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Abstract: The thermal Infrared Spectrometer (TIS) is the thermal infrared (TIR) sensor on-board the
first Sustainable Development Goals (SDG-1) satellite. The TIS data can potentially be used to support
improved monitoring of ground conditions with high-spatial resolutions, so accurate radiometric
calibration is required. A meticulous radiometric calibration was conducted on the prototype of TIS
to test its ability to convert a raw digital number (DN) to at-aperture radiance. The initial maximum
radiometric error was 2.19 K at 300 K for Band 1(B1) and the minimum radiometric error was 0.25 K
at 300 K rooted in Band 3 (B3). The R-Squared (R2) was over 0.99 for each band. The methodology
was refined to divide the channel detectable temperature range into three sub-ranges and then the
maximum radiometric errors were reduced to less than 1 K at 300 K for three bands. Subsequently,
the Generalized Split-Window (SW) algorithm was preformed to estimate the ability of TIS on land
surface temperature (LST) retrieval. In order to take advantage of its high-spatial resolution and
make full use of TIR data, three-channel SW algorithm was also performed for intercomparison.
Results showed that the SW algorithm can obtain LST with root-mean-square error (RMSE) less
than 1K. Compared with two-channel algorithm with RMSE = 0.94 K, three-channel algorithm
achieves better results in retrieving LST with RMSE = 0.82 K. For different land surface types, water
samples achieved the minimum RMSE, and for different atmospheric column water vapor (CWV),
dry atmospheres obtained better results. The sensitivity analysis of SW algorithm was considered
along with noise-equivalent differential temperature (NEAT), uncertainty of land surface emissivity
(LSE) and input land surface temperature (Ts). Generally, three-channel algorithm was more stable
to LSE uncertainties, and the error changes were within 40%. But when NEAT and T uncertainties
were included, the error percentage of three-channel SW method increases more, which means
three-channel SW method is more sensitive to those two factors. All in all, the methodology and
results used for radiometric calibration and LST retrieval in this study provide valuable guidance for
the flight model of TIS and post-launch applications.

Keywords: the first Sustainable Development Goals (SDG-1) satellite; Thermal Infrared Spectrometer
(TIS); thermal infrared (TIR); radiometric calibration; LST retrieval

1. Introduction

Land surface temperature (LST) is a critical and reliable land surface feature parameter
used to estimate land surface physical processes. Moreover, many other land surface
parameters, such as evapotranspiration modeling [1] and soil moisture [2], rely on the prior
knowledge of LST. Although the in situ temperature measurements could offer long-term
coverage and highly accurate information, it is nearly impossible to used them for global
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monitoring. The thermal infrared (TIR) region is generally referred to a narrower range of
8~12 pm, which is an important atmospheric window for Earth science. Remotely sensed
TIR data provide a simultaneous and large-scale view of land surfaces [3] and LST can be
retrieving from TIR imagery. Therefore, TIR satellite imagery provides a quick method
over different scales with a positive cost-benefit ratio. In recent decades, various thermal
infrared remote sensing data sets have been acquired, as they can be widely applied for
both Earth [4-11] and Mars [12-17].

The first Sustainable Development Goals (SDG-1) satellite is the first sustainable
satellite developed by Chinese Academic of Sciences (CAS), and will be launched in 2021.
It is intended to provide data support for the United Nations Sustainable Developed Goals.
The satellite is intended to be used to provide scientific evidence for the refined depiction of
human traces. Arctic and Antarctic observation is an expansion task for the SDG-1 satellite.
The satellite needs to make a side swing to cover the entire 66.5°N/S to 90°N/S range.
The SDG-1 satellite is equipped with three high-resolution optical payloads: Thermal
Infrared Spectrometer (TIS), Glimmer Imager for Urbanization (GIU), and Multispectral
Imager for Inshore (MII). The TIS is used for global thermal radiation detection and it
has three TIR bands. The three TIR channels centered at 9.3 um (8.0~10.5 um, Band 1 (B1)),
10.8 pm (10.3~11.3 pm, Band 2 (B2)), and 11.8 pm (11.5~12.5 pm, Band 3 (B3)) with a spatial
resolution of 30 m, which provides more spatial details than the TIR sensors currently
in-orbit. Table 1 compares the thermal infrared band features of SDG-1 TIS and similar
in-orbit sensors.

Table 1. SDG-1 TIS and in-orbit sensor characteristics and thermal infrared band (8.0~12.0 um) features.

Description TIS VIMS TIRS MODIS
Number of thermal
infrared bands 3 4 2 4
Center wavelengths (jum) 9.3;10.8;11.8 8.20;8.63;10.80;11.95 10.9;12.0 8.55;9.73;11.03;12.02

Revisit time (days) 11~15 8 16 1~2

Orbital altitude (km) 505 708 705 705
Swath width (km) 300 60 185 2330

Pixel size at nadir (m) 30 x 30 40 x 40 100 x 100 1000 x 1000

VIMS: Gaofen-5 (GF-5) Visual and Infrared Multispectral Sensor; TIRS: Landsat 8 Thermal Infrared Sensor; MODIS: Moderate Resolution

Imaging Spectroradiometer.

The TIS data could be used to support improved monitoring of ground conditions, so
an accurate radiometric calibration is firstly required. The accuracy of physical variables
retrieved from remotely sensed data relies highly on the accuracy of radiometric calibration.
The radiometric calibration process is to convert the digital number (DN) into the expected
at-aperture radiance [18,19]. The DN is the raw signal from the detector that expressed
as 12-bit numbers and the at-aperture radiance is the radiance enters the aperture that
operates in units of W/m?/sr/um. The preflight calibration ensures the instrument oper-
ates properly before being integrated into the launch vehicle, and provides a calibration
method to be used after launch [18]. The preflight calibration of TIS was performed in a
thermal-vacuum chamber against a laboratory blackbody and the calibration method that
was used to determine the radiometric calibration of TIS was described in this paper.

Retrieving LST from TIR imagery is challenging as the radiance emitted from the
surface in the infrared region is a function of temperature and emissivity. For a N band
sensor, there will always be N+1 unknowns, corresponding to N emissivities at each band
and an unknown temperature. Under specific assumptions, LST can be successfully re-
trieved from satellite measurements. Consequently, many algorithms have been developed
to retrieve LST which can be generally classified into four categories [20,21]: the single-
channel [22-24], day /night [25-28], split window (SW) [29-33] and temperature-emissivity
separation (TES) methods [34,35]. Among these methods, SW is widely used because it can
accurately remove the atmospheric effects by combining measurements from two adjacent
channels at 11 and 12 um. SW has been used in various satellite data to estimate LST,
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such as Advanced Very High Resolution Radiometer (AVHRR) [36], Moderate Resolution
Imaging Spectroradiometer (MODIS) [29], Chinese Geostationary FengYun Meteorological
Satellite (FY-2C) [37] and Chinese Gaofen-5 (GF-5) satellite data [31]. Herein, the Gener-
alized Split-Window algorithm [28,29] was selected to firstly evaluate the ability of TIS
on LST retrieval. As TIS sensor has three thermal infrared channels, three-channel SW
algorithm was also adapted to estimate LST from TIS data.

This paper is organized as follows: Section 2 presents the theoretical basis for preflight
radiometric calibration and the SW algorithm. A simulation data set was established
for LST retrieval. Section 3 gives the results of radiometric calibration and LST retrieval.
Improvement of radiometric calibration method was also performed. The LSTs retrieved
by two SW methods were also compared. In addition, the effect of atmospheric column
water vapor (CWV) was analyzed. The sensitivity analysis for SW algorithm is described
in Section 4. The conclusions are drawn in Section 5.

2. Methods
2.1. Laboratory Radiometric Response Characteristic

The prototype of TIS was placed in a thermal-vacuum chamber that simulates the
environment on-orbit, and then characterizes its radiometric response. The relationship be-
tween DN and at-aperture radiance was found by a three-step process [38]. The instrument
background was removed first. Next, the expected at-aperture radiance was calculated
with the emissivity and temperature of the blackbody and the channel spectral response
(Equations (1) and (2)). Finally, linear regression was performed to obtain the radiometric
calibration coefficients (Equation (3)).

2
B(A,T) = 27;}? .ellc/kj' — O
L, T) = L EBA DRI o

[ R(A;)dA

where B(A, T) is the Planck radiance at the given blackbody temperature, i = 1.38 x 10?2 J/K,
h=6.63x10*7-s,¢c = 3.0 x 108 m/s, L(A;,T), i =1, 2, 3 is the spectral radiance of each
channel, R(A;), i = 1, 2, 3 is the spectral response of each band, and ¢ is the emissivity of
the blackbody.

L(A;, T)=g¢*xDN+1b (©)]

where DN is the digital number after the background removal, g and b are the radiometric
calibration coefficients of offset and gain, respectively.

2.2. Thermal Radiative Transfer Equation

Based on the radiative transfer theory and assuming a cloud-free atmosphere under
thermodynamic equilibrium, the top of atmosphere (TOA) radiance received at each TIR
channel can be written as Equation (4):

L= [si(/\)-Bi(A) + (1—ez~()\))-Lﬂ'Tz‘+LlT @)

where i represents SDG-1 TIR channel i = 1,2, 3, L; is the top of atmosphere (TOA) radiance
received by TIR channel i. ¢;(A) is the channel emissivity, B;(A) is the channel blackbody
radiance at LST (in K) calculated by the Planck function, and €;(A)-B;(A) represents the
surface emission radiance. 7; is the upward channel-effective transmittance of the atmo-
sphere in the channel i and ¢;(A)-B;(A) -T; represents the surface emission attenuated by
the atmosphere. L' is the channel upwelling radiance, and (1 — si()\))-Lii is the downward
atmospheric thermal radiance reflected by the surface, (1 — ei()\))-Lf'Ti represents the
downward atmospheric thermal radiance reflected by surface and reaches the sensor. L' is
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the channel upwelling radiance. TOA radiance at each band can be converted to brightness
temperature, and then, SW algorithm can be performed to retrieval LST.

2.3. Simulation Data Set

By using the moderate-spectral-resolution atmospheric transmittance model (MOD-
TRAN) [39], the brightness temperatures of the three TIR channels of SDG-1 can be sim-
ulated with known atmosphere parameters, land surface emissivity (LSE), land surface
temperature (LST), and channel response functions (CRF). The LST retrieval coefficients
were subsequently regressed with the multiple linear regression method.

A total of 742 Thermodynamic Initial Guess Retrieval (TIGR) mid-latitude atmospheric
profiles with column water vapor (CWV) ranging from 0.2 to 4.7 g/cm? were selected to
represent the most of the world atmospheric situations. The relationship between bottom
layer temperature and water vapor content is plotted in Figure 1. Then, the atmosphere
parameters (atmospheric transmittance, upwelling radiance and downwelling radiance)
were simulated by MODTRAN from atmospheric profiles.

5
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Figure 1. Scatter plot of the bottom layer temperature and water vaper content of the 742 atmo-

sphere profiles.

Emissivity spectra were selected from the ECOSTRESS spectral library, Version 1.0
(https:/ /speclib.jpl.nasa.gov/, accessed on 22 March 2018) covering different types of land
surfaces. The total of 68 LSEs consisted of 21 soils, 24 rocks and minerals, 12 vegetation,
5 water samples and 6 man-made targets. Channel effective emissivity (¢) was calculated
by the following Equation (5):

[ e(M)R(A)dA
[ R(A)dA

where ¢()) is the emissivity spectra, R(A) is the CRF of the SDG-1 TIS sensor. The land
surface temperature (T;) was determined according to the bottom later temperature of the
atmospheric profiles (Tp) at 7 levels that varied from Ty — 10 K to Ty + 20 K with an interval
of 5K.

With the parameters described above, the simulation data set was created and con-
tained 353,192 different cases (742 atmospheric profiles x 68 LSEs x 7 LSTs).

©)

2.4. Split Window (SW) Algorithm

As the TIS sensor onboard SDG-1 satellite has two adjacent thermal infrared channels
centered at about 11 and 12 um, the Generalized Split-Window algorithm proposed by
Wan and Dozier [29] was used to retrieve LST from SDG-1 data and the LST could be

expressed as:

1—c¢ Ae T+ T 1—¢ Ae T, —T
Tszao+<a1+a2 c +LI3€2>( 22 3)+<ﬂ1+ﬂ2 c +a3€2>( 22 3) (6)

withe = (ey +€3)/2, Ae = (ep — €3).
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Measured temperature/K

In addition, T, and T3 are the TOA brightness temperatures in B2 (~11 um) and
B3 (~12 um). & and e3 are the land surface emissivity in B2 and B3, respectively.
ax (k=10,1,2...6) are the algorithm coefficients. The method was refined by adding
a quadratic term of the brightness temperature difference of the two channels that improve
LST accuracy under hot humid atmospheric condition [25], and the equation can be written
as follows:

1—¢ Ae T+ T 1—c¢ Ae T, —T
Ts=ﬂo+<ﬂl+ﬂ2 +ﬂ3£2>< 2 3>+(ﬂ1+ﬂ2 . +613£2)< 2 3>+ﬂ7(Tz—Ta)2 ()

340—-
320—-
300—-
280—‘
260-

240+

220

€ 2

2

where a; (k =0,1,2...7) denote the algorithm coefficients.

Considering that SDG-1 has three TIR channels and make full use of the data, a three-
channel SW algorithm [40] was also selected to verify the performance of the proposed
algorithm. This algorithm can be expressed as:

1—81
€1

1—¢ 1—e¢
Ts =by+ 0111 + by To + 03Tz + by T+ bs . 2T2+b6 . 3T3 (8)
2 3
where by (k=0,1,2...6) are the algorithm coefficients.
The coefficients of two- and three-channel SW algorithm were obtained by the multiple

regression method. The LSTs, emissivity and TOA brightness temperature were all from
simulation datasets.

3. Results
3.1. Radiometric Calibration Results

The temperature of the blackbody was set as 230 K, 240 K 250 K, 270 K, 290 K, 300 K,
310 K, 320 K and 330 K, which span the required sensitivity range of the prototype of
TIS. The relationship between the given temperatures and the measured temperatures are
illustrated as Figure 2. At 230 K and 310 K points, the difference was relatively high as
1.97 K and 2.57 K, respectively, which means the linear response of the blackbody needs
some improvements. However, for the most given temperatures, the difference was within
0.50 K, and the standard deviation was within 0.20 K. Therefore, the blackbody was stable
to provide reliable experimental results.

. 3.04 ----y=0line

Temperature difference (K)

----1:1line

220

240

260 280 300 320 340 220 240 260 280 300 320 340
Temperature/K Temperature (K)

(a) (b)

Figure 2. (a) The relationship between the given temperature (x-axis) and the measured temperature (y-axis). Red dashed
line represents 1:1 line that measured temperature and given temperature are same. (b) Temperature differences between
the given temperature and the measured temperature at different given temperature points. Red dashed line represents
y = 0 line that temperature difference is 0 K.

The channel response functions of the prototype of TIS are shown in Figure 3. Bl is a
wide band, while B2 and B3 are narrower.
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Figure 3. The channel response functions of the prototype of Thermal Infrared Spectrometer (TIS).
B1: Band 1; B2; Band 2; B3: Band 3.

The expected radiance was calculated by computing the Planck blackbody function
at the given temperature. The emissivity of the blackbody is taken as 0.985 for all wave-
lengths. The temperature-radiance look-up table (LUT) for each band was established.
The relationship between DN (background subtracted) and expected radiance for the range
recorded temperatures is shown in Figure 4.

18 — 18
16 | R?=0.99 .34TOK 16 | B
i > . 340K, -
1k ,,’73,30}( 1al R=090
« _-7 330K
£ 12} . = 12f -~ 320K
=1 e it
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= .7 300K < g .-~ 300K
s f .7 290K £ -7 290K
5 °r o % e 370K
b - 270K 2l L
. "250K a7 250K
2F < 240K 21,27 240K
L230K “230K
0 Z ! I 1 0 f | ) 1 ) 1
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141 R*=0.99 ””K
£ 12r .- 330K
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z gl L 290K
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o .+ 240K
.7 230K
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(c) B3

Figure 4. Calculated spectral radiance for nine given temperatures as a function of the DN (background subtracted). (a) The
DN (x-axis) versus spectral radiance (y-axis) for B1. (b) The DN (x-axis) versus spectral radiance (y-axis) for B2. (c) The DN
(x-axis) versus spectral radiance (y-axis) for B3. Red-dashed lines are linear regression results. R? is R-Squared. Red dashed
lines are the linear fitting results of each band.
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As shown in Figure 4, the fitting lines distribute closely to points at measured temper-
atures, and R? is over 0.99 for each band. Consequently, there is a good linear correlation
between calculated radiance and DN. The radiance differences between the expected at-
aperture radiance and linear-regressed radiance (the residuals of the fitting) are illustrated in
Figure 5. The radiance differences are distributed around zero. The Bl is the worst fitting case,
while B3 achieves the best fitting results among all three bands. The maximum radiometric
error was 0.37 W/m? /st /um, corresponding to 2.19 K at 300 K for B1 and the minimum
radiometric error was 0.03 W/m?2/sr/um, corresponding to 0.25 K at 300 K for B3.
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Figure 5. The residuals of the fitting results for (a) B1, (b) B2 and (c) B3 at given temperature points.
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In addition, the radiometric resolution at each given temperature was calculated
and the results were plotted in Figure 6. The radiometric resolution was defined as the
temperature change corresponding to 1 DN variation. B1 has the highest radiometric
resolution because it needs a higher temperature for 1 DN change. The radiometric
resolution is quite similar for B2 and B3. In general, the radiometric resolution decrease as
the given temperature increases, except for the 310 K point.

0.3+ —o— B1
—o—B2
——B3
0.2
Z
Q
'_
< 0.1
0.0+

220 221,0 ZéO 2é0 360 3é0 3;10
Temperature (K)

Figure 6. Radiometric resolution for bands B1, B2 and B3 at given temperatures.

3.2. Improvement of the Radiometric Calibration

As shown in Figure 5, the fitting residuals of B1(Figure 5a) and B2(Figure 5b) have
one turning point at 290 K, and residuals are close to zero at 250 K and 320 K. Hence,
the whole temperature range was divided into three subranges and radiometric calibration
was performed in three subranges for three bands. The three subranges are (230, 270) K,
(270, 310) K, and (310, 330) K for low, middle, and high temperatures, respectively. These
feature points are contained in the three subranges, which can get better fitting results.

The results are shown in Figure 7. The accuracy has been greatly improved as the
radiance difference is within (—0.1,0.1) W/m?2/sr/um in most cases and the radiometric
error is less than 1 K at 300 K for three bands.

In conclusion, performing a calibration process in different sub-temperature ranges is
an effective way to improve the radiometric calibration accuracy.

O low temperature © normal temperature &  high temperature

€
2
a
E 02
z
g o o i
500F---O----- O e
o
802} o o
c
8
o
i
04

220 240 260 280 300 320 340
Measured temperature(K)
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Figure 7. Cont.
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Figure 7. Regression residuals in three subranges for three bands: (a) B1, (b) B2 and (c) B3.
3.3. LSTs Retrieval Results

The simulation data set described in Section 2.3 was applied to obtain the SW al-
gorithm coefficients and the results are summarized in Table 2. The SW algorithm was
developed with known LSEs. Therefore, the retrieval results varied for different land sur-
face types. The overall root-mean-square error (RMSE) of LST estimation of two-channel
SW algorithm was 0.94 K and R? was 0.99. The RMSE of LST varied from 0.75 K to 1.08 K
for different land surfaces. The SW algorithm performed best for water samples, and
was less accurate for soil samples. The particle size, moisture, chemical composition,
organic matters, etc. are different in different soil samples which lead to more variations
in emissivity spectra. Hence, the temperature simulated by MODTRAN varied and lead
to higher RMSEs. ALST (the difference between the actual LST and predicted LST) his-
tograms of different land surface types are presented in Figure 8 for both two-channel and
three-channel algorithm. The figures illustrate that most of the LST differences fell in the
range of (—1, 1) K, and the mean value of ALST is very close to 0 K.

Table 2. The overall root-mean-square error (RMSE) of two- and three-channel split window (SW)
algorithm for different land surface types.

Two-Channel Three-Channel
Land Surface Type
RMSE (K) R? RMSE (K) R2

Soil 1.08 0.99 1.01 0.99
Rock and minerals 0.83 0.99 0.80 0.99
Vegetation 0.97 0.99 0.83 0.99
Water 0.75 0.99 0.67 0.99
Man-made 0.99 0.99 0.95 0.99
All types 0.94 0.99 0.82 0.99

The RMSEs for three-channel SW algorithm is less than that for the two-channel SW
algorithm. The smallest RMSE is 0.67 K for water samples with the highest R? = 0.99, and
the largest RMSE is 1.01 K for soils. The overall RMSE is 0.82 K. From this point of view,
the three-channel algorithm performs better as the RMSEs are lower.

Atmospheric CWYV is a factor that influence the LST retrieval results. In order to see
the effects of the CWV on the retrieval of LST, all 742 TIGR profiles was divided into three
subranges according to CWV with an overlap of 0.5 g/cm? [31]. The three subranges are
(0.0, 2.0), (1.5, 3), and (2.5, 5) g/ cm?, represent low, middle and high CWYV, respectively.
Herein, 628 profiles for low CWYV, 229 profiles for middle CWV and 53 profiles for high
CWYV. The SW algorithm was also performed based on different CWV subranges. The
results in Table 3 presented that LST RMSE increased from 0.71 K to 1.13 K for the two-
channel algorithm, and from 0.69 K to 0.94 K for the three-channel algorithm as CWV
increased. The best fitting result occurred in dry atmospheric conditions, which has the
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lowest RMSE. With the increasing CWYV, the RMSE of the two-channel algorithm increased
by 0.42 K, which is higher than the 0.25 K of the three-channel algorithm.
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Figure 8. Histogram of the difference between the actual LST and predicted LST (ALST) for different land surface types.
Two-channel SW algorithm: (a) Soil, (b) Rock and minerals, (c) Vegetation, (d) Water, (e) Man-made, (f) All types. Three-
channel SW algorithm: (g) Soil, (h) Rock and minerals, (i) Vegetation, (j) Water, (k) Man-made, (1) All types. Dash lines
represent the mean value of ALST.

Table 3. RMSEs of two- and three- channel SW algorithm for different column water vapor.

Two-Channel Three-Channel
CWV (g/ cm?) 2 2
RMSE (K) R RMSE (K) R
(0.0,2.0) 0.71 0.99 0.69 0.99
(1.5,3.0) 0.72 0.99 0.72 0.99
(2.5,5.0) 1.13 0.98 0.94 0.99
(0.0,5.0) 0.94 0.99 0.82 0.99
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4. Discussion
4.1. Sensitivity Analysis of TIS for LST Retrieval

A better LST algorithm must have the following features: (1) it retrieves LST more
accurately; (2) it is less sensitivity to uncertainties, such as surface parameters, atmospheric
properties, the instrument responses, etc. [29,31,37]. Therefore, noise equivalent differential
temperature (NEAT) of the sensor, the different input LSTs and uncertainties in LSEs were
taken into account in this investigation.

4.1.1. Sensitivity to Instrument Noise

The NEAT influences the accuracy of LST retrieval. The TIS onboard SDG-1 satel-
lite was designed with NEAT= 0.2 K. In order to estimate the effect of NEAT on LST
retrieval, a Gaussian noise was added to TOA brightness temperatures T; (i = 1,2,3) in
Equations (7) and (8). The standard deviation of the noise was equal to designed NEAT
of the TIS sensor and then LST was estimated with noised TOA brightness temperatures.
Table 4 shows the change of RMSE caused by NEAT of the instrument. The NEAT con-
tributed noteworthy error to water samples which about 0.27 K (37.33% error increase)
and 0.15 K (22.39% error increase) for two-channel and three-channel SW algorithms, re-
spectively. LST RMSE increased by 0.10 K and 0.14 K after the noise was added to bright-
ness temperature for two- and three-channel algorithm, respectively. That is to say, the
two-channel algorithm is less sensitivity to NEAT than the three-channel algorithm in
most cases.

Table 4. LST errors caused by NEAT for different land surface types.

Two-Channel Algorithm Three-Channel Algorithm

Land Surface Type ~RMSE without RMSE with Error Increase = RMSE without RMSE with Error Increase
NEAT (K) NEAT (K) Percent NEAT (K) NEAT (K) Percent
Soil 1.08 1.20 11.11% 1.01 1.13 11.88%
Rock and minerals 0.83 0.91 9.64% 0.80 0.88 10.00%

Vegetation 0.97 1.05 8.25% 0.83 0.85 2.41%

Water 0.75 1.02 37.33% 0.67 0.82 22.39%
Man-made 0.99 1.10 11.11% 0.95 1.09 14.74%
All types 0.94 1.04 10.64% 0.82 0.96 17.07%

The error caused by NEAT in different CWV subranges was also compared and the
results are shown in Table 5. The error increase percentage changes less under high CWV
conditions. The RMSE increased with increasing CWYV, for the same RMSE variation, it
contributes to a lower percentage change in large RMSE. As a result, the error increase
percentage achieved the lowest value in high CWYV subranges. For two SW methods,
three-channel SW algorithm has lower RMSE, but in high CWV and all CWV conditions,
two-channel SW algorithm performs more stable with less error increase percentage.

Table 5. LST errors caused by NEAT for different column water vapor.
Two-Channel Algorithm Three-Channel Algorithm
CWV (g/ cm?) RMSE without RMSE with Error Increase  RMSE without RMSE with Error Increase

NEAT (K) NEAT (K) Percent NEAT (K) NEAT (K) Percent
(0.0,2.0) 0.71 0.86 21.12% 0.69 0.81 17.39%
(1.5,3.0) 0.72 0.92 27.78% 0.72 0.87 20.83%
(2.5,5.0) 1.13 1.18 4.42% 0.94 1.00 6.38%
(0.0, 5.0 0.94 1.04 10.64% 0.82 0.96 17.07%
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4.1.2. Sensitivity to LSEs

LSE is a key factor that is related to LST retrieval. According to Equation (7), terms
% and % are influenced by uncertainties in LSE. In Equation (8), term 1;81' , (1=1,2,3)
is influenced by uncertainties in LSE. In addition, the radiative transfer process is also
different based on different LSE. Herein, about (—2%, 2%) error with intervals of 1% was
added to investigate the retrieval accuracy when errors were contained in LSEs. Using the
two SW retrieval methods, the obtained LST RMSE are shown in Table 6. Results show
that the RMSE increased when emissivity errors were introduced. The error has a larger
influence on LST results when emissivity is overestimated. It can also be seen from Table 6
and Figure 9, that the RMSE of the three-channel algorithm have less RMSE than the
two-channel algorithm, which means that more bands in LST retrieval could decrease the

sensitivity to emissivity errors.

Table 6. LST RMSE caused by emissivity uncertainty.

Two-Channel Algorithm Three-Channel Algorithm
Emissivity Error
y RMSE (K) ARMSE (K) Error Increase RMSE (K) ARMSE (K) Error Increase

Percent Percent

—2% error 1.37 0.43 45.74% 0.98 0.16 19.51%
—1% error 1.03 0.10 9.57% 0.87 0.05 6.09%
1% error 1.04 0.11 10.64% 0.93 0.11 13.41%

2% error 1.42 0.48 51.06% 1.14 0.32 39.02%

ARMSE (the difference between the RMSE without emissivity uncertainty and RMSE with emissivity uncertainty)

—1— two-channel
—(O— three-channel
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Figure 9. The RMSE of retrieved LST for different SW algorithm as a function of emissivity errors.

4.1.3. Sensitivity to T;

In the simulation dataset, the surface temperatures were designed in seven levels
based on the bottom atmospheric temperature (Tp) of each atmospheric profile. Therefore,
the multiple regression was performed separately for different T to estimate how T;
influenced the LST retrieval results. The RMSE of the LST retrieval based on different T;
values showed that (in Table 7 and Figure 10), with an increasing T;, the RMSE decreased.
When the input T is 15 K to 20 K higher than Tj, the RMSE reaches the minimum value.
This result indicates that the real land surface temperature is about 15 K to 20 K higher
than the bottom layer atmospheric temperature. In addition, the overall RMSE of the
three-channel algorithm is lower than RMSE of the two-channel algorithm in different T;
conditions, while ARMSE is higher for the three-channel algorithm. The three-channel
algorithm is less stable with T variation.
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Table 7. LST RMSE caused by T; estimation.

Two-Channel Algorithm Three-Channel Algorithm

Error Error

Ts(K) RMSE (K) ARMSE Increase RMSE (K) ARMSE Increase

(K) P (K)

ercent Percent

To — 10 1.10 —0.16 —14.55% 1.04 —-0.22 —21.15%

To—5 1.04 —0.10 —9.62% 0.92 —0.10 —10.87%
To+5 0.93 0.01 1.08% 0.73 0.09 12.33%
To + 10 0.88 0.06 6.82% 0.68 0.14 20.59%
To+15 0.84 0.10 11.90% 0.64 0.18 28.13%
Ty +20 0.84 0.10 11.90% 0.64 0.18 28.13%

ARMSE (the difference between the RMSE with different T; estimation).

—{1— two-channel
—O— three-channel

1.0 1

0.8+

RMSE of retrieved LST (K)

06 1 1 I 1 ! 1 1
-10 -5 0 5 10 15 20

T, -T,(K)

Figure 10. The RMSE of retrieved LST for different SW algorithm as a function of estimated
T, difference.

4.2. Comparision with Other TIR Sensors

MODIS provides Earth’s surface data for over 20 years and it is still in operation.
The thermal infrared Band 29 (9.73 um), Band 31 (11.03 um) and Band32 (12.02 um) are
suitable for retrieval surface temperature. It provides LST products in long time series with
a high-time resolution and it serves as a keystone for the satellites launched afterwards.
The Generalized Split-Window algorithm was first proposed for retrieving LST from
MODIS data [29]. Different MODIS LST products have been produced based on different
algorithms, and the accuracy is generally better than 1 K after ground validation [41].
Although MODIS provides LST with high accuracy, the spatial resolution is only 1 km.
Furthermore, the instrument’s performance over its entire orbital lifetime varies [42]. New
TIR satellite sensors with high-spatial resolution for thermal infrared sensors are still
needed to provide more detailed information on land surface. The pre-flight error of
simulated LST from SDG-1 data is in the (—1,1) K range in most cases which is a little bit
higher than MODIS LST products. However, 30 m spatial resolution is a big advantage
when compared to MODIS 1 km spatial resolution.

Landsat 8 is the most recent satellite of Landsat Data Continuity Mission and the
TIRS sensor has a relatively high spatial resolution. The new TIRS has two TIR bands and
SW algorithm can be applied for LST retrieval [43]. The pre-flight radiometric calibration
showed that when the fitting method is linear, the response of TIRS has a 0.4% error in the
worst case [38], while it reaches over 0.7% for TIS. After the improvement of radiometric
method, the error decreases to a low level which indicates the effective of the method.
RMSE of LST estimated from TIRS using SW algorithm is 1.025 K for all samples [44] and
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it is comparable with simulated LST results of TIS. Due to the known instability in the
system calibration of Band 11 (12.0 pm) [45,46], LST retrieved from Band 11 has more
uncertainty than from Band 10 (10.9 um) [43,44]. The stray light and striping artifacts made
the calibration more challenging [38,45] and a stable and accuracy sensor is expected.

Recently, the Thermal Infrared Sensor-2 (TIRS-2) that will onboard Landsat 9 has
finished its prelaunch testing [47]. TIRS-2 sensor has two TIR bands at 10.8 pm and 12.0 pm
and the spatial resolution is 100 m (resampled to 30 m). The radiometric uncertainties for
two channels are 0.5 K and 0.4 K [47] which are comparable with radiometric calibration
results of prototype TIS sensor. The ability of TIRS-2 on LST retrieval has not been published
yet. The two sensors will be further compared in a following work.

GF-5, the fifth satellite in the national high-resolution Earth observation project of
China, has a four-channel TIR sensor with a spatial resolution of 40 m [48]. The four bands
are centered at 8.20, 8.63, 10.80, and 11.95 pum, respectively. RMSE of LST retrieval from
simulation data set for all surface types is 0.87 K using two-channel SW algorithm and
0.99 K for three-channel SW algorithm [31]. The error increase percentage is higher than
SDG-1 TIS sensor when some uncertainties introduced in most cases. It indicates that TIS
performs more stable on LST retrieval.

TIS onboard SDG-1 is a high-spatial-resolution TIR sensor. The 30 m spatial resolution
will provide more detailed information on land surfaces, which is important for urban areas.
As SDG-1 is not be launched, ground validation of retrieved LST from TIS image cannot
be performed. The assessment of TIS on LST retrieval was mainly based on theoretical
simulation results. Two selected SW algorithms reveal the potential of TIS on LST retrieval
with high accuracy. The validate with field measurements in different regions will be
updated after SDG-1 launches.

5. Conclusions

To ensure the scientific objectives of the SDG-1 mission, the TIS instrument needed
to be accurately calibrated. A series of experiments were performed preflight on the
prototype of TIS and a method was developed to convert the raw digital numbers from
the detector into an at-aperture radiance. Background subtraction was first performed
followed by the conversion to radiance, and finally, linear regression was performed to
obtain the calibration coefficients. The whole tested temperature range was divided into
three sub-ranges and regressed separately to improve the calibration accuracy, especially
for B1. The radiometric calibration errors were less than 1 K for three bands.

SDG-1 will provide observations in three TIR channels at a fine spatial resolution of
30 m. To make full use of the TIR data, the Generalized Split-Window algorithm and a
three-channel SW algorithm were used to estimate LST from SDG-1 data and the sensitivity
of each algorithm was analyzed. The regression coefficients were obtained from simula-
tion data based on MODTRAN model. The results showed that three-channel method
performed better than two-channel method with RMSE lower than 1 K. For different land
surface types, the minimum RMSE of LST retrieval was obtained for water samples and
the maximum was acquired for soil samples as the spectra of soil samples have more
variations than the water spectra. The algorithms were also performed in different CWV
subranges and the RMSE of LST retrieval increased with the increase of CWV. A sensitive
analysis was conducted with considerations involving NEAT, uncertainty of LSE, and input
land surface temperature, Ts. Both SW algorithms used in this study have its advantages.
The Generalized Split-Window algorithm is less sensitive to uncertainties in NEAT and T;
while the three-channel algorithm refined the retrieval results with less RMSEs. Different
methods could be adapted for different purposes to retrieval LST. All in all, TIS channels
were eligible to retrieve accurate LSTs using two- or three-channel SW algorithm.

The radiometric calibration and LST retrieval method conducted in this study provide
a possible post-launch state which might be easier to control and modified after launch.
Also, the TIS sensor has the potential to provide LST results with high spatial resolution.
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Finally, the results in this study provide guidance to develop a high-precision flight model
of TIS instrument that will be equipped on the SDG-1 satellite to fulfil its scientific mission.
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