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Abstract. This paper derives several identities for iterated integrals of a semimartin-
gale. They involve powers, brackets, exponential and the stochastic exponential. Some,
like for counting or finite-variation processes, are apparently new. Others, like two of the
three formulae for continuous semimartingales, are generalizations of well-known formulae.

1. Introduction and summary of results

This paper derives several formulae involving iterated integrals of a semimartingale.
To motivate the results, let t 7→ Xt be a smooth function of time t ≥ 0. Then, dXn =

nXn−1dX for n ∈ N. So, Xn = n
∫

Xn−1dX if X0 = 0. Applied to m = n− 1 in place of
n, we get Xn−1 = (n − 1)

∫
Xn−2dX. Substituting gives Xn = n(n − 1)

∫ ∫
Xn−2dXdX.

Continuing in this manner, we see that Xn = n!X{n}, where X{n} =
∫
· · ·

∫
dX · · · dX with

n-iterated integrals. This now implies eX =
∑∞

n=0 X{n}, no doubt a long-known result.
The above formulae for Xn and eX remain valid more generally (with Stieltjes integrals)

if X is a continuous and finite variation function of t ≥ 0, because again, dXn = nXn−1dX
(as measures on [0,∞)). Hence, applied pathwise, they are also valid when X is a contin-
uous process of finite variation on some probability space. Our aim is to investigate them
(with the stochastic integral) when X is a semimartingale on some stochastic basis.

Let X be a semimartingale with X0 = 0. For any integer n ≥ 0, the n-th iterated integral

X{n} of X is defined inductively by X{0} = 1 and X{n+1} =
∫

X
{n}
− dX. So, X{1} = X,

X{2} =
∫

X−dX =
∫ ∫ −

dXdX, etc. When X is a continuous, we show that for any n ∈ N,

(1.1) Xn =

[n
2
]∑

i=0

n!

i!2i
[X]iX{n−2i}.
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(Here [X] := [X, X] denotes the quadratic variation of X). Linearly inverting this equation
to express for X{n} in terms of the powers Xj, yields readily the more familiar result

(1.2) X{n} =

[n
2
]∑

i=0

an,i

n!
Xn−2i[X]i,

where an,i are the nonzero coefficients of the Hermite polynomials, meaning,
∑[n

2
]

i=0 an,ix
n−2i

is the Hermite polynomial of order n. This is a well-known result of Itö (1951) when X is
a Brownian motion. Previously, it was certainly also known when X equals

∫
gdB, with

g deterministic and B a Brownian motion. We refer to Oertel(2003) for an alternative
development in this case and its application to chaotic representation of martingales under
Brownian filtrations. Either of the above two formulae leads easily to the formula

(1.3) E(X) =
∞∑

n=0

X{n}

for the stochastic exponential E(X) of X (which here equals eX− 1
2
[X], as X is continuous),

with the infinite sum absolutely convergent (except possibly on an evanescent set).
We prove that (1.3) holds if more generally X is the sum of a finite variation and a

continuous semimartingale, and conjecture that it holds for all semimartingales X.
We show that the iterated integral of sum of two (general) semimartingales X and Y

satisfying [X, Y ] = 0 is given by

(1.4) (X + Y ){n} =
n∑

i=0

X{i}Y {n−i}.

This easily implies that (1.3) holds for X + Y if it holds for X and Y . From this and
the continuous case, we deduce that (1.3) holds when X is the sum of a finite variation
and a continuous semimartingale, by showing that (1.3) holds when X is the (absolutely
convergent) sum of its jumps, i.e., X =

∑
s≤t ∆Xs. In this special case, we find that

(1.5) X
{n}
t =

∑
i1<···<in, ij∈Nm

∆XTi1
· · ·∆XTin

,

where (Ti)
m
i=1, m ≤ ∞, is a sequence stopping times exhausting the jumps of X on [0, t],

and Nm equals N if m = ∞ and {1, · · · , m} otherwise. We further show
∑∞

n=0 |X{n}| ≤
exp(

∑
s≤· |∆Xs|), from which we conclude that

∑∞
n=0 X{n} is absolutely convergent, and

using (1.5), equals
∏

s≤·(1 + ∆Xs), which in turn equals E(X) in this special case.
An interesting instance is the case of a Poisson process, or more generally any (counting)

semimartingale N with N0 = 0 satisfying [N ] = N (equivalently, N equals sum of its jumps,
all of which equal 1), e.g., a Cox process. In this case, (1.5) simplifies to

(1.6) N{n} = 1N≥n

(
N

n

)
.
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This and the binomial theorem imply that again
∑∞

n=0 N{n} = 2N = E(N). It also implies

(1.7) Nn =
n∑

i=1

cn,iN
{i}, cn,i :=

i∑
j=0

(−1)i−j

(
i

j

)
jn.

The numbers
cn,i

i!
are the Stirling numbers of the second kind. We provide an alternative

derivation of (1.7) directly by induction, and another one that follows immediately from
an iterated integral formula for powers Xn of a general semimartingale X in Jamshidian
(2005). Eq. (1.7) implies (1.6). It also yields eaN =

∑∞
i=0 N{i}(ea − 1)i for a ∈ R.

2. Iterated integrals of continuous semimartingales

Let X be a continuous semimartingale with X0 = 0 and n ∈ N. Define X{n} inductively
by X{1} = X and X{n+1} =

∫
X{n}dX. So, X{2} =

∫
XdX =

∫ ∫
dXdX, and X{n} =∫

· · ·
∫

dX · · · dX with n iterated integrals. We also set X{0} := 1.
Let [n

2
] denote the integer part of n/2, i.e., n/2 if n is even, and (n− 1)/2 if n is odd.

2.1. Formula for integer powers Xn. When X is continuous and of finite variation, as
we saw, Xn = n!X{n}. For general continuous semimartingales, our main result is

Theorem 2.1. Let X be a continuous semimartingale with X0 = 0, and n ∈ N. Then

Xn =

[n
2
]∑

i=0

n!

i!2i
[X]iX{n−2i}.

Proof. For n = 1 this is trivial and for n = 2 it follows since X2 = 2
∫

XdX +[X]. Assume
n ≥ 3. By Itö’s formula (and continuity assumption),

Xn = n

∫
Xn−1dX +

1

2
n(n− 1)

∫
Xn−2d[X].

Hence, substituting for Xn−1 and Xn−2 by induction, we get,

Xn =

[n−1
2

]∑
i=0

n!

i!2i

∫
[X]iX{n−1−2i}dX +

[n−2
2

]∑
i=0

n!

i!2i+1

∫
X{n−2−2i}[X]id[X] =: I + II.

By definition dX{n−2i} = X{n−1−2i}dX. Substituting in the first sum I, we get

I =

[n−1
2

]∑
i=0

n!

i!2i

∫
[X]idX{n−2i}.

The summand corresponding to i = 0 above is just n!X{n}. Moreover, we can replace
[n−1

2
] in the upper sum limit by [n

2
], for if n is odd, these two are equal, and if n is even,

then we are only adding a zero term, as dX{n−2i} equals zero for i = n
2
. Hence
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I = n!X{n} +

[n
2
]∑

i=1

n!

i!2i

∫
[X]idX{n−2i}.

Concentrating next on the second sum II , we get by shifting the dummy index i by 1,

II =

[n
2
]∑

i=1

n! i

i!2i

∫
X{n−2i}[X]i−1d[X].

But, using d[X]i = i[X]i−1d[X], followed integration by parts, we have,

i

∫
X{n−2i}[X]i−1d[X] =

∫
X{n−2i}d[X]i

= X{n−2i}[X]i −
∫

[X]idX{n−2i}.

Substituting in the sum II above, we get

II =

[n
2
]∑

i=1

n!

i!2i
[X]iX{n−2i} −

[n
2
]∑

i=1

n!

i!2i

∫
[X]idX{n−2i}.

Thus, adding I and II, the sum in RHS of I cancels the (negative) second sum in RHS

of II above, resulting in Xn = I + II = n!X{n} +
∑[n

2
]

i=1
n!
i!2i [X]iX{n−2i}, as required. �

Note, the leading term (i = 0) is n!X{n}, while the last term (i = [n/2]) equals n!

i!2
n
2
[X]

n
2

if n is even, and equals n!

i!2
n−1

2
[X]

n−1
2 X if n is odd. The low powers are given by

X2 = 2X{2} + [X].

X3 = 6X{3} + 3[X]X.

X4 = 24X{4} + 12[X]X{2} + 3[X]2.

X5 = 120X{5} + 60[X]X{3} + 15[X]2X.

X6 = 720X{6} + 360[X]X{4} + 90[X]2X{2} + 15[X]3.
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2.2. Formula for iterated integrals X{n} in terms of Hermite polynomials. In-
verting by hand the above linear system of five equations for X2 · · · , X6, we find

2X{2} = X2 − [X].

6X{3} = X3 − 3[X]X.

24X{4} = X4 − 6[X]X2 + 3[X]2.

120X{5} = X5 − 10[X]X3 + 15[X]2X.

720X{6} = X6 − 15[X]X4 + 45[X]2X2 − 15[X]3.

We recognize the (modified) Hermite polynomials on the RHS (with [X] replaced by 1).
In general, it is clear by a linear inversion that for each n ∈ N and integer 0 ≤ i ≤ [n/2],

there exists a unique real number (in fact integer) an,i with an,0 = 1 such that

n!X{n} =

[n
2
]∑

i=0

an,iX
n−2i[X]i.

Moreover, using the recursive relation for the coefficients of Hermite polynomials and

induction, one can easily show by that
∑[n

2
]

i=0 an,ix
n−2i is the Hermite polynomial of order

n, normalized with (leading) coefficient an,0 of xn equal to 1. We conclude

Corollary 2.2. Let X be a continuous semimartingale with X0 = 0, and n ∈ N. Let∑[n
2
]

i=0 an,ix
n−2i be the Hermite polynomial of order n with an,0 = 1. Then

X{n} =
1

n!

[n
2
]∑

i=0

an,iX
n−2i[X]i.

2.3. Chaotic expansion of the stochastic exponential. Substituting the above for-
mula in a well-known property of Hermite polynomials, namely, the absolutely convergent

series exp(x − y/2) =
∑∞

n=1
1
n!

∑[n
2
]

i=0 an,ix
n−2iyi, x, y ∈ R, yields E(X) =

∑∞
n=0 X{n}.1 We

can also show this by substituting the formula for Xn in the (convergent) power series
eX =

∑∞
n=0

Xn

n!
. By index manipulation into odd and even terms and an interchange of

order of summation, we have pathwise,

eX =
∞∑

n=0

Xn

n!
Xn =

∞∑
n=0

[n
2
]∑

i=0

[X]i

i!2i
X{n−2i}

1I thank Frank Oertel for suggesting this method to me.
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=
∞∑

m=0

m∑
i=0

[X]i

i!2i
(X{2m−2i} + X{2m+1−2i})

=
∞∑
i=0

∞∑
m=i

[X]i

i!2i
(X{2m−2i} + X{2m+1−2i})

=
∞∑
i=0

[X]i

i!2i

∞∑
j=0

(X{2j} + X{2j+1}) = e
1
2
[X]

∞∑
n=0

X{n}.

Either of the above two methods therefore yield

Corollary 2.3. Let X be a continuous semimartingale with X0 = 0, and n ∈ N. Then
E(X) =

∑∞
n=0 X{n}, with the series absolutely convergent (outside an evanescent set).

3. Iterated integral of a sum of semimartingales

Let X be a (general) semimartingale X with X0 = 0. The iterated integral X{n} are

defined by induction similarly X{0} = 1 and X{n+1} =
∫

X
{n}
− dX.

Proposition 3.1. Let X and Y be semimartingales satisfying X0 = Y0 = 0 and [X, Y ] = 0.
Then for all n ∈ N,

(X + Y ){n} =
n∑

i=0

X{i}Y {n−i}.

Proof. We use induction, cases n = 0 and n = 1 being clear. Assume n ≥ 2. We have,
first using the definition of iterated integral and induction, next definition again and some
index manipulations, then integration by parts using [X, Y ] = 0 and recombining terms,

(X + Y ){n} =

∫
(X + Y ){n−1}dX +

∫
(X + Y ){n−1}dY

=
n−1∑
i=0

∫
X
{i}
− Y

{n−1−i}
− dX +

n−1∑
i=0

∫
X
{i}
− Y

{n−1−i}
− dY

=
n−1∑
i=0

∫
Y
{n−1−i}
− dX{i+1} +

n−1∑
i=0

∫
X
{i}
− dY {n−i}

=
n∑

i=1

∫
Y
{n−i}
− dX{i} +

n−1∑
i=0

∫
X
{i}
− dY {n−i}

= X{n} +
n−1∑
i=1

∫
Y
{n−i}
− dX{i} +

n−1∑
i=1

∫
X
{i}
− dY {n−i} + Y {n}

= X{n} +
n−1∑
i=1

X{i}Y {n−i} + Y {n} =
n∑

i=0

X{i}Y {n−i}.

�
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Since the continuous part Xc and discontinuous part Xd of a semimartingale X have
zero bracket, the proposition yields

Corollary 3.2. Let X be a semimartingale with X0 = 0 and X = Xc + Xd be its
continuous-discontinuous decomposition. Then, for all n ∈ N,

X{n} =
n∑

i=0

Xc{i}
Xd{n−i}

.

We next use Proposition 3.1 to deduce the chaotic iterated integral representation of the
stochastic integral of a sum from the corresponding property of each summand.

Lemma 3.3. Let X and Y be semimartingales satisfying X0 = Y0 = 0 and [X,Y ] = 0.
Suppose E(X) =

∑∞
n=0 X{n} and E(Y ) =

∑∞
n=0 Y {n} with both sums absolutely convergent.

Then, E(X + Y ) =
∑∞

n=0(X + Y ){n}, with the sum absolutely convergent.

Proof. Using [X,Y ] = 0 and the assumption on E(X) and E(Y ), we have

E(X + Y ) = E(X)E(Y ) =
∞∑

n=0

∞∑
m=0

X{n}Y {m}

with the double sum is absolutely convergent. Hence, we can rearrange the order of double
summation, to get

E(X + Y ) =
∞∑
i=0

i∑
n=0

X{n}Y {i−n} =
∞∑
i=0

(X + Y ){i},

with the last equality following from Proposition 3.1 �

4. Iterated integrals of a finite-variation semimartingale

Proposition 4.1. Let X be a finite variation semimartingale satisfying X =
∑

s≤· ∆Xs.
Let t > 0. Let stopping times (ti)

m
i=1, m ≤ ∞, be any enumeration of jumps of X on [0, t].

Set (along each path), Nm = N if m = ∞ and {1, · · · , m} otherwise. Then, for n ∈ N,

X
{n}
t =

∑
i1<···<in, ij∈Nm

∆Xti1
· · ·∆Xtin

.

Moreover, we have,
∑∞

n=0 |X{n}| ≤ exp(
∑

s≤· |∆Xs|) < ∞, and

E(X) =
∏
s≤·

(1 + ∆Xs) =
∞∑

n=0

X{n}.

Proof. Let Nm,n := {(i1, · · · , in) ∈ Nn
m : ij 6= ik if j 6= k}. Then,

∞∑
i1<···<in, ij∈Nm

∆Xti1
· · ·∆Xtin

=
1

n!

∞∑
(i1,··· ,in)∈Nm,n

∆Xti1
· · ·∆Xtin

.
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This is because if σ is any permutation of {1, · · · , n}, then, by commutativity of product,
∆Xti1

· · ·∆Xtin
= ∆Xtiσ(1)

· · ·∆Xtiσ(n)
, and moreover, given (i1, · · · , in) ∈ Nm,n, there

exists a unique permutation σ such that iσ(1) < · · · < iσ(n). Next, using the definition

of iterated integral, we have ∆X{n} = X
{n−1}
− ∆X. Since X is the sum of its jump, this

implies by induction that so is X{n} and

X
{n}
t =

∑
tn≤t

∑
tn−1<tn

· · ·
∑
t2<t1

∆Xt1 · · ·∆Xtn−1∆Xtn .

Using commutativity and the fact that because if (i1, · · · , in) ∈ Nm,n, then there exist a
unique permutation σ such that tiσ(1)

< · · · < tiσ(n)
, we see that the right hand side equals

1
n!

∑∞
(i1,··· ,in)∈Nm,n

∆Xti1
· · ·∆Xtin

. Combined with the earlier formula, this yields the first
statement. Moreover, it also shows

|X{n}
t | = 1

n!
|

∞∑
(i1,··· ,in)∈Nm,n

∆Xti1
· · ·∆Xtin

|

≤ 1

n!

∞∑
(i1,··· ,in)∈Nm,n

|∆Xti1
| · · · |∆Xtin

|

≤ 1

n!

∞∑
(i1,··· ,in)∈Nn

m

|∆Xti1
| · · · |∆Xtin

|

=
1

n!

n∏
j=1

∞∑
tj=1

|∆Xtij
| = 1

n!
(
∑
s≤t

|∆Xs|)n.

Therefore,
∞∑

n=0

|X{n}| ≤
∞∑

n=0

1

n!
(
∑
s≤·

|∆Xs|)n = exp(
∑
s≤·

|∆Xs|),

which is finite since
∑

s≤· |∆Xs| < ∞, as X is of finite variation. We further have

E(X)t =
∏
s≤t

(1 + ∆Xs) =
∞∏
i=1

(1 + ∆Xti)

= 1 +
∞∑

n=1

∑
i1<···<in, ij∈Nm

∆Xti1
· · ·∆Xtin

=
∞∑

n=0

X
{n}
t ,

where the last equality follows by the first statement. �

Combining with Corollary 2.3 and Lemma 3.3 leads to our second main result.

Theorem 4.2. Let X be a sum of a continuous semimartingale and a finite-variation semi-
martingale, and X0 = 0. Then, E(X) =

∑∞
n=0 X{n}, with the sum absolutely convergent.
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Proof. By Lemma 3.3 and Corollary 2.3, it suffices to prove this when X is of finite vari-
ation. Set Y :=

∑
s≤ ∆Xs and A := X − Y . Note, ∆Y = ∆X, so Y equals the sum

of its jumps. Therefore, by Proposition 4.1, we have E(Y ) =
∑∞

n=0 Y {n}. We also have
E(A) =

∑∞
n=0 A{n} because A is a continuous (and finite variation) semimartingale. Since

[A, Y ] = 0, using Lemma 3.3 again, it follows that E(X) =
∑∞

n=0 X{n}, as desired. �

We conjecture that E(X) =
∑∞

n=0 X{n} for all purely discontinuous semimartingales X
of infinite variation with X0 = 0. If true, the conjecture would imply in view of the above
theorem and Lemma 3.3 that E(X) =

∑∞
n=0 X{n} for all semimartingales X with X0 = 0.

The following heuristic argument lends credence to the conjecture:

d

∞∑
n=0

X{n} =
∞∑

n=1

dX{n} =
∞∑

n=1

X
{n−1}
− dX =

∞∑
n=0

X
{n}
− dX.

This and uniqueness of solution of SDE dE(X) = E(X)−dX indicate E(X) =
∑∞

n=0 X{n}.

5. Special case of counting semimartingales

We call a semimartingale N with N0 = 0 a counting semimartingale if [N ] = N , or
equivalently, N is the sum of its jumps all which equal 1, implying N is piecewise constant,
increasing, and integer valued. Examples are Poisson processes, or more generally, Cox
processes. Proposition 4.1 simplifies nicely for counting semimartingales.

Proposition 5.1. Let N be a counting semimartingale. Then, for n ∈ N, we have

(5.1) N{n} = 1N≥n

(
N

n

)
.

Moreover, E(aN) = (1 + a)N =
∑∞

i=0 aiN{i} for any real number a. In particular,

E(N) = 2N =
∞∑
i=0

N{i}; E(−N) = 1{N=0} =
∞∑
i=0

(−1)iN{i}.

Proof. Let Ti denote the i-th jump time of N . Let t > 0. Then (Ti)
Nt
i=1, is an enumeration of

jumps of N on [0, t]. By Proposition 4.1, we have N
{n}
t =

∑
1≤i1<···<in≤Nt

∆NTi1
· · ·∆NTin

.
If Nt < n, then the sum is taken over the empty set, and is zero. Assume Nt ≥ n. As all

jumps equal 1, we get N
{n}
t =

∑
1≤i1<···<in≤Nt

. But, this sum clearly equals
(

Nt

n

)
, for the

number of indices 1 ≤ i1 < · · · < in ≤ Nt equals the number of subsets of {1, · · · , Nt} with
n elements. The second statement follows from the second statement of Proposition 4.1
applied to X = aN , because, as jumps of N are 1, we have

∏
s≤·(1+∆Xs) = (1+a)N . �

Eq. (5.1) can be inverted to express powers of N in terms of N{i}. For this purpose we set

cn,i :=
i∑

j=0

(−1)i−j

(
i

j

)
jn, n, i = 0, 1, 2 · · · .
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The numbers
cn,i

i!
are the Stirling numbers of the second kind.2 (In particular, there are

natural numbers if n ≥ i and zero otherwise, except when n = i = 0, as c0,0 = 00 := 1.)

Proposition 5.2. Let N be a counting semimartingale. Then, for n ∈ N, we have

(5.2) Nn =
n∑

i=1

cn,iN
{i}.

Proof. By a well-known property of Stirling numbers, given N, N1, N2, · · · ∈ N, one has
Nn =

∑n
i=1 cn,iNi for all n if and only if Nn = 1N≥n

(
N
n

)
for all n. Thus, Eq. (5.1) implies

(5.2) (and vice versa). �

As a consequence of (5.1) and simple property of Sterling numbers we obtain

Corollary 5.3. Let N be a counting semimartingale and a be a real number. Then,

(5.3) eaN =
∞∑
i=0

N{i}(ea − 1)i.

Proof. Using (5.1), we have

eaN = 1 +
∞∑

n=1

an

n!
Nn = 1 +

∞∑
n=1

n∑
i=1

an

n!
cn,iX

{i}

= 1 +
∞∑
i=1

N{i}
∞∑

n=i

an

n!
cn,i =

∞∑
i=0

N{i}(ea − 1)i.

In the last equality we used the identity
∑∞

n=i
an

n!
cn,i = (ea − 1)i for i ∈ N. This identity

follows by using the fact that cn,i = 0 for n < i, and (obviously) cj,0 = c0,j = 0 for j ≥ 1
while c0,0 = 1 (as usual 00 is set to 1), and the following calculation

∞∑
n=i

an

n!
cn,i =

∞∑
n=0

an

n!
cn,i =

∞∑
n=0

i∑
j=0

(−1)i−j

(
i

j

)
(aj)n

n!

=
i∑

j=0

∞∑
n=0

(−1)i−j

(
i

j

)
(aj)n

n!
=

i∑
j=0

(−1)i−j

(
i

j

)
eaj = (ea − 1)i.

�

Note, setting a = log(2) in (5.3) yields 2N =
∑∞

i=0 N{i}, as before.

2We refer to the online-encyclopedia Wikipedia, for both facts, and the other properties of Stirling
numbers (and by extension of cn,i) which are used in what follows.
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5.1. Alternative direct derivations. It is instructive to give two alternative derivations
of Eq. (5.2) (and by implication of Eq. (5.1)) which do not use Proposition 4.1.

The first derivation is directly by induction. Using Ito’s formula, one easily gets

Nn =
n−1∑
i=0

(
n

i

) ∫
N i
−dN.

Hence, substituting on the right hand side for N i
− using induction, we get

Nn = N +
n−1∑
i=1

(
n

i

) i∑
j=1

ci,j

∫
N
{j}
− dN.

= N +
n−1∑
i=1

(
n

i

) i∑
j=1

ci,jN
{j+1}

= N +
n−1∑
j=1

N{j+1}
n−1∑
i=j

(
n

i

)
ci,j

= N +
n∑

j=2

N{j}
n−1∑

i=j−1

(
n

i

)
ci,j−1

=
n∑

j=1

N{j}cn,j,

where, in the last step we used the easily verified fact that
∑n−1

i=j−1

(
n
i

)
ci,j−1 = cn,j.

Our next derivation uses the following identity from Jamshidian (2005) for any semi-
martingale X with X0 = 0. For n ∈ N, we have

Xn =
n∑

p=1

∑
I∈Np,n

n!

i1! · · · ip!

∫ ∫ −
· · ·

∫ −
d[X](i1) · · · d[X](ip−1)d[X](ip).

Above, for all integers 1 ≤ p ≤ n, we have set

Np,n := {I = (i1, · · · , ip) ∈ Np : i1 + · · ·+ ip = n},

and [X](n) is defined inductively by [X](1) = X and [X](n+1) = [X, [X](n)]. So, [X](2) =

[X] and [X]
(n)
t =

∑
s≤t(∆Xs)

n for n ≥ 3. For a counting process N , we clearly have

[N ](n) = N for all n ∈ N. Hence in this case, we get

Nn =
n∑

p=1

∑
I∈Np,n

n!

i1! · · · ip!
N{i} =

n∑
i=1

cn,iN
{i},

as desired, where we used the readily verified identity that cn,p =
∑

I∈Np,n
n!

i1!···ip!
.
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