & Griebel, 2009; Sprecher, 1965, 1996,
997). Maiorov and Pinkus (1999) showed that the KA represen-
ation can essentially be rewritten in the form of a two-hidden-
ayer neural network for a non-computable activation function
, see the literature review in Section 4 for more details. The
ollowing KA representation is much more explicit and practical.

heorem 1 (Theorem 2.14 in Braun, 2009). Fix d ≥ 2. There are
eal numbers a, bp, cq and a continuous and monotone function ψ :

→ R, such that for any continuous function f : [0, 1]d → R,
here exists a continuous function g : R → R with

(x1, . . . , xd) =

2d∑
q=0

g
(d∑

p=1

bpψ(xp + qa) + cq
)
.

his representation is based on translations of one inner function
and one outer function g . The inner function ψ is independent

f f . The dependence on q in the first layer comes through the
hifts qa. The right hand side can be realized by a neural network
ith two hidden layers. The first hidden layer has d units and
ctivation function ψ and the second hidden layer consists of
d + 1 units with activation function g .
For a given 0 < β ≤ 1, we will assume that the represented

unction f is β-smooth, which here means that there exists a con-
tant C , such that |f (x) − f (y)| ≤ C∥x − y∥β∞ for all x, y ∈ [0, 1]d.
et m > 0 be arbitrary. To approximate a β-smooth function up
o an error m−β , it is well-known that standard approximation
chemes need at least of the order of md parameters. This means
hat any efficient neural network construction mimicking the
A representation and approximating β-smooth functions up to
rror m−β should have at most of the order of md many network
arameters.
Starting from the KA representation, the objective of the article

s to derive a deep ReLU network construction that is optimal in
erms of number of parameters. For that reason, we first present
ovel versions of the KA representation that are easy to prove and
lso allow to transfer smoothness from the multivariate function
o the outer function. In Section 3 the link is made to deep ReLU
etworks.
The efficiency of the approximating neural network is also

he main difference to the related work (Kurkova, 1992; Mon-
anelli & Yang, 2020). Based on sigmoidal activation functions,
he proof of Theorem 2 in Kurkova (1992) proposes a neural
etwork construction based on the KA representation with two
idden layers and dm(m + 1) and m2(m + 1)d hidden units to
chieve approximation error of the order of m−β . This means
hat more than m4+d network weights are necessary, which is
ub-optimal in view of the argument above. The very recent
ork (Montanelli & Yang, 2020) uses a modern version of the
A representation that guarantees some smoothness of the in-
erior function. Combined with the general result on function
pproximation by deep ReLU networks in Yarotsky (2018), a rate
s derived that depends on the smoothness of the outer function
ia the function class KC ([0, 1]d;R), see p. 4 in Montanelli and
ang (2020) for a definition. The non-trivial dependence of the
uter function on the represented function f makes it difficult
o derive explicit expressions for the approximation rate if f is
-smooth. Moreover, as the KA representation only guarantees
ow regularity of the interior function, it remains unclear whether
ptimal approximation rates can be obtained.
Although the deep ReLU network proposed in Shen, Yang, and

hang (2020) is not motivated by the KA representation or space-
illing curves, the network construction is quite similar. Section 4
ontains a more detailed comparison with this and other related
pproaches.
120
. New versions of the KA representation

The starting point of our work is the apparent connection be-
ween the KA representation and space-filling curves (Gorchakov
Mozolenko, 2019; Sprecher & Draghici, 2002). A space-filling

urve γ is a surjective map [0, 1] → [0, 1]d. This means that it
hits every point in [0, 1]d and thus ‘‘fills’’ the cube [0, 1]d. Known
constructions are based on iterative procedures producing fractal-
type shapes. If γ−1 exists, we could then rewrite any function
f : [0, 1]d → R in the form

f = (f ◦ γ)  
=:g

◦γ−1. (2.1)

This would decompose the function f into a function γ−1
: Rd

→

0, 1] that can be chosen to be independent of f and a univariate
unction g = f ◦ γ : [0, 1] → R containing all the information
of the d-variate function f . Compared to the KA representation,
there are two differences. Firstly, the interior function γ−1 is
d-variate and not univariate. Secondly, by Netto’s theorem
(Kupers), a continuous surjective map [0, 1] → [0, 1]2 cannot
be injective and γ−1 does not exist. The argument above can
therefore not be made precise for arbitrary dimension d and a
continuous space-filling curve γ .

To illustrate our approach, we first derive a simple KA rep-
resentation based on (2.1) and with γ−1 an additive function.
The identity avoids the continuity of the functions ψ and g ,
which is the major technical obstacle in the proof of the KA
representation. The proof does moreover not require that the
represented function f is continuous.

Lemma 1. Fix integers d, B ≥ 2. There exists a monotone function
ψ : [0, 1] → R such that for any function f : [0, 1]d → R, we can
find a function g : R → R with

f (x1, . . . , xd) = g
(d∑

p=1

B−pψ(xp)
)
. (2.2)

Proof. The B-adic representation of a number is not unique. For
the decimal representation, 1 is for instance the same as 1 =

0.999 . . . To avoid any problems that this may cause, we select
for each real number x ∈ [0, 1] one B-adic representation x =∑

j≥1 B
−jaxj with axj ∈ {0, . . . , B− 1}. Throughout the following, it

is often convenient to rewrite x in its B-adic expansion. Set

x =

∞∑
j=1

axj
Bj =: [0.ax1a

x
2a

x
3 . . .]B

and define the function

ψ(x) =

∞∑
j=1

axj
Bd(j−1) .

The function ψ is monotone and maps x to a number with B-adic
representation

[ax1. 0 0  
(d−1)-times

ax2 0 0  
(d−1)-times

ax30]B

inserting always d− 1 zeros between the original B-adic digits of
x. Multiplication by B−p shifts moreover the digits by p places to
the right. From that we obtain the B-adic representation

Ψ (x1, . . . , xd) :=

d∑
p=1

B−pψ(xp) =
[
0.ax11 ax21 . . . a

xd
1 ax12 . . .

]
B (2.3)

Because we can recover x1, . . . , xd from Ψ (x1, . . . , xd), the map
Ψ is invertible. Denote the inverse by Ψ −1. We can now define
g = f ◦ Ψ −1 and this proves the result. □

J. Schmidt-Hieber Neural Networks 137 (2021) 119–126

s
Ψ

v
i
Ψ

r
f
t
L
a
c

r
o
i
u
s

o
w
t

L
f

P
w
s

P
t

T
v
t
B
h
φ

p
g

(
|

The proof provides some insights regarding the structure of
the KA representation. Although one might find the construc-
tion of Ψ : [0, 1]d → [0, 1] in the proof very artificial, a
ubstantial amount of neighborhood information persists under
. Indeed, points that are close are often mapped to nearby
alues. If for instance x1, x2 ∈ [0, 1]d are two points coinciding
n all components up to the kth B-adic digit, then, Ψ (x1) and
(x2) coincide up to the kd-th B-adic digit. In this sense, the KA

epresentation can be viewed as a two step procedure, where the
irst step Ψ does some extreme dimension reduction. Compared
o low-dimensional random embeddings which by the Johnson–
indenstrauss lemma nearly preserve the Euclidean distances
mong points, there seems, however, to be no good general
haracterization of how the interior function changes distances.
The function Ψ is discontinuous at all points with finite B-adic

epresentation. The map Ψ defines moreover an order relation
n [0, 1]d via x < y :⇔ Ψ (x) < Ψ (y). For B = d = 2, the
nverse map Ψ −1 is often called the Morton order and coincides,
p to a rotation of 90 degrees, with the z-curve in the theory of
pace-filling curves (Bader, 2013, Section 7.2).
If f is a piecewise constant function on a dyadic grid, the

uter function g is also piecewise constant. As a negative result,
e show that for this representation, smoothness of f does not
ranslate into smoothness on g .

emma 2. Let k be a positive integer. Consider representation (2.2)
or B = 2 and let g be as in the proof of Lemma 1.

(i) If f : Rd
→ R is piecewise constant on the 2kd hypercubes

×
d
j=1(ℓj2

−k, (ℓj + 1)2−k), with ℓ1, . . . , ℓd ∈ {0, 2k
− 1}, then

g is a piecewise constant function on the intervals (ℓ2−kd, (ℓ+
1)2−kd), ℓ = 0, . . . , 2kd

− 1.
(ii) If f (x) = x, then g is discontinuous.

roof. (i) If x ∈ (ℓ2−kd, (ℓ+ 1)2−kd), we can write x = ∆+ ℓ2−kd

ith 0 < ∆ < 2−kd. There exist thus ℓ1, . . . , ℓd ∈ {0, 2k
− 1},

uch that Ψ −1(x) = Ψ −1(∆)+(ℓ12−k, . . . , ℓd2−k). Since Ψ −1(∆) ∈

(0, 2−k) × · · · × (0, 2−k), the result follows from g = f ◦ Ψ −1.
(ii) If f is the identity, g = f ◦ Ψ −1

= Ψ −1. For x ↑ 1/2, we find
that Ψ −1(x) → (1/2, 1, 1, . . . , 1) and for x ↓ 1/2, Ψ −1(x) →

(1/2, 0, 0, . . . , 0). Even stronger, every point with finite binary
representation is a point of discontinuity. □

The discontinuity of the space-filling map Ψ −1 causes g to be
more irregular than f . Many constructions of space-filling curves
are known but to obtain a representation of KA type Ψ needs to
be an additive function. The additivity condition rules out most
of the canonical choices, such as for instance the Hilbert curve.
Below, we use for Ψ −1 the Lebesgue curve and show that this
then leads to a representation that allows to transfer smoothness
properties of f to smoothness properties on g and therefore
overcomes the shortcomings of the representation in (2.2). In
contrast to the earlier result, g is now a function that maps from
the Cantor set, in the following denoted by C, to the real numbers.

Theorem 2. For fixed dimension d ≥ 2, there exists a monotone
function φ : [0, 1] → C (the Cantor set) such that for any function
f : [0, 1]d → R, we can find a function g : C → R such that

(i)

f (x1, . . . , xd) = g
(
3

d∑
p=1

3−pφ(xp)
)
; (2.4)

(ii) if f : [0, 1]d → R is continuous, then also g : C → R is
continuous;
121
(iii) if there exist β ≤ 1 and a constant Q , such that |f (x) − f (y)|
≤ Q |x − y|β

∞
, for all x, y ∈ [0, 1]d, then,

|g(x) − g(y)| ≤ 2βQ |x − y|
β log 2
d log 3 , for all x, y ∈ C;

(iv) if f (x) = x, then, there exist sequences (xk)k, (yk)k ⊂ C with
limk xk = limk yk and⏐⏐g(xk) − g(yk)

⏐⏐
∞

=

(
|xk − yk|

2

) log 2
d log 3

.

roof. The construction of the interior function is similar as in
he proof of Lemma 1. We associate with each x ∈ [0, 1] one
binary representation x = [0.ax1a

x
2 . . .]2 and define

φ(x) :=

∞∑
j=1

2axj
31+d(j−1) =

[
0.(2ax1) 0 0  

(d−1)-times

(2ax2) 0 0  
(d−1)-times

]
3. (2.5)

he function φ multiplies the binary digits by two (thus, only the
alues 0 and 2 are possible) and then expresses the digits in a
ernary expansion adding d − 1 zeros between each two digits.
y construction, the Cantor set consists of all y ∈ [0, 1] that only
ave 0 and 2 as digits in the ternary expansion. This shows that
: [0, 1] → C. Define now

Φ(x1, . . . , xd) := 3
d∑

p=1

3−pφ(xp)

=
[
0.(2ax11)(2ax21) . . . (2axd1)(2ax12) . . .

]
3

(2.6)

where the right hand side is written in the ternary system.
Because we can recover the binary representation of x1, . . . , xd,
the map Φ is invertible. Since 2axrℓ ∈ {0, 2} for all ℓ ≥ 1 and
r ∈ {1, . . . , d}, the image of Φ is contained in the Cantor set. We
can now define the inverse by Φ−1

: C → R and set g = f ◦Φ−1
:

C → R, proving (i).
In the next step of the proof, we show that⏐⏐Φ−1(x)−Φ−1(y)

⏐⏐
∞

≤ 2|x − y|log 2/(d log 3), for all x, y ∈ C, (2.7)

For that we extend the proof in Bader (2013, p. 98). Observe that
Φ−1 maps x = [0.x1x2x3 . . .]3 to the vector
([0.(x1/2)(xd+1/2) . . .]2, . . . , [0.(xd/2)(x2d/2) . . .]2)⊤ ∈ [0, 1]d.
Given arbitrary x, y ∈ C, k∗

= k∗(x, y) denotes the integer k
for which 3−(k+1)d

≤ |x − y| < 3−kd. Suppose that the first k∗d
ternary digits of x and y are not all the same and denote by J the
position of the first digit of x that is not the same as y. Since only
the digits 0 and 2 are possible, the difference between x and y
can be lower bounded by |x − y| ≥ 2 · 3−J

− 3−J , where the term
−3−J accounts for the effect of the later digits. Thus |x − y| ≥ 3−J

and this is a contradiction with |x − y| < 3−k∗d and J ≤ k∗d. Thus,
the first k∗d ternary digits of x and y coincide. Using the explicit
form of Φ−1 this also implies that Φ−1(x) and Φ−1(y) coincide
in the first k∗ binary digits in each component. This means that
|Φ−1(x) −Φ−1(y)|∞ ≤ 2−k∗ and together with the definition of
k∗, we find⏐⏐Φ−1(x) −Φ−1(y)

⏐⏐
∞

≤ 2 · 2−(k∗+1)
= 2

(
3−(k∗+1)d) log 2

d log 3

≤ 2|x − y|
log 2
d log 3

(2.8)

roving (2.7), since x, y ∈ C were arbitrary. Using again that
= f ◦Φ−1, (ii) and (iii) follow.
To prove (iv), take xk = 0 and yk = 2/3kd. Then, Φ−1(xk) =

0, . . . , 0)⊤ and Φ−1(yk) = (0, . . . , 0, 2−k)⊤. Rewriting this yields
g(xk) − g(yk)|∞ = |Φ−1(xk) −Φ−1(yk)|∞ = (|xk − yk|/2)

log 2
d log 3 for

all k ≥ 1. □

J. Schmidt-Hieber Neural Networks 137 (2021) 119–126

F
q

3

i
f

Thus, by restricting to the Cantor set, one can overcome the
limitations of Netto’s theorem mentioned at the beginning of the
section. In fact by construction and (2.8), γ = Φ−1 is a surjec-
tive, invertible and continuous space-filling curve. The previous
theorem is in a sense more extreme than the KA representation
as the univariate interior function maps to a set of Hausdorff
dimension log 2/log 3 < 1. Siegelmann and Sontag (1994) use a
similar construction to prove embeddings of the function spaces
generated by circuits into neural network function classes.

Representation (2.4) has the advantage that smoothness im-
posed on f translates into smoothness properties on g . The reason
is that the function Φ associates to each x ∈ [0, 1]d one value in
the Cantor set such that values that are far from each other in
[0, 1]d are not mapped to nearby values in the Cantor set. Based
on this value in the Cantor set, the outer function g reconstructs
the function value f (x). Since the distance of the values in [0, 1]d
is linked to the distance of the values in the Cantor set, local
variability in the function f does not lead to arbitrarily large fluc-
tuations of the outer function g . Therefore smoothness imposed
on f translates into smoothness properties on g .

A natural question is whether we gain or lose something if
instead of approximating f directly, we use (2.4) and approximate
g . Recall that the approximation rate should be m−β if md is
the number of free parameters of the approximating function,
β the smoothness and d the dimension. Since g is by (iii) α-
smooth with α = β log 2/(d log 3) and is defined on a set with
Hausdorff dimension d∗

= log 2/log 3, we see that there is no
loss in terms of approximation rates since β/d = α/d∗. Thus,
we can reduce multivariate function approximation to univariate
function approximation on the Cantor set. This, however, only
holds for β ≤ 1. Indeed, the last statement of the previous
theorem means that for the smooth function f (x) = x, the outer
function g is not more than β log 2/(d log 3)-smooth, implying
that for higher order smoothness, there seems to be a discrepancy
between the multivariate and univariate function approximation.

The only direct drawback of (2.4) compared to the traditional
KA representation is that the interior function φ is discontin-
uous. We will see in Section 3 that φ can, however, be well
approximated by a deep neural network.

It is also of interest to study the function class containing all
f that are generated by the representation in (2.4) for β-smooth
outer function g . Observe that if g(x) = x, then f coincides with
the interior function which is discontinuous. This shows that for
β ≤ 1, the class of all f of the form (2.4) with g a β log 2/(d log 3)-
smooth function on the Cantor set C is strictly larger than the
class of β-smooth functions. Interestingly, the function class with
Lipschitz continuous outer function g contains all functions that
are piecewise constant on a dyadic partition of [0, 1]d.

Lemma 3. Consider representation (2.4) and let k be a positive
integer. If f : [0, 1]d → R is piecewise constant on the 2kd

hypercubes ×
d
j=1[ℓj2

−k, (ℓj + 1)2−k), with ℓ1, . . . , ℓd ∈ {0, 2k
− 1},

then g is a Lipschitz function with Lipschitz constant bounded by
2∥f ∥∞3kd.

Proof. Let φ and Φ be the same as in the proof of Theo-
rem 2. For any vector a = (a1, . . . , akd) ∈ {0, 2}kd define
I(a) = {[0.a1 . . . akdb1b2 . . .]3 : b1, b2, . . . ∈ {0, 2}}. There exist
integers ℓ1, . . . , ℓd ∈ {0, . . . , 2k

− 1} such that Φ−1(I(a)) ⊆

×
d
j=1[ℓj2

−k, (ℓj + 1)2−k). Since f is constant on these dyadic
hypercubes, g(I(a)) = (f ◦ Φ−1)(I(a)) = const. If a, ã ∈ {0, 2}kd
and a ̸= ã, then, arguing as in the proof of Theorem 2, we find
that |x − y| ≥ 3−kd whenever x ∈ I(a) and y ∈ I (̃a). Therefore, we
have |g(x) − g(y)| = 0 if x, y ∈ I(a) and |g(x) − g(y)| ≤ 2∥g∥∞ ≤

2∥f ∥∞ ≤ 2∥f ∥∞3kd
|x − y| if x ∈ I(a) and y ∈ I (̃a). Since a, ã were

arbitrary, the result follows. □
122
It is important to realize that the space-filling curves and
fractal shapes occur because of the exact identity. It is natural
to wonder whether the KA representation leads to an interest-
ing approximation theory. For that, one wants to truncate the
number of digits in (2.5), hence reducing the complexity of the
interior function. We obtain an approximation bound that only
depends on the dimension d through the smoothness of the outer
function g .

Lemma 4. Let d ≥ 2 and suppose K is a positive integer. For
x = [0.ax1a

x
2 . . .]2, define φK (x) :=

∑K
j=1 2a

x
j 3

−1−d(j−1). If there exist
β ≤ 1 and a constant Q , such that |f (x) − f (y)| ≤ Q |x − y|β

∞
, for

all x, y ∈ [0, 1]d, then, we can find a univariate function g, such that
|g(x) − g(y)| ≤ 2βQ |x − y|

β log 2
d log 3 , for all x, y ∈ C, and⏐⏐⏐f (x) − g

(
3

d∑
p=1

3−pφK (xp)
)⏐⏐⏐

≤ 2Q2−βK , for all x = (x1, . . . , xd)⊤ ∈ [0, 1]d.

Moreover, ∥f ∥L∞([0,1]d) = ∥g∥L∞(C).

Proof. From the geometric sum formula,
∑

∞

q=0 3
−q

= 3/2. Let
φ and g be as in Theorem 2 and φK as defined in the statement
of the lemma. Since β ≤ 1, we then have that |g(x) − g(y)| ≤

2Q |x − y|
β log 2
d log 3 , for all x, y ∈ C. Moreover, (2.6) shows that

3
∑d

p=1 3
−pφ(xp) and 3

∑d
p=1 3

−pφK (xp) are both in the Cantor set
C and have the same first Kd ternary digits. Thus, using (2.4), we
find⏐⏐⏐f (x) − g

(
3

d∑
p=1

3−pφK (xp)
)⏐⏐⏐

=

⏐⏐⏐g(3 d∑
p=1

3−pφ(xp)
)

− g
(
3

d∑
p=1

3−pφK (xp)
)⏐⏐⏐

≤ 2Q
⏐⏐⏐3 d∑

p=1

3−p(φ(xp) − φK (xp)
)⏐⏐⏐ β log 2

d log 3

≤ 2Q
⏐⏐⏐2 ∞∑

q=Kd+1

3−q
⏐⏐⏐ β log 2
d log 3

≤ 2Q
⏐⏐⏐2 · 3−dK−1

∞∑
q=0

3−q
⏐⏐⏐ β log 2
d log 3

≤ 2Q3−K β log 2
log 3 .

inally, ∥f ∥L∞([0,1]d) = ∥g∥L∞(C) follows as an immediate conse-
uence of the function representation (2.4). □

. Deep ReLU networks and the KA representation

This section studies the construction of deep ReLU networks
mitating the KA approximation in Lemma 4. A deep/multilayer
eedforward neural network is a function x ↦→ f (x) that can
be represented by an acyclic graph with vertices arranged in a
finite number of layers. The first layer is called the input layer,
the last layer is the output layer and the layers in between are
called hidden layers. We say that a deep network has architecture
(L, (p0, . . . , pL+1)), if the number of hidden layers is L, and p0, pj
and pL+1 are the number of vertices in the input layer, jth hidden
layer and output layer, respectively. The input layer of vertices
represents the input x. For all other layers, each vertex stands
for an operation of the form y ↦→ σ (a⊤y + b) with y the output

(viewed as vector) of the previous layer, a a weight vector, b a

J. Schmidt-Hieber Neural Networks 137 (2021) 119–126

h

s
o
n
h
u
c
o

p
W
K
a
L
d
n
t

f

i
n
t
l
t
r
r
n
s
S

[

Fig. 1. (Left) A deep neural network with K hidden layers and width three computing the function x = [0.ax1a
x
2 . . .]2 ↦→ 3φK (x) =

∑K
j=1 2a

x
j 3

−d(j−1) exactly. In each
idden layer the linear activation function is applied to the left and right unit. The units in the middle use the threshold activation function σ (x) = 1(x ≥ 1/2).

(Right) A deep ReLU network approximating the function φK . For the definitions of Sr and Tr see the proof of Theorem 3.
1
c
(

T
Q
t
l
a

hift parameter and σ the activation function. Each vertex has its
wn set of parameters (a, b) and also the activation function does
ot need to be the same for all vertices. If for all vertices in the
idden layers the ReLU activation function σ (x) = max(x, 0) is
sed and L > 1, the network is called a deep ReLU network. As
ommon for regression problems, the activation function in the
utput layer will be the identity.
Approximation properties of deep neural networks for com-

osed functions are studied in Bauer and Kohler (2019), Fan,
ang, Xie, and Yang (2020), Horowitz and Mammen (2007),
ohler and Krzyżak (2017), Mhaskar and Poggio (2016), Nakada
nd Imaizumi (2020), Poggio, Mhaskar, Rosasco, Miranda, and
iao (2017) and Schmidt-Hieber (2019, 2020). These approaches
o, however, not lead to straightforward constructions of ReLU
etworks exploiting the specific structure of the KA approxima-
ion

(x) ≈ g
(
3

d∑
p=1

3−pφK (xp)
)
. (3.1)

n Lemma 4. To find such a construction, recall that the classical
eural network interpretation of the KA representation associates
he interior function with the activation function in the first
ayer (Hecht-Nielsen, 1987). Here, we argue that the interior func-
ion can be efficiently approximated by a deep ReLU network. The
ole of the hidden layers is to retrieve the next bit in the binary
epresentation of the input. Interestingly, some of the proposed
etwork constructions to approximate β-smooth functions use a
imilar idea without making the link to the KA representation, see
ection 4 for more details.
Fig. 1 gives the construction of a network computing x =

0.ax1a
x
2 . . .]2 ↦→ 3φK (x) =

∑K
j=1 2a

x
j 3

−d(j−1) combining units with
linear activation function σ (x) = x and threshold activation
function σ (x) = 1(x ≥ 1/2). The main idea is that for x =

[0.ax1a
x
2 . . .]2, we can extract the first bit using ax1 = 1(x ≥ 1/2) =

σ (x) and then define 2x − 2σ (x) = 2(x − ax1) = [0.ax2a
x
3 . . .]2.

Iterating the procedure allows us to extract ax2 and consequently
any further binary digit of x. The deep neural network DNN I in
Fig. 1 has K hidden layers and network width three. The left units
in the hidden layer successively build the output value; the units
in the middle extract the next bit in the binary representation
123
and the units on the right compute the remainder of the input
after bit extraction. To learn the bit extraction algorithm, deep
networks lead obviously to much more efficient representations
compared to shallow networks.

Constructing d networks computing φK (xp) for each x1, . . . , xd
and combining them yields a network with K + 1 hidden layers
and network width 3d, computing the interior function
(x1, . . . , xd) ↦→ 3

∑d
p=1 3

−pφK (xp) in (3.1). The overall num-
ber of non-zero parameters is of the order Kd. To approximate
a β-smooth function f by a neural network via the KA ap-
proximation (3.1), the interior step makes the approximating
network deep but uses only very few parameters compared to
the approximation of the univariate function g .

A close inspection of the network DNN I in Fig. 1 shows that
all linear activation functions get non-negative input and can
therefore be replaced by the ReLU activation function without
changing the outcome. The threshold activation functions σ (x) =

(x ≥ 1/2) can be arbitrarily well approximated by the linear
ombination of two ReLU units via ε−1(x− (1− ε)/2)+ − ε−1(x−

1+ε)/2)+ ≈ 1(x ≥ 1/2) for ε ↓ 0. If one accepts potentially huge
network parameters, the network DNN I in Fig. 1 can therefore be
approximated by a deep ReLU network with K hidden layers and
network width four. Consequently, also the construction in (3.1)
can be arbitrarily well approximated by deep ReLU networks. It is
moreover possible to reduce the size of the network parameters
by inserting additional hidden layers in the neural network, see
for instance Proposition A.3 in Elbrächter, Perekrestenko, Grohs,
and Bölcskei (2019).

Throughout the following we write ∥f ∥p := ∥f ∥Lp([0,1]d).

heorem 3. Let p ∈ [1,∞). If there exist β ≤ 1 and a constant
, such that |f (x) − f (y)| ≤ Q |x − y|β

∞
, for all x, y ∈ [0, 1]d,

hen, there exists a deep ReLU network f̃ with 2K + 3 hidden
ayers, network architecture (2K+3, (d, 4d, . . . , 4d, d, 1, 2Kd

+1, 1))
nd all network weights bounded in absolute value by 2(Kd ∨

∥f ∥∞)2K (d∨(pβ)), such thatf − f̃

p ≤ 2

(
Q + ∥f ∥∞

)
2−βK .

Proof. The proof consists of four parts. In part (A) we con-

struct a ReLU network mimicking the approximand constructed

J. Schmidt-Hieber Neural Networks 137 (2021) 119–126

i
t
↦

G

˜

t
L
a

n Lemma 4. For that we first build a ReLU network with architec-
ure (2K , (1, 4, . . . , 4, 1)) imitating the function x = [0.ax1a

x
2 . . .]2

→ 3φK (x) =
∑K

j=1 2a
x
j 3

−d(j−1). In part (B), it is shown that the
ReLU network approximation coincides with the function 3φK on
a subset of [0, 1]d with Lebesgue measure ≥ 1 − 2−Kβp. In part
(C), we construct a neural network approximation for the outer
function g in Lemma 4. The approximation error is controlled in
part (D).
(A): Let r be the largest integer such that 2r

≤ 2Kd2Kβp and set
S1(x) := 2r (x−1/2+2−r−1)+−2r (x−1/2−2−r−1)+ and T1(x) := 2x.
iven Sj(x), Tj(x), we can then define

Tj+1(x) :=
(
2Tj(x) − 2Sj(x)

)
+
, Sj+1(x) := S1

(
Tj(x) − Sj(x)

)
. (3.2)

There exists a ReLU network with architecture (1, (1, 2, 1)) and all
network weights bounded in absolute value by 2r computing the
function x ↦→ S1(x). Similarly, there exists a ReLU network with
architecture (1, (2, 2, 1)) computing (Sj(x), Tj(x)) ↦→ Sj+1(x) =

S1(Tj(x)− Sj(x)). Since S1(x) ≥ 0, we have that (Sj(x))+ = Sj(x) and
Tj(x) = (Tj(x))+. Because of that, we can now concatenate these
networks as illustrated in Fig. 1 to construct a deep ReLU network
computing x ↦→

∑K
j=1 2Sj(x)3

−d(j−1). Recall that computing Sj+1(x)
from (Sj(x), Tj(x)) requires an extra layer with two nodes that
is not shown in Fig. 1. Thus, any arrow, except for the ones
pointing to the output, adds one additional hidden layer to the
ReLU network. The overall number of hidden layers is thus 2K .
Because of the two additional nodes in the non-displayed hidden
layers, the width in all hidden layers is four and thus the overall
architecture of this deep ReLU network is (2K , (1, 4, . . . , 4, 1)).
By checking all edges, it can be seen that all network weights are
bounded by 2r

≤ 2Kd2Kβp.
(B): Recall that x = [0.ax1a

x
2 . . .]2. We now show that on a

large subset of the unit interval, it holds that Sj(x) = axj and
Tj(x) = [axj .a

x
j+1a

x
j+2 . . .]2 for all j = 1, . . . , K and therefore also∑K

j=1 2Sj(x)3
−d(j−1)

=
∑K

j=1 2a
x
j 3

−d(j−1)
= 3φK (x).

We have that S1(x) = 1(x > 1/2), whenever |x − 1/2| ≥

2−r−1. Set Aj,r := {x : |[0.axj a
x
j+1 . . .]2 − 1/2| ≥ 2−r−1

}. If x ∈

Aj,r , then, S1([0.axj a
x
j+1 . . .]2) = axj . Thus, if Sj(x) = axj , Tj(x) =

[axj .a
x
j+1a

x
j+2 . . .]2, and x ∈ Aj+1,r , then, (3.2) implies Sj+1(x) = axj+1

and Tj+1(x) = [axj+1.a
x
j+2a

x
j+3 . . .]2. Hence, the deep ReLU network

constructed in part (A) computes the function [0, 1] ∋ x ↦→

3φK (x) exactly on the set ∩
K
j=1Aj,r .

For fixed ax1, . . . , a
x
j−1 ∈ {0, 1}, the set

{x : |[0.axj a
x
j+1 . . .]2 − 1/2| < 2−r−1

} is an interval of length
2−r−j+1. As there are 2j−1 possibilities to choose ax1, . . . , a

x
j−1 ∈

{0, 1}, the complement Ac
j,r = {x ∈ [0, 1] : x /∈ Aj,r} can

be written as the union of 2j−1 subintervals of length 2−r−j+1.
The Lebesgue measure of Ac

j,r is therefore bounded by 2−r . Since
Kd2Kβp

≤ 2r , we find that (∩K
j=1Aj,r)c has Lebesgue measure

bounded by K2−r
≤ 2−Kβp/d. This completes the proof for part

(B).
(C): Now we construct a shallow ReLU network interpolating the
outer function g in Lemma 4 at the 2Kd

+ 1 points {
∑Kd

j=1 2tj3
−j

:

(t1, . . . , tKd) ∈ {0, 1}Kd} ∪ {1}. Denote these points by 0 =: s0 <
s1 < · · · < s2Kd−1 < s2Kd := 1. For any x ∈ [0, 1],

g(x) := g(s0) +

2Kd∑
j=1

g(sj) − g(sj−1)
sj − sj−1

(
(x − sj−1)+ − (x − sj)+

)
= g(s0)(x + 1)+ +

(g(s1) − g(s0)
s1 − s0

− g(s0)
)
(x)+

+

2Kd−1∑
j=1

(g(sj+1) − g(sj)
sj+1 − sj

−
g(sj) − g(sj−1)

sj − sj−1

)
(x − sj)+.
124
Fig. 2. Construction of the deep ReLU network in part (D) of the proof for
Theorem 3.

The function g̃(x) can therefore be represented on [0, 1] by a
shallow ReLU network with 2Kd

+ 1 units in the hidden layer.
Moreover, g̃(sj) = g(sj) for all j = 0, . . . , 2Kd. Finally, we bound
he size of the network weights. We have sj+1 − sj ≥ 3−Kd. By
emma 4, ∥f ∥∞ = ∥g∥L∞(C). Since 0 ≤ sj ≤ 1 and for any positive
, a(x − sj)+ =

√
a(

√
ax −

√
asj)+, we conclude that all network

weights can be chosen to be smaller than 2∥f ∥∞2Kd.
(D): Fig. 2 shows how the neural networks φ̃K and g̃ can be
combined into a deep ReLU network with architecture (2K +

3, (d, 4d, . . . , 4d, d, 1, 2Kd
+ 1, 1)) and all network weights boun-

ded in absolute value by max(2∥f ∥∞2Kd, 2Kd2Kβp) computing
the function f̃ (x1, . . . , xd) := g̃(3

∑d
q=1 3

−qφ̃K (xq)). Since 3
∑d

q=1
3−qφK (xq) ∈ {s0, . . . , s2Kd}, the interpolation property g̃(sj) =

g(sj) implies that g̃(3
∑d

q=1 3
−qφK (xq)) = g(3

∑d
q=1 3

−qφK (xq)).
Together with (B), we conclude that

f̃ (x1, . . . , xd) = g̃
(
3

d∑
q=1

3−qφ̃K (xq)
)

= g
(
3

d∑
q=1

3−qφK (xq)
)
, if x1, . . . , xd ∈

K⋂
j=1

Aj,r .

As shown in Lemma 4, ∥f ∥∞ = ∥g∥L∞(C). Since g̃ is a piecewise
linear interpolation of g , we also have ∥̃g∥L∞([0,1]) ≤ ∥f ∥∞. As
shown in (B), the Lebesgue measure of (∩K

j=1Aj,r)c is bounded by
2−Kβp/d. Decomposing the integral and using the approximation
bound in Lemma 4,f − f̃

p
p ≤

∫
∀i:xi∈∩

K
j=1Aj,r

⏐⏐⏐f (x) − g
(
3

d∑
q=1

3−qφK (xp)
)⏐⏐⏐p dx

+

∫
∃i:xi /∈∩

K
j=1Aj,r

2p
∥f ∥p

∞
dx

≤ 2pQ p2−βKp
+ 2p

∥f ∥p
∞
2−Kβp

≤ 2p(Q + ∥f ∥∞

)p2−Kβp,

using for the last inequality that ap + bp ≤ (a + b)p for all p ≥ 1
and all a, b ≥ 0. □

Recall that for a function class with md parameters, the ex-
pected optimal approximation rate for a β-smooth function in d
dimensions is m−β . The previous theorem leads to the rate 2−Kβ

using of the order of 2Kd network parameters. This coincides thus
with the expected rate. In contrast to several other constructions,

no network sparsity is required to recover the rate. It is unclear

J. Schmidt-Hieber Neural Networks 137 (2021) 119–126

w
s

t
s
s
(
T
i
u
r
p
o
p
i
o
n
K

f
m
o
l
c
i
g
c
w
w

o
w
o
l
n
o
s
s
i
t
u
b
D

4

a

s
s
b
o
i
f
T
f
n
e
i
s
i
h
w
r

r
t
o
a
[

R

Y
t
n
f

e
a
d
a
t
f
T
v
2
a
s
I
i
t
c
u
f
n

D

c
t

R

B

B

B

B

B

E

E

hether the construction can be generalized to higher order
moothness or anisotropic smoothness.
The function approximation in Lemma 4 is quite similar to

ree-based methods in statistical learning. CART or MARS, for in-
tance, selects a partition of the input space by making successive
plits along different directions and then fits a piecewise constant
or piecewise linear) function on the selected partition (Hastie,
ibshirani, & Friedman, 2009, Section 9.2). The KA approximation
s also piecewise constant and the interior function assigns a
nique value to each set in the dyadic partition. Enlarging K
efines the partition. The deep ReLU network constructed in the
roof of Theorem 3 imitates the KA approximation and also relies
n a dyadic partition of the input space. By changing the network
arameters in the first layers, the unit cube [0, 1]d can be split
nto more general subsets and similar function systems as the
nes underlying MARS or CART can be generated using deep ReLU
etworks, see also Eckle and Schmidt-Hieber (2019) and Kohler,
rzyzak, and Langer (2019).
As typical for neural network constructions that decompose

unction approximation into a localization and a local approxi-
ation step, the deep ReLU network in Theorem 3 only depends
n the represented function f via the weights in the last hidden
ayer. As a consequence, one could use this deep ReLU network
onstruction to initialize stochastic gradient descent. For that,
t is natural to sample the weights in the output layer from a
iven distribution and assign all other network parameters to the
orresponding value in the network construction. A comparison
ith standard network initializations will be addressed in future
ork.
The fact that in the proposed network construction only the

utput layer depends on the represented function matches also
ith the observation that in deep learning a considerable amount
f information about the represented function is decoded in the
ast layer. This is exploited in pre-training where a trained deep
etwork from a different classification problem is taken and
nly the output layer is learned by the new dataset, see for in-
tance Zeiler and Fergus (2014). The fact that pre-training works
how that deep networks build rather generic function systems
n the first layers. For real datasets, the learned parameters in
he first hidden layers still exhibit some dependence on the
nderlying problem and transfer learning updating all weights
ased on the new data outperforms pre-training (He, Girshick, &
ollar, 2019).

. Related literature

The section is intended to provide a brief overview of related
pproaches.
Shen et al. (2020) propose a similar deep ReLU network con-

truction without making a link to the KA representation or
pace-filling curves. The similarity between both approaches can
e best seen in their Fig. 5 or the outline of the proof for The-
rem 2.1 in Section 3.2. Indeed, in a first step, the input space
s partitioned into smaller hypercubes that are enumerated. The
irst hidden layers map the input to the index of the hypercube.
his localization step is closely related to the action of the interior
unction used here. The last hidden layers of the deep ReLU
etwork perform a piecewise linear approximation and this is
ssentially the same as the implementation of the outer function
n the modified KA representation in this paper. To ensure good
moothness properties, Shen et al. (2020) also include gaps in the
ndexing, that fulfill a similar role as the gaps in the Cantor set
ere. Lu, Shen, Yang, and Zhang (2020) combine the approach
ith local Taylor expansions and achieves optimal approximation
ates for functions that are smoother than Lipschitz.
125
Another direction is to search for activation function with good
epresentation property based on the modified KA representa-
ion in Maiorov and Pinkus (1999). Their Theorem 4 states that
ne can find a real analytic, strictly increasing, and sigmoidal
ctivation function σ , such that for any continuous function f :

0, 1]d → R and any ε > 0, there exist parameters wpq ∈
d, apq, bpq, cq, dq ∈ R, satisfying

sup
x∈[0,1]d

⏐⏐⏐⏐f (x) −

6d+3∑
q=1

dq σ
(3d∑

p=1

bpqσ (w⊤

pqx + apq) + cq
)⏐⏐⏐⏐ < ε.

This removes the dependence of the outer activation function in
the KA representation on the represented function f . The main
issue is that despite its smoothness properties, the activation
function σ is not computable and it is unclear how to transfer
the result to popular activation functions such as the ReLU. One
step in this direction has been done in the recent work Guliyev
and Ismailov (2018) proving that one can design computable
activation functions with complexity increasing as ε ↓ 0. Shen,
ang, and Zhang (2020) show that for a neural network with
hree hidden layers and three explicit and relatively simple but
on-differentiable activation functions one can achieve extremely
ast approximation rates.

The fact that deep networks can do bit encoding and decoding
fficiently has been used previously in Bartlett, Harvey, Liaw,
nd Mehrabian (2019) to prove (nearly) sharp bounds for the VC
imension of deep ReLU networks and also in Yarotsky (2018)
nd Yarotsky and Zhevnerchuk (2019) for a different construc-
ion to obtain approximation rates of very deep networks with
ixed with. There are, however, several distinctive differences.
hese works employ bit encoding to compress several function
alues in one number (see for instance Section 5.2.1 in Yarotsky,
018), while we apply bit extraction to the input vector. In our
pproach the bit extraction leads to a localization of the input
pace and the function values only enters in the last hidden layer.
t can be checked that in our construction the weight assignment
s continuous, that is, small changes in the represented func-
ion will lead to small changes in the network weights. On the
ontrary, bit encoding in the function values results in discontin-
ous weight assignment and it is known that this is unavoidable
or efficient function approximation based on very deep ReLU
etworks (Yarotsky, 2018).

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

ader, M. (2013). Texts in computational science and engineering: Vol. 9,
Space-filling curves (p. xiv+278). Heidelberg: Springer.

artlett, P., Harvey, N., Liaw, C., & Mehrabian, A. (2019). Nearly-tight VC-
dimension and pseudodimension bounds for piecewise linear neural
networks. Journal of Machine Learning Research, 20, 1–17.

auer, B., & Kohler, M. (2019). On deep learning as a remedy for the curse of
dimensionality in nonparametric regression. The Annals of Statistics, 47(4),
2261–2285.

raun, J. (2009). An application of Kolmogorov’s superposition theorem to function
reconstruction in higher dimensions (Ph.D. thesis), Universität Bonn.

raun, J., & Griebel, M. (2009). On a constructive proof of Kolmogorov’s
superposition theorem. Constructive Approximation, 30(3), 653–675.

ckle, K., & Schmidt-Hieber, J. (2019). A comparison of deep networks with ReLU
activation function and linear spline-type methods. Neural Networks, 110,
232–242.

lbrächter, D., Perekrestenko, D., Grohs, P., & Bölcskei, H. (2019). Deep neural
network approximation theory. arXiv e-prints, arXiv:1901.02220.

http://refhub.elsevier.com/S0893-6080(21)00028-9/sb1
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb1
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb1
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb2
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb2
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb2
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb2
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb2
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb3
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb3
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb3
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb3
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb3
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb4
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb4
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb4
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb5
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb5
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb5
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb6
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb6
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb6
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb6
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb6
http://arxiv.org/abs/1901.02220

J. Schmidt-Hieber Neural Networks 137 (2021) 119–126

F

G

G

G

G

H

H

H

K

L

M

S

S

S

S

S

S

Y

Y

Z

an, J., Wang, Z., Xie, Y., & Yang, Z. (2020). A theoretical analysis of deep Q-
learning. In A. M. Bayen, A. Jadbabaie, G. Pappas, P. A. Parrilo, B. Recht,
C. Tomlin, & M. Zeilinger (Eds.), Proceedings of machine learning research: Vol.
120, Proceedings of the 2nd conference on learning for dynamics and control
(pp. 486–489). PMLR.

irosi, F., & Poggio, T. (1989). Representation properties of networks:
Kolmogorov’s theorem is irrelevant. Neural Computation, 1(4), 465–469.

orchakov, A., & Mozolenko, V. (2019). Analysis of approaches to the universal
approximation of a continuous function using Kolmogorov’s superposition.
In 2019 international conference on engineering and telecommunication (pp.
1–4). http://dx.doi.org/10.1109/EnT47717.2019.9030591.

ordon, Y., Maiorov, V., Meyer, M., & Reisner, S. (2002). On the best approxi-
mation by ridge functions in the uniform norm. Constructive Approximation,
18(1), 61–85.

uliyev, N. J., & Ismailov, V. E. (2018). Approximation capability of two hidden
layer feedforward neural networks with fixed weights. Neurocomputing, 316,
262–269.

astie, T., Tibshirani, R., & Friedman, J. (2009). Springer series in statistics, The
elements of statistical learning (2nd ed.). (p. xxii+745). New York: Springer.

e, K., Girshick, R., & Dollar, P. (2019). Rethinking ImageNet pre-training, In The
IEEE international conference on computer vision.

echt-Nielsen, R. (1987). Kolmogorov’s mapping neural network existence theo-
rem. Vol. III, In Proceedings of the IEEE first international conference on neural
networks (pp. 11–13). Piscataway, NJ: IEEE.

Horowitz, J. L., & Mammen, E. (2007). Rate-optimal estimation for a general class
of nonparametric regression models with unknown link functions. The Annals
of Statistics, 35(6), 2589–2619.

Kohler, M., & Krzyżak, A. (2017). Nonparametric regression based on hierarchical
interaction models. IEEE Transaction on Information Theory, 63(3), 1620–1630.

Kohler, M., Krzyzak, A., & Langer, S. (2019). Estimation of a function of low local
dimensionality by deep neural networks. arXiv e-prints, arXiv:1908.11140.

Kolmogorov, A. N. (1957). On the representation of continuous functions of
many variables by superposition of continuous functions of one variable and
addition. Doklady Akademii Nauk SSSR, 114, 953–956.

Kupers, A. On space-filling curves and the Hahn-Mazurkiewicz theorem.
Unpublished manuscript.

Kurkova, V. (1991). Kolmogorov’s theorem is relevant. Neural Computation, 3(4),
617–622.

urkova, V. (1992). Kolmogorov’s theorem and multilayer neural networks.
Neural Networks, 5(3), 501–506.

u, J., Shen, Z., Yang, H., & Zhang, S. (2020). Deep network approximation for
smooth functions. arXiv e-prints, arXiv:2001.03040.

aiorov, V. E. (1999). On best approximation by ridge functions. Journal of
Approximation Theory, 99(1), 68–94.
126
Maiorov, V., Meir, R., & Ratsaby, J. (1999). On the approximation of functional
classes equipped with a uniform measure using ridge functions. Journal of
Approximation Theory, 99(1), 95–111.

Maiorov, V., & Pinkus, A. (1999). Lower bounds for approximation by MLP neural
networks. Neurocomputing, 25(1), 81–91.

Mhaskar, H. N., & Poggio, T. (2016). Deep vs. shallow networks: An
approximation theory perspective. Analysis and Applications, 14(06), 829–848.

Montanelli, H., & Yang, H. (2020). Error bounds for deep ReLU networks using
the Kolmogorov–Arnold superposition theorem. Neural Networks, 129, 1–6.

Nakada, R., & Imaizumi, M. (2020). Adaptive approximation and generalization
of deep neural network with intrinsic dimensionality. Journal of Machine
Learning Research, 21(174), 1–38.

Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., & Liao, Q. (2017). Why and
when can deep-but not shallow-networks avoid the curse of dimensionality:
A review. International Journal of Automation and Computing, 14(5), 503–519.

Schmidt-Hieber, J. (2019). Deep relu network approximation of functions on a
manifold. arXiv e-prints, arXiv:1908.00695.

Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks
with ReLU activation function. The Annals of Statistics, 48(4), 1875–1897.

Shen, Z., Yang, H., & Zhang, S. (2020). Deep network approximation characterized
by number of neurons. Communications in Computational Physics, 28(5),
1768–1811.

hen, Z., Yang, H., & Zhang, S. (2020). Neural network approximation: Three
hidden layers are enough. arXiv e-prints, arXiv:2010.14075.

iegelmann, H. T., & Sontag, E. D. (1994). Analog computation via neural
networks. Theoretical Computer Science, 131(2), 331–360.

precher, D. A. (1965). On the structure of continuous functions of several
variables. Transactions of the American Mathematical Society, 115, 340–355.

precher, D. A. (1996). A numerical implementation of Kolmogorov’s
superpositions. Neural Networks, 9(5), 765–772.

precher, D. A. (1997). A numerical implementation of Kolmogorov’s
superpositions II. Neural Networks, 10(3), 447–457.

precher, D. A., & Draghici, S. (2002). Space-filling curves and Kolmogorov
superposition-based neural networks. Neural Networks, 15(1), 57–67.

arotsky, D. (2018). Optimal approximation of continuous functions by very deep
ReLU networks. In S. Bubeck, V. Perchet, & P. Rigollet (Eds.), Proceedings
of machine learning research: Vol. 75, Proceedings of the 31st conference on
learning theory (pp. 639–649).

arotsky, D., & Zhevnerchuk, A. (2019). The phase diagram of approximation
rates for deep neural networks. arXiv e-prints, arXiv:1906.09477.

eiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional
networks. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer
vision (pp. 818–833). Cham: Springer International Publishing.

http://refhub.elsevier.com/S0893-6080(21)00028-9/sb8
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb8
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb8
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb8
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb8
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb8
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb8
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb8
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb8
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb9
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb9
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb9
http://dx.doi.org/10.1109/EnT47717.2019.9030591
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb11
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb11
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb11
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb11
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb11
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb12
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb12
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb12
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb12
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb12
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb13
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb13
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb13
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb15
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb15
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb15
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb15
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb15
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb16
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb16
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb16
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb16
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb16
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb17
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb17
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb17
http://arxiv.org/abs/1908.11140
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb19
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb19
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb19
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb19
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb19
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb21
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb21
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb21
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb22
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb22
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb22
http://arxiv.org/abs/2001.03040
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb24
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb24
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb24
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb25
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb25
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb25
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb25
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb25
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb26
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb26
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb26
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb27
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb27
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb27
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb28
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb28
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb28
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb29
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb29
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb29
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb29
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb29
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb30
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb30
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb30
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb30
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb30
http://arxiv.org/abs/1908.00695
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb32
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb32
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb32
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb33
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb33
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb33
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb33
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb33
http://arxiv.org/abs/2010.14075
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb35
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb35
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb35
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb36
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb36
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb36
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb37
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb37
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb37
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb38
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb38
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb38
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb39
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb39
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb39
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb40
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb40
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb40
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb40
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb40
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb40
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb40
http://arxiv.org/abs/1906.09477
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb42
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb42
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb42
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb42
http://refhub.elsevier.com/S0893-6080(21)00028-9/sb42

	The Kolmogorov–Arnold representation theorem revisited
	Introduction
	New versions of the KA representation
	Deep ReLU networks and the KA representation
	Related literature
	Declaration of competing interest
	References

