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ABSTRACT
Increasing application areas and depths of autonomous systems in
logistics provide a new level of challenge for the analysis and design of
human–machine interaction concepts. Due to scarce high-skilled
personnel in several regions and the objectives of efficiency and
sustainability improvement, logistics operators have to pursue
technological progress like automation with all means. In order to
distinguish between more or less performing human–artificial
collaboration systems in logistics ex ante for investment decision
purposes, a multi-dimensional conceptual framework is developed. A
comprehensive case study regarding automated truck driving in logistics
is provided in order to test the concept concerning practical
implications. Results include the notion of four distinctive and increasing
resistance levels before finally an efficient ‘trusted’ collaboration
between human operators and artificial intelligence systems can be
achieved. This is important for the design of many automated systems
in logistics, among others for driving and piloting professions regarding
autonomous driving supervision.
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1. Introduction

In the past, design and implementation of logistics systems followed a sequential model regarding
education and training: First, requirements were defined for example due to the implementation
of new technology. Second, human capabilities and required competences were derived and trained
if necessary (Chistopher, Peck, and Towill 2006; Cruijssen, Cools, and Dullaert 2007; Huang,
Sheroan, and Keskar 2005; Zijm and Klumpp 2016). Therefore, education and training in logistics
was discussed in many contexts as a crucial element but without a strategic veto role: Whether it
be the evaluation of logistics partners (Aguezzoul 2014; Grimm, Hofstetter, and Sarkis 2014; Prakash
and Barua 2015; Tavana et al. 2016), new technologies in logistics qualification (Liu and Wang 2015;
Wu and Huang 2013) or the important role in such specific fields as e.g. humanitarian and disaster
logistics (Bölsche, Klumpp, and Abidi 2013; Lijo, Ramesh, and Sridharan 2012; Santarelli et al. 2015;
Sheu 2014; Van Wassenhove 2006). Several levels of education and training (vocational, academic,
and continuing) usually are addressed matching a comprehensive supply chain (Hasanefendic, Hei-
tor, and Horta 2015; Liu 2009; McDonald et al. 2015). In all these cases, it is stressed that education
and training is an essential part – but as an element to be adjusted in a second step after a change of
requirements e.g. due to new technologies, methods or processes.
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However, in the future two major changes are prohibiting the continuation of this approach: (i)
Due to rising competence requirements and shortage of highly skilled workforce personnel at least in
some world regions and countries, easy availability of labour is not a given. Therefore, competition
for talent also in the logistics sector is increasing, putting pressure on operational (‘blue-collar’) as
well as management (‘white-collar’) occupations within global value chains (Gammelgaard and Lar-
son 2001; Liu and Hu 2013; Nuzzolo and Comi 2014; Shi and Handfield 2012). (ii) Second, technol-
ogy trends in logistics are important and aim for further automatisation on a new level (Craighead
et al. 2007; Galceran et al. 2017; Meech and Parreira 2011; Ni and Hu 2017; Ohlson and Osvalder
2015; Pham and Jeon 2017) – usually requiring an increasing interaction with artificial intelligence
applications (Manuj and Sahin 2011). One concept is the proposed ‘Physical Internet’ as depicted in
Figure 1 as a vision for an integrated automated physical transportation network, including an
indicative implementation timeline until 2050.

This implies that the question of successful human–artificial interaction has to be evaluated and
tested ex ante, before logistics systems are implemented. Otherwise, the risk of huge failing invest-
ments is imminent as the human workforce cannot be educated and aligned after the fact of tech-
nology implementation anymore: Due to increasing investment volumes, implementation
complexity and higher levels of competences required, training personnel after investing in e.g.

Figure 1. Physical Internet according to the European Technology Platform ALICE (ETP-ALICE 2017).
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automated logistics systems will impose prohibitively long lead times onto the realisation process.
The research question is therefore:

RQ: What sort of framework concept can allow for an ex ante analysis of human–artificial collaboration in
logistics in order to prevent investment failure e.g. by education and training measures?

The contribution is structured as follows: Section 2 provides a timeline for the development of logis-
tics automation, intertwined with education and competence requirements and concepts in supply
chain systems and functions. Section 3 describes an analytical approach regarding the performance
of human–artificial collaboration in logistics systems, whereas Section 4 offers a case study for the
field of truck driving, supplementing a proof of concept for the theory concept from Section 3 as
well as an extensive discussion regarding implications for business logistics. Section 5 finally outlines
some conclusions and interesting future research questions.

2. Logistics automation trends and training requirements

Three major trends with important impacts towards education and training have dominated logistics
and supply chain management in the last three decades:

(i) First, the overall integration and optimization of increasingly global supply chains has occupied
logistics research (Bernal, Burr, and Johnsen 2002; Bolumole 2001; Chae 2009; Dong and Chen
2005; Forslund and Jonsson 2007; Lee and Cavusgil 2006; Simatupang and Sridharan 2005;
Soosay, Hyland, and Ferrer 2008; Stevens 1989; Verstrepen et al. 2009; Yao and Chu 2008).

(ii) Second, the struggle for agile, flexible, and resilient supply chains was experienced in research
and business practice in order to mitigate risk and volatility of global market impacts and
increasingly demanding customers, e.g. with e-commerce (Canbolat et al. 2008; Glickman
and White 2006; Hendricks and Singhal 2005; Manuj and Mentzer 2008; Torabi, Hassini,
and Jeihoonian 2015).

(iii) And third, the requirement of sustainable logistics and supply chain operations took hold
(Asgari et al. 2015; Bloemhof et al. 2015; Carter and Rogers 2008; Quak and De Koster
2007; Sharma et al. 2010; Walker and Brammer 2009).

Altogether, these trends led to an increase in complexity and competence requirements (Fawcett,
Vellenga, and Truitt 1995; McKinnon 2013). This is due to the fact that higher complexities, inter-
national connections (cultural and language competencies) and technology applications require in
general higher levels of competencies with the human workforce. At the same time, the requirements
rise faster than humans can be trained in each generation of workers. This constitutes a knowledge
accumulation gap as explained in Figure 2.

When considering a timescale (x-axis), starting at the time of the industrial revolution (point A)
the expected and required workforce competence level started to increase on average due to increased
technology development and implementation (line in black). For logistics processes, it can be argued
that this ongoing process has at least two dimensions: First, existing activities such as truck driving,
warehouse processes or production processes demand increasing competence levels. This is for
example demonstrated by new legal regulations for mandatory further training of truck drivers
regarding safety, sustainability, hazardous goods, and technology usage. This dimension can be
labelled a competence enrichment of existing processes. Second, competence enlargement happens
as new activities arise in logistics and global supply chains: These are typically requiring a high com-
petence level such as IT systems management, logistics consulting, logistics and supply chain finance,
logistics tender management or logistics controlling.

Between ever-increasing expectations and requirements and real human competence levels a ‘gap’
is developing as required training for humans has for each and every person to start anew – learning
cannot be automated for human workers: Longer education and training programmes are needed in
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order to arrive at required higher competence levels for a modern-day logistics and business environ-
ment. This constitutes a knowledge accumulation gap (grey field in Figure 2) that arises due to the
fact that humans are not able to accumulate knowledge over generations – as opposed to machines
and computers which are able to do so.

In addition to human competence levels, automated or machine (non-human) competence
levels (dotted line) have an important impact on technology and business development. Though
artificial intelligence (AI) in the beginning possessed only simple competences starting in the
sixties, seventies and eighties of the twentieth century, development has nowadays significantly
accelerated in solution contribution width and depth (Hassabis 2017), e.g. detecting cancer in
medicine (Leachman and Merlino 2017; Van der Waal 2017) or enabling autonomous flight
(Huang et al. 2016). This is connected to the trend of deep learning, allowing computers auton-
omously to acquire new knowledge and to find directions of further learning themselves (LeCun,
Bengio, and Hinton 2015; Schmidhuber 2015; Tsuji and Aburatani 2015). As depicted by point B
in Figure 2, automated systems were initially very slowly adopted. Examples in logistics include
the automated gearbox for trucks, partly automated cranes and warehouse equipment as well
as automated communication and transmission devices in logistics management (EDI systems,
automated decision protocols). These limited systems never really matched human competence
levels as these systems were isolated – which is why the dotted line traverses significantly
below average human competence levels between the points B and C. In recent years however
– symbolised by point C – automated systems have undergone a major change, characterised
by a merging of separate systems. Such systems are now increasingly coupled and begin to interact
(Barrat 2013), especially by being linked to the internet and joint information and learning
resources or GPS systems for navigation in transportation applications (Bravo, Parra, and Pereira
2017; Dalumpines and Scott 2017). For example, state-of-the-art automated warehouses are inte-
grated systems of software (warehouse management systems), hardware (moving goods) and even
optimization (error analysis, automated storage optimization, learning and prognosis with e.g.
predictive analytics). This integration increases the capability of such systems and allows also
for self-steered innovation and learning.

Figure 2. Competence requirements and provisions in logistics (Zijm and Klumpp 2016, 15).
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In some cases, artificial intelligence and automated systems are already overtaking human com-
petence levels (point D): Regarding truck driving for example, the combination of the old automated
gearbox with GPS-based navigation systems allows trucks to actually efficiently downshift before a
steep slope of an oncoming mountain street is even visible to the human driver (Hoijati-Emami,
Dhillon, and Jenab 2012; Yoshida, Sugimachi, and Fukai 2011). This form of foresight and decision
as well as action is a new capability of automated systems which has reached new levels in automated
passenger car driving experiments (Koo et al. 2015).

Implication areas traversing point D can only be hypothesised: It could be imagined that a future
point E lies ahead where automated systems even exceed expectations of society and business as
defined by humans. This may entail risks, as unforeseen behaviour of automated systems may
worry humans. However, risks and opportunities are usually embedded in any development, the
core question is how they are used and which rules and limitations apply. Just for a hypothetical
example outline, some applications and developments are listed for the area beyond point E, indi-
cated with a question mark in Figure 2:

. Automated trucks may communicate with other trucks on the road in order to allow priority pas-
sage for cargo trucks behind their time and delivery schedule. This especially may not be under-
stood by individual drivers lacking the ‘overall picture’ of a larger number of vehicles, positions
and supply chain demands.

. AI applications in supply management may re-schedule the production sequence as specific
supply items are running late for inbound arrival at production sites, e.g. due to distant traffic
jams or other operational transportation hurdles.

. Automated manufacturing systems could suggest improved working rhythms or movements to
their human co-workers as they have access to databases of benchmarking pictures or communi-
cations with other production support applications (‘real-time benchmarking and ubiquitous
learning’).

. With automated warehouse systems, specific products may be released from stock as information
from distant places with other supply chain partners regarding e.g. increasing end-customer sales
or production demands are received real-time. This would also incorporate an advanced level of
bullwhip effect mitigation in supply chains.

In the light of such developments in logistics, there will be huge changes necessary and qualifica-
tion and training schemes in technology implementation have to be evaluated anew: In the past,
often a sequential model was implemented. This model of technology development first, then fol-
lowed by implementation and finally training of human workers has a clear structure and also a
successful risk avoidance mechanism – workers were only trained for technologies already devel-
oped and implemented. However, current models use a parallel approach for at least part of the
timeline, regarding implementation and training experiences as essential input for further technol-
ogy development (user involvement in research and development). In the future, it can be sur-
mised that in an environment of automated blue- and white-collar work in logistics, the
innovation process may even take place without any large-scale human training. In such systems,
human roles may be limited to technology development and general oversight. Artificial intelli-
gence and robotics appliances may take over the innovation process completely by introducing
new manufacturing, transportation and management decision concepts without detailed human
training. Such a scenario implicates that technology development and implementation are two
intertwined and parallel processes – as already applied to smartphone applications (Königs and
Gijselaers 2015; Neubeck et al. 2015; Zia et al. 2016). This leads to the core question of how
human workers and artificial intelligence applications collaborate in such new environments,
addressed in the following section.
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3. Analytical model for human–artificial collaboration

3.1. Acceptance and resistance

Human interaction towards artificial intelligence applications and automation (Kolbjørnsrud,
Amico, and Thomas 2017; Lee et al. 2014; Nicolescu 2017) can be characterised by three hurdles
or areas of resistance. Once an area is overcome, usually acceptance settles in. This can be outlined
as described in Figure 3.

The three identifiable hurdles are connected to three increasing AI functional areas and develop
an increasing level of resistance throughout this development in line with an increasing level of per-
sonal intrusion (x axis):

. AI Competences: Automation and AI applications are acquiring competences in specific fields,
from playing chess to forecasting market demand. As separate competences, these are new for
humans to get accustomed to but are comparatively less frightening and therefore the resistance
level towards them is relatively low. For logistics, this may include for example the automated
gearbox in truck driving, automated routing and navigation systems as well as automated intra-
logistics applications systems like picking and warehouse transportation systems. These systems
have in common that usually any final decision, e.g. regarding the travelled street in reality is still
taken by humans. In many cases, AI suggestions for example from navigation systems are not fol-
lowed through by humans, an obvious sign of resistance (or real and assumed ‘better knowledge’).

. AI Decisions: Furthermore, AI applications are suggesting and applying single decisions, which
usually rises greater anxiety and resistance levels with humans. This happens for example in cruise
control applications in cars and trucks, maintaining constant speed or constant distance to a lead-
ing vehicle (Alam et al. 2015). In such cases, the automated device is taking a row of decisions
within a limited area of action (e.g. vehicle speed, vehicle gear). Such developments have already
happened in the past for example for car and truck motor management (increasingly automated)
or in the leisure area for smartphone and social media applications. In these cases, humans are
accepting automated applications without major security or fraud mistrust, at least not on a
day-to-day basis (only incident-based e.g. with data fraud scandals or leaks). Understandably,

Figure 3. Human acceptance resistance model for AI applications (author’s creation).
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this sort of AI application is rising higher levels of rejection among humans, usually also requiring
a longer period of adaption before acceptance can settle in (Weyer, Fink, and Adelt 2015).

. AI Autonomy: Finally, AI applications are taking a multitude of different decisions, leading to
autonomous behaviour as for example in actively steering cars and trucks for longer periods
and with interaction towards other participants in road traffic. In these cases, humans usually
take over a passive supervising role (Rauffet et al. 2015). These applications are at the doorstep
to industrial and real-world applications, in production (autonomously moving robots with
human interaction), traffic (autonomous cars and trucks) and health care (surgery, robotics).

These levels or hurdles can be seen as a sequentially increasing level of personal intrusion (x-axis),
arriving at a completely new situation after the three hurdle areas: The situation of trust towards an
AI application, where humans are inclined to actively and trustfully collaborate with automated
applications. This is linked to the famous ‘Turing test’, where in the positive case humans are not
able to distinguish between human or artificial counterparts for their communication (Harnad
1992; Saygin, Cicekli, and Akman 2000; Turing et al. 1952). In the original BBC interview from
1952 Turing formulated as follows:

In about fifty years’ time it will be possible to programme computers… to make them play the imitation game
so well that an average interrogator will not have more than 70% chance of making the right identification after
five minutes of questioning. (Turing et al. 1952, 489)

The proposed stage of ‘AI Trust’ is a special form of passing the Turing test as it is assumed that the
human being in question may only be able to develop trust towards an AI application if perceptive
evaluation will judge the application to behave and communicate like a human being.

3.2. Analysis application matrix

The resulting four areas of AI application development can be combined with four areas of human
impact, arriving at an analytical four-by-four-matrix determining ex ante possible human rejection
levels towards AI applications. This stems from the fact that not all areas of AI applications are eval-
uated the same by human beings (see Figure 4).

Figure 4. Human acceptance resistance matrix (author’s creation).
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On the horizontal x-axis, Figure 4 presents the aforementioned four development areas for AI
applications. Additionally, the perceived level of human acceptance resistance on the vertical y-
axis is based on the human self-concept regarding self-maintenance, self-autonomy and self-identity:

. On a low level of impact and possible rejection, all leisure, shopping and social interaction appli-
cations can be placed. This is a ‘trial-and-care-free’ arena in the human self-perception (as also
socially accepted loss of self-control with e.g. alcohol, sports games and other areas). Therefore,
AI applications are understood to be enlarging the human experience, e.g. by using automated
social media and shopping proposals. In these areas, humans are actively accepting AI appli-
cations without larger resistance attempts, as this does not pierce their self-evaluated personal
core (Hoff and Bashir 2015).

. Second, AI applications in the field of work and income are slightly more concerning for humans.
Whereas AI competences as support and case-to-case help may be accepted easily, AI decision
and autonomy applications are seen more critically. This mainly comes with the much-discussed
notion of AI applications ‘putting jobs at risk’: Since the 200-year-old Luddite movement, critical
positions towards technology applications are potentially work- and job-replacing for humans
have been voiced and discussed (Autor, Levy, and Murnane 2003; Fox 2002; Jones 2006). There-
fore, this can be evaluated as a deep and emotional resistance towards AI applications addressing
human work tasks and income potentials.

. Third, AI applications in the area of human health and security are seen even more sceptical. This
relates to applications regarding surgery and personal security systems and features, e.g. access
control and denial (Nicolescou 2017).

. Finally, a virtual ‘no go area’ exists in the field of AI applications entering the self-identity of
humans. This concerns actions and decisions attached to the very self-concept of humans, e.g.
from the actual dressing (clothes) to the choice of education and profession or children and leisure
activities. If such actions and decisions may be taken by AI applications (hard to imagine but
already described in Huxley’s Brave New World with automated reproduction decisions), the
expected reactions by humans may be very hostile and rejecting.

The outlined matrix provides a very general but also instructive evaluation scheme for AI appli-
cations. This is further elaborated with the subsequent case study addressing the logistics application
of automated truck driving in order to outline a ‘proof of concept’.

4. Case study truck driving

4.1. Background and data

Road transportation is the backbone of modern logistics, providing an unrivalled level of flexibility,
efficiency and door-to-door-access. This is reflected in the large shares of modal split in cargo trans-
portation for the road sector: Depending on country characteristics, large shares of cargo transpor-
tation are implemented by trucks – for example 50.0% in Switzerland, 64.7% in Germany and 95.0%
in Spain (2015 in inland freight tonne-km shares, Eurostat 2017). Moreover, usually multi-modal
transport chains rely on the road sector for first- or last-mile delivery, e.g. combined with rail,
ship or plane transportation on the main haul section of transportation.

Academic research has also contributed hugely to this important part of transportation and logis-
tics: Dedicated topics are for example optimization (Dondo and Cerdá 2015; Gingerich, Maoh, and
Anderson 2016; Phan and Kim 2015), inter-modal cooperation (Nossack and Pesch 2013; Verma
and Verter 2010), safety and security (Chen et al. 2015; Pahukula, Hernandez, and Unnikrishnan
2015; Pattinson and Thompson 2014) as well as sustainability and alternative propulsion systems
(Fors, Kircher, and Ahlström 2015; Zhu et al. 2014) of truck transportation. Truck driving also is
a large section of logistics-related professions: for example, in the US there were 3,105,980 truck
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drivers as of May 2016 (Bureau of Labor Statistics 2017) and within Europe, e.g. in Germany more
than 800,000 people are working in this field. Therein a demographic challenge is increasingly
obvious: 26.5% of all truck drivers in Germany are more than 55 years old and are therefore expected
to retire in the next decade (Statista 2017). This implies that there is pressure for logistics companies
to deal with automatisation and increased incentives for young personnel for example via technology
implementation (Shankwitz 2017; Sullman, Stephens, and Pajo 2017). This leads to the question
addressed in the following section regarding the motivation circumstances of drivers.

4.2. Motivation modelling for truck driving

In order to provide an insight into the motivational structure of truck drivers, data from Germany is
presented: From a 2014/2015, empirical survey among 469 truck drivers a factor analysis model
regarding motivation factors is developed. This is connected for example to these existing studies:
Nowakowski, Shladover, and Tan (2015) from the USA find that during a long historic development
of automation features in heavy/commercial truck fleets and available training facilities to pro-
fessional truck drivers, application areas as well as design concepts for automated driving application
for trucks may differ significantly from car passenger applications (e.g. 2951). Kalra and Paddock
(2016) document that extensive reliability testing is required in order to establish human trust
towards automated driving applications in cars as well as trucks (189). Finally, Bazilinskyy and de
Winter (2017) posit that even a situation-by-situation decision background has to be taken into
account for automated driving: Drivers may be inclined to use automated steering support in
some situations – but not in others e.g. with very heavy traffic (62).

For this survey, two data requisition approaches were implemented: for half of the respondents,
a random sample of truck transportation companies from the largest German state of Northrhine-
Westfalia was drawn and invited to the survey by surface mail letter and subsequent visits from
interviewers with written questionnaires. For the other half of the sample, also within the German
state of Northrhine-Westfalia, all vocational training schools for truck drivers were invited by tel-
ephone to take part in the survey. If willing, interviewers visited the schools and their classes on
site and distributed written questionnaires. Altogether the representative characteristics of the 469
respondents (age, gender) provide a good match with the overall truck driver population in
Germany.

Based on the empirical findings in the survey (Klumpp et al. 2014), two new regression models for
dependent variables were developed: one regarding the dependent factor of recommendation for the
truck drivers job towards others (Figure 5); and another regarding the dependent factor if drivers
assume that they will be able to continue their job until retirement under the current working con-
ditions (Figure 6). Both dependent factors are a representation of the truck drivers work motivation –
and in each case, three statistically significant independent and influencing factors were identified
from all variables within the survey. For example, motivational connections between the dependent
factors and the survey item ‘pay increase’ were not detected, though ceteris paribus usually pay ques-
tions are of importance to truck drivers (Belman and Monaco 2001; Lamere et al. 1996; Min and
Emam 2003).

Figure 5. Regression factor model for truck driver motivation/recommendation.
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For the dependent variable recommendation of their job, the three input variables ‘lead time for
deadlines’, ‘appreciation’ and ‘working time effects’ were identified, the latter two being index vari-
ables from a group of related cluster variables in the questionnaire (e.g. requesting appreciation
evaluations separately from customers, fellow workers and traffic participants). Especially, the factor
of appreciation highlights the specific motivation, interaction and collaboration role in the truck dri-
ver domain.

For the dependent variable continuation of the driver’s job until retirement, the three input vari-
ables ‘working time effects’, ‘appreciation’ and ‘average working time’ were identified by the
regression model. Again, workload and conditions (time schedule) as well as appreciations from
managers, customers, fellow workers, and traffic participants are important for drivers. This could
lead to the proposition that positive human–artificial collaboration may even be easier if AI appli-
cation learn to accolade and praise human co-workers in any form in order to show some appreci-
ation for their input. This could be implemented for example within voice communication between
drivers and Ai applications (Baldwin 2011; He et al. 2017; Nasirian, Ahmadian, and Lee 2017; Para-
suraman, Sheridan, and Wickens 2000).

4.3. Technology developments and applications in truck driving

Automated driving for cars and trucks is on the threshold of general application. This is because on
the one hand an increased number of sensors is employed in vehicles (infrared, radar, laser, lidar,
visual cameras, etc., Cheng 2011; Naranjo et al. 2007). On the other hand, increasingly former inde-
pendent systems are connected and cooperating in order to perform self-sufficiency in driving. For
example, the cruise control system was known for many years in trucks and cars, maintaining a con-
stant pre-set speed for the vehicle. This is now coupled with further intelligent applications, e.g. with
GPS navigation and the automated gearbox, allowing vehicles to deploy dynamic cruise control.

This has three sub-level steps, already implemented in the truck business (Schakel, van Arem, and
Netten 2010):

. In the first generation of cruise control applications, the system steadily maintained a constant,
pre-set speed level. This was only managing the gas/propulsion system of the truck or car.

. Second, the system was able to follow a preceding vehicle with a pre-set distance length, therefore
already combining the management of gas and brake in the vehicle.

. Third and available today is a cruise control systems to anticipate the route characteristics by GPS
positioning in combination with map material. This allows the system e.g. to decelerate before
downhill passages or accelerate and downshift before uphill road segments. This combines gas,
brake, gear and GPS navigation capabilities of the system. The driver is furthermore only steering
the truck direction along the road and supervising the system in total (Marsden, McDonald, and
Brackstone 2001).

Currently, this leads to the further step of ‘platooning’ where trucks form automated chains or trains
out of several independent vehicles in order to travel long distances in an efficient mode (e.g. saving

Figure 6. Regression factor model for truck driver motivation/working until retirement.
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fuel and also allowing following drivers to take rest with auto-pilots engaged, Alam et al. 2015; Ber-
genheim, Shladover, and Coelingh 2012).

This is a significant development on the pathway towards automated vehicle driving as described
also for cars. Finally, this will lead to automated road transportation with the existing truck driver
playing only a supervisory role – though according to many regulatory demands and authorities,
a human person will be on board at least in public traffic environments (first and last mile) for
the foreseeable future. This allows the observation that in the future humans will not be employed
for their ‘know-how’ but their ‘know-why’. The competence to actively gear and steer, e.g. the truck
will be implemented by a technology application – whereas the driver is supposed to understand the
know-why of all systems and especially when to interrupt the automated system (therefore also:
‘know-when’).

4.4. Model analysis regarding human–artificial performance

In order to develop operational strategies coping with AI applications in logistics (Bostrom 2014), the
proposed analytical matrix is applied to this specific question of truck driving. The following deduc-
tions are feasible as described in Figure 7:

. Known applications in the fields of leisure and social interaction as e.g. web 2.0 applications
(social media) in general and especially logistics applications as for example automated picking
systems and the automated gearbox in trucks are met with very low resistance or even enthusiasm
as humans are deeming the isolated AI competence as not very much frightening.

. But in the second area of cruise control applications in truck driving as described above, the resist-
ance level may rise to a higher, medium level. It will also be necessary to train drivers using such
cruise control systems (level 3 with GPS application) in order for them to be able to understand
the system. This is mainly directed at their necessary competence to recognise failures in the sys-
tem and possible dangers from the AI application. This could for example be the fact that lower
gears are used for braking effects on downhill sections: an AI application may shift up in order to
save fuel but endanger the truck in terms of insufficient braking power downhill.

Figure 7. Human acceptance resistance matrix for truck driving (author’s creation).
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. Third, platooning systems as described will require even more education and training as drivers
will have to ‘fight’ their emotional responses and ‘gut feelings’ regarding leaving control of the
truck to an AI application for long distances. Therefore, such systems will not be available and
usable to inexperienced and untrained drivers, for their own as well as other traffic participants’
safety.

. Fourth, fully automated driving systems in trucks in the future may be met with an even higher
level of resistance. And the training and competence level of truck drivers for such systems will
have to be enhanced significantly in order to overcome this resistance and use the drivers’ time
efficiently during supervising the automated steering sections (e.g. on motorways). A comparison
with plane pilots may be adequate as with introducing automated flight systems in the past it was
not the case that pilots were abolished, but their time was necessarily used more efficiently (e.g. for
planning and administrative tasks). And their training had to increase, not decrease. Therefore,
though resistance may occur, the already aired fears for huge job losses may not be that imminent.
But qualification and training will be an important issue in the future for truck drivers than today.

4.5. Implications for logistics

The outlined acceptance model in the case of automated truck driving could be continued towards
further implications for logistics processes and operations, e.g. with the following items:

. With automated trucks, personal attention and competencies of truck drivers will shift from oper-
ational questions (steering, speed, gear and route) towards supervision and also security and plan-
ning processes. This will allow for additional activities to be carried out during driving and may
even compete with office administration jobs. This is of major importance as currently especially
consultant studies and prognoses (e.g. Balakrishnan 2017; Center for Global Policy Solutions
2017, 32; Hook 2017) mainly talk about driver jobs to be lost – but in the opposite, possibly a
loss of administration jobs will occur as drivers will always be required in the driver’s seat for safety
supervision reasons (Kianfar, Falcone, and Fredriksson 2013; Kritayakirana and Gerdes 2012;
Rodriguez-Castano, Heredia, and Ollero 2016; Urciuoli and Hintsa 2017) and will take over
administration tasks en route in their vehicles. This might lead to an evolution in the driver
job market, leading to a situation where ‘piloting trucks (…) might eventually evolve into a
white-collar profession actively sought after by college graduates’ (Ford 2017). A downside
may be that sleepiness risks may increase due to ‘dull’ supervision similarly to the situation of
aeroplane pilots – as well as the adverse effect of long-term competence loss (Anund, Fors, and
Ahlstrom 2017; Bainbridge 1983; Brown et al. 2017; Childress et al. 2015; Dawson, Searle, and
Paterson 2014).

. Acceptance of drivers towards automated systems will therefore play an important role for the
competitiveness of road transportation companies from several perspectives: First, if the driver
allows the AI application to do its job based on a trusted collaboration (see Hoff and Bashir
2015; Muir 1987; Rezvani et al. 2016; Verberne, Ham, and Midden 2012), this will be more effi-
cient and cost-saving than the human driver alone (saving fuel, reducing travelled distance and
reducing truck wear). Second, as drivers may assume administrative tasks and processes instead
of driving while travelling, this may save costs at other places (e.g. administrative processes) or
even enhance customer-perceived quality and service: this could encompass the driver calling
ahead and communicating with addressees of shipments as well as exploring future tasks with
those customers. Third, driving personnel may also be more effective and efficient due to a motiv-
ation boost within an AI application scenario: truck driving may be seen in the future as a ‘tech-
nology job’ (Ford 2017).

. The third important item is the question of how to introduce new human–artificial collaboration
systems in logistics (‘revolution or evolution’). It can be expected that similarly to the road vehicle
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fleet with an oncoming multitude of propulsion systems ahead (diesel and CNG/LNG, hybrid,
hydrogen, electric – see Gao et al. 2015; Shahraeeni et al. 2015), the complexity of different systems
in logistics operations existing in parallel will increase significantly. This will be a major challenge
for strategic management of logistics operations, ensuring effective and efficient operations with a
mixed landscape of more and less advanced AI application designs within a truck fleet for
example. This case is concurrently largely neglected by research; instead the analysis focus is
on ‘on-road interaction’ between autonomous and human drivers. But this is also important
within corporations, truck fleets and supply chains, e.g. in cases where due to technical failures,
human drivers with their ‘old-fashioned’ trucks have to replace trips scheduled originally for
autonomous trucks. This will be a new challenge for routing and fleet management in logistics
operations.

. And finally there is also a general preparation and communication task ahead for the logistics
industry: In line with an implementation of automated trucks, many interaction and acceptance
questions within the traffic system (towards car drivers, see Levin and Boyles 2016; Talebpour and
Mahmassani 2016; Wietholt and Harding 2016), the economic system and the legal system
(responsibility and damage claim questions, see Rao 2016, 20) will be encountered. Therefore,
logistics research and business practice has to prepare for such comprehensive implementation
and communication strategies in order to earn the full advantages possible with automated
truck driving (Fagnant and Kockelman 2015).

Further inquiries into human–artificial collaboration will be necessary for business applications at
large as a large amount of investments in AI applications in logistics and operations management
can be expected.

5. Conclusions

By outlining analytical approaches and trends in human–artificial collaboration in logistics systems,
this contribution has identified three major issues: (a) The apprehension and resistance of humans
towards artificial intelligence applications – e.g. in logistics – has many sources (Armstrong 2014)
and can be categorised in at least four development areas. (b) This is largely influencing the perform-
ance of human–artificial corporation at the workplace as was outlined with the case study example
regarding automated truck driving, leading to adaption as well as to persisting rejection patterns
depending on the area of AI application. (c) In order to cope with human–artificial collaboration
in logistics in general and ex ante investment decisions specifically, a structuring and evaluation
matrix was proposed and tested based on the four levels of acceptance, resistance and impact
areas for the human workforce. This helps to evaluate human–artificial collaboration in logistics sys-
tems in advance and therefore support decisions avoiding lost investments for example by increasing
information, testing and training for human workers when a rejection hurdle is identified (Koo et al.
2015).

Further research is necessary and interesting along the lines of the following possible research
questions: (i) How can the outlined acceptance and resistance hurdles possibly be lowered by infor-
mation and training or experience on the side of the human collaboration partners? (ii) Are there
distinctive communication and presentation variables on the artificial side of the collaboration
which can be used to lower resistance (e.g. design and speech variation of automated applications
as female navigation system voice tones, comparable insights, see Bazilinskyy and de Winter
2015; Baldwin 2011; Parasuraman, Sheridan, and Wickens 2000)? (iii) How can a break-even analy-
sis for logistics systems investments be designed based on the outlined findings in order to dis-
tinguish operational areas with a potentially higher business value in logistics compared to others
(e.g. driving or picking; planning or deviation management)?

Further research questions will also arise from further technological development such as in deep
learning (Graf et al. 2014; Kuhnt et al. 2016) or in further integrating the human–artificial
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collaboration (e.g. by thought connection and control, Zander et al. 2017). Altogether, the future
competitiveness of logistics systems will largely depend on the described factors regarding
human–artificial collaboration and acceptance. Therefore, a high level of interest in both research
and business practice is necessary and legitimate for this field, including interdisciplinary approaches
from several science and application disciplines.
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