A Versatile 3R Pseudo-Rigid-Body Model for Initially Curved and Straight Compliant Beams of Uniform Cross Section

Rigid-body discretization of continuum elements was developed as a method for simplifying the kinematics of otherwise complex systems. Recent work on pseudo-rigid-body (PRB) models for compliant mechanisms has opened up the possibility of using similar concepts for synthesis and design, while incorporating various types of flexible elements within the same framework. In this paper, an idea for combining initially curved and straight beams within planar compliant mechanisms is developed to create a set of equations that can be used to analyze various designs and topologies. A PRB model with three revolute joints is derived to approximate the behavior of initially curved compliant beams, while treating straight beams as a special case (zero curvature). The optimized model parameter values are tabulated for a range of arc angles. The general kinematic and static equations for a single-loop mechanism are shown, with an example to illustrate accuracy for shape and displacement. Finally, this framework is used for the design of a compliant constant force mechanism to illustrate its application, and comparisons with finite element analysis (FEA) are provided for validation. [DOI: 10.1115/1.4040628]
2.1 Beam Equations. An initially curved cantilever beam subject to tip loads \(F \) (at an angle \(\Phi \)) and moment \(M \) is shown in Fig. 2. The beam has a cross section with second moment of area, \(I \) and is made of a material with elastic modulus \(E \). The constant initial radius of curvature is \(R \), and the angle subtended by it is \(\psi \). The length of the beam \(L = \psi R \). If \(s \) is the coordinate along the arc length and \(\theta(s) \) is the slope, the differential equations and boundary conditions that define the behavior of the beam under the action of the loads are

\[
\theta'(s) = s \sin(\theta - \Phi) \quad s \in [0, L]
\]
\[
\theta(0) = 0 \quad \theta'(L) = \beta + \kappa
\]

where

\[
\alpha = \frac{FL^2}{EI} \quad \beta = \frac{ML}{EI} \quad \kappa = \frac{1}{R} \frac{\psi}{L}
\]

It is worth noting that a straight beam is just a special case of this, where the initial curvature, \(\kappa \), is zero. Thus, the deflection of both straight and curved beams can be calculated using these equations.

2.2 Definition of the Pseudo-Rigid-Body Model. The PRB models used here consist of four rigid segments with three revolute joints. A schematic of the model is shown in Fig. 3. The model is chosen to have three joints to match the three independent degrees-of-freedom for planar motion, which results in a square Jacobian in the mapping from the joint space to the actuation space (described later). The three degrees-of-freedom in the model allow for estimation of the beam deflection with high accuracy, as demonstrated in previous work on straight beams [23].

The model is defined to be symmetric about the central joint such that the lengths and stiffness on either side of it are the same. The symmetry allows the beams to have their fixed or free ends on either side without loss of accuracy (which is not the case for other asymmetric models in literature). This has two advantages: (1) it allows the usage of the models for graph-based analysis of compliant mechanisms [23], and (2) it decreases the number of PRB parameters to be determined, which reduces the computation. Each revolute joint has a stiffness \(K_{\Phi i} \), and each segment has a length \(\gamma_i L \). Each rigid segment is at an angle \(\zeta_i \) from the previous segment in the undeflected position, and this angle is zero for straight beams. An additional rule enforced here is that the revolute joints must be on the circular arc in the undeformed configuration, which is key for compatibility between straight and curved beams.

If the beam at the fixed end is tangential to the \(X \) axis, the tip coordinates of the model under deformation are given by

\[
X_{\text{tip}} = L \sum_{j=1}^{4} \cos \left(\sum_{i=1}^{j} (\zeta_i + \theta_i) \right) \gamma_j \quad (3)
\]
\[
Y_{\text{tip}} = L \sum_{j=1}^{4} \sin \left(\sum_{i=1}^{j} (\zeta_i + \theta_i) \right) \gamma_j \quad (4)
\]
\[
\theta_{\text{tip}} = \psi + \theta_2 + \theta_3 + \theta_4 \quad (5)
\]

where \(\theta_i \) is the rotation of the \(i \)th segment, with \(\theta_1 = 0 \) always (for a beam with a cantilever support). From geometry, a mathematical relationship can be calculated between \(\gamma_1 \) and \(\gamma_2 \) as given below:

\[
\gamma_1 = -\frac{2}{\psi} \frac{\sin(\psi/4)\sin(\psi/4 - \zeta_1 - \zeta_2)}{\sin \zeta_2} \quad (6)
\]
\[
\gamma_2 = \frac{2}{\psi} \frac{\sin(\psi/4)\sin(\psi/4 - \zeta_1)}{\sin \zeta_2} \quad (7)
\]
Due to the symmetry in the definition of the PRB model, a few other expressions can be derived
\[\gamma_4 = \gamma_1, \quad \gamma_3 = \gamma_2, \quad \zeta_4 = \zeta_2 = \frac{\psi}{4} \]

Since all joints are on the beam in the undeflected position, a few more relations can be added
\[\gamma_1 = \frac{2}{\psi}, \quad \gamma_2 = \frac{2}{\psi} \sin \left(\frac{\psi}{4} - \zeta_1\right), \quad \zeta_3 = \frac{\psi}{2} - 2\zeta_1 \]

The spring stiffness values are also symmetric: \(K_{i2} = K_{i4} \).

The statics of the PRB model under the action of tip loads is defined by Craig [30]
\[\tau = J^T W \]
(8)
where \(\tau \) represents the internal moments at the joints given by
\[\tau = \begin{cases} K_{i2} \theta_2 \\ K_{i3} \theta_3 \\ K_{i4} \theta_4 \end{cases} \]

and \(W \) represents the components of the external loads given by
\[W = \begin{bmatrix} |F| \cos \Phi \\ |F| \sin \Phi \\ M \end{bmatrix} \]

The matrix \(J \) is the Jacobian of the mapping from the configuration of the PRB model (defined by the set of joint angles, \(\theta_i : i \in \{2, 3, 4\} \)) to the tip coordinates defined in Eqs. (3)–(5)
\[J = \begin{bmatrix} \frac{\partial X_{tip}}{\partial \theta_2} & \frac{\partial X_{tip}}{\partial \theta_3} & \frac{\partial X_{tip}}{\partial \theta_4} \\
\frac{\partial Y_{tip}}{\partial \theta_2} & \frac{\partial Y_{tip}}{\partial \theta_3} & \frac{\partial Y_{tip}}{\partial \theta_4} \\
\frac{\partial Z_{tip}}{\partial \theta_2} & \frac{\partial Z_{tip}}{\partial \theta_3} & \frac{\partial Z_{tip}}{\partial \theta_4} \end{bmatrix} \]

The deformation of the PRB model under the action of tip loads is determined by solving Eq. (8) to obtain \(\theta_2, \theta_3, \) and \(\theta_4 \).

2.3 Calculation of Pseudo-Rigid-Body Parameters.

Using the above equations, a numerical optimization procedure is employed to calculate the optimal values of the PRB parameters over a large range of loading cases. The idea is to minimize the average error in the estimation of the tip deflection using the PRB model compared to the beam equations [29].

The joint stiffness values are defined as
\[K_{i2} = k_{th} \frac{EI}{L}, \quad i = 2, 3, 4 \]

and \(k_{th} \) are used as the PRB parameters. The model has three independent PRB parameters, namely \(k_{i2}, k_{i3}, \) and \(\zeta_1 \). All other geometrical parameters can be derived from \(\zeta_1 \) using the expressions described in Sec. 2.2, while \(k_{i4} = k_{i2} \). The use of the dimensionless parameters \(k_{th} \) and \(\gamma_i \) allows scaling of the model to be used with other materials and geometries.

In the work presented here, only beams with arc angles up to 270 deg or 3\(\pi \)/2 rad are studied. This is because incorporating beams beyond this limit would be difficult and perhaps impractical from the point of view of design. The PRB parameters were optimized over the range of loads
\[\tau \in [-1.5, 1.5], \quad \beta \in [-0.75, 0.75], \quad \Phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \]

and the results are presented in Table 1. The results are also presented in graphical form in Fig. 4. The load values were chosen to generate results that reflect large deformations of the beams (greater than 90 deg) for different loading conditions. The PRB model estimates the tip deflection with an average error of less than 0.6% (compared to the values from beam theory) for the entire range of beam arc angles.

Note that the value of \(\gamma_1 \) was obtained using Eq. (6), but is tabulated for easier visualization of the PRB model. The optimal values of the parameters were fitted to a polynomial curve of the form \(C_0 + C_1 \psi + C_2 \psi^2 + C_3 \psi^3 + C_4 \psi^4 \). This provides a direct mapping from the arc angle, allowing easy use during the design process. The values of the coefficients are given in Table 2.

3 Equations for a Compliant Mechanism

With the PRB models as defined in Sec. 2, it is now possible to set up the framework for the derivation of kinematic loop equations, and also the equations defining the static equilibrium of a compliant mechanism. In order to automate the process, it is necessary to create a few naming conventions, which are described as follows.

Consider a single-loop compliant mechanism with a few straight and curved compliant beams as shown in Fig. 5. The figure also shows the \(p \)-th beam from an arbitrary starting point within the loop, between the points \(P \) and \(Q \) (bottom). As a convention, the loop is analyzed in the counter-clockwise direction. The angle \(\phi \) is measured from the X-direction to the line \(PQ \), and \(\phi_0 \) is the angle before deformation. The variable \(\psi \) is used to represent the arc angle, while \(\zeta \) and \(\theta \) describe the PRB segment angles and the deformation of each segment, as discussed previously. The sign of \(\psi \) is negative if the beam arcs clockwise from \(P \) to \(Q \) (or is in the interior of the loop) and positive if it is counter-clockwise (or on the exterior of the loop). The following equations are defined for the \(p \)-th beam

<table>
<thead>
<tr>
<th>(\psi) (deg)</th>
<th>(\zeta_1)</th>
<th>(\gamma_1)</th>
<th>(k_{i2} = k_{i4})</th>
<th>(k_{i3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1.337</td>
<td>3.1564</td>
<td>2.7389</td>
</tr>
<tr>
<td>15</td>
<td>0.0174</td>
<td>1.329</td>
<td>3.1735</td>
<td>2.7132</td>
</tr>
<tr>
<td>30</td>
<td>0.0339</td>
<td>1.294</td>
<td>3.2388</td>
<td>2.621</td>
</tr>
<tr>
<td>45</td>
<td>0.0502</td>
<td>1.277</td>
<td>3.2722</td>
<td>2.5769</td>
</tr>
<tr>
<td>60</td>
<td>0.0666</td>
<td>1.271</td>
<td>3.2944</td>
<td>2.5401</td>
</tr>
<tr>
<td>75</td>
<td>0.0824</td>
<td>1.257</td>
<td>3.326</td>
<td>2.5117</td>
</tr>
<tr>
<td>90</td>
<td>0.0979</td>
<td>1.244</td>
<td>3.3519</td>
<td>2.483</td>
</tr>
<tr>
<td>105</td>
<td>0.1126</td>
<td>1.226</td>
<td>3.3872</td>
<td>2.4456</td>
</tr>
<tr>
<td>120</td>
<td>0.1292</td>
<td>1.213</td>
<td>3.3894</td>
<td>2.4432</td>
</tr>
<tr>
<td>135</td>
<td>0.1456</td>
<td>1.213</td>
<td>3.3966</td>
<td>2.4352</td>
</tr>
<tr>
<td>150</td>
<td>0.1625</td>
<td>1.235</td>
<td>3.3955</td>
<td>2.4349</td>
</tr>
<tr>
<td>165</td>
<td>0.1812</td>
<td>1.251</td>
<td>3.3768</td>
<td>2.4528</td>
</tr>
<tr>
<td>180</td>
<td>0.2008</td>
<td>1.269</td>
<td>3.3546</td>
<td>2.4764</td>
</tr>
<tr>
<td>195</td>
<td>0.2217</td>
<td>1.292</td>
<td>3.3235</td>
<td>2.5106</td>
</tr>
<tr>
<td>210</td>
<td>0.243</td>
<td>1.313</td>
<td>3.2944</td>
<td>2.5439</td>
</tr>
<tr>
<td>225</td>
<td>0.2641</td>
<td>1.329</td>
<td>3.2727</td>
<td>2.5706</td>
</tr>
<tr>
<td>240</td>
<td>0.2859</td>
<td>1.346</td>
<td>3.2517</td>
<td>2.5973</td>
</tr>
<tr>
<td>255</td>
<td>0.3085</td>
<td>1.364</td>
<td>3.2314</td>
<td>2.6233</td>
</tr>
<tr>
<td>270</td>
<td>0.3342</td>
<td>1.392</td>
<td>3.2011</td>
<td>2.6629</td>
</tr>
</tbody>
</table>

Downloaded from http://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/140/9/092305/6401705/md_140_09_092305.pdf by guest on 01 September 2021
\[
\phi_p = \phi_{0p} + \sum_{j=1}^{n_s} \sum_{k=1}^{n} \Theta_{jk} \\
\Theta_{pj} = \phi_p - \frac{1}{2} \psi_p + \sum_{k=1}^{n} (\zeta_{pk} + \theta_{jk})
\]

where \(X_{ab}\) represents any variable \(X\) for the \(a\)th beam and its \(b\)th PRB segment, and \(n\) is the number of PRB segments for the beam, so \(n = 4\) for all the equations presented here. \(\Theta\) is the angle of the PRB segment with the horizontal axis. The projections of each beam on the \(X\) and \(Y\) axes are given by

\[
\Gamma_p = L_p \left\{ \sum_{j=1}^{n} \gamma_{pj} \cos \Theta_j \right\} - \left\{ \sum_{j=1}^{n} \gamma_{pj} \sin \Theta_j \right\}
\]

where \(L_p\) is the length of the \(p\)th beam. If the loop has \(m\) beams, all rigidly connected to the adjacent members, the kinematic constraints are given by

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(C_0)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
<th>(C_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\zeta_1)</td>
<td>0</td>
<td>7.054 \times 10^{-2}</td>
<td>-1.029 \times 10^{-2}</td>
<td>3.440 \times 10^{-3}</td>
<td>-2.642 \times 10^{-4}</td>
</tr>
<tr>
<td>(k_{02})</td>
<td>3.157</td>
<td>1.117 \times 10^{-1}</td>
<td>5.774 \times 10^{-2}</td>
<td>-3.624 \times 10^{-2}</td>
<td>4.128 \times 10^{-1}</td>
</tr>
<tr>
<td>(k_{03})</td>
<td>2.739</td>
<td>-1.905 \times 10^{-1}</td>
<td>-2.240 \times 10^{-2}</td>
<td>2.886 \times 10^{-2}</td>
<td>-3.463 \times 10^{-3}</td>
</tr>
</tbody>
</table>
The energy input into the mechanism is given by the displacement of \(P \) of the deformed state of the flexures. Figure 7 compares the results of errors in estimating the forces in the \(X \) flexures (example of a compliant mechanism that can be divided into three beam using the PRB modeling approach [31]).

The equations described above were validated using the example of a compliant mechanism that can be divided into three beam flexures \((m = 3) \) as shown in Fig. 6, subjected to a force \(F \) at \(P_2 \) \((\eta = 2) \). The parameters of the problem are given in Table 3. The constrained energy minimization calculations were performed in Wolfram Mathematica using an interior-point method, whereby the force \(F \) was calculated with the displacement as the input. The results were compared against finite element analysis performed using B21 linear beam elements in ABAQUS. The shape of the PRB model is capable of providing insight into the actual deformed state of the flexures. Figure 7 compares the results of the displacement of \(P_2 \) over the range of forces described here. The accuracy of the method is demonstrated by the low mean errors in estimating the forces in the \(X \) and \(Y \) directions of \(7.15 \times 10^{-4} \) N and \(6.81 \times 10^{-4} \) N, respectively.

The methodology described here enables the analysis of fully compliant mechanisms with combinations of initially curved and straight compliant beams. This can also be extended to more complex flexible members, assuming that the PRB models can be incorporated into a similar framework.

4 Case Study: Design of a Constant-Force Mechanism

Constant force mechanisms are a special class of compliant mechanisms that are useful to eliminate the need for complex force control [32]. They are particularly useful in gripping applications to avoid damage to the payload [33]. As the name suggests, they are capable of providing a constant force output over a range of displacement. In this section, the framework defined in this paper will be used to develop the initial design for a fully compliant constant force mechanism.

Consider the schematic shown in Fig. 8. It is one half of a symmetric mechanism, which consists of six compliant beams, and the output (force or displacement) is along the line \(DD' \), which is also the line of symmetry. There are three beams on either side of the mechanism, which may be straight or curved. Node \(A \) is fixed to the ground. For the problem discussed here, the dimensions are

\[
\sum_{p=1}^{m} \Gamma_p = \begin{cases} 0 \\ 0 \end{cases} \quad (12)
\]

\[
\sum_{p=1}^{m} \sum_{k=1}^{n} \theta_{pk} = 0 \quad (13)
\]

Let us assume that the mechanism is subjected to a force \(F \) at the end of the \(q \)th beam, along with a moment \(M \). This leads to a displacement \(\delta \) at that location, and a change in orientation, \(\theta_{\delta} \)

\[
\delta = \sum_{p=1}^{q} \Gamma_p - \sum_{p=1}^{q} \Gamma_p \quad (14)
\]

\[
\theta_{\delta} = \sum_{p=1}^{q} \sum_{k=1}^{n} \theta_{pk} \quad (15)
\]

The energy input into the mechanism is given by

\[
W_{\text{in}} = F \cdot \delta + M \cdot \theta_{\delta} \quad (16)
\]

The strain energy in the system, captured by the springs in the PRB models, is the total potential energy of the mechanism

\[
V_{\text{total}} = \frac{1}{2} \sum_{p=1}^{m} \sum_{k=1}^{n} K_{\phi k, p} \theta_{pk}^2 \quad (17)
\]

The residual energy in the mechanism is given by

\[
E_{\text{res}} = W_{\text{in}} - V_{\text{total}} \quad (18)
\]

The statics solution for the mechanism can be obtained by using a nonlinear optimization routine to minimize the residual energy in the system (Eq. (18)) subject to kinematic constraints (Eqs. (3)–(13)). This has been proven to be a fast and effective method for calculating the deformation of compliant mechanisms using the PRB modeling approach [31].

The first three rows are coordinates of the nodes. The third beam has zero curvature \((\psi_n = 0) \). The beams are assumed to have unit elastic modulus and unit second moment of area \((E=1, I=1) \).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>((0, 0))</td>
</tr>
<tr>
<td>(P_2)</td>
<td>({0.018, 0.249})</td>
</tr>
<tr>
<td>(P_3)</td>
<td>({-0.260, 0.364})</td>
</tr>
<tr>
<td>(P_4)</td>
<td>({-0.5, 0.15})</td>
</tr>
<tr>
<td>(\psi_1)</td>
<td>(-2\pi/3)</td>
</tr>
<tr>
<td>(\psi_2)</td>
<td>(2\pi/3)</td>
</tr>
<tr>
<td>(\psi_3)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Fig. 7 Comparison of displacement of \(P_2 \) from Fig. 6 under the action of load \(F \)
The beams have uniform cross section along their lengths, defined normalized, and the material has a unit elastic modulus. This allows the designs to be scaled based on the desired application. The beams have uniform cross section along their lengths, defined as I_1, I_2, and I_3, respectively. The variables in the design are the coordinates of the nodes B, C, D as defined in Fig. 5, the angle of curvature of each beam (ψ_1, ψ_2, and ψ_3), and the ratios of the second moments of area (I_2/I_1 and I_3/I_1).

To check if a given design satisfies the criteria for a constant-force mechanism, the potential energy in the mechanism must be plotted as a function of the displacement, which is the input. Upon differentiating the energy curve, the force required to produce the displacement can be calculated. If the displacement–force curve has a reasonable range over which the force remains constant, the design can be used as a constant-force mechanism.

The analysis is similar to the procedure detailed in Sec. 3. It is assumed that the point D cannot move in the $x-$ direction due to symmetry. The major difference to the example in Sec. 3 is that the objective function for the minimization for the statics solution is just the potential energy in the mechanism, V_{total}, and the displacement along the $y-$ axis, δ_y, is the input.

\[
\text{Minimize } \quad E(\delta_y) = \frac{1}{2} \sum_{p=1}^{3} \sum_{k=2}^{4} K_{pk} \delta_y^2
\]

subject to \[\sum_{p=1}^{3} \Gamma_p - \sum_{p=1}^{3} \Gamma_p \bigg|_{\delta_y=0} = 0 \delta_y\]

Note that only one half of the mechanism is analyzed due to symmetry. The energy–displacement curve is obtained by varying the displacement δ_y (at discrete points) for the static solution above, and is then differentiated to obtain the force–displacement curve. The standard deviation of the force over the range of displacement is used to determine the variation in the force. For the constant-force mechanism, the design objective is to minimize this variation. The problem definition for the design optimization is given by

\[
\text{Minimize } \quad f(X) = \sigma(F) \quad \delta_y \in [\delta_{\text{min}}, \delta_{\text{max}}]
\]

where

\[
F_y = \frac{dE}{d\delta_y}
\]

subject to \[X_{\text{lb}} \leq X \leq X_{\text{ub}}\]

where X is the set of design variables, f is the objective function, σ, and F_y are the strain energy and associated displacement force, σ represents the standard deviation over the data set, and X_{lb} and X_{ub} represent lower and upper bounds for the variables, set by the user. δ_{min} and δ_{max} define the range of motion of the mechanism, which were 0 and 0.4, respectively. The optimization over eleven variables was performed using a genetic algorithm in MATLAB. The bounds of the variables and the results are given in Table 4.

The effectiveness of the PRB model approach in deriving the constant force mechanism was validated using ABAQUS FEA. A screenshot of the final mechanism analyzed with four node, reduced-integration, finite strains shell elements (S4R) is presented in Fig. 9. Note that additional material was added at the points of the intersection of the beams in order to produce a feasible design. The plots of strain energy and force versus displacement obtained from FEA are shown in Fig. 10. The data from the PRB approach are also shown, and the average errors in estimation are 0.36J for the energy and 1.62N for the force. As is
incorporated into the analysis by using the appropriate values for the PRB parameters in Eqs. (11) and (17).

It is worth noting that in the examples presented in this paper, the beams have been described using exactly circular segments, which may be difficult for other designs. In such cases, the beams must be suitably discretized into arcs for a good approximation. Additionally, only single-loop mechanisms are considered here, and the kinetostatic equations must be altered accordingly for other topologies. The current model is also suited only to systems consisting entirely of thin beam-like elements, where bending characteristics dominate.

The accuracy of the PRB approach in determining both the deflection behavior and the actual shape of the flexure elements is very good, as demonstrated by comparisons to FEA. There is a small error, as noticed in Fig. 10, but it is worth noting that the PRB model approximates the compliant members purely as beam elements. Perhaps more importantly, it gives the designer an easy approach for initial design of the mechanism, which would be beneficial for proving feasibility and checking the proof of concept. In the case of the constant-force mechanism shown here, a workable design is obtained through the method described here. The calculation of stress in the mechanism from PRB models is not detailed in this paper, but it is possible through back-calculation using the bending angles, and has been addressed in Ref. [23].

6 Conclusion

The nature of the definition of PRB models allows them to be extended to model various types of mechanism characteristics. It would be beneficial to the research community to create a uniform formulation to simplify their use. This paper aims to address this issue, by defining a large range of compliant members under the definition of one model with four segments and three revolute joints. The numerical results for the PRB parameters can be adapted to any size range, and the kinematic constraints and statics equations are also easy to implement. With a simple optimization routine and an understanding of beam bending, it was possible to create a framework for analyzing a large variety of compliant mechanisms. The effectiveness of this approach is clearly demonstrated by the fast design of the constant force mechanism.

Funding Data

- National Science Foundation (Grant No. CMMI-1637656).

References

