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Abstract. Deductive verifiers are used more and more in both academia
and industry to prevent costly bugs. Their capabilities of verifying con-
current programs are getting better, but they are still lagging behind with
regard to many major programming language features such as exceptions.
To improve the situation, this work presents a semantics of Java excep-
tions which reduces the annotation burden on the user, while still allow-
ing verification of exceptions. This is accomplished by ignoring sources
of errors which are irrelevant to functional verification. Additionally, to
deal with the complex control flow introduced by finally, a transforma-
tion is proposed that simplifies verification of exceptional postconditions
and finally into postconditions and goto. We implement the approach
and evaluate it against several common exception patterns.
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1 Introduction

For programs which require high reliability and robustness, such as nuclear power
plant, railroad, or tunnel software, bugs are not acceptable. To ensure that a pro-
gram complies with the highest standards of correctness, deductive verifiers have
been developed. Deductive verifiers implement logics to reason about programs
mathematically, and can ensure adherence to a specification. This guarantee
increases the chance that bugs will be caught before software is deployed.

If we have tools that can verify if a program is free of bugs, why do we still
have bugs? Part of the answer is that industry uses language features that are
often unsupported by deductive verifiers. An example of such a feature is the Java
exceptions mechanism, which is the primary tool to identify and handle failures
of many kinds in Java code. Osman et al. indicate that for four mature Java
projects the proportion of exception-related code remains around 1%, even after
6 years of ongoing development [27]. For code bases like Hadoop and Tomcat,
which contain millions of lines of code, these are significant numbers [4,5]. We do
not know of any efforts to fully verify code bases such as these, but to accomplish
this, support for exceptions is mandatory.
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There are several projects that allow verification of Java, and some sup-
port exceptions. For example, OpenJML [7] can verify sequential Java. Another
example, VerCors [2], can verify concurrent Java, but does not have support for
exceptions at all. Finally, Verifast [19] can verify concurrent Java with excep-
tions, but does not support finally. Therefore, when verifying Java, a choice
must be made. Either sequential Java can be verified with full support for excep-
tions, or concurrent Java can be verified with limited exception support. What
is surprising is that this dichotomy is not necessary: concurrent execution and
exceptional control flow are orthogonal concerns.

In this work, we try to improve the state of the art by implementing full
support for exceptions in VerCors, a verifier of concurrent Java.

Java itself has some facilities for checking at compile time if some exceptions
are handled. Particularly, “checked exceptions” are required to be handled when
they occur. “Unchecked exceptions” are not required to be handled. Exceptions
are intended to make error handling more structured and robust, but there are
signs they currently fail at the latter. According to a study done by Sena et al.
20% of the bugs in 656 Java projects are related to improper exception usage [31].

One way of solving this is only using checked exceptions, as Java requires each
checked exception to be handled. Unfortunately, Java ignores unchecked excep-
tions, so this rule is easily broken. Furthermore, various parts of the standard
library use unchecked exceptions, so it is easy to break this rule accidentally,
and hard to manually ensure only checked exceptions are used. This is where
deductive verifiers can help: verifying exception handling code automatically
could help with reducing bugs related to exception handling, as the verifier can
guarantee that an exception is always handled correctly.

Verifying exceptions poses three problems. First, supporting finally entails
handling complex control flow. To avoid a monolithic implementation, a modu-
lar transformation must be designed that decomposes the control flow as much
as possible. Second, according to The Java Language Specification [14] (JLS),
exceptions can come from many places, not just the throw statement, but also
from e.g. allocating memory. Requiring the user to create annotations for all
these cases is unfeasible. A subset of Java exceptions must be chosen such
that the annotation burden is reduced, while still allowing verification of com-
mon exception patterns. Third, standard library code that throws checked and
unchecked exceptions must be annotated with exceptional specifications.

In this work, we try to resolve the first and second problem, and leave the
third for future work. First, to decompose complex control flow introduced by
exceptions, we transform all control flow in the program into exceptions. The
exceptional control flow is then transformed into goto statements. This approach
splits up the transformation into multiple steps, making it more modular. It
also reduces the number of different kinds of control flow, which simplifies the
semantics in the intermediate stages.

Second, to relieve the user of the annotation burden, we define a subset of
Java exceptions called “exceptions modulo errors”. This view allows exceptions
to originate from throw statements and method calls with throws attributes,
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and ignores exceptions caused by memory allocation failures or other low-level
implementation details. Reducing the annotation burden this way has a cost:
guarantees of verification are weaker because some errors are ignored. However,
since the assumption of exceptions modulo errors is often made in commercial
software development, we argue it is a reasonable simplification.

Contributions. The main contributions of this work are:

– A simplified semantics of exceptions allowing verification of functional prop-
erties which ignores a number of specific errors.

– An evaluation of the simplified semantics with common exception patterns.
– An encoding of exceptional postconditions and finally into postconditions

and goto.
– An implementation of support for exceptions in the VerCors verifier.

The files used for evaluating exceptions modulo errors, as well as instruc-
tions for running jStar, Krakatoa, and VerCors, can be found in the package
accompanying this paper. The package can be found here: [30].

Paper Structure. Section 2 discusses the background on Java verification in
VerCors. Section 3 discusses related work. Section 4 discusses the definition of
exceptions modulo errors. Section 5 discusses how finally complicates Java
verification, and how this can be resolved by transforming all control flow into
exceptional control flow. Section 6 evaluates the approach presented in this work
against common exception patterns. Section 7 reflects on the presented approach.
Section 8 contains the conclusions and future work.

2 Background

This section discusses background necessary to understand how VerCors verifies
Java programs. We first discuss the notion of abrupt termination in Java. Then
we discuss how VerCors verifies Java programs.

2.1 Abrupt Termination

Abrupt termination [22, p. 14] is a grouping term for control flow that does not
go from one statement to the next, like regular control flow. Instead, abrupt
termination is when a statement terminates not because it is completed, but
because it is terminated sooner than normal and control flow is redirected to
another program point. Abrupt termination is sometimes also referred to as
non-local or non-linear control flow.

One example of abrupt termination is the throw statement, as it aborts
execution of the current block and redirects control flow to the nearest catch
block. Other abrupt termination keywords are: break, continue and return.
They all terminate the current block earlier than normal, and redirect control
flow to another program point.
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The labelled break and continue statements are an extra source of com-
plexity as they allow the user to specify which loop to break from or continue.
These constructs can be useful when nested loops are used. Furthermore, labelled
break can also be used within if, switch or labelled blocks.

2.2 VerCors

VerCors is verifier for concurrent software [2]. It can verify programs written
in Java, OpenCL, C, and PVL. VerCors uses separation logic to reason about
concurrent access to data.

It is a deductive verifier, which means it uses a system of proof rules to
establish correctness of the input. When VerCors reports an input program to
be correct, it means it has found a proof using logical inference. For more infor-
mation about deductive verification, we refer the reader to “Deductive Software
Verification: From Pen-and-Paper Proofs to Industrial Tools” by Hähnle and
Huisman [16].

It is also a modular verifier, which means that verification of each method
only depends on the contract of other methods, and not on their implementa-
tion. This also holds for concurrency: threads are verified “thread-modularly”,
which implies that adding another thread does not invalidate the correctness of
previously verified threads.

Figure 1 presents the architecture of VerCors. The general principle is that
an input program is parsed and converted into the internal AST called Common
Object Language (COL). Then various passes are applied to the COL AST
depending on the input language and provided flags. Finally, after applying all
necessary passes, the COL AST is converted into Silver, the input language of
Viper [24]. Viper reports if there are any failed assertions by translating the
input into SMT and calling the Z3 SMT solver [23]. These errors are translated
back by VerCors to the level of the input file. For more details on the architecture
and implementation of VerCors, we refer the reader to “The VerCors Tool Set:
Verification of Parallel and Concurrent Software” by Blom et al. [6].

Fig. 1. The architecture of the VerCors tool.

VerCors exposes deductive logic through pre- and postconditions. These are
added to the program through annotations, after which VerCors verifies the
program if the program adheres to the annotations. Pre- and postconditions are
sometimes transformed into assertions, but the semantics remain unchanged.
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Listing 1. An implementation of a method computing the maximum of two integers.

1 //@ ensures (a > b ? a : b) == \result;

2 //@ signals (ArithmeticException e) a < 0 || b < 0;

3 int max(int a, int b) {

4 if (a < 0 || b < 0) { throw new ArithmeticException (); }

5 return a > b ? a : b; }

The VerCors pre- and postcondition syntax is inspired by JML [21]. In the
example given in Listing 1, the max method is given a contract on line 1 that
specifies that its result has to be equal to the maximum of a or b. Note how
the contract is preceded with //@, indicating that this comment is in fact a
verification annotation. The ensures keyword indicates this is a postcondition.

One example of a more complicated contract is the signals clause, which
first appeared in JML [21]. It is similar to a regular ensures postcondition,
but only holds if a certain type of exception is thrown. In Listing 1 on line 2 a
signals clause specifies that if the method throws an ArithmeticException it
can be assumed that the arguments are negative. Note that the signals clause
does not impose an obligation to throw when a < 0 || b < 0. It only indicates
that if an exception is thrown, the given exceptional postcondition holds.

3 Related Work

There are several tools that support exceptions, each with their own level of
support. The following tools support separation logic: Nagini, Gillian-JS, Verifast
and jStar. These other tools do not: KeY, OpenJML and Krakatoa. Table 1
summarizes the tools discussed in this section.

Nagini. Nagini fully supports exceptions in the Python language, including
the Python equivalents of the statements break, continue, return, try, catch,
and finally. This is done by encoding the control flow into an auxiliary state
variable that indicates the type of control flow. This approach is documented in
the code documentation of Nagini [10].

At first sight it seems that the Python exception model is identical to the
exception model of Java. However, there is one subtle difference: Python does not
allow labelled breaks. As labelled breaks complicate the verification of finally
(explained in Sect. 5), the implementation strategy employed by Nagini is not
directly usable for verifying exceptions in Java and would have to be extended.

Gillian-JS. Gillian-JS [13], formerly known as JaVerT [11], supports exceptions
as defined in ECMAScript 5 Strict mode fully. Strict mode is a restricted version
of JavaScript where pitfalls of original JavaScript are interpreted as errors.
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Table 1. Related work summary

Name Language Separation logic Exceptions

Nagini Python Yes Yes

Gillian-JS JavaScript Yes Yes

Verifast Java Yes Up to finally

jStar Java Yes Trivial finally

KeY Java No Yes

OpenJML Java No Yes

Krakatoa Java No Up to finally

Through private communication with the authors of Gillian-JS we have con-
cluded that Gillian-JS uses the inlining approach. This makes Gillian-JS sus-
ceptible to blow-up of the AST size when nested finally blocks occur, but the
authors of Gillian-JS say they have had no problems with this in practice.

One interesting aspect of Gillian-JS is that internally it keeps track of the
following four pieces of information while processing commands: the current error
variable, the current return value variable, and the nearest break and continue
labels. This could be simplified by using the approach presented in this work,
which, if used, would only need the following two pieces of information: the
current exception variable, and the nearest try-catch-finally block.

Verifast. Verifast [19] almost fully supports Java exceptions. This means break,
return, continue, throw, try, and catch are all supported. These are encoded
directly into SMT. The only language feature missing is finally. As mentioned
in [18], the authors of Verifast are not sure how to encode finally clauses.

jStar. jStar [8] has some support for exceptions. Specifically, it allows use of
the try-finally statement if it can be optimized away trivially. Otherwise jStar
crashes. This optimizing is done by Soot [33], an analysis framework for Java.

Soot can parse Java bytecode into its internal representation Jimple. Then,
it can apply transformations to this internal representation. Soot can also do a
degree of static analysis, which allows it to remove parts of the program if it can
detect that it is never executed. For example, if it can detect that the condition
of an if statement is always true, it will remove the false branch of the if. This
simplified Jimple code is processed by jStar for analysis.

For convenience we have included a test setup with instructions for running
jStar in the package accompanying this paper [30].

KeY. KeY supports sequential Java exceptions. KeY is based on the JavaDL
logic, as described in “The KeY Book” [1]. JavaDL provides axiomatic rules
for dealing with exceptions, return, and labelled break. Support for continue
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is implemented by transforming it into break. Within these axiomatic rules,
control flow is encoded through control flow flags, as described in [32].

Steinhöfel and Wasser present the loop scopes approach that will soon replace
the control flow flags approach [32]. Loop scopes reduce the number of proof
obligations KeY generates in most cases when dealing with abrupt termination in
loops. This is achieved by generalizing the various notions of abrupt termination
into the concept of a loop scope.

OpenJML. OpenJML [7] also supports sequential Java exceptions, as well as
extensive JML support for specifying the behaviour of exceptions. Steinhöfel
and Wasser mention that exceptions and abrupt termination are implemented
in OpenJML by encoding the control flow in goto [32, Sec. 6].

Krakatoa. Krakatoa [22] supports exceptions, but not finally. It achieves this
by compiling Java exceptions into the more limited exception model of WhyML.
By running the latest version of Krakatoa with finally in the input, we have
concluded that it does not support finally. A test setup with instructions to
check this is included in the package accompanying this paper [30].

Krakatoa takes a similar approach to this work by encoding Java exceptions
into the cleaner exception model of WhyML. Also similar to our work, they
use this approach to implement the abrupt termination semantics of continue
and break. Surprisingly, the developers of Krakatoa seem to have missed the
insight that the approach of encoding abrupt termination into exceptions can be
applied to finally. Since Krakatoa uses an architecture based on an interme-
diate representation that is passed through various transformations, we expect
that applying this insight could simplify the implementation of Krakatoa.

4 Semantics of Exceptions

In this section we describe the semantics of exceptions that we have implemented
in VerCors. First we define how we separate error types from error causes. Then,
we describe what the ideal semantics is, and why we have not implemented it.
Finally, we describe the approximation semantics that we have settled on.

4.1 Errors and Sources of Errors

In Java, an exception of a subclass of Error is thrown when a runtime problem
occurs. It is important to separate the error types from the error sources, i.e. the
exception types that are thrown from the events that cause them to be thrown.
We define operations that can cause an Error to be thrown as “sources of errors”.

For example, when allocating a new object, it can occur that the system
is out of memory. In response to this, the allocation terminates abruptly, and
throws an exception of type OutOfMemoryError. In this case, the error type is
OutOfMemoryError. The source of the error is the system running out of memory
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while allocating a new object. Some other Java Error types and their sources are:
OutOfMemoryError caused by loading a new class, and NoClassDefFoundError
if a class that needs to be loaded is absent. Note that a single error type, e.g.
ClassFormatError, can be caused by many sources of errors.

4.2 Ideal Semantics

An ideal static analysis tool would follow the semantics outlined in the JLS
to the letter. Taking this approach would result in a tool that can analyse the
behaviour of a program close to its actual runtime behaviour. Unfortunately,
this is not a useful approach for two reasons.

First, the annotation overhead would be enormous. This is because of
OutOfMemoryError, which occurs when there is no more free memory. Java pro-
grams do many allocations, e.g. incrementing an Integer object allocates a new
Integer. Since deductive verification requires annotating for exceptions, the ideal
semantics would require every method that allocates an object to specify a
contract for OutOfMemoryError. However, this is often a meaningless contract,
because the system would crash in that case, and no recovery is possible. There-
fore, formalizing error sources such as the system being out of memory in a tool
will require many superfluous annotations in programs, to be specified by the user.

Second, some exceptions cannot be verified at compile time. For example,
ClassFormatError can be thrown while loading or linking improperly format-
ted code. VirtualMachineError can be thrown because of bugs in the virtual
machine. Because some errors depend on the runtime environment, static anal-
ysis tools cannot guarantee their absence. Additionally, the design rationale
behind Error types is that regular programs do not recover from them. Para-
phrasing the JLS [15, Sec. 11.1.1]: “Error is the superclass of all the exceptions
from which ordinary programs are not ordinarily expected to recover.”.

4.3 Semantics Modulo Errors

To avoid the problems with the ideal semantics, we define a simplified view of
exceptions where only a subset of the ideal exceptions semantics is included.
We refer to this view of exceptions as “exceptions modulo errors”. In this view,
exceptions can only come from the throw statement and method calls.

Formally, if VerCors does not report any problems when verifying a program
it implies the following guarantee:

Definition 1 (Exception guarantee). Any exception from a throw state-
ment or a method call is handled in a surrounding catch, or the method declares
the exception type in a signals or a throws clause. In addition, during execu-
tion the following errors will not occur:

– NullPointerException when a null reference is dereferenced.
– ArithmeticException when division by zero or modulo zero takes place.
– ArrayIndexOutOfBoundsException for out of bounds array accesses.
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This definition does not guarantee if an exception will be thrown at all.
Therefore it is similar to the notion of partial correctness, which states that a
postcondition of a program only holds if a program terminates at all.

In short, the exception guarantee implies that all exceptions originating from
most common operations, or where the users specify them, are handled through
catch, signals, or throws.

While the exception guarantee reduces the annotation burden on the user,
it must be emphasised that this is a trade-off. In other words, the guarantee is
weaker than what happens in practice. For example, some allocations may fail,
but these are not modelled by the exception guarantee. Therefore, the excep-
tion guarantee will allow some bugs to go unnoticed. We leave annotation and
verification of error sources for future work.

5 The finally Encoding Problem

In the previous section we have introduced the semantics that VerCors uses for
reasoning about exceptions. In this section, we discuss how VerCors implements
this semantics as several program transformations. Specifically, we discuss how
the combination of regular control flow and exceptional control flow in finally
clauses complicates the transformation, and how we resolve this.

Encoding abrupt termination into goto is straightforward if finally is not
present. This is because the description of the semantics as given in the JLS can
be interpreted literally. An overview of the transformation is as follows.

– throw redirects control flow to the nearest handler or exits the method.
– After a catch clause execution continues after the try.
– break redirects control flow to after the nearest loop.
– return redirects control flow to the end of a method.
– When method calls throw an exception, control flow is redirected to the near-

est handler or to the end of the method.
– If try terminates normally execution should continue after the try block.

However, when finally is introduced, a more intricate transformation is
needed. This is because contrary to all other abrupt termination primitives, at
the end of a finally clause, it is not directly clear where to jump to.

Consider the example in Listing 2. The lines indicate how control flow would
progress. The break statements on lines 5 and 7 both redirect control flow to
the finally block, as it must be executed before leaving the inner while loop.
Then, at the end of the finally block, control flow continues to either directly
after the inner, or directly after the outer while loop. The control flow after the
finally splits because the break statements are subtly different. The first break
statement is unlabelled, which means it breaks from the most recently entered
while loop. The second break statement is labelled, which means it breaks from
the while loop that has that label.
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Listing 2. Breaks can introduce ambiguous code paths.

1 L: while (p) {
2 while (q) {
3 try {
4 if (r) {
5 break;
6 } else if (s) {
7 break L;
8 }
9 } finally {

10 /* Ambiguity */
11 }
12 }
13
14 }
15

With the control flow explicitly drawn, reasoning about the control flow is
easy. However, without the lines it is less clear what exactly must happen on
line 10. If break was just executed, control flow needs to jump to after the
while on line 13. If break L was just executed, control flow needs to jump to
after the outer while loop on line 15. Without any further information, there
is an ambiguity on line 10 which can only be resolved by knowing what kind
of statement was previously executed. Hence, we argue that finally is non-
modular in the sense that its semantics can only be determined when taking
into account multiple parts of a method, and not just the finally clause itself.

To encode finally blocks, what “kind” (returning, breaking, or throwing)
of control flow currently applies needs to be encoded. Furthermore, once labelled
breaks are added to the language it becomes even more complicated since which
specific loop is to be broken out of also needs to be tracked.

5.1 Candidate Encodings

Several candidate encodings for finally and the rest of the abrupt termination
primitives are possible. We discuss the three encodings known to us next. These
are: using inlining, using control flow flags, and using exceptions.

While the first and second of these encodings have appeared in some form in
an implementation before this work, we have not yet seen an effort to categorize
and compare the approaches.

Inlining. The first option that comes to mind is to inline all finally blocks in
places where normally control flow would jump to the next place of interest. For
example, before a throwing method call would jump to a handler, the finally
clause could be executed by inlining it right there.
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Listing 3. Before transformation.

try { m1();

m2();

} finally {

try { m3();

m4();

} finally { inner (); } }

Listing 4. After transformation.

m1(); if (exc ) {

m3(); if (exc ) inner ();

m4(); if (exc ) inner (); }

m2(); if (exc ) {

m3(); if (exc ) inner ();

m4(); if (exc ) inner (); }

Fig. 2. Transformation of inlining finally. m1-4 are assumed to be throwing. Pseudo
exception handling syntax is used in Listing 4, where exc evaluates to true if the
previous line threw an exception.

This option is interesting because it is conceptually straightforward. It is also
used in Java compilers [17, p. 3], informally showing that the approach works.
The downside of this encoding is possibly exponential code duplication. Figure 2
shows a practical example of the inlining approach where this exponential dupli-
cation happens. Notice how the call to inner is duplicated four times. This
is because the number of times the inner finally is duplicated is equal to the
product of the number of times it must be inlined in the inner and outer try.

The blow-up caused by inlining was shown to be minimal for regular Java
code by Stephen Freund [12]. However, for Java code containing verification
annotations, it is unknown if this is also the case, as verification annotations can
contain proof steps. Therefore, this cannot be assumed to be the case for verifica-
tion code as well. Moreover, it is bad for the prover backend, as duplicated code
might cause duplicated proof obligations, which will increase the time needed
to prove the program correct. We have performed an informal experiment that
shows this could be the case for VerCors. This experiment is discussed in [29].

Gillian-JS, as discussed in Sect. 3, uses the inlining approach.

Control Flow Flags. The second option is the optimized version of the first
option: finally blocks are not inlined, but instead a flag is set whenever the
mode of control flow changes. For example, when a return is executed, the flag
is set to a constant called MODE RETURN. This flag can then be queried at the end
of a finally clause to determine where next to jump to. There should be values
for each available mode of abrupt termination (i.e. break, return, throw), as
well as a mode for every label that can be broken from.

As far as we can tell this is technically possible, but keeping track of all the
labels and modes available seems error-prone. Furthermore, at the end of every
finally clause there has to be an if statement determining where to jump next.
In a way, this if statements encodes all possible origins of the finally block, and
all possible destinations. This means the if statement is non-modular, as it needs
information from various places in the method. This introduces unnecessary
complexity and increases the chances for bugs.
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Listing 5. Before transformation.

L: while (c) {

... break L; ...

}

Listing 6. After transformation.

try { while (c) {

... throw new L(); ...

} } catch (L e) { }

Fig. 3. Transformation of break to throw and catch.

This approach has been proposed before, but formulated differently, by Fre-
und [12]. He proposes to encode finally into goto by transforming each finally
into a subroutine. Before such a subroutine is called, a unique number is pushed
on the stack. This unique number corresponds to the return address of the sub-
routine, which is recorded in a table. Even though this formulation is different
than ours, the downsides of the control flow flag approach still apply.

Nagini, as discussed in Sect. 3, uses the control flow flag approach.

Exceptions. The third option is to consider abrupt termination from an excep-
tional point of view. When only exceptional control flow is considered, the ques-
tion of where to continue at the end of a finally clause is simplified:

– If an exception is currently being thrown, execution should continue at the
next nearest catch or finally. If there is no such clause, execution should
go to the end of the method.

– Otherwise, execution continues after the try-finally block.

Note that the choice of where to jump after a finally clause becomes more
local: it does not matter how many exceptions or labels are in scope. Only the
next finally or catch clause needs to be known. Homogenizing control flow
into the exceptional model simplifies the choice at the end of a finally clause.

A requirement of this encoding is the requirement for this simplification to
apply: all other abrupt termination must be removed or transformed into excep-
tional control flow. This is extra work, but we argue that it is not difficult. An
example of how break can be encoded as throw can be seen in Fig. 3.

The translation is similar for continue and return:

– For a statement continue L, the body of the while loop that is the target
of the continue must be wrapped in a try { ... } catch (ContinueL e)
{} block. The continue statement is replaced by throw new ContinueL().

– For a statement return, the body of the method must be wrapped in try {
... } catch (Return e) {}. The return statement is replaced by throw
new Return(). For return statements that return a value, the Return excep-
tion type thrown can be augmented with a field to store the value.

Other control-flow related statements, such as throw, if, try, catch
and while are not transformed. Extended forms of try-catch, such as
try-with-resources, can be supported by transforming the statement into
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try-finally, as described in the JLS [15, Sec. 14.20.3.1]. try-with-resources
is currently not supported in VerCors.

After this step, the remaining throw and try-catch-finally statements
can be transformed into goto following the approach outlined at the beginning
of Sect. 5, with two differences:

1. throw is converted into a goto to the nearest finally or catch clause. Throw-
ing methods are handled similarly.

2. At the end of a finally, if the current control flow is exceptional, control flow
must jump to the next nearest catch or finally clause. Otherwise, control
flow must continue after the try-finally.

Because the exceptions approach results in a less error-prone encoding we
have implemented it in VerCors. The encoding is used if finally is present in
a method. If finally is not present, the basic encoding into goto (which was
discussed at the beginning of Sect. 5) is used for a cleaner back-end output. The
implementation can be found via the VerCors homepage [34].

A downside of compiling to exceptions is that information is lost, because all
control flow is exceptional after the transformation. If this information is needed
it can be encoded in the AST. This ensures that synthetic try-catch and throw
can be discerned from authentic ones. Additionally, by adding an extra flag the
current control flow can be identified as synthetic or authentic.

Another downside is that this approach is not suitable for a single-pass archi-
tecture, and only works in verifiers with multiple passes. Therefore the approach
is less flexible and cannot be straightforwardly applied to all verifiers.

A verifier that uses a comparable approach is Krakatoa. We discuss the dif-
ferences with our encoding in Sect. 3.

6 Evaluation

Next, we evaluate if the view of exceptions modulo errors can handle exception
patterns from commercial software. We answer the following research questions:

1. What are common exception patterns that occur in commercial software?
(Discussed in Sect. 6.1)

2. Can VerCors verify common exception patterns? (Discussed in Sect. 6.2)

6.1 Common Exception Patterns in Commercial Software

Methodology. To find common exception patterns that occur in commer-
cial software, we do an informal survey of the literature through a search on
Google Scholar using the keywords “java”, “exceptions”, and “usage”. We look
for research that is at most 5 years old, presents a categorization of exception
patterns, and considers fifteen or more Java projects.
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Table 2. Exception pattern overview.

Used in catch Used in finally

Empty Empty

Log, stack trace Log

if, while, switch, continue, break, return continue, return

throw e, throw new E(), throw new E(e) throw new E()

Nested try Nested try

Results. From this search, four works are selected [3,20,25,28]. We have aggre-
gated the patterns from these works, combining them into common categories.
The complete table, listing each category per paper and the elements of the
categories, is included in the package accompanying this paper [30]. The aggre-
gated categories can be seen in Table 2. Columns “Used in catch” and “Used in
finally” contain patterns that are used in those clauses. “Empty” means the
respective clause is used without any statements.

Discussion. While all four studies categorize the use of exceptions and catch
clauses extensively, they do not discuss the use of finally thoroughly. More
specifically, only Bicalho de Pádua and Purohit et al. include finally in their
measurements [3,28]. Kery et al. and Nakshatri et al. do not include finally [20,
25], because they do their measurements using the Boa tool [9], which does not
support the finally clause. As a result, finally is less represented in the table,
and some patterns could be missing. However, as completeness was not the goal
of this evaluation, this is not a major issue.

6.2 Verification with VerCors

Methodology. To show that VerCors can verify each of the common excep-
tion patterns in Sect. 6.1, an example program containing the pattern has been
created for each pattern in Table 2. This yields 19 example programs. Where
relevant, we added annotations for stronger guarantees, e.g., in some programs
we added assert false to indicate control flow cannot reach that part of the
program. In other programs we added postconditions to indicate what kinds
of normal and exceptional control flow are possible. All of these programs are
included in the package accompanying this paper [30].

Results. VerCors verifies all of the annotated example programs. In Listing 7
we show the test program contained in the file CatchStackTrace.java. With
regard to Table 2, the program corresponds to the “Used in catch” column and
“stack trace” entry. Particularly, in this program there are no further assertions,
as printing the stack trace does not require specific pre- or postconditions.
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Listing 7. Example program CatchStackTrace.java.

1 class CatchStackTrace {

2 void m () {

3 try {

4 throw new Exception ();

5 } catch (Exception e) {

6 e.printStackTrace ();

7 } } }

Discussion. An aspect of Table 2 that was ignored in the evaluation is that
exception patterns can occur simultaneously within a catch or finally. We
are confident this is handled correctly. However, because the purpose of this
evaluation was to determine if common patterns are verifiable, we leave the
aspect of combinations of patterns for future work.

7 Discussion

We will briefly discuss backend requirements and performance.

7.1 Backend Requirements

Our approach imposes two requirements on the backend: support for goto and
support for conditional permissions.

Goto. To encode exceptional control flow within a method, the approach pre-
sented in this work relies on goto. Therefore, if goto would not be available in
the backend, our transformation to goto would not work.

Conditional Permissions. Exceptional postconditions result in conditional
permissions. Permissions are a construct used in separation logic with per-
missions. A permission allows reading or writing from a data location on the
heap. For a more thorough introduction to separation logic, we refer the reader
to [26]. Conditional permissions are permissions that apply if a condition is met.
For example, the postcondition ensures b ==> Perm(x, write) yields a write
permission for x whenever b holds. Exceptional postconditions cause these kinds
of permissions because they are encoded as RuntimeException is thrown ==>

P, where P is an arbitrary postcondition containing permissions.
Conditional permissions are not problematic for separation logic, as they

are well defined. However, they might lead to unclear or verbose specifications
because permissions are only usable once certain conditions have been met.

One way to avoid conditional permissions is through an “exceptional invari-
ant”. This is a user-defined invariant that holds both at entry and exit of a
try-catch block, and at the end of catch clauses. This could simplify the han-
dling of permissions.
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7.2 Performance

During the usage of the implementation, we have not seen performance issues.
However, there might be three causes of performance problems in the future:
bigger encoded output, complex control flow, and conditional permissions.

Bigger Encoded Output. The size of code produced for the backend (the
“encoded output”) increases when exceptions are used. This is mostly due to an
increase of trivial statements. Specifically, more labels, goto, and if statements
for typechecks are emitted. As no complex proof obligations are introduced, we
do not think the increase in encoded output will be problematic.

Complex Control Flow. When using exceptions, many jumps are introduced
that target few destinations, compared to programs without exceptions. This
is because every call that can throw introduces a conditional jump. All these
jumps go to either a catch block, finally, or the end of the method. This
seems unavoidable, as this kind of control flow is the core of exceptions in Java.
If complex control flow causes longer verification times, a different format for
the output encoding can be investigated, for example continuation passing style.

Conditional Permissions. When the proposed transformation is applied,
more conditional permissions are produced compared to programs that do not
use exceptions. We have not seen evidence that this increases verification times.
If conditional permissions become a cause of performance problems, the “excep-
tional invariant” mentioned in the subsection above could also help with this.

8 Conclusion

We presented an approach for supporting exceptional control flow that makes it
easier to support finally. This is achieved by first transforming all occurrences
of abrupt termination into exceptional control flow. This simplifies encoding
finally and leads to a modular transformation that can be split up into several
steps. Moreover, to avoid the annotation burden caused by exceptions as defined
in the JLS, we propose a simplified view called exceptions modulo errors. This
view focuses on the primary sources of exceptions, throw statements and throws
clauses, and disregards exceptions that are ignored in practice, such as out of
memory errors or other low-level details. Finally, we have evaluated the excep-
tions modulo errors semantics, and conclude that exceptions modulo errors can
handle common exception patterns that appear in practice.

Future work will go in several directions. It would be useful to further validate
the view of exceptions modulo errors by doing an empirical study of the catching
and throwing of Error exceptions. This can be combined by researching how to
annotate for Error exceptions, and what kinds of contracts would be specified
in the context of Error exceptions. Possibly the implementation in this work
can also be used to design and implement support for exceptional specifications
of the standard library.
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3. Bicalho de Pádua, G.: Studying and Assisting the Practice of Java and C# Excep-
tion Handling. Masters, Concordia University, February 2018

4. Black Duck Open Hub: The Apache Hadoop Open Source Project on Open Hub:
Languages Page (2018). https://www.openhub.net/p/Hadoop/analyses/latest/
languages summary

5. Black Duck Open Hub: The Apache Tomcat Open Source Project on Open
Hub: Languages Page (2018). https://www.openhub.net/p/tomcat/analyses/
latest/languages summary

6. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verifica-
tion of parallel and concurrent software. In: iFM, vol. 10510, pp. 102–110 (2017).
https://doi.org/10.1007/978-3-319-66845-1 7

7. Cok, D.R.: OpenJML: software verification for Java 7 using JML, OpenJDK, and
Eclipse. EPTCS (2014). https://doi.org/10.4204/EPTCS.149.8

8. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In:
Proceedings of the 23rd ACM SIGPLAN OOPSLA Conference. ACM (2008).
https://doi.org/10.1145/1449764.1449782

9. Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N.: Boa: a language and infrastruc-
ture for analyzing ultra-large-scale software repositories. In: 2013 35th ICSE. IEEE
(2013). https://doi.org/10.1109/icse.2013.6606588

10. Eilers, M.: Shortened github link to code-level documentation of get finally var

method (2021). https://edu.nl/8a9qe
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