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Abstract—Convolutional Neural Networks (CNNs) are a very
popular class of artificial neural networks. Current CNN mo-
dels provide remarkable performance and accuracy in image
processing applications. However, their computational complexity
and memory requirements are discouraging for embedded real-
time applications. This paper proposes a highly optimized CNN
accelerator for FPGA platforms. The accelerator is designed as a
LeNet CNN architecture focusing on minimizing resource usage
and power consumption. Moreover, the proposed accelerator
shows more than 2x higher throughput in comparison with other
FPGA LeNet accelerators with reaching up 14 K images/sec. The
proposed accelerator is implemented on the Nexys DDR 4 board
and the power consumption is less than 700 mW which is 3x lower
than the current LeNet architectures. Therefore, the proposed
solution offers higher energy efficiency without sacrificing the
throughput of the CNN.
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I. INTRODUCTION

Convolutional Neural Networks (CNNs) are multilayered
neural networks used especially in image processing
applications such as image recognition, robot vision, and
autonomous driving vehicles [1], [2]. They have convolutional
layers for detecting the features, and feed-forward neural
network layers for classification. Although, implementation
of CNNs requires a high number of computations and
memory operations, very efficient CNN architectures can
be implemented on different hardware platforms using the
suitable hardware architectures and optimization techniques
[3]. In recent years, FPGAs have been widely used in CNNs
offering custom parallelization, low power, and low latency
as compared to CPU and GPU platforms [4].

LeNet was the first CNN architecture and promoted the
development of deep learning [5]. In this work, LeNet CNN is
implemented on an FPGA platform. It aims to design a low-
cost and energy-efficient CNN accelerator without degrading
the throughput. In the training, MNIST handwritten digit
dataset is used. Before the FPGA implementation, a fixed
point model is designed and optimized in terms of accuracy
and bit sizes using Python Tensorflow [6]. Then, the design
is developed in the Xilinx Vitis High Level Synthesis (HLS)
tool. Vitis HLS accelerates RTL design directly using C/C++
language and it is targeted for Xilinx FPGAs. Moreover, the

design is verified on the hardware using Nexys DDR 4 FPGA
evaluation board.

The main contributions of this paper are the followings:

- The design is fully optimized for pipelined operation
allowing higher throughput as compared to the previous
works.
- The design is resource optimized by using minimum
resources to fit the smallest package 7 series FPGAs.
- The design is very power efficient. Power consumption of
the FPGA is less than 700 mW and much lower than the
current state-of-the-art methods.

The rest of the paper is organized as follows: Section II
explains the basics of CNNs. Section III gives the details of the
FPGA architecture of the CNN accelerator. The experimental
results are presented in Section IV and the paper is concluded
with Section V.

II. BACKGROUND

In the last decade, starting with the Alexnet in 2012,
new CNN architectures give a promising performance in
image classification applications. It was the first CNN to
win the annual olympics of computer vision, ILSVRC [7].
After AlexNet, more complex and more accurate CNNs are
developed for image classification purposes such as VGGNet
and Resnet [8], [9]. Designing more robust and accurate CNN
architectures is still a popular research area in the image
processing community. A typical CNN consists of input layer,
convolutional layers, fully connected layers, and output layer.
The first layer is called the input layer which is fed by
the image data. In the convolutional layers, two-dimensional
convolution is applied using a kernel to extract the features in
the image. After two dimensional convolution, an activation
function is used to generate a nonlinear output. Rectified
Linear Unit (ReLU), sigmoid and tanh are the most popular
activation functions in CNNs [10]. Moreover, in order to
decrease the performance sensitivity to the location of the
features, downsampling can be applied to the output of the
convolutional layers. This operation is called pooling and
two common pooling methods are average pooling and max
pooling. Average pooling calculates the average value for each
patch on the feature map whereas max-pooling calculates the
maximum value for each patch of the feature map. After a few978-1-6654-3649-6/21/$31.00 ©2021 IEEE
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convolutional layers, the input image becomes converted and
downsampled feature maps. These features are used for the
classification in the fully connected layers. Fully connected
layers are feed-forward neural networks consisting of one or
more hidden layers. After the hidden layers, there is a final
output layer showing the class scores of each object to be
classified. The general block diagram of a typical CNN is
shown in Figure 1.

Figure 1: A Typical Block Diagram of CNN with one input
layer, one convolutional layer, one pooling layer, two hidden
layers, and one output layer

In recent years, FPGA-based CNN accelerators have be-
come a promising research area. Custom parallel processing
capabilities and higher performance per watt values make
FPGA more attractive in CNN implementations. Different
CNN architectures are implemented on FPGA platforms in the
literature [3]. In order to decrease the computational comple-
xity and memory requirements, binarized neural networks are
used in some studies [11], [12]. They reduce execution times
using bitwise operations, however, accuracy is generally less
than the fixed point models [13]. Some of the FPGA imple-
mentations focus on the optimization of the convolution engine
[14], [15]. These engines make the convolution operation in a
pipelined manner. There are also works using the Zynq series
FPGAs, and these works process the data with the help of
embedded processor and programmable logic together in the
accelerator [16], [17]. Lenet, Alexnet and VGGNet are the
most popular CNNs used in the FPGA implementation. Ho-
wever, the power consumptions, in general, are compared with
either processor, GPU, or PC implementations, which is not a
fair comparison [16], [18], [19]. Since FPGAs are inherently
energy-efficient devices, a fair comparison should be done
between FPGA implementations. In this work, Artix-7 FPGA
family is selected intentionally because Artix-7 series FPGAs
are the cost-effective and energy-efficient FPGAs among the
Xilinx FPGA series [20]. Moreover, keeping the resource
usage as low as possible without degrading the performance
helps to fit all the CNN architecture in a very small package
FPGA (i.e.1 cm x 1 cm) with consuming only 628 mW. This
not only helps developing compact designs but also makes the
CNN accelerator cost-effective.

III. ACCELERATOR DESIGN

In this section, the proposed CNN accelerator is explained
in detail. In this work, a LeNet CNN architecture has been
developed, implemented, and verified on the FPGA platform.
The developed LeNet CNN structure is given in Figure 2.
The CNN input is a 32 x 32 grayscale image and the output
is the classification result. The network is first developed
using Python Tensorflow. It uses fixed-point data types in
all the stages and the bit sizes are optimized based on the

accuracy drop as compared to floating-point accuracy. It is
seen that for lower than 0.1 percentage drop in the accuracy
as compared to floating-point accuracy, using 8 bits weights,
16 bits activations, and 32 bits biases is sufficient for the
hardware design. The accuracies of fixed-point and floating-
point designs are both greater than 98%. Moreover, the number
of layers and number of features are heuristically optimized to
improve the accuracy. As a result, the optimized CNN consists
of 2 convolutional layers, 2 max-pooling layers, a hidden fully
connected layer, and an output layer. 3 and 12 feature maps
are used in the convolutional layers, respectively. Except for
the last layer, the ReLU activation function is used in the
convolutional and hidden layers and max-pooling is used in
the pooling layers. In convolutional layers, the convolutional
kernel is selected as 5 x 5 for its better performance as
compared to smaller size kernels. In the pooling layers, 2 x
2 kernels are used and the downsampling factor is selected as
two. After the convolutional layers, data is flattened and fed
to the fully connected layers. In the hidden layer, 48 neural
network nodes are used and in the output layer, there are
10 nodes showing the number of digits to be classified. The
CNN is trained and tested using MNIST dataset. MNIST is
a handwritten digit dataset that is commonly used for various
image processing systems [21].

Figure 2: Proposed CNN for FPGA Implementation with two
convolutional layers, two pooling layers, one fully connected
layer, and an output layer

After optimizing the fixed-point model in Python, the CNN
accelerator is developed on the FPGA platform using this
fixed-point model. Convolutional, pooling, and fully connected
layers are coded according to the model. In Figure 2, each
blue box is designed separately in Vitis HLS. Vitis HLS tool
transforms a C, C++, or SystemC code into a register transfer
level (RTL) implementation to use in Xilinx FPGAs. Using the
pragmas in the software code, different parallelization levels
and different hardware can be generated. Vitis HLS methodo-
logy allows designers to develop and verify the designs faster
than the traditional hardware description languages.

In the CNN accelerator design, the key processing ope-
ration is the convolution operation. It dominates the total
processing time. Therefore, it needs to be carefully designed
in hardware. As seen in Figure 3, two-dimensional convolution
is calculated for each pixel and generates an output pixel for
the feature map.

From Figure 3, it can be seen that for each pixel of the
output feature map, 25 multiplications and 25 additions are
required. In order to increase the throughput, for each pixel
convolution operation is done in one clock cycle. As a result,
25 DSP slices are used in the convolution operation. DSP slices
are the basic elements of the FPGA for arithmetic operations.
Basic DSP operations such as accumulator, multiplier, adder
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Figure 3: Two-Dimensional Convolution of Input Image (left
hand side) to Output Image (right hand side)

can be implemented using these slices. Since the number of
DSPs are limited, these slices are used only for multiplication
operations, other mathematical operations are done in the
programmable logic of the FPGA device. In the second layer,
since 12 feature map exists, for each four feature map, one
convolution engine is used. So, totally of 75 DSP slices are
used in the second convolutional layer. Finally, in the hidden
layer and output layer, the fully connected layers are paralleli-
zed in order to decrease the processing time. For each feature
map for the output of the second pooling layer, a parallel path
is created. In other words, hidden layer multiplications are
performed using 12 DSP slices. The resource usage of each
layer is shown in Table 1. In addition to these parallelizations,
for each layer, the internal memories storing the weights and
biases are concatenated to reach the data in one clock cycle to
avoid memory bottlenecks.

TABLE I: RESOURCE USAGE OF THE DIFFERENT LAYERS

BRAM DSP LUT FF
Conv Layer 1 6 25 4670 4690
Conv Layer 2 14 75 11436 12057
Hidden Layer 7 12 371 332
Output Layer 2 8 297 209

In the accelerator design, since optimized bit widths are
used in weights and biases, these coefficients are fit to the
internal memories of the FPGA. Using the internal memory
of FPGA achieves high memory bandwidth and decreases the
number of clock cycles required to finish the CNN operations.
Every layer is optimized in terms of processing time as much
as possible based on the available resources in the FPGA
device. The number of clock cycles for processing of each
layer is shown in Table 2. As shown in Table 2, the total
processing time for CNN operation is 70 us. In other words,
the proposed CNN accelerator can process 14K images/sec.

TABLE II: PROCESSING TIME OF THE DIFFERENT LAYERS

Clock Cycle Processing Time
Conv Layer 1 + Max Pool Layer 1 3144 25.15 us
Conv Layer 2 + Max Pool Layer 2 3599 28.8 us

Hidden Layer 1878 15.02 us
Output Layer 160 1.28 us

Total 8781 70.2 us

After designing each layer, the CNN accelerator is created
using Vivado by cascading these layers. The final design is
placed and routed without any placement, routing, or timing
errors.

IV. EVALUATION

The design is implemented and tested on a Digilent Nexys4
DDR FPGA board [22]. The board is equipped with a Xilinx
Artix XC7A100T FPGA. The overall design is running at 125
MHz. The overall resource usage of the whole design is given
in Table 3. Since the design has a very low resource usage,
it can fit the smallest package FPGAs of Xilinx 7 series such
as XC7A50T FPGA (i.e., 1 cm x 1 cm in dimension) [23].
Moreover, the power consumption of the whole design is 628
mW. This consumption is taken by Vivado’s power report of
the implemented design and consisting of 94 mW static and
534 mW dynamic power. This is nearly 67 % lower than the
other LeNet CNN architectures which are around 1800 mW
[16] [17].

TABLE III: RESOURCE USAGE OF PROPOSED CNN ACCE-
LERATOR

BRAM DSP LUT FF
Used Resources 29 120 15951 17664

Resources in Nexys DDR 4 Board 135 240 63400 126800
Utilization in Nexys DDR 4 Board (%) 21.48 50 25.16 13.93

In the experimental setup, the images are loaded using
the serial interface of the board and the result is shown
on the LEDs of the board. Meanwhile, the output of the
each layer in the FPGA CNN accelerator is verified bitwise
by matching the outputs of the Python design using the
Vivado hardware manager. In other words, the output of the
Python and FPGA designs give exactly the same result in
each stage of the CNN. Moreover, for a fair comparison, the
proposed accelerator is compared with the other LeNet CNN
implementations in the literature having the same number of
convolutional and fully connected layers [17] [24] [25]. The
design of [24] is using Zynq Ultrascale FPGA and HLS is used
in the development stage. In the design of [25], a ZCU102
board with a Xilinx FPGA chip ZU9EG is used and different
accelerators are used for processing the CNN layers. Lastly,
in the study of [17], Digilent Arty Z7-20 development board,
based on the Xilinx Zynq-7000 System on Chip (SoC), is used.
This design proposes an HW/SW co-processing accelerator. It
uses programmable logic as an accelerator, and the system
is managed by the ARM processor. Performance comparison
with these studies is given in Table 4. As clearly seen from
Table 4, the proposed accelerator has lower resource usage
in DSP and BRAM, which are the most critical components
of the FPGAs, and much lower processing time as compared
to the other implementations. Using the pragmas efficiently
in the hardware design such as pipelining, loop unrolling,
and memory reshaping in the proposed design achieves much
higher throughput as compared to the other implementations.
Besides, using internal memories of the FPGA instead of
external memory decreases the processing time much further.

V. CONCLUSION

In this work, an FPGA-based accelerator for CNN archi-
tectures is implemented, particularly LeNet architecture. The
fixed point design is using 8 bits for weights, 16 bits for
activations, and 32 bits for biases. The accuracy is higher
than 98% and the difference between fixed-point and floating-
point designs are less than 0.1 percent. Vitis HLS is used for
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TABLE IV: COMPARISON OF DIFFERENT LENET CNN AC-
CELERATORS

BRAM DSP LUT Processing Time
Gonzalez [17] 44 153 4738 2268 us
Cho [24] 95 143 32689 3500 us
Shi [25] 54 204 25276 170 us
This work 29 120 15951 70 us

designing the layers and the whole CNN accelerator is finalized
in Vivado. The FPGA design is tested and verified on a Nexys
4 DDR evaluation board. The accelerator runs at 125 MHz and
overall throughput is 14K images/sec with consuming only
628 mW. Therefore, the proposed solution is 7x better than
current LeNet FPGA implementations in performance per watt
and it can be used in real-time embedded CNN applications
effectively.
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