Preface

This volume contains the papers presented at FMICS 2012, the 17th International Workshop on Formal Methods for Industrial Critical Systems, taking place August 27–28, 2012, in Paris, France. Previous workshops of the ERCIM Working Group on Formal Methods for Industrial Critical Systems were held in Oxford (March 1996), Cesena (July 1997), Amsterdam (May 1998), Trento (July 1999), Berlin (April 2000), Paris (July 2001), Malaga (July 2002), Trondheim (June 2003), Linz (September 2004), Lisbon (September 2005), Bonn (August 2006), Berlin (July 2007), L’Aquila (September 2008), Eindhoven (November 2009), Antwerp (September 2010), and Trento (August 2011). The FMICS 2012 workshop was co-located with the 18th International Symposium on Formal Methods (FM 2012).

The aim of the FMICS workshop series is to provide a forum for researchers who are interested in the development and application of formal methods in industry. In particular, FMICS brings together scientists and engineers that are active in the area of formal methods and interested in exchanging their experiences in the industrial usage of these methods. The FMICS workshop series also strives to promote research and development for the improvement of formal methods and tools for industrial applications.

The topics of interest include, but are not limited to:

- Design, specification, code generation and testing based on formal methods
- Methods, techniques and tools to support automated analysis, certification, debugging, learning, optimization and transformation of complex, distributed, dependable, real-time systems and embedded systems
- Verification and validation methods that address shortcomings of existing methods with respect to their industrial applicability, e.g., scalability and usability issues
- Tools for the development of formal design descriptions
- Case studies and experience reports on industrial applications of formal methods, focusing on lessons learned or identification of new research directions
- Impact of the adoption of formal methods on the development process and associated costs
- Application of formal methods in standardization and industrial forums

This year we received 37 submissions. Papers had to pass a rigorous review process in which each paper received three reports. The international Program Committee of FMICS 2012 decided to select 14 papers for presentation during the workshop and inclusion in these proceedings. The workshop was highly enriched by our two invited talks given by Dimitra Giannakopoulou, NASA Ames, USA, and Hubert Garavel, INRIA Grenoble Rhone-Alpes, France.
We would like to thank the local organizers Kamel Barkaoui, CNAM Paris, and Béatrice Bérard, University Pierre et Marie Curie, for taking care of all the local arrangements in Paris, the ERCIM FMICS working group coordinator Radu Mateescu, INRIA Grenoble, for his fruitful discussions, and especially Alessandro Fantechi, Università degli Studi di Firenze and ISTI-CNR, Italy, for inviting us to co-chair this workshop, EasyChair for supporting the review process, Springer for the publication, all Program Committee members and external reviewers for their substantial reviews and discussions, all authors for submitting 37 papers and all attendees of the workshop. Thanks to all for making FMICS 2012 a success.

August 2012

Mariëlle Stoelinga
Ralf Pinger
Program Committee

Lubos Brim
Alessandro Cimatti
Maria Del Mar Gallardo
Michael Dierkes
Cindy Eisner
Georgios Fainekos
Alessandro Fantechi
Holger Hermanns
Michaela Huhn
Franjo Ivancic
Joost-Pieter Katoen
Stefan Kowalewski
Juliana Küster Filipe Bowles
Frederic Lang
Odile Laurent
Stefan Leue
Tiziana Margaria
Mieke Massink
David Parker
Corina Pasareanu
Thomas Peikenkamp
Jan Peleska
Ralf Pinger
Jakob Rehof
Judi Romijn
John Rushby
Gwen Salaün
Bernhard Schätz
Marjan Sirjani
Mariëlle Stoelinga

Masaryk University, Czech Republic
FBK-irst, Italy
University of Malaga, Spain
Rockwell Collins, France
IBM Haifa, Israel
Arizona State University, USA
DSI - Università di Firenze, Italy
Saarland University, Germany
Technische Universität Clausthal, Institut für Informatik, Germany
NEC Laboratories America, Inc., USA
RWTH Aachen, Germany
RWTH Aachen University, Germany
University of St. Andrews, UK
INRIA Rhône-Alpes / VASY, France
Airbus, France
University of Konstanz, Germany
University of Potsdam, Germany
CNR-ISTI, Italy
University of Oxford, UK
CMU/NASA Ames Research Center, USA
OFFIS e.V., Germany
TZI, Universität Bremen, Germany
Siemens AG, Braunschweig, Germany
TU Dortmund, Germany
Movares, The Netherlands
SRI International, USA
Grenoble INP - INRIA - LIG, France
TU München, Germany
Reykjavik University, Reykjavik, Iceland
University of Twente, The Netherlands

Additional Reviewers

Acharya, Mithun
Barnat, Jiri
Beer, Adrian
Belinfante, Axel
Biallas, Sebastian
Blech, Jan Olaf
Bracciali, Andrea
Bushnell, David
Ceska, Milan
Düdder, Boris
Edmunds, Andrew
Eggers, Andreas
Gay, Gregory
Gdemann, Matthias
Genov, Blagoy
Gorbachuk, Elena
Hartmanns, Arnd
Hayden, Richard
Hugues, Jerome
Hölzl, Florian
Jafari, Ali
Khamespanah, Ehsan
Khosravi, Ramtin
Kratochvila, Tomas
Lapschies, Florian
Leitner-Fischer, Florian
Martens, Moritz
Merino, Pedro
Nguyen, Viet Yen
Noll, Thomas
Ouederni, Meriem
Shafiei, Nastaran
Sieverding, Sven
Tabaei Befrouei, Mitra
Ter Beek, Maurice H.
Teufl, Sabine
Yue, Haidi
Abstract. This talk presents a selection of successful applications of formal methods to real-life problems. Similar studies already appeared in the scientific literature but are not, we believe, entirely satisfactory. On the one hand, in the cumulative list of applications considered by these studies, certain formal methods are over-represented while others are not mentioned. On the other hand, the essential role of verification tools is not always acknowledged as strongly as it should be.

To ensure a broader coverage of the diversity of formal methods, we selected a set of thirty case-studies, while prior studies often limited themselves to a dozen. These case-studies are distributed regularly over the past three decades, one per year between 1982 and 2011.

We tried to give a balanced panorama of formal methods by featuring different formal approaches (mathematical notations, theorem proving, model checking, static analysis, etc.), different models of computations (sequential, synchronous, asynchronous, timed, probabilistic, hybrid, etc.), and different application domains (hardware, software, telecommunication, embedded systems, operating systems, compilers, etc.).

In our selection, we focused on practical applications of formal methods rather than theoretical results alone. Contrary to some other studies, we gave priority to repeatable experiments, privileging approaches supported by software tools rather than “heroic” approaches relying on pen-and-paper manipulation of mathematical symbols.

Obviously, exhaustivity is impossible as the number and diversity of applications of formal methods cannot be reduced to a collection of thirty samples. Also, we do not claim that our selection represents the “best” case studies ever published, but simply that they correspond to pioneering and inspiring work that the young generation should keep in mind.
To Scale or Not to Scale: Experience with Formal Methods and NASA Systems

Dimitra Giannakopoulou
NASA Ames Research Center, USA
dimitra.giannakopoulou@nasa.gov

Abstract. The safety-critical nature of aerospace systems mandates the development of advanced formal verification techniques that provide desired correctness guarantees. In this talk, we will discuss our experience with the development and use of formal method techniques in the context of aerospace systems. We will first provide an overview of approaches that we have developed over the last decade for scaling exhaustive verification through divide-and-conquer principles. In particular, we will present learning-based frameworks for automatically generating component abstractions. Such abstractions can be used for documentation, or more efficient modular reasoning. In the domain of human-automation interaction systems, these abstractions can be used for human operators to understand what to expect from their interactions with the system.

The techniques that will be presented use a variety of approaches, including model checking, predicate abstraction, and symbolic execution. Despite the progress that we have made in developing and applying sophisticated formal methods frameworks, the issue of scalability still remains the Achilles tendon in this domain. We will discuss scalability and the trade-offs that we have made in our work, as well as our perspective for the future application of formal methods in industry.
Table of Contents

Real-Time Specification Patterns and Tools 1
 Nouha Abid, Silvano Dal Zilio, and Didier Le Botlan

Automated Extraction of Abstract Behavioural Models from JMS Applications ... 16
 Elvira Albert, Bjarte M. Østvold, and José Miguel Rojas

Certifying and Reasoning on Cost Annotations in C Programs 32
 Nicolas Ayache, Roberto M. Amadio, and Yann Régis-Gianas

Waiting for Locks: How Long Does It Usually Take? 47
 Christel Baier, Marcus Daum, Benjamin Engel, Hermann Härtig, Joachim Klein, Sascha Klüppelholz, Steffen Märcker, Hendrik Tews, and Marcus Völp

Microcontroller Assembly Synthesis from Timed Automaton Task Specifications .. 63
 Victor Bandur, Wolfram Kahl, and Alan Wassyng

Tool Chain to Support Automated Formal Verification of Avionics Simulink Designs .. 78
 Jiri Barnat, Jan Beran, Lubos Brim, Tomas Kratochvíla, and Petr Ročkai

Range Analysis of Binaries with Minimal Effort 93
 Edd Barrett and Andy King

Combining Analyses for C Program Verification 108
 Loïc Correnson and Julien Signoles

Model Checking the FlexRay Startup Phase 131
 Sjoerd Cranen

Model-Based Risk Assessment Supporting Development of HSE Plans for Safe Offshore Operations 146
 Rainer Droste, Christoph Läsche, Cilli Sobiech, Eckard Böde, and Axel Hahn

Modular Automated Verification of Flexible Manufacturing Systems with Metric Temporal Logic and Non-Standard Analysis 162
 Luca Ferrucci, Dino Mandrioli, Angelo Morzenti, and Matteo Rossi
Optimizing the Robustness of Software against Communication Latencies in Distributed Reactive Embedded Systems.................. 177
 Vlad Popa and Wolfgang Schwitzer

A Formal Design of a Tool for Static Analysis of Upper Bounds on Object Calls in Java.. 192
 Konrad Siek and Paweł T. Wojciechowski

Checking Properties Described by State Machines: On Synergy of Instrumentation, Slicing, and Symbolic Execution.................... 207
 Jiří Slabý, Jan Strejček, and Marek Trtík

Author Index ... 223