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Abstract—This paper studies the problem of estimation from rel-
ative measurements in a graph, in which a vector indexed over the
nodes has to be reconstructed from pairwise measurements of dif-
ferences between its components associated with nodes connected
by an edge. In order to model heterogeneity and uncertainty of the
measurements, we assume them to be affected by additive noise dis-
tributed according to a Gaussian mixture. In this original setup, we
formulate the problem of computing the maximum-likelihood esti-
mates and we design two novel algorithms, based on least squares
(LS) regression and expectation maximization (EM). The first al-
gorithm (LS-EM) is centralized and performs the estimation from
relative measurements, the soft classification of the measurements,
and the estimation of the noise parameters. The second algorithm
(Distributed LS-EM) is distributed and performs estimation and
soft classification of the measurements, but requires the knowledge
of the noise parameters. We provide rigorous proofs of convergence
for both algorithms and we present numerical experiments to eval-
uate their performance and compare it with solutions from the
literature. The experiments show the robustness of the proposed
methods against different kinds of noise and, for the Distributed
LS-EM, against errors in the knowledge of noise parameters.

Index Terms—Classification, estimation theory, gaussian mix-
ture models, maximum-likelihood estimation, sensor networks.

I. INTRODUCTION

WHENEVER measurements are used to estimate a quan-
tity of interest, measurement errors must be properly

taken into account and the statistical properties of these errors
should be identified to enable an efficient estimation. In this pa-
per, we look at this broad issue in a specific problem within the
context of network systems. Namely, we consider the problem
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of distributed estimation from relative measurements, defined as
follows. We assume to have a real vector that is indexed over the
nodes of a graph with a known topology: the nodes are allowed
to take pairwise measurements of the differences between their
vector entries and those of their neighbors in the graph. The
estimation problem consists in reconstructing the original vec-
tor, up to an additive constant. This prototypical problem can be
applied in a variety of contexts [1]. One example is relative local-
ization of mobile automated vehicles, where the vehicles have
to locate themselves by using only distance measurements [2].
Another example is statistical ranking, where a set of items
needs to be sorted according to their quality, which can only
be evaluated comparatively [3], [4]. In all these scenarios, the
noise affecting the measurements can be drastically heteroge-
neous and, more importantly, its distribution may not be known
a priori. For instance, in vehicle localization, distances between
vehicles may be measured by more or less accurate sensors; in
a ranking system, the items upon evaluation can be compared
by more or less trustworthy entities. It is thus important to iden-
tify unreliable measurements and weight them differently in the
estimation. In order to model this uncertainty, in this paper we
assume that the measurement noise is sampled from a mixture of
two Gaussian distributions with different variances, represent-
ing good and poor measurements, respectively. Our solution to
this problem builds on the classical Expectation-Maximization
(EM) approach [5], [6], where the likelihood is maximized by
alternating operations of expectation and maximization.

We are particularly interested in finding efficient distributed
algorithms to solve this problem. More precisely, we say that
an algorithm is distributed if it requires each node to use in-
formation that is directly available at the node itself or from
its immediate neighbors. Actually, many distributed algorithms
for relative estimation are available [1], [7]–[14], but they as-
sume that the quality of the measurements is known before-
hand. At the same time, there is a large literature on robust
estimation that also covers estimation from relative measure-
ments, but often provides algorithms that are not distributed;
see for instance [15] and references therein. Perhaps the only
work on robust distributed relative estimation is the recent [16]:
their approach is very different from ours as it is based on �1
optimization. By proposing our distributed EM algorithm, we
contribute to the growing body of research on distributed algo-
rithms for network-related estimation problems with heteroge-
neous and unknown measurements [16]–[20], where distributed
algorithms based on consensus and ranking procedures have
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been proposed to approximate Maximum-Likelihood (ML) es-
timates. Other authors have used EM to estimate Gaussian mix-
tures’ parameters in other problems of distributed inference in
sensor networks [21]–[23]. In these works, a network is given
and each node independently performs the E-step from local
observations and this information is suitably propagated to col-
laboratively perform the M-step. EM is also a key instrument to
design reliable learning systems based on unreliable information
reported by users in the context of social sensing [24], [25].

Our contribution: In this paper, we define the problem of
robust estimation from relative measurements when measure-
ment noise is drawn from a Gaussian mixture and we design
two iterative algorithms that solve it. Both algorithms are based
on combining classical Weighted Least Squares (WLS) with
Expectation-Maximization (EM), which is a popular tool in
statistical estimation problems involving incomplete data [26],
[27]. The first algorithm is centralized, whereas the second al-
gorithm is distributed but requires to know the two variances of
the Gaussian mixture. This knowledge is not necessary for the
centralized version. Both algorithms are proved to converge and
their performance is compared on synthetic data. We observe
that the centralized algorithm has better performance, achiev-
ing smaller estimation errors. The centralized algorithm also
requires less iterations to converge, but each iteration involves
more computations. Both algorithms are fairly robust to uncer-
tainties in the parameters.

Organization of the paper: We formally present the problem
of relative estimation in Section II, where we also review some
state-of-the-art algorithms. The centralised LS-EM algorithm is
described in Section III and the Distributed LS-EM algorithm
in Section IV. Section V contains some numerical examples
and Section VI our conclusions. The details of our proofs are
postponed to the Appendix.

Notation: Throughout this paper, we use the following nota-
tional conventions. Real and nonnegative integer numbers are
denoted by R and Z≥0 , respectively. Open intervals are denoted
by parentheses and closed intervals by square brackets. Given a
finite set V , the Eucliean space of real vectors with components
labelled by elements of V is denoted by RV . We denote col-
umn vectors with small letters, and matrices with capital letters.
Given x ∈ RV , we denote its v-th element by xv or (x)v . Given
x ∈ RV and A ∈ RV×V , we denote the �p norm of vector x with
the symbol ‖x‖p (the �2 norm is taken when subscript p is omit-
ted), and with ‖A‖ the spectral norm of matrix A. The support
set of a vector x is defined by supp(x) = {i ∈ V : xi �= 0} and
we define Σk = {x ∈ RV : ‖x‖0 ≤ k} with ‖x‖0 = |supp(x)|
denoting the �0-pseudonorm. Given E with finite cardinality |E|,
we define P� : [0, 1]E → Σ|E|−� as the projection that zeroes the
� smallest components of the given vector. It should be noticed
that in general the projection of a vector could be not unique: we
assume that P�(x) consistently selects one of the possible pro-
jections by a tie-breaking rule. Given matrix M , M� denotes its
transpose. Given vector x, we denote by diag(x) the diagonal
matrix whose diagonal entries are the elements of x.

An (undirected) graph is a pair G = (V, E) where V is a
finite set of vertices and E ⊆ {{v, w} : v, w ∈ V} is the set
of edges. Graph G is connected if, for all i, j ∈ V , there exist

vertices i1 , . . . is such that {i, i1}, {i1 , i2}, . . . , {is , j} ∈ E . We
let A ∈ {0,±1}E×V be the edge incidence matrix of the graphG,
defined as follows. The rows and the columns of A are indexed
by elements of E and V , respectively. We assume to have an
order on set V , such as it would be for V = {1, . . . , n}. By this
order, the orientation of the edges is conventionally assumed
to be such that, if u < v, then edge {v, u} originates in u and
terminates in v. The (e, w)-entry of A is 0 if vertex w and edge
e are not incident, and otherwise it is 1 or −1 according as e
originates or terminates at w:

Aew =

⎧
⎪⎪⎨

⎪⎪⎩

+1 if e = (v, w)

−1 if e = (w, v)

0 otherwise.

II. ROBUST ESTIMATION FROM RELATIVE MEASUREMENTS

A set of nodes V = {1, . . . , N} is considered, each of them
endowed with an unknown scalar quantity x̃v ∈ R with v ∈ V .
Starting from a set of noisy measurements, the nodes’ goal is to
estimate their own absolute position. More precisely, each node
u ∈ V is interested in estimating the scalar value x̃u , based on
noisy measurements of differences x̃u − x̃v with v and u in
V . The set of available measurements can be conveniently rep-
resented by graph G = (V, E), where each edge represents a
measurement: A ∈ {0,±1}E×V is the edge incidence matrix of
graph G. We let b ∈ RE be the vector collecting the measure-
ments

b = Ax̃ + η,

where ηe, e ∈ E are mutually independent random variables dis-
tributed according to a Gaussian distribution N (0, σ2

e ), having

σe = (1− ze)α + zeβ,

with 0 < α < β, with ze distributed as a Bernoulli distribution
ze ∼ B(p) and p ∈ (0, 1/2). Provided α� β, the value ze = 1
is associated to a measurement that is unreliable. With this for-
mulation the random variables {ηe}e∈E are Gaussian mixtures,
whose model is completely described by three parameters: p, α
and β. For convenience, from now on we consider p fixed and
known. This choice is done for simplicity and does not entail a
significant restriction to our analysis: on the one hand, the algo-
rithms we propose are fairly robust to small errors in the estimate
of p; on the other hand, our framework can be easily extended
to include the estimation of p as an unknown parameter.

Our main goal is to obtain a robust estimate of the state vector
x̃ by suitably taking into account the different quality of the
measurements. We thus consider a joint Maximum Likelihood
estimation

x̂ML = argmax
x∈RV ,α>0,β>0

L(x, α, β) (1)
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where L(x, α, β) := log f(b|x, α, β) and

f(b|x, α, β) =
∏

e∈E

[
1− p√
2πα2

exp
(

− (b−Ax)2
e

2α2

)

+
p

√
2πβ2

exp
(

− (b−Ax)2
e

2β2

)]

. (2)

The computational complexity of optimization problem (1)
makes a brute force approach infeasible for large graphs.

A. Estimation via Weighted Least Squares

Problem (1) becomes much simpler if we assume to know
the distribution that has produced the noise term for each mea-
surement. Using the noise source information α, β, and z̃e for
all e ∈ E , where z̃e is the realization of ze , the ML-estimation
becomes

XML = argmax
x∈RV

log f(b|x, z̃, α, β) (3)

where XML is the set of maximizing values of the log-likelihood

f(b|x, z̃, α, β) =
∏

e∈E

[
1− z̃e√
2πα2

exp

(

− (b−Ax)2
e

2α2

)

+
z̃e

√
2πβ2

exp
(

− (b−Ax)2
e

2β2

)]

.

Noticing that log(
∏

e xe) =
∑

e log(xe) and that z̃ is a binary
vector, it is easy to see that ML is equivalent to solving the
Weighted Least Square (WLS) problem

argmin
x∈RV

1
2
‖b−Ax‖2W = argmin

x∈RV

1
2
(b−Ax)�W (b−Ax)

(4)
with W = diag((1− z̃e)α−2 + z̃eβ

−2).
The following lemma describes the solutions of (4).
Lemma 1 (WLS Estimator): Let the graph G be connected

and X be the set of solutions of (4), and let LW := A�WA
denote the weighted Laplacian of the graph. The following facts
hold:

1) x ∈ XML if and only if A�WAx = A�Wb;
2) there exists a unique x̂wls ∈ XML such that ‖x̂wls‖2 =

minx∈XM L ‖x‖2 ;
3)

x̂wls = L†W A�Wb, (5)

where L†W denotes the Moore-Penrose pseudo-inverse of
the weighted Laplacian LW .

We recall that 1�LW = 0 and 1�L†W = 0.
Further useful properties are collected in the following re-

sult [28, Sect. 5.4].
Proposition 2 (Moments of WLS Estimator): Provided G is

connected, it holds that

E[x̂wls] =
(

I − 1
N

11�
)

x̃

E
[(

x̂wls − E
[
x̂wls

]) (
x̂wls − E

[
x̂wls

])�]
= L†W ,

where 1 is a vector of length N whose entries are all 1.
It should be stressed that determining the state vector x̃ from

relative measurements is only possible up to an additive con-
stant, being A1 = 0, and XML = x̂wls + span(1). This ambi-
guity can be avoided by assuming the centroid of the nodes as
the origin of the Cartesian coordinate system. n view of this
comment and of the results above, we shall assume from now
on that G is connected and 1�x̃ = 0.

As shown in Lemma 1, the WLS solution is explicitly known
and can be easily computed solving a linear system. Further-
more, the following distributed computation is also possible, by
using a gradient descent algorithm. Observe that the gradient of
the cost function in (4) is given by LW x−A�Wb. Set an initial
condition x(0) = 0 and fix τ > 0 and consider

x(t+1) = (I − τLW )x(t) + τA�Wb. (6)

Provided τ < 2‖LW ‖−1
2 , the gradient descent algorithm (6) con-

verges to the WLS solution [9], [29].

B. Relations With Literature and Numerical Example

The WLS estimation and the subsequent developments in this
paper share some ideas with several approaches in literature.
We recall two methods based on optimization that focus on
Sparse outliers detection [15] and Least absolute estimation
[30]. Then we will summarize the main advantages of WLS in
the considered setting in contrast with these methods.

The problem of finding the smallest set that contains the
outliers is considered in [15]. Using the same rationale of the
big M trick approach, introduced in [15, Section III.C ], and
recalling that |ye − (Ax̃)e | ≤ 3σe with a probability close to 1
(about 0.997), a reasonable adaptation of [15] can be formalized
as an optimization problem in the �0-pseudonorm:

min
x∈RV , z∈{0,1}E : 1�x=0

‖z‖0

s.t. |ye − (Ax)e | ≤ 3α + 3ze(β − α) ∀e ∈ E . (7)

The decision variables ze ∈ E play the role of indicator variables
for each measurement e ∈ E . The test to label the measurements
is based on a confidence interval: if ze is 0 then the measurement
is trusted, if ze is 1 then the measurement is not trusted. This
problem is combinatorial and becomes intractable for large scale
problems.

For this reason, a standard approach is resorting to least ab-
solute estimation [30], also known as �1-minimization. Problem
(7) is relaxed by replacing the �0-pseudonorm with the �1-norm,
which is expected to promote sparsity [31]:

min
x∈RV , z∈RE : 1�x=0

‖z‖1

s.t. |ye − (Ax)e | ≤ 3α + 3ze(β − α) ∀e ∈ E (8)

min
x∈RV : 1�x=0

‖y −Ax‖1 (9)

The problem in (9) has also a probabilistic characterization
and can be interpreted as ML estimation assuming that the
noise is distributed according to a Laplace distribution. The �1-
norm is less sensitive to outliers [30] and performs better than
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Fig. 1. The network of 5 nodes considered in Example 1.

LS-estimator in presence of different types of corrupted mea-
surements. It should be noticed that the problem in (9) is not
smooth but is still convex, indeed it is a linear program (LP)
and can be solved efficiently by iterative algorithms, e.g., using
subgradient methods [32] or iterative reweighted least squares
(IRLS, [33]) that admit a distributed implementation. Observe
that the subgradient of the cost function in (9) is given by
A�sgn(y −Ax). Set an initial condition x(0) = 0 and fix τ > 0
and consider

x(t+1) = x(t) + τA�sgn(y −Ax). (10)

Despite these interesting features, LAE has some drawbacks.
First, there are no guarantees that the solution of (9) has the
minimum cardinality property. Moreover, there are no theoret-
ical conditions under which the problem in (7) is equivalent to
(9). Extensive numerical results show that �1-norm encourage
sparsity but in general the solution of (7) and (9) do not coin-
cide [15]. Using the noise source information α, β, and z̃e for
all e ∈ E , problems (7) and (8) reduce to a linear feasibility pro-
gram. If z̃e is 0, then the measurement is selected, and if ze is 1,
then the measurement is detected as outlier and not taken into
account in the search of x satisfying the constraints. WLS in-
stead uses all the measurements in the estimation by mitigating
the effect of outliers: its covariance is given in Proposition 2.
Furthermore, finding the optimal estimate using WLS approach
is equivalent to solving a network of resistors [34]. This intu-
itive electrical interpretation highlights the role of the topology
of the measurement graph and allows distinguishing between
topologies that lead to small or large estimation errors [9], [35].
In particular, using Proposition 2 and the electrical interpreta-
tion, one can relate the measurement graph G to the error in the
estimation. Such analysis of performance is not available for �0
or �1-minimization.

Finally, we provide a numerical example for illustration.
Example 1: Consider the connected network in Figure 1 with

N = 5 nodes and set of edges E = {(2, 1), (5, 1), (3, 2),
(5, 2), (4, 3), (5, 4) }. Let x̃ = [ 0.737, 0.088, 0.410, 0.125,
−1.362]T, z̃ = [0, 0, 0, 0, 1, 1]T, α = 0.1, and β = 1. Then, the
incidence matrix A and the vector of measurements can be easily
constructed as

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 0 0
1 0 0 0 −1
0 1 −1 0 0
0 1 0 0 −1
0 0 1 −1 0
0 0 0 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and b = [0.658, 2.105, −0.322, 1.450, −0.094, 1.190]T. The
resulting estimates are x̂wls = [0.737, 0.078, 0.397, 0.156,
−1.368]T by weighted least squares, x̂ls = [0.803, 0.084, 0.222,
0.132,−1.242]T by unweighted least squares and x̂lae = [0.803,
0.144, 0.242, 0.112,−1.302]T by �1-minimization. We obtain
that ‖x̂wls − x̃‖2/‖x̃‖2 = 4.89 · 10−4 and ‖x̂ls − x̃‖2/‖x̃‖2 =
2.09 · 10−2 and ‖x̂lae − x̃‖2/‖x̃‖2 = 1.52 · 10−2 . �

III. CENTRALIZED ALGORITHM

In this section, we tackle the likelihood maximization prob-
lem (1) in its full generality. Since (1) does not admit a closed
form solution, we propose an iterative algorithm that provides
a solution in an iterative fashion. Preliminarily to designing our
algorithm, we convert the Maximum Likelihood problem into a
minimization problem by the following result, whose proof is
postponed to Appendix A.

Theorem 3: The following optimization problems have the
same solutions

max
α,β

max
x

L(x, α, β) (11)

−min
α,β

min
x

min
π∈[0,1]E

V (x, π, α, β) (12)

where

V (x, π, α, β)

=
1
2

∑

e∈E
(b−Ax)2

e

(
1− πe

α2 +
πe

β2

)

+
∑

e∈E

[

−πe log
p

β
− (1− πe) log

1− p

α
−H(πe)

]

(13)

and H : [0, 1]→ R is the natural entropy function H(ξ) =
−ξ log ξ − (1− ξ) log(1− ξ).

Note that, with respect to the original problem (11), prob-
lem (12) explicitly introduces the variable π ∈ [0, 1]E which
represents the estimated probabilities that the edges have large
variances. Actually, instead of solving problem (12), we will
solve a suitably modified problem, which we are going to define
next. This modification marks a key difference with classical
EM approaches. Namely, we shall solve

min
α,β

min
x

min
π∈Σ |E|−s

Ṽ (x, π, α, β, ε), (14)

where Ṽ : RV × [0, 1]E ×R>0 ×R>0 ×R≥0 → R is

Ṽ (x, π, α, β, ε)

=
1
2

∑

e∈E

(

(b−Ax)2
e +

ε

|E|
)(

1− πe

α2 +
πe

β2

)

+
∑

e∈E

[

−πe log
p

β
− (1− πe) log

1− p

α
−H(πe)

]

.

(15)

Compared to (12), the optimization problem (14) introduces
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� the positive variable ε, which has the goal to avoid possible
singularities when one of the Gaussian components of the
mixture collapses to one point;

� the constraint set Σ|E|−s , which implies that at least s ≥ 1
measurements are classified as reliable.

As will become clear in the proofs, these modifications are
instrumental to guarantee the convergence of the algorithms
that we design. By defining function Ṽ , we do not intend to
pose any additional assumption in our original problem state-
ment (1). However, problems (12) and (14) are not equivalent:
instead, Problem (14) should be seen as a treatable approxima-
tion of (12). The mismatch between the two problems is meant
to be small, since ε is bound to be small and it suffices to choose
s as small as 1.

The following lemma summarizes the main properties of Ṽ
in minimization problems that only involve one variable at the
time. Its proof can be obtained by differentiating Ṽ .

Proposition 4 (Partial minimizations): Let us define

x̂ = x̂(π, α, β, ε) = argmin
x∈RV

Ṽ (x, π, α, β, ε)

π̂ = π̂(x, α, β, ε) = argmin
π∈Σ |E|−s

Ṽ (x, π, α, β, ε)

α̂ = α̂(x, π, β, ε) = argmin
α>0

Ṽ (x, π, α, β, ε)

β̂ = β̂(x, π, α, ε) = argmin
β>0

Ṽ (x, π, α, β, ε)

and denote W = diag(1−π
α2 + π

β 2 ), LW = A�WA, and ξe =
f(ze = 1|x, α, β). Then, it holds true that

x̂ = L†W A�Wb

π̂ = Ps(ξ)

α̂ =

√∑
e(1− πe)|be − (Ax)e |2 + ε

‖1− π‖1

β̂ =

√∑
e πe |be − (Ax)e |2 + ε

‖π‖1

where Ps : [0, 1]E → Σ|E|−s is the projection that zeroes the s
smallest components of the given vector.

From the expressions of α̂ and β̂, we can notice that the regu-
larization term makes them greater than zero, and consequently
also ‖π‖1 .

Using the insights obtained by Proposition 4, we propose an
alternating method for the minimization of (14). The resulting
method is a combination of Iterative Reweighted Least Squares
(IRLS) and Expectation Maximization. The algorithm, which is
detailed in Algorithm 1, is based on the following four funda-
mental steps, which are iteratively repeated until convergence.

WLS solution: Given the relative measurements b and cur-
rent parameters πe, α, β, a new estimation of the variable x is
obtained by solving the WLS problem with weights

we = (1− πe)α−2 + πeβ
−2 , ∀e ∈ E .

Algorithm 1: LS-EM.

Require: Data: (b, A). Parameters: c1 , c2 > 0, p ∈ (0, 1
2 ),

tol > 0.
1: Initialization:

t← 0, α(t) ← α0 , β(t) ← β0 , π(t) ← 0, ε(t) ← 1,
SC← 1.

2: while SC ≥ tol do
3: Computation of weights: ∀e ∈ E

w(t+1)
e ← 1− π

(t)
e

(α(t))2 +
π

(t)
e

(β(t))2

4: WLS solution: W (t+1) ← diag(w(t+1))

x(t+1) ← L†
W ( t + 1 ) A

�W (t+1)b,

5: Posterior distribution evaluation: ∀e ∈ E
ξ(t+1)
e ← f(ze = 1|x(t+1) , α(t) , β(t))

6: Best (|E| − s)-approximation:

π(t+1) ← Ps(ξ(t+1))

7: Regularization parameter:

κ(t+1) ← dim(ker(LW ( t + 1 ) ))

θ(t+1) ← 1
log(t + 1)

+ c1‖x(t+1) − x(t)‖+ c2(κ(t+1) − 1)

ε(t+1) ← min
(
ε(t) , θ(t+1)

)

8: Parameters estimation:

α(t+1) ←
√

ε(t) +
∑

e(1− π
(t+1)
e )|be − (Ax(t+1))e |2

‖1− π(t+1)‖1

β(t+1) ←
√

ε(t) +
∑

e π
(t+1)
e |be − (Ax(t+1))e |2
‖π(t+1)‖1

9: Evaluate SC
10: t← t + 1
11: end while

Expectation: The posterior distribution ξ of the noise associ-
ated to the edges is evaluated, based on the current x, α, β.

Projection: The vector π = Ps(ξ) is the best (|E| − s)-
approximation of the posterior probability ξ. Therefore, the s
smallest components of the posterior probabilities ξ are set to
zero to make sure that at least s measurements are used in the
WLS estimation problem.

Maximization: Given the projected posterior probability π,
we use it to re-estimate the mixture parameters α and β.

The procedure is iterated until a suitable Stopping Criterion
(SC) is satisfied, e.g., a maximum number of iterations Tmax can
be fixed (SC ={t ≤ Tmax}) or the algorithm can be run until the
estimate stops changing (SC ={‖x(t+1) − x(t)‖/‖x(t)‖ < tol}
for some tol > 0).

Although Algorithm 1 is a modified version of classical EM,
this fact is not sufficient to guarantee the convergence of the
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proposed method. In fact, as observed in [26], a generic EM
algorithm is not guaranteed to converge to a limit point but
only to produce a sequence of points along which the log-
likelihood function does not decrease. Hence, an explicit con-
vergence proof is required in all specific cases. Algorithm 1
also includes a regularization sequence ε(t) , which appears in
the “Maximization” step and is designed to be monotonic and
to go to zero upon convergence of the algorithm (see Step 7).
The presence of such regularization is actually instrumental to
prove the convergence to a local maximum of the log-likelihood
function.

We underline that the proposed method (see Algorithm 1)
can be interpreted also as an IRLS with a specific choice of the
weights [36]. In contrast to classical IRLS, LS-EM allows to
perform a classification of the measurements and the weights
depend on the weighted energy based on this classification and
this marks its difference with IRLS where the weights associated
to edge e of the residual, chosen with the aim of approximating
the �1-norm of residual, turn out to depend exclusively on the
residual of edge |be − (Ax)e |. The combination of EM with
IRLS has been shown to outperform classical IRLS for in terms
of speed and robustness in presence of noise in sparse estimation
problems [37].

In order to state the convergence result, denote ζ(t) =
(x(t) , π(t) , α(t) , β(t) , ε(t)): then Algorithm 1 can be seen as a
map from RV × [0, 1]E ×R>0 ×R>0 ×R≥0 to itself that pro-
duces the sequence of iterates {ζ(t)}t∈Z≥0 .

Theorem 5 (LS-EM Convergence): For any b ∈ RE , the
whole sequence ζ(t) converges to ζ∞ = (x∞, π∞, α∞, β∞, ε∞)
such that

x∞ = L†W ∞A�W∞b, W∞ = diag(w∞) (16a)

w∞e =
1− π∞e
|α∞|2 +

π∞e
|β∞|2 (16b)

π∞e = Ps

(
f(ze = 1|x∞, α∞, β∞)

)
(16c)

α∞ =

√∑
e(1− π∞e )|be − (Ax∞)e |2 + ε∞

‖1− π∞‖1 (16d)

β∞ =

√∑
e π∞e |be − (Ax∞)e |2 + ε∞

‖π∞‖1 . (16e)

The converge point ζ∞ is a fixed point of the algorithm and
a local minimum of Ṽ (·, ·, ·, ·, ε∞). If ε∞ = 0, then ζ∞ locally
maximizes the log-likelihood.

The proof of Theorem 5 is based on observing that function
Ṽ in (14) is a Lyapunov function that is not increasing along the
sequence of iterates. Details are postponed to Appendix B.

IV. DISTRIBUTED ALGORITHM

In this section, we design and study a distributed algorithm
to solve problem (1), starting from the centralized one pro-
posed in the previous section. Preliminary, let us examine
steps 3–8 in Algorithm 1 in order to identify whether they
are amenable to a distributed computation. Steps 3 and 5 only
require information depending on edge e and are thus inherently

Algorithm 2: Distributed LS-EM.

Require: Data: (b, A)s. Parameters: p ∈ (0, 1
2 ), τ > 0,

0 < α� β, tol > 0.
1: Initialization: t← 0, π(t) ← 0, x(t) ← 0, SC← 1
2: while SC ≥ tol do
3: Computation of weights: ∀e ∈ E

w(t+1)
e ← 1− π

(t)
e

α2 +
π

(t)
e

β2

4: Gradient step: W ← diag(w(t+1))

x(t+1) ← (I − τLW )x(t) + τA�Wb,

5: Posterior distribution evaluation: ∀e ∈ E
π(t+1)

e ← f(ze = 1|x(t+1) , α, β)

6: Evaluate SC
7: t← t + 1
8: end while

decentralized. Furthermore, we already know that the least
squares problem in Step 4 can be solved by a distributed proce-
dure. Instead, steps 6–8 involve global information and can not
easily be distributed.

Based on this discussion, we propose a simple but effective
variation of LS-EM algorithm, detailed in Algorithm 2. Algo-
rithm 2 is totally distributed and can be performed by the nodes:
at each iteration, every node v ∈ V computes w

(t)
e , π

(t)
e for every

edge incident to it (see Step 3 and Step 5 in Algorithm 2) and
the estimate of position x

(t)
v (see Step 4 in Algorithm 2). The

new algorithm is based on two design choices. The first choice
is inspired by the distributed gradient dynamics (6): instead of
fully solving a WLS problem at each iteration, we only perform
one step of the corresponding gradient iteration. In the second
choice, we assume α and β to be known, thus removing the need
for their estimation. A further advantage is that keeping α and
β fixed during the evolution of the algorithm avoids certain dif-
ficulties in the convergence analysis in Appendix B and namely
removes the need for regularization and projection steps. Con-
sequently, this distributed algorithm solves the exact estimation
problem (12). Even though the knowledge of α and β can be
a restrictive assumption, we have observed that the algorithm
is fairly robust to uncertainties in these values: this quality is
further discussed in Remark 1 below.

The convergence of Algorithm 2 can be proved similarly to
Theorem 5, under the condition that the parameter τ belongs to
a certain range: details are postponed to Appendix C.

Theorem 6 (Distributed LS-EM Convergence): If τ < α/
‖A‖2 , then for any b ∈ RE the sequence (x(t) , π(t)) generated
by Algorithm 2 converges to (x∞, π∞) such that

x∞ = L†W ∞A�W∞b, W∞ = diag(w∞) (17a)

w∞e =
1− π∞e

α2 +
π∞e
β2 (17b)

π∞e = f(ze = 1|x∞, α, β). (17c)
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The limit point (x∞, π∞) is a fixed point of the algorithm and
a local minimum of V .

V. NUMERICAL RESULTS

In this section, we provide simulations illustrating the perfor-
mance of the proposed algorithms: we are mainly interested in
comparing them in terms of their convergence times and final
estimation errors.

A. Performance Analysis of Proposed Algorithms

We examine how the performance of proposed techniques
depends on the parameters of the problem, such as the pa-
rameters of the Gaussian mixture (α, β, p) and the topology
of the measurement graph G. As a measure of performance,
we consider the normalized quadratic error (NQE), defined as
NQE = ‖x̂− x̃‖2/‖x̃‖2 ∗ 100 [%].

Let us begin by describing our baseline simulation setup in
details. First, we generate synthetic data to define the estimation
problem. The number of nodes is set to N = 50. The N com-
ponents of the state vector are generated randomly according to
a uniform distribution in the interval (0, 1): then, the mean is
subtracted yielding a state vector with mean 0. The topology is
generated as Erdős-Rényi random graphs with edge probability
pedge ranging from 0.1 up to 1 (i.e., an edge is created between
two arbitrary nodes with probability pedge). In the extreme case
of pedge = 1, the graph generated is the complete graph where
all nodes are connected to all others. We fix α = 0.05 and β/α
in the range from 2 to 10. Also the probability of getting a bad
measurement p is taken between 0 and 1/2. The noise vector is
then sampled from a normal distribution using a combination of
the above parameters.

Next, we simulate the iterative algorithms. We initialize the
state vector to be all zeros and also the vector π to be all ze-
ros, meaning that all measurements are initially presumed to be
good. For the LS-EM, an initial value for α and β is specified:
α is randomly chosen from the set {0.1, 0.2, 0.3, 0.4, 0.5} and
β = 2α in order to meet the constraint β > α. They are then
held fixed for the different trials. For the Distributed LS-EM,
the fixed values for α and β are taken to be the true values.
The stopping criterion SC is chosen according to a tolerance
tol = 10−4 , which has been verified to be small enough to rep-
resent numerical convergence. For the (|E| − s)-approximation,
we choose s = N − 1. This “optimistic” choice accounts to as-
sume a number of valid measurements that could suffice to
construct a spanning tree: this assumption is not imposed on our
synthetic data. Similar Ps projections have already shown use-
ful to accelerate convergence of iterative reweighted least square
methods for estimation problems with sparsity prior [37].

Then, we simulate different trials whereby for each trial the
vector z̃ is regenerated. In order to illustrate the evolution of
the algorithms, we plot the NQE against the iteration count
for Algorithm 1 in Fig. 2 and Algorithm 2 in Fig. 3. We have
chosen four trials out of a set of 250: the same trials (that is,
the same random graphs and measurements) are chosen for both
algorithms. We can observe that Algorithm 1 converges faster
than Algorithm 2, but the two algorithms achieve similar final
errors in a majority of trials.

Fig. 2. NQE plotted against iteration count for 4 randomly chosen trials
obtained using LS-EM Algorithm (each color represents the result of a trial);
the parameter set is N = 50, pedge = 0.3, p = 0.1, α = 0.05, β/α = 5. Note
that the color of each chosen trial matches its counterpart in Fig. 3.

Fig. 3. NQE plotted against iteration count for 4 randomly chosen trials
obtained using Distributed LS-EM Algorithm (each color represents the result of
a trial); the parameter set is N = 50, pedge = 0.3, p = 0.1, α = 0.05, β/α =
5. Note that the color of each chosen trial matches its counterpart in Fig. 2.

Fig. 4. Boxplot showing NQE for the different approaches; the parameter set is
N = 50, pedge = 0.3, p = 0.1, α = 0.05, β/α = 5. + are the NQE considered
as outliers by the boxplot command.

The comparison between Algorithms 1 and Algorithm 2 is
further explored in Fig. 4, where the distributions of the final
NQEs for all the 250 trials mentioned above are summarized via
the boxplot command in MATLAB with the default settings,
showing the 25th (lower edge), 50th or median (central mark)
and 75th (upper edge) percentiles. In order to make the compar-
ison more complete and provide benchmarks, we also include
the weighted least squares (WLS) as per (5) and the “naive” un-
weighted least squares estimator (LS) x̂ls, in which we assume
all measurements to be good. As expected, WLS outperforms
all other estimators, thanks to using a-priori information on the
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Fig. 5. Mean NQE with respect to pedge; the parameter set is N = 50, p =
0.1, α = 0.05, β/α = 5 and the number of trials is 1000. = WLS, + = LS,

= LS-EM, = Distributed LS-EM.

Fig. 6. Mean NQE with respect to p; the parameter set is N = 50, pedge =
0.3, α = 0.05, β/α = 5 and the number of trials is 1000. = WLS, + = LS,

= LS-EM, = Distributed LS-EM.

noise parameters α, β and complete knowledge of the type of
measurements. Instead, the naive LS has the worst performance.

We can observe that all our approaches have a median that
is clearly lower than the median of the LS approach. Actually,
the bulks of the error distributions are very similar to the WLS
benchmark, except for few trials of the Distributed LS-EM that
perform more poorly. A careful inspection of these few trials
shows that these large errors are due to incorrect classification
of the type of a small number of edges. This phenomenon is
not observed in LS-EM, possibly thanks to the fact that in a
centralized algorithm the information of all nodes is used at
each iteration.

We also performed a parameter study in order to quantify
the behavior of the mean NQE with respect to pedge, p and β.
In Fig. 5, we can observe that the mean NQE decreases with
increasing pedge: as the graph becomes more connected, there
are more measurements available to estimate the state variables.
From the same figure, we can also observe that starting from
pedge = 0.4, the performance of the Distributed LS-EM is sim-
ilar to that of LS-EM. In Fig. 6, the mean NQE increases with
increasing p: this is due to the presence of more bad measure-
ments. A similar reasoning explains the increase of NQE for
increasing ratios β/α in Fig. 7. These dependencies on the pa-
rameters are consistent with intuition. From these three figures,
it is clear that the Distributed LS-EM has larger average error
than the centralised LS-EM (which has in turn a larger error than
the WLS estimate). However, we should recall that the mean

Fig. 7. Mean NQE with respect to β; the parameter set is N = 50, pedge =
0.3, p = 0.1, α = 0.05 and the number of trials is 1000. = WLS, + = LS,
= LS-EM, = Distributed LS-EM.

Fig. 8. Boxplot of NQE for different initialization of α and β obtained using
Distributed LS-EM; we consider β/α to be known and the actual α and β values
are set as c times their real values, with c ∈ {0.50, 0.75, 1.00, 1.25, 1.50}. The
parameter set is N = 50, pedge = 0.3, p = 0.1, α = 0.05, β/α = 5.

error of the Distributed LS-EM is driven up by the aforemen-
tioned sporadic errors: a comparison of median values would
show a smaller gap from the centralized approach.

Remark 1 (Parameter Uncertainty in Distributed LS-EM):
Crucially, in Algorithm 2 the values for α and β are assumed to
be known a priori. In practice one would usually not be able to
have this information: hence we want to explore the sensitivity
of the algorithm to incorrect choices of α and β. In Fig. 8 , we
assume not to know the actual values of α and β, but only their
ratio β/α: we can observe that choosing α and β to be smaller
than their actual value yields a higher median, while larger
values than the real one yield similar results. In Fig. 9 , we
assume to know α but not β: we can observe that an incorrect
and too large value of β increases the presence of large errors,
even though the bulk of the error distribution remains similar.
Overall, we conclude that the algorithm is fairly robust to
moderate uncertainties in the knowledge of the parameters.

B. Distributed LS-EM Versus Distributed LAE

In this section we compare Distributed LS-EM with a dis-
tributed version of LAE (see (10) for the update). In order to
perform a fair comparison we introduce a mismatch in the mea-
surements model. The measurements are not generated as a
Gaussian mixtures and we consider an experiment coming from
the geometric estimation problems in multi robot localization
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Fig. 9. Boxplot of NQE for different initialization of β obtained using Dis-
tributed LS-EM; we consider α to be known and let the actual ratio β/α to
be {2, 4, 6, 8, 10}. The parameter set is N = 50, pedge = 0.3, p = 0.1, α =
0.05, β/α = 5.

[15]. More precisely, we consider the following setting. Ground
truth x̃ of positions of n = 30 nodes are drawn from a uni-
form distribution over the interval [−1, 1]. Connections among
nodes are generated according to the Erdős-Rényi random graph
model, where each edge is included in the graph with probability
pedge independently from every other edge. The outliers indi-
cator vector z̃ ∼ B(0.1) and the measurements are generated as
follows

b = Ax̃ + (1− z̃)αη + z̃γ

where η is white Gaussian noise and γe is distributed ac-
cording to a uniform distribution over the interval [Δ/4,Δ/4]
with Δ is the size of the environment. In Figure 11 we show
a comparison between Distributed LS-EM and Distributed
LAE in terms of speed of convergence for different values of
pedge ∈ {0.25, 0.5, 0, 75}. In order to perform a fair compari-
son we have fixed p = 0.2 (and not equal to 0.1) and α = 0.05
and β = 5α. Fig. 10 depicts the NQE averaged over 50 exper-
iments as a function of number of iterations. The efficiency of
the proposed algorithm allows to reduce the number of itera-
tions required to achieve a satisfactory level of accuracy. As can
be noticed, Distributed LS-EM need fewer updates (about 40
itarations) than Distributed LAE (more than 300 iterations) to
achieve NQE = 10−3 if pedge = 0.25. This gain reduces when
the graph originated by the measurement become denser and
more connected: when pedge = 0.5 few iterations (about 5) are
needed to guarantee the convergence of Distributed LS-EM and
about 90 for Distributed LAE.

VI. CONCLUDING REMARKS

In this paper, we have studied the problem of estimation
from relative measurements with heterogeneous quality. We
have introduced a novel formulation for the problem and we
have proposed two original algorithms based on the method
of Expectation-Maximization. One of the algorithms has the
important feature of being distributed and thus amenable to ap-
plications where communication is limited or expensive. The
other algorithm also distinguishes itself from standard EM ap-
proaches, due to the presence of regularization variables and of
a projection step, which help dealing with the graph-dependent
nature of the problem. Besides designing the algorithms, we

have proved their convergence to a local maximum of the log-
likelihood function (or to an approximation when regularization
is employed). We note here that, as per the convergence proper-
ties, the projection step could be dispensed with at the price of
a more involved proof: however, its role is not only in allowing
for a proof but also in improving the performance in terms of
speed, as we discussed in Section V-A. We have also presented
a number of simulations that support the good performance of
the algorithms and their robustness against uncertainties in the
choice of the parameters. Despite a generally good performance,
the algorithms (and particularly the distributed one) may per-
form poorly on some instances: this could be explained by the
local nature of the optimality results. It is worth mentioning that
the model considered in this paper considers only one measure-
ment per node. Our choice derives from the need to make the
theoretical analysis as simple as possible. The proposed algo-
rithms can be adapted to the case when each node in the network
has access to multiple measurements of relative distances. The
arguments used to prove convergence can be adapted to this
case, while repeated measurements would allow for smaller es-
timation errors.

Several other interesting problems remain open: we mention
three of them here. First, one could further investigate the role
of the topology of the measurement graphs in determining the
performance of the algorithms: namely, some topologies could
be more effective for the same number of measurements taken.
Second, one could look for distributed algorithms that need
not to assume the knowledge of the mixture parameters α and
β. Third, one could propose algorithms that perform a “hard”
classification of the measurements, as opposed to the “soft” clas-
sification that is done in this paper, where the measurements are
assigned a probability of being of type α or β: some preliminary
results and designs with hard classification are available in [38].

APPENDIX

A. Properties of the Likelihood

Theorem 3 converts the ML problem (1) into a minimization
problem. Before its proof, we recall expression (2) and introduce
some useful notation:

f(be |x, α, β) =
1− p√
2πα2

exp
(

− (b−Ax)2
e

2α2

)

+
p

√
2πβ2

exp
(

− (b−Ax)2
e

2β2

)

, (18)

f(be , ze |x, α, β) =

[

(1− ze)
1− p√
2πα2

exp
(

− (b−Ax)2
e

2α2

)

+ze
p

√
2πβ2

exp
(

− (b−Ax)2
e

2β2

)]

, (19)

f(be |ze , x, α, β) =

[
1− ze√
2πα2

exp
(

− (b−Ax)2
e

2α2

)

+
ze

√
2πβ2

exp
(

− (b−Ax)2
e

2β2

)]

(20)
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Fig. 10. NQE plotted against iteration count averaged over 50 trials for Distributed LAE and Distributed LS-EM Algorithm.

and f(ze |be , x, α, β) = f (be ,ze |x,α,β )
f (be |x,α,β ) .

Proof of Theorem 3: From the definition of likelihood and
using (18) we have

L(x, α, β) = log
∏

e∈E
f(be |x, α, β)

=
∑

e∈E
log f(be |x, α, β)

=
∑

e∈E
log

∑

ze ∈{0,1}
f(be , ze |x, α, β)

=
∑

e∈E
log

∑

ze ∈{0,1}

f(be , ze |x, α, β)
q(ze)

q(ze)

for any map q : {0, 1} → (0, 1) such that q(0) + q(1) = 1.
From Jensen’s inequality we get L(x, α, β) ≥∑

e

∑
ze =0,1

q(ze) log f (be ,ze |x,α,β )
q(ze ) . Let πe = q(ze = 1) = 1− q(ze = 0).

Therefore, we have

L(x, α, β) ≥
∑

e∈E
q(ze = 1) log

f(be , ze = 1|x, α, β)
q(ze = 1)

(21)

+ q(ze = 0) log
f(be , ze = 0|x, α, β)

q(ze = 0)

=
∑

e∈E
πe log

p√
2πβ 2

exp
(
− (b−Ax)2

e

2β 2

)

πe

+
∑

e∈E
(1− πe) log

1−p√
2πα2 exp

(
− (b−Ax)2

e

2α2

)

1− πe

= −
∑

e∈E

[

(b−Ax)2
e

(
πe

2β2 +
1− πe

2α2

)

−H(πe)
]

+
∑

e∈E

[

πe log
p

β
+ (1− πe) log

1− p

α

]

− |E|
2

log(2π).

(22)

This inequality is true for all πe ∈ [0, 1] and e ∈ E since the
function on the right-hand-side can be extended by continuity

in πe ∈ {0, 1}. Therefore

L(x, α, β)

≥ max
π∈[0,1]E

−
∑

e∈E

[

(b−Ax)2
e

(
πe

2β2 +
1− πe

2α2

)

−H(πe)
]

+
∑

e∈E

[

πe log
p

β
+ (1− πe) log

1− p

α

]

− |E|
2

log(2π)

Using the definition of function V in (13) we obtain

L(x, α, β) ≥ max
π∈[0,1]E

−V (x, π, α, β)− |E|
2

log(2π)

= − min
π∈[0,1]E

V (x, π, α, β)− |E|
2

log(2π) (23)

By differentiating V (x, π, α, β) with respect to πe we write
the optimality condition as

∂V

∂πe
= − log

1− πe

πe
− log

p

β
+

(b−Ax)2
e

2β2

+ log
1− p

α
− (b−Ax)2

e

2α2 = 0

from which we obtain

π̂e =

p√
2πβ 2

exp
(
− (b−Ax)2

e

2β 2

)

p√
2πβ 2

exp
(
− (b−Ax)2

e

2β 2

)
+ 1−p√

2πα2 exp
(
− (b−Ax)2

e

2α2

)

= f(ze = 1|be , x, α, β).

Replacing q(ze = 1) and q(ze = 0) with π̂e = f(ze =
1|be , x, α, β) and (1− π̂e) = f(ze = 0|be , x, α, β) in (21) and
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(22), respectively, we get

L(x, α, β)

≥
∑

e∈E
π̂e log

f(be , ze = 1|x, α, β)
π̂e

+ (1− π̂e) log
f(be , ze = 0|x, α, β)

1− π̂e

≥
∑

e∈E
f(ze = 1|be , x, α, β) log

f(be , ze = 1|x, α, β)
f(ze = 1|be , x, α, β)

+ f(ze = 0|be , x, α, β) log
f(be , ze = 0|x, α, β)
f(ze = 0|be , x, α, β)

=
∑

e∈E

∑

ze ∈{0,1}
f(ze |be , x, α, β) log

f(be , ze |x, α, β)
f(ze |be , x, α, β)

=
∑

e∈E

∑

ze ∈{0,1}
f(ze |be , x, α, β) log f(be |x, α, β)

from which we conclude that the inequality in (23) is actually
an equality. Therefore

L(x, α, β) = − min
π∈[0,1]E

V (x, π, α, β)− |E|
2

log(2π).

where the last expression is obtained using the definition of
function V in (13). We conclude that

max
α,β

max
x

L(x, α, β) = −min
α,β

min
x

min
π∈[0,1]E

V (x, π, α, β) + c

with c = −|E|2 log(2π). �

B. Proof of Theorem 5: Convergence of Algorithm 1

Lemma 7 (Monotonicity): The function Ṽ defined in (15)
is nonincreasing along the iterates ζ(t) = (x(t) , π(t) , α(t) ,
β(t) , ε(t)).

Proof: Repeatedly applying Proposition 4 yields

Ṽ (ζ(t+1)) = Ṽ (x(t+1) , π(t+1) , α(t+1) , β(t+1) , ε(t+1))

≤ Ṽ (x(t+1) , π(t+1) , α(t) , β(t) , ε(t))

≤ Ṽ (x(t+1) , π(t) , α(t) , β(t) , ε(t))

≤ Ṽ (x(t) , π(t) , α(t) , β(t) , ε(t)) = Ṽ (ζ(t))

for every time t, proving the result. �
The following lemma implies that Algorithm 1 converges

numerically.
Lemma 8 (Asymptotic regularity): If (x(t)) is the sequence

generated by Algorithm 1, then x(t+1) − x(t) → 0 as t→∞.
Proof: From their definitions we have

α(t+1) ≥
√

ε(t)/|E| β(t+1) ≥
√

ε(t)/|E|.

Then, if α(t) → 0 or β(t) → 0 as t→∞, we have ε(t) → 0
and, consequently, ‖x(t+1) − x(t)‖2 → 0 and the assertion is
verified. If instead neither α nor β converge to zero, then there
exists a constant K > 0 and a divergent sequence of integers

t� such that min{α(t� ) , β(t� )} > K for all � ∈ N. It holds in
general that

∑

e∈E
π(t)

e log β(t) +
∑

e∈E
(1− π(t)

e ) log α(t) − |E| log 2

≤ Ṽ (ζ(t)) ≤ Ṽ (ζ(1))

(24)

where the last inequality follows from Lemma 7. Then,
Ṽ (ζ(t� )) ≥ (|E| log K − |E| log 2).

Since x(t+1) = argmin x∈RV Ṽ (x, π(t) , α(t) , β(t) , ε(t)) we
have

Ṽ (x(t+1) , π(t) , α(t) , β(t) , ε(t)) ≤ Ṽ (x(t) , π(t) , α(t) , β(t) , ε(t))
(25)

and

∇x

[
Ṽ
(
x, π(t) , α(t) , β(t) , ε(t)

)](
x(t+1)

)

= A�W (t)Ax(t+1) −A�W (t)b

= LW ( t ) x(t+1) −A�W (t)b = 0 (26)

where W (t) = diag( 1−π ( t )

(α ( t ) )2 + π ( t )

(β ( t ) )2 ) and LW ( t ) = A�W (t)A.

From (25) we then have

Ṽ (x(t) , π(t) , α(t) , β(t) , ε(t))

− Ṽ (x(t+1) , π(t+1) , α(t+1) , β(t+1) , ε(t+1))

≥ Ṽ (x(t) , π(t) , α(t) , β(t) , ε(t))

− Ṽ (x(t+1) , π(t) , α(t) , β(t) , ε(t))

=
1
2

∑

e∈E

(

(b−Ax(t))2
e +

ε(t)

|E|
)(

1− π
(t)
e

(α(t))2 +
π

(t)
e

(β(t))2

)

− 1
2

∑

e∈E

(

(b−Ax(t+1))2
e +

ε(t)

|E|
)(

1− π
(t)
e

(α(t))2 +
π

(t)
e

(β(t))2

)

=
1
2
(x(t))�LW ( t ) x(t) − (x(t))�A�W (t)b

− 1
2
(x(t+1))�LW ( t ) x(t+1) + (x(t+1))�A�W (t)b

=
1
2

(
x(t) − x(t+1)

)�
LW ( t )

(
x(t) + x(t+1)

)

−
(
x(t) − x(t+1)

)�
A�W (t)b

=
1
2

(
x(t) − x(t+1)

)�
LW ( t ) x(t)

+
(
x(t) − x(t+1)

)�(1
2
LW ( t ) x(t+1) −A�W (t)b

)
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From (26) we get

Ṽ (ζ(t))− Ṽ (ζ(t+1)) ≥ 1
2

(
x(t) − x(t+1)

)�
LW ( t ) x(t)

− 1
2

(
x(t) − x(t+1)

)�
LW ( t ) x(t+1)

≥ 1
2

(
x(t) − x(t+1)

)�
LW ( t )

×
(
x(t) − x(t+1)

)

≥ 1
2

min
v :1�v=0

v�(LW ( t ) )v
‖v‖2

× ‖x(t) − x(t+1)‖2 .
The last inequality is true since LW ( t ) is positive semidefinite,
the multiplicity of the eigenvalue 0 is equal to 1 and 1�x(t) = 0
for all t ∈ N. We can thus define

λ(t) :=
1
2

min
v : 1�v=0

v�(LW ( t ) )v
‖v‖2 .

We now prove that∃t0 ∈ N such that λ(t) ≥ c > 0 for all t ≥ t0 .
In fact, suppose by contradiction that there exists (tj ) such that
limj→∞ λ(tj ) = 0. Then, there needs to exist a subsequence t�
such that α(t� ) or β(t� ) diverge. If β(t� ) →∞, then (24) implies
α(t� ) → 0. From Step 8 in Algorithm 1 we obtain ε(t� ) → 0
and κ(t� ) → 1. We deduce that there exists �0 ∈ N such that
κ(t� ) = 1 for all � > �0 , from which we get the contradiction
λ(t� ) > c > 0 for all � > �0 . The case α(t� ) →∞ is analogous.

We now compute for � ∈ N

0 ≤
t�−1∑

t=1

c‖x(t) − x(t+1)‖2 ≤
t�−1∑

t=1

(
Ṽ (ζ(t))− Ṽ (ζ(t+1))

)

= Ṽ (ζ(1))− Ṽ (ζ(t� ))

≤ Ṽ (ζ(1))− (|E| log K − |E| log 2) = K ′.

By letting �→∞, we obtain that ‖x(t) − x(t+1)‖ → 0. �
Lemma 9: The sequence (x(t))t∈N is bounded.
Proof: If (α(t))t∈N and (β(t))t∈N are both upper bounded

by a constant χ > 0, then

0 ≤ ‖b−Ax(t)‖22
≤

∑

e∈E
(1− π(t)

e )[α(t) ]2 +
∑

e∈E
π(t)

e [β(t) ]2 ≤ χ2 |E|,

which guarantees that x(t) is bounded as well. Next, we will
show that if either α(t) or β(t) were unbounded, x(t) would
actually be convergent and thus bounded.

To this purpose, we start by observing from (15) that
∑

e∈E
π(t)

e log β(t) +
∑

e∈E
(1− π(t)

e ) log α(t) − |E| log 2

≤ Ṽ (x(t) , π(t) , α(t) , β(t) , ε(t))

≤ Ṽ (x(1) , π(1) , α(1) , β(1) , ε(1)). (27)

Suppose now that β(t) is not upper bounded. Then, there exists
a subsequence (t�)�∈N such that lim�→∞ β(t� ) =∞. Then, in-
equality (27) implies that there are two cases: either we have
π(t� ) → 0 for �→∞, or α(t� ) → 0. In the former case, we
have x(t� ) → L†A�b (where L is the limit of LW ( t � ) ) imply-
ing that x(t) is bounded by asymptotic regularity. In the lat-
ter case, there exists e ∈ E such that π

(t� )
e �= 0, implying that

lim�→∞ α(t� ) = 0. From Steps 7 and 8 in Algorithm 1 we get
that ε(t� ) → 0 and consequently κ(t� ) → 1. Being κ(t) an in-
teger, there exists �0 ∈ N such that κ(t� ) = 1 for all � > �0 .
Since

α(t� ) =

√
√
√
√
√

∑
e∈E

(
1− π

(t� )
e

)
|be −

(
Ax(t� )

)

e
|2 + ε(t� )

∑
e∈E

(
1− π

(t� )
e

) ,

we have that if there exist ε > 0 and {t�j
}j∈N such that |be −

(Ax(t� j
))e | > ε then π

(t� j
)

e → 1 as j →∞. On the other hand,
if |be − (Ax(t� ))e | → 0 then π

(t� )
e → 0. This means that

lim
j→∞

π
(t� j

)
e =

{
1 if e ∈ Δ
0 otherwise

,

where the set Δ is defined as follows

Δ = {e ∈ E : ∃ε > 0 and (t�j
)j s.t |be − (Ax(t� j

))e | > ε}.
Observe that the relative complement Δc = E \Δ has cardi-
nality not smaller than s: using this notation, we can deduce
that

lim
j→∞

A�W (t� j
)Ax(t� j

) = lim
j→∞

A�W (t� j
)b

A�Δ cAΔ c lim
j→∞

x(t� j
) = lim

j→∞
A�Δ cbΔ c .

Since with κ(t� j
) = 1, the sequence (x(t� j

))j∈N converges

lim
j→∞

x(t� j
) = (A�Δ cAΔ c)†A�Δ cbΔ c .

and so does x(t) by asymptotic regularity.
Similarly, the case of α(t) unbounded leads to two cases:

either π(t� ) → 1 or β → 0. The former case is actually forbidden
by the presence of at least s components equal to zero. The latter
case is treated in analogous way as the case α→ 0 above: we
omit its detailed discussion. �

Lemma 10: Any accumulation point of ζ(t) is a fixed point
of Algorithm 1 and satisfies equalities (16a)–(16e).

Proof: If (x�, π� , α� , β� , ε�) is an accumulation point of the
sequence (x(t) , π(t) , α(t) , β(t) , ε(t))t∈N , then there exists a sub-
sequence (x(t� ) , π(t� ) , α(t� ) , β(t� ) , ε(t� ))�∈N that converges to
(x�, π� , α� , β� , ε�) as �→∞. We now show (16c), since the
other conditions are immediate by continuity. In order to ver-
ify (16c), we need to prove that for all i ∈ supp(π�)

π�
i =

exp
(
−|bi−(Ax� )i |2

2|β � |2
)

p
β �

1−p
α� exp

(
−|bi−(Ax� )i |2

2|α� |2
)

+ p
β � exp

(
−|bi−(Ax� )i |2

2|β � |2
)

(28)
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and for any i /∈ supp(π�) and j ∈ supp(π�)

exp
(
−|bi−(Ax� )i |2

2|β � |2
)

p
β �

1−p
α� exp

(
−|bi−(Ax� )i |2

2|α� |2
)

+ p
β � exp

(
−|bi−(Ax� )i |2

2|β � |2
)

≤
exp

(
−|bj −(Ax� )j |2

2|β � |2
)

p
β �

1−p
α� exp

(
−|bj −(Ax� )j |2

2|α� |2
)

+ p
β � exp

(
−|bj −(Ax� )j |2

|β � |2
) .

(29)

Since lim�→∞ π(t� ) = π� , then there exists �0 such that, ∀� >
�0 and ∀i ∈ supp(π�), π(t� )

i �= 0 and π
(t� )
i = ξ

(t� )
i → π�

i , so that
(28) is verified.

If i /∈ supp(π�), then we have to distinguish the following two
cases: either (a) π

(t� )
i is zero eventually or (b) π

(t� )
i converges

to zero asymptotically. In case (a), there exists �0 ∈ N such that
∀� > �0 , π

(t� )
i = 0, from which ξ

(t� )
i < ξ

(t� )
j , ∀j ∈ supp(π�)

and (29) is satisfied. In case (b), there exists a strictly posi-

tive sub-sequence (�q )q∈N such that π
(t� q )
i = ξ

(t� q )
i → π�

i = 0.

Since at the same time ξ
(t� q )
j converges to π�

i > 0 for all
j ∈ supp(π�), there exists q0 ∈ N such that ∀q > q0 we have

ξ
(t� q )
i < ξ

(t� q )
j , and, by letting q →∞,

exp
(
−|bi−(Ax� )i |2

2|β � |2
)

p
β �

1−p
α� exp

(
−|bi−(Ax� )i |2

2|α� |2
)

+ p
β � exp

(
−|bi−(Ax� )i |2

2|β � |2
)

≤
exp

(
−|bj −(Ax� )j |2

2|β � |2
)

p
β �

1−p
α� exp

(
−|bj −(Ax� )j |2

2|α� |2
)

+ p
β � exp

(
−|bj −(Ax� )j |2

|β � |2
)

We conclude that for all i /∈ supp(π∞)

π�
i = 0 = Ps

⎛

⎝
exp(−|b−Ax� |2

2|β � |2 ) p
β �

1−p
α� exp(− |x� |2

2|α� |2 ) + p
β � exp(− |x� |2

2|β � |2 )

⎞

⎠

i

. �

Since the sequence x(t) is bounded (see Lemma 9), there
exists a subsequence x(tj ) such that x(tj ) → x∞. Moreover,
α(tj ) → α∞, β(tj ) → β∞, π(tj ) → π∞, and ε(tj ) → ε∞. From
Lemma 8, we get limt→∞ x(tj +1) = limt→∞ x(tj ) = x∞, prov-
ing convergence. Finally, Lemma 10 ensures that ζ(t) converges
to a fixed point.

C. Proof of Theorem 6: Convergence of Algorithm 2

Let us consider the function V : RV × [0, 1]E → R defined
from (13) by fixing the variables α and β, together with a sur-
rogate function V S : RV ×RV × [0, 1]E → R

V S (x, z, π) = V (x, π) +
1
2τ

(x− z)�(I − τLW )(x− z),
(30)

where

W = diag
(

1− π

α2 +
π

β2

)

The following two lemmas are stated without proof.

Lemma 11 (Partial minimizations): If

x̂=argmin x∈RVV
S (x, z, π) and π̂=argmin π∈[0,1]EV (x, π),

then

x̂ = (I − τLW )z + τA�Wb

π̂e =
p
β e−

|b e −(A x ) e |2
2 β 2

p
β e−

|b e −(A x ) e |2
2 β 2 + (1−p)

α e−
|b e −(A x ) e |2

2 α 2

∀ e ∈ E

Lemma 12 (Monotonicity): The function V defined in this
section is nonincreasing along the iterates ζ(t) = (x(t) , π(t)).

We are now able to show that Algorithm 2 converges
numerically.

Lemma 13: If x(t) is the sequence generated by Algorithm 2,
then x(t+1) − x(t) → 0 as t→∞.

Proof: Define μ = maxt ‖A�W (t)A‖ ≤ ‖A‖2/α and ‖A‖
is the spectral norm. Since from assumption τ < α/‖A‖2 <
μ−1 we have

0 ≤ 1
2τ

(1− τμ)‖x(t) − x(t+1)‖2

≤ 1
2τ

(1− τ‖A�W (t)A‖)‖x(t) − x(t+1)‖2

≤ 1
2τ

(
x(t) − x(t+1)

)�
(I − τA�W (t)A)

(
x(t) − x(t+1)

)
.

(31)

If we take the sum until T , then

0 ≤
T∑

t=1

1
2τ

(
x(t) − x(t+1)

)�
(I − τA�W (t)A)

(
x(t) − x(t+1)

)

=
T∑

t=1

[
V S

(
x(t+1) , x(t) , π(t)

)
− V

(
x(t+1) , π(t)

)]
(32)

Since π(t+1) = argmin π V (x(t+1) , π) then we have
V (x(t+1) , π(t+1)) ≤ V (x(t+1) , π(t)) and, combining with
(31) and (32), we get

0 ≤ 1
2τ

(1− τμ)‖x(t) − x(t+1)‖2

≤
T∑

t=1

[
V S

(
x(t+1) , x(t) , π(t)

)
− V

(
x(t+1) , π(t+1)

)]

≤
T∑

t=1

[
V S

(
x(t) , x(t) , π(t)

)
− V

(
x(t+1) , π(t+1)

)]

=
T∑

t=1

[
V
(
x(t) , π(t)

)
− V

(
x(t+1) , π(t+1)

)]

where the last inequality follows from the fact x(t+1) =
argmin xV S(x, x(t) , π(t)). Finally, we observe that the
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truncated series is telescopic, from which

0 ≤ 1
2τ

(1− τμ)‖x(t) − x(t+1)‖2

≤ V
(
x(1) , π(1)

)
− V

(
x(T +1) , π(T +1)

)

≤ V
(
x(1) , π(1)

)
− λN

(

log max
{

p

β
,
1− p

α

}

− log 2
)

= C ′

This last inequality holds for any T ∈ N, then by letting T →
∞, we obtain that the series is convergent, from which we
deduce that as t→∞
1
2τ

(
x(t) − x(t+1)

)�
(I − τA�W (t)A)

(
x(t) − x(t+1)

)
→ 0

and by inequality (31) the claim is proved. �
Lemma 14: The sequence (x(t))t∈N is bounded.
Proof: Since 1�x(t) = 0 for all t, Lemma 11 implies

‖x(t+1)‖

=
∥
∥
∥
∥(I − τA�W (t)A)

(

I − 1
N

11�
)

x(t) + τA�W (t)b

∥
∥
∥
∥

≤
∥
∥
∥
∥

(

I − τ(A�W (t)A)− 1
N

11�
)

‖‖x(t)‖+ ‖τA�W (t)b

∥
∥
∥
∥

≤ (1− τμ2)‖x(t)‖+ τγ

where μ2 = mint ‖A�W (t)A− 1
N 11�‖ > 0 and γ = maxt

‖A�W (t)b‖ (notice that W (t) belongs to a finite set of ma-
trices). We conclude that

lim
t→∞‖x

(t)‖ ≤ lim
t→∞(1− τμ2)t‖x(0)‖+

∞∑

s=0

(1− τμ2)sγτ

which in turn is no larger than γ
μ2

. �
By Lemma 14, the sequence x(t) is bounded and then there

exists a subsequence x(tj ) such that x(tj ) → x∞, α(tj ) →
α∞, β(tj ) → β∞, and π(tj ) → π∞. From Lemma 13, we get
limt→∞ x(tj +1) = limt→∞ x(tj ) = x∞. Since πe(x) = f(ze =
1|x, α, β) is a continuous function of x, then also π(t) → π∞

and (x∞, π∞) is a fixed point.
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