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Abstract—We present a systematic evaluation and optimization of a
complex bio-medical signal processing application on the BrainWave
prototype system, targeted towards ambulatory EEG monitoring within
a tiny power budget of <1mW. The considered BrainWave processor is
completely programmable, while maintaining energy-efficiency by means
of a Coarse-Grained Reconfigurable Array (CGRA). This is demonstrated
through the mapping and evaluation of a state-of-the-art non-convulsive
epileptic seizure detection algorithm, while ensuring real-time operation
and seizure detection accuracy. Exploiting the CGRA leads to an energy
reduction of 73.1%, compared to a highly tuned software implementation
(SW-only). A total of 9 complex kernels were benchmarked on the
CGRA, resulting in an average 4.7× speedup and average 4.4× energy
savings over highly tuned SW-only implementations. The BrainWave
processor is implemented in 28-nm FDSOI technology with 80kB of
Foundry-provided SRAM. By exploiting near-threshold computing for
the logic and voltage-stacking to minimize on-chip voltage-conversion
overhead, additional 15.2% and 19.5% energy savings are obtained,
respectively. At the Minimum-Energy-Point (MEP) (223 µW, 8 MHz) we
report a measured state-of-the-art 90.6% system conversion efficiency,
while executing the epileptic seizure detection in real-time.

Index Terms—Ultra-low power architectures, Coarse-Grained Recon-
figurable Arrays, Bio-medical Signal Processing, Non-Convulsive Epilep-
tic Seizure Detection, Voltage-Stacking

I. INTRODUCTION

In the last decade, ambulatory or remote health monitoring of
common chronic neurological diseases, such as Epilepsy and Parkin-
son’s Disease (PD), has become of increasing importance. This
can be attributed to the tremendous cost-savings opportunities of
preventive health-care and non-hospital diagnosis and treatment, as
well as the large quality-of-life improvements for patients of chronic
diseases to remain mobile and autonomous. Commercial devices for
wearable ambulatory monitoring do exist; however, these devices
generally have limited battery lifetime [1], or use non-EEG sensors
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Fig. 1. Overview of BrainWave system for EEG-based seizure detection.
BrainWave aims to enable ambulatory EEG monitoring in a portable battery-
operated device with an ultra-low-power BrainWave processor.

that are insufficient to reliably detect more complex brain-related
seizure types [2], [3]. While non-EEG sensors can be sufficient to
reliably detect convulsive epileptic seizures [4], many patients suffer
from non-convulsive epileptic seizures or Non-Convulsive Status
Epilepticus (NCSE), which lack obvious visual and motor symptoms
and are therefore challenging to detect without real-time EEG signal
analysis [5]. Existing monitoring devices with non-EEG sensors are
therefore not suitable for long-term ambulatory monitoring of patients
with non-convulsive epilepsy [3].

An ongoing trend for EEG-based ambulatory monitoring devices is
to move the signal analysis from the cloud to the edge, where devices
are equipped with processing capabilities to perform bio-medical
signal analysis and data reduction. State-of-the-art bio-medical signal
processing platforms consist of one or multiple processor cores
and are typically coupled with hardware accelerators [6]–[12]. Un-
fortunately, these architectures either lack energy-efficiency if the
architecture is fully programmable, or are specialized towards a
limited set of kernels and applications. Prior art on wearable EEG
systems focuses primarily on the optimization of traditional seizure
detection algorithms by providing dedicated hardware acceleration
for spectral, time-frequency and entropy features i.e. [6]–[10], [13].
However, these algorithms are insufficient for reliable non-convulsive
seizure detection, which demands more complex algorithms [5],
[14]. For detection of these complex brain-related seizures i.e. non-
convulsive epileptic seizures, but also PD Freezing-of-Gait, research
is ongoing for the optimal algorithms or sensors. As such, there is
a clear need for processing platforms that are both energy-efficient
and flexible to account for future improvements in algorithms.

Hardware acceleration using a Coarse-Grained Reconfigurable
Array (CGRA) is being promoted as a good compromise between
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Fig. 2. (left) Overview of complete non-convulsive epileptic seizure classification pipeline running on the BrainWave processor. (right) Illustrative example
of system behavior for several minutes of EEG data (one channel shown) with corresponding feature values, and classification and post-processing output.

flexibility and energy-efficiency for bio-medical signal processing
on ultra-low power (ULP) systems (<1 mW) [11], [15]–[19]. Un-
fortunately, the efficiency of these platforms is typically evaluated
on small and regular kernels or the system-level energy savings
are sub-optimal due to under-utilization of the CGRA. Often, only
part of the system is considered in the efficiency evaluation, and
important system aspects like the voltage-conversion efficiency and
area overhead of on-chip power delivery circuitry are ignored. In
contrast to these works, we present a system-level energy evaluation
where the CGRA is heavily utilized (91.41% duty cycle).

This paper extends our previous work [19] as follows: First, this
is the first work that performs a system-level optimization of a real-
time non-convulsive seizure detection algorithm, which requires more
complex features than the traditional spectral and time-frequency
features found in low-power seizure detection SoCs for convulsive
seizures [6]–[10], [12]. Second, in contrast to [19], which was
based on simulations, all results in this paper are based on chip
measurements on our BrainWave processor, which was fabricated
in 28-nm FDSOI. This paper aims to tackle the energy problem
of a wearable EEG-based monitoring system for non-convulsive
seizure detection. We present a prototype system consisting of an
ULP programmable and re-configurable System-on-Chip (SoC) for
wearable and on-device (digitized) signal acquisition and analysis.
The proposed system is fully programmable, while improving the
energy-efficiency by 2.7–6.1× compared to highly tuned SW-only
implementations of a diverse set of complex EEG feature extraction
algorithms on a RISC-V core with DSP extensions. To the best of
our knowledge, this is the first implementation and optimization of
a complete non-convulsive epileptic seizure detection algorithm on
a ULP micro-controller, i.e. BrainWave processor, targeted towards
real-time seizure detection in a wearable form-factor. The novel
contributions are at four system design levels:

1) System-level: evaluation of first system prototype for real-time
non-convulsive seizure detection. This includes an energy trade-
off analysis between cloud and edge processing (Section III)
and an investigation on the impact of EEG data precision and
algorithm fixed-point quantization on event detection accuracy
(Section VI-A).

2) Algorithm-level: extensive evaluation of the SW optimizations
of complex EEG features. For non-linear entropy and mor-
phological visibility graph (VG) features we report a speedup
of 5.3× and 155.6×, respectively, compared to reference
implementations on the RISC-V core (Section IV). This is the
first work on the acceleration of VG features for time-series on
an embedded platform with limited on-chip memory.

3) Architecture-level: off-loading of performance and power
costly features to the hardware accelerator (CGRA) results in
average energy-savings of 4.4× at the kernel-level compared
to a highly tuned SW-only implementation (Section VI-B), and
a 73.1% energy reduction at the system-level (Section VI-C1),
with a CGRA duty-cycle of 91.41%.

4) Circuit-level: we explore near-threshold computing combined
with voltage-stacking and obtain additional energy savings of
15.2% and 19.5%, respectively, with a state-of-the-art system
voltage-conversion efficiency of 90.6%, while executing the
seizure detection application in real-time (Section VI-C2).

The remainder of this paper is organized as follows: Section II
introduces the non-convulsive seizure detection algorithm and Brain-
Wave processor architecture. Section III provides a brief summary of
important system design aspects. In Section IV the implementation
and optimization of the algorithm on the BrainWave processor is
described, to enable real-time and energy-efficient operation. Section
V details the BrainWave processor implementation and measurement
setup. Measurement results and discussion are provided in Section
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VI, followed by concluding remarks in Section VIII.

II. PRELIMINARIES AND BACKGROUND

Non-convulsive epileptic seizures or NCSE are challenging to
detect reliably without real-time monitoring of EEG signals by
medical professionals, due to the lack of physical convulsions or
motor symptoms. Several automated NCSE detection algorithms were
proposed in literature, e.g. [5], [14], but minimizing the number of
false alarms while obtaining an acceptable seizure event detection
rate (>80 %) remains a major challenge [5]. Additionally, none of
the recent works on automated NCSE detection focus on the design
of a real-time implementation on an embedded processor platform
with tight resource constraints. The algorithm and dataset that are
used in this work are based on a state-of-the-art non-convulsive
epileptic seizure detection pipeline, which is previously published
by Y. Wang et al. [5]. We port this algorithm to the resource-
contrained BrainWave processor with only 80 kB of on-chip memory,
while minimizing energy consumption at multiple design levels and
ensuring real-time operation and algorithmic robustness against signal
quantization. The structure of the complete seizure detection pipeline
is illustrated in Fig. 2 (left).

A. Real-time non-convulsive epileptic seizure detection

1) Dataset properties: The considered clinical EEG dataset [5]
contains 126.7 h of scalp EEG recording and consists of 13.9 h of
seizure data (316 events) with an average event duration of 158 s.
The dataset was captured and annotated by experts in a clinical envi-
ronment, digitized using three different systems (BrainRT, Micromed,
and EEG stellate) at different sampling frequencies (256 Hz, 200 Hz,
and 100 Hz). To standardize the recordings between different EEG
acquisition systems all subject data was down-sampled to 100 Hz.
Twenty-one common electrodes between the systems were used.

2) Pre-processing and conditioning: Every 1.28 s the on-chip
EEG data is segmented in a 2.56 s window with 50% overlap with
the previous window. The 256-sample window (2.56 s×100 Hz) was
chosen to limit the on-chip memory requirements. An on-line 10th
order 1 Hz–45 Hz Butterworth band-pass filter (BPF) is applied to
every EEG channel to eliminate low-frequency artifacts and remove
50 Hz mains interference. Furthermore, the EEG channels are re-
referenced to the average of all channels to reduce movement and
muscle artifacts. Finally, a Hann window is applied to every channel.

3) Feature extraction and selection: Feature extraction is per-
formed on the individual EEG channels. A feature importance anal-
ysis was conducted on a total of 45 different features. A minimum
feature set was derived using a correlation-based feature selection
method. More information can be found in [5]. The 5 resulting
features that were used are from the non-linear, time-frequency and
morphological domain. For non-linear features the Sample Entropy
(SampEn) of the EEG time-series is used. For time-frequency features
we compute the standard deviation of the Detail coefficients of the 4th
level (3.125 Hz to 6.25 Hz) Discrete Wavelet Decomposition (DWT).
The DWT filters are derived from the Daubechies 4 (db4) wavelet.
The morphological features are based on the Visibility Graphs (VG)
of the EEG time-series. We compute the Node Degree (ND) of
the Normal VG (NVG), Horizontal VG (HVG) and Difference VG
(DVG), and extract the Approximate Entropy (ApEn) of all ND
vectors as a feature.

4) Classification and post-processing: We use the classifier and
post-processing stage as presented in [5]. A RUSBoost tree ensemble
classifier [20] is used to deal with the imbalanced nature of the
dataset. Alternative classifiers that are commonly used, especially

TABLE I
NCSE DATASET SUMMARY [5].

Subject Recording
duration (h)

Seizure
duration (h)

Seizure
events

Avg. event
duration (h)

#1 0.8 0.7 2 0.36 ± 0.02
#4 8.8 0.8 15 0.06 ± 0.03
#5 2.9 0.4 14 0.03 ± 0.01
#6 22.3 0.6 5 0.13 ± 0.11
#7 21.7 0.8 118 0.01 ± 0.00
#8 18.2 1.3 13 0.10 ± 0.27
#11 10.1 1.1 38 0.03 ± 0.02
#12 16.7 0.6 38 0.01 ± 0.01
#14 18.0 5.6 35 0.16 ± 0.13
#15 7.2 1.9 38 0.05 ± 0.06

Total 126.7 13.9 316 0.04 ± 0.09

TABLE II
AVERAGE RUN-TIME PER EPOCH OF BASELINE SEIZURE DETECTION

PIPELINE ON RISC-V CORE (21 CHANNELS × 256 SAMPLES EPOCH SIZE).

Stage Calls (#) Cycles (×106) Total (%)

Data acquisition 128 0.09 0.01
Band-pass filter 21 0.89 0.13
Epoch conditioning 21 0.33 0.05

Non-linear features 21 40.61 6.09
Morphological features 21 624.05 93.58
Time-Frequency features 21 0.52 0.08

Construct feature vector 1 <0.01 <0.01
Classification + post-proc. 1 <0.01 <0.01

Other 1 0.36 0.05
Total - 666.85 100.00

in low-power systems, are SVMs with non-linear kernels [8], [9].
However, their computational and memory requirements can be quite
high [8]. First, the RUSBoost algorithm is trained using 2 classes
(seizure, no seizure). Based on the misclassifications of this 2-class
model, a synthetic 4-class dataset is constructed and a 4-class model
is trained (false negatives are labeled as ’suspected no seizure’, false
positives are labeled as ’suspected seizure’). To reduce the number
of false alarms, the post-processing stage uses the classifier outputs
of the last 20 s with a patient-specific threshold to determine whether
the alarm should be activated, which corresponds to sending a small
notification message to a wireless end-point that is observed by
clinical experts. The run-time behavior of the system is illustrated
in Fig. 2 (right).

5) Accuracy metrics: The performance of the algorithm on the
labeled dataset is evaluated in terms of event detection performance,
as non-convulsive seizure events span multiple epochs. The event
detection accuracy is counted as follows: Every 2 minutes of cor-
rectly classified non-seizure data counts as a true negative (tn)
event. Aggregating epochs into 2-minute events simulates a realistic
scenario, where a clinician or caregiver checks whether the patient
is experiencing a non-convulsive seizure in regular intervals of 2
minutes. If a seizure is missed or detected too late (>2 minutes after
onset), the event is counted as a false negative (fn) event. A seizure
event that is detected within 2 minutes before or after the annotated
onset is counted as a true positive (tp). If the system incorrectly
detects a seizure for 20 s, it is counted as a false positive (fp) and
the detector is muted for 2 minutes, to simulate actions taken by
clinicians in case of a false positive. The muting system of 2 minutes
is designed to simulate the actions taken by clinicians against false



1932-4545 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2021.3120965, IEEE
Transactions on Biomedical Circuits and Systems

CGRA offloading

Biquad

(stage 1)

Biquad

(stage 2)

Biquad

(stage 3)

Biquad

(stage 4)

Biquad

(stage 5)

x(n) y(n)
Biquad

(stage 1)

Biquad

(stage 2)

Biquad

(stage 3)

Biquad

(stage 4)

Biquad

(stage 5)

x(n) y(n)y z

II = 4 cycles/biquad

Z
-1

Z
-1

Z
-1

Z
-1

a1a1

a2

b1

b2

b0y z

II = 4 cycles/biquad

Z
-1

Z
-1

a1

a2

b1

b2

b0y z

II = 4 cycles/biquad

Z
-1

Z
-1

a1

a2

b1

b2

b0y z

Biquad filter stage

II = 4 (cycles/Biquad)

Z
-1

Z
-1

Z
-1

Z
-1

a1a1

a2

b1

b2

b0y z

II = 4 (cycles/Biquad)

Z
-1

Z
-1

a1

a2

b1

b2

b0y z

#parallel EEG 

channels (P)

CGRA Energy breakdown

Biquad filter structure 

Fig. 3. Mapping and energy breakdown of BPF application on Blocks CGRA
(back-annotated netlist simulation at 0.7 V, 50 MHz, 25 °C).

alarms. A system that generates many false alarms could lead to alarm
fatigue for the clinicians, which can lead to dangerous situations for
the patient. Muting the system for a short duration will not affect the
normal clinical practice.

B. Energy-efficient signal processing on the BrainWave processor

The BrainWave processor (overview in Fig. 5) is based on the
open-source Pulpino micro-controller1, which consists of a single-
issue RISC-V core with DSP extensions [21], coupled with 80 kB of
tightly-coupled program (PMEM) and data memory (DMEM). The
performance of this core is comparable to the ARM Cortex-M4 core,
a popular choice for low-power embedded signal processing. For
hardware acceleration an instantiation of the Blocks CGRA [17] with
21 functional units (FUs) is chosen, which acts as a co-processor.

1) Baseline SW-only implementation and bottleneck analysis:
The complete algorithm is implemented in C and functionally veri-
fied against a high-precision Matlab reference implementation. For
efficient deployment on the BrainWave processor, the pipeline is
quantized to 16-bit fixed-point (with 32-bit intermediate results).
Commonly used complex functions such as fixed-point ln(), log2()
are implemented using a small 16-bit 32-segment piece-wise linear
approximation lookup table (≈ 60 cycles/call). Less frequently used
functions such as an integer sqrt() are implemented using iterative
approximations (≈ 57/90 cycles/call for 16/32-bit values). Table II
depicts the average run-time breakdown of the baseline implementa-
tion of the non-convulsive seizure detection algorithm on the RISC-V
processor (measured using on-chip timers). It follows that the pre-
processing and feature extraction stages (especially the non-linear
entropy and the Morphological Visibility Graph features) consume
>99% of the run-time, and are therefore primary candidates for fur-
ther optimization. To enable real-time classification on the BrainWave
processor at near-threshold operation conditions (i.e. <10 MHz) we
need to improve the throughput by >66×.

2) Kernel offloading to the Blocks CGRA: Complex EEG features
are offloaded to the Blocks CGRA, which is characterised by its grid
of programmable FUs and reconfigurable instruction/data switchbox
(SWB) network. The FU grid consists of 5 different FU types that
each support a subset of instructions to reduce the instruction width
(e.g. a Load-Store-Unit (LSU) for memory operations, a Multiplier
Unit (MUL) for multiply/shift operations). More information on the
Blocks ISA can be found in [17]. Units can share the same program
counter to operate as a very-large-instruction-word (VLIW) processor,
and SIMD-parallelism is naturally supported since instructions can

1https://github.com/pulp-platform/pulpino
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be broadcasted to multiple FUs over the reconfigurable instruction
network. The reconfigurable data network allows the CGRA to bypass
the register file, and pipeline multiple FUs together. Every LSU has
access to the shared DMEM to access the EEG data and can store
intermediate results in small 1 kB private standard-cell memories
(SCMs) for local processing (LM). A CGRA kernel is pre-loaded in
private 256-word instruction memories, and is reused by consecutive
acceleration requests to reduce reconfiguration overhead.

3) CGRA mapping example: Fig. 3 illustrates how a band-pass
filter (BPF) kernel is mapped to the CGRA. The BPF is implemented
as a cascade of Biquad sections. Each Biquad filter stage consists
of 2 parallel multiply-accumulate paths, which are mapped with an
initiation interval (II) of 4 cycles to the CGRA. During every cycle,
operations (with the same color) are mapped on FUs that share
the same instruction (fine-grained SIMD). Intermediate results are
explicitly bypassed between FUs to reduce register writes and reads.
To further reduce instruction overhead, SIMD-parallelism is exploited
by executing multiple EEG channels in parallel. From the CGRA
energy breakdown it follows that over half of the total energy is
spent in FUs, due to efficient data-movement and instruction sharing.
For reference, it should be noted that many off-the-shelf processors
typically spend less than 10% of all energy on processing [22].

C. Near-threshold operation and voltage-stacking

The BrainWave processor is designed assuming an always-on
battery-operated system. Voltage scaling to the near/sub-threshold
(Vth) region is a commonly used strategy to maximize energy-
efficiency of integrated circuits by operating at the Minimal-Energy-
Point (MEP). Unfortunately, near/sub-Vth design is challenging from
an implementation and performance perspective.

1) Design for near/sub-Vth operation: The operating voltage for
commercial (foundry-provided) high-density SRAM memories does
not scale to the near/sub-Vth region. As such, multiple external or
on-chip voltage converters are required to provide distinct voltages
for SRAM blocks and logic circuits, which greatly increases design
complexity and area overhead [23]. Additionally, achieving high
system voltage-conversion efficiency (>85%) for ULP (<1 mW)
systems is challenging [6], [15], [24]–[28]. Alternative solutions like
custom low-voltage SRAM memories come with significant design
and area overhead, and in most cases an industry standard 1.8 V
supply is still required for the chip IO-pads. In the BrainWave
processor we address these issues using voltage-stacking. Voltage-
stacking is a charge-recycling technique to eliminate the need for

https://github.com/pulp-platform/pulpino
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explicit voltage-conversion, by connecting multiple power domains
(PD) in series. The BrainWave processor is implemented in a 28-nm
FDSOI technology and can be configured to run in a 3-level voltage-
stacked mode, such that the logic is running in the near-Vth range
and the SRAM blocks are running at a higher voltage, following the
foundry-provided specification.

2) Conventional and voltage-stacked operation: The operation
principle of the conventional (flat) and voltage-stacked system is
illustrated in Fig. 4. In conventional mode multiple (external or
on-chip) voltage converters are required to supply the memory and
logic PDs. In voltage-stacked mode, a single external 1.8 V supply
voltage is used. The foundry-provided SRAMs in the memory PD
(top) operate in the range of 0.8 V to 0.9 V (Vin − Vmid), and both
logic PDs (mid and bot) operate in the voltage range of 0.4 V to
0.5 V, which is a typical range for near-threshold operation, and is
close to the MEP for our use case. To balance the intermediate top-
to-mid voltage rail, a current sink controller is used to sink excess
current from the memory domain. Similarly, the intermediate voltages
rails of the logic domains are balanced using adaptive-body-bias
(ABB) controllers. The system conversion efficiency is maximized
when the sink current equals zero, as the energy overhead of the
current sink controller and the ABB controllers is negligible. The
design and implementation of the 3-level voltage-stacked chip and
balancing circuitry was presented in K. Singh et al. [24]. In this
work we evaluate this at the system-level, thereby, for the first time,
demonstrating the energy savings of a near-threshold voltage-stacked
system on a real-world use case.

III. BRAINWAVE SYSTEM DESIGN

To design a wearable EEG monitoring system with a battery
life of >1 week, without compromising signal quality, different
components in an EEG monitoring system need to be carefully tuned.
A representative system for wearable EEG monitoring is presented in
Fig. 1. The system is divided in (analog) Front-End (FE) and (digital)
Back-End (BE). The FE is responsible for data acquisition and
analog-to-digital conversion. The BE performs the signal conditioning
and seizure classification and utilizes a wireless link to notify medical
experts or to store data in the cloud for post-analysis.

State-of-the-art ULP EEG-based seizure detection systems utilize
10–12 bit ADCs, low noise amplifiers and advanced filtering in the
Analog Front-End (AFE) to maximize battery life [9], [13], [29].
Using over-designed ADCs with higher precision than necessary
leads to up to 2 orders of magnitude more energy per sample [30].
For battery-constrained systems it is therefore critical to design the
ADC around the minimal application dynamic range requirements.
The importance of properly sizing the ADC is also illustrated in Table
III, which provides a brief overview of 3 representative EEG data
acquisition solutions. The TMSi Mobita is a medical-grade system for
wearable ambulatory EEG logging. The 24-bit ADC makes it unable
to operate >1 day on a single battery charge. When we compare
the TI ADS1299, which has comparable specifications to the TMSi
Mobita, with a power-optimized AFE with 12-bit ADC [29], the
energy consumption is tremendously reduced from 20 µJ/Sample
to 52 nJ/Sample. Another important system design decision to
further enhance the system battery lifetime is whether the seizure
detection pipeline is executed in the cloud or at the edge (on-chip).
In the former case there is no on-chip signal analysis; the raw EEG
data is transmitted to the end-point where the seizure detection is
performed. In the latter case seizure detection is performed on-chip,
and only an alarm is sent to a wireless end-point. For medical devices,
autonomous operation without depending on wireless connectivity is

TABLE III
OVERVIEW OF MEDICAL-GRADE AMBULATORY EEG DATA LOGGER AND

TWO STATE-OF-THE-ART EEG DATA ACQUISITION SOLUTIONS.

TMSi Mobita TI ADS1299 Xu et al. [29]

Solution Medical-grade General-purpose Power-optimized
EEG logger EEG AFE+ADC EEG AFE+ADC

Channels 32 8 16
ADC 24-bit Σ∆ 24-bit Σ∆ 12-bit SAR
(sample rate) (2kS/s/chn) (0.25kS/s/chn) (2kS/s/chn)
Power diss. <1.5 W 39 mW 1.7 mW

Energy/sample,
Battery life

Wireless: ≈ 8 h
Flash: ≈ 18 h

20 µJ/Sample 52 nJ/Sample

TABLE IV
WEARABLE EEG PROCESSING SYSTEM ENERGY BREAKDOWN

PER EPOCH (21 CHANNELS × 256 SAMPLES EPOCH SIZE). NUMBERS
BETWEEN PARENTHESES: ENERGY CONSUMPTION OF THE OPTIMIZED

SEIZURE DETECTION PIPELINE ON THE BRAINWAVE PROCESSOR.

BrainWave system energy (mJ/epoch)

System component Cloud processing Edge processing

AFE + 12-bit ADC [29] 0.14 0.14
RISC-V MCU [31] not used* 25.76† (0.264)
Wireless Radio - Tx [32] 2.96 ≈ 0
Data logger - SD card 0.34 0.34

Total 3.44 ≈ 26.26 (0.76)
* Energy cost of baseline seizure detection pipeline in cloud ignored.
† Energy cost of baseline seizure detection pipeline on RISC-V core.

strongly preferred from a system reliability and data security aspect.

Table IV lists an estimated energy breakdown based on a rep-
resentative system for these two operation scenarios. This sys-
tem consists of a power-optimized 12-bit EEG analog front-
end with an energy efficiency of 52 nJ/sample and a Dialog
DA14580 SoC [32] with integrated Bluetooth Low Energy (BLE)
transceiver for wireless communication. This SoC consumes approx-
imately 4.7 mA · 3 V / 128 kbit/s = 110 nJ/bit (payload) in transmis-
sion mode. The energy consumption of the baseline seizure detection
pipeline on a RISC-V micro-controller (MCU) is approximately
25.76 mJ/epoch2. Finally, for data logging we consider an external
SPI flash memory. For our application a 4 GB SD card should be able
to record the digitized EEG data up to a week. We estimate the SD
write energy consumption to be approximately 12 nJ/bit3 (assuming
typical current and latency values and power-down modes).

It can be observed that on-chip processing leads to a large reduction
in wireless traffic energy. This is in line with other works that
generally performs digital signal processing and data reduction on-
chip to minimize wireless communication [9], [13], [33]. However, if
we compare both cases in terms of energy per classification, the Table
suggests that edge processing is less attractive than cloud processing.
Also, the baseline classification pipeline (Table II) prohibits real-
time operation on the RISC-V MCU, which causes the system to
potentially miss seizure events. In the remainder of this article we will
focus on reducing the energy and throughput bottleneck in the digital
BE, and demonstrate that edge processing can greatly outperform
cloud processing. More specifically, the energy cost per epoch will be

2Based on chip measurements; Vlogic = 0.6 V, Vmem = 0.9 V,
38.6 pJ/cycle, 32 MHz, 666.85 Mcycles/epoch.

3Estimate based on ’SanDisk SD Card OEM Product Manual (April 2011)’.
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TABLE V
IMPACT OF ALGORITHMIC AND SW OPTIMIZATIONS ON AVERAGE

RUN-TIME AND MEMORY USAGE ON RISC-V PROCESSOR (N = 256).

Algorithm + optimizations Cycles (×106) Memory (B) Speedup

BPF baseline (direct-form 1) 0.084 0 1.0×
BPF cascade of Biquads 0.025 0 3.4×

VG ND baseline (Alg. 1) 26.88 0 1.0×
+ min. slope tracking [34] 1.57 0 17.1×
+ divide-and-conquer [35] stack overflow - -
+ eliminate recursion 0.30 4N 91.1×
+ limit partition stack depth 0.30 4 log2(N) 91.2×
+ eliminate divisions 0.18 4 log2(N) 156.6×

SampEn* baseline (Eqn. 3) 1.93 0 1.0×
+ fusion/symmetry opt. [36] 0.54 0 3.6×
+ early stopping [37] 0.34 4N(+4N)† 5.8×
+ inline early stopping 0.37 2N(+4N)† 5.3×
* Comparable run-time improvements were obtained for ApEn. Subvector

length m = 2 and threshold r = 0.2 · σ(~x) was used.
† Additional memory is required for ApEn calculation.

reduced from 26.26 mJ/epoch to 0.76 mJ/epoch, while executing
the application in real-time. This gives a 4.5× energy reduction
compared to the cloud solution.

IV. ALGORITHMIC AND SW OPTIMIZATIONS

In this section we detail the algorithmic optimizations that were
applied to improve the run-time and memory-efficiency of the main
bottlenecks in the non-convulsive seizure detection algorithm that was
previously introduced.

1) Band-pass filter: The baseline implementation of the 10th order
(21 taps) Butterworth filter on the RISC-V core takes approximately
16 cycles per filter tap. The coefficients require at least 24 bits of
integer precision to maintain filter stability, due to the sharp cut-
off point near 0 Hz, which results in input-coefficient products that
exceed 32-bit. As such, 64-bit multiplications and accumulations are
emulated by the 32-bit data-path of the RISC-V core, which require
2–4 instructions per operation. To optimize the run-time of this
filter, the filter was implemented using a cascade of 5 second-order
sections, which requires only 12 bits of coefficient precision. Using
this approach the throughput of the online BPF is improved by 3.4×
on the RISC-V core, as is depicted in Table V. The filter operates
in-place and does not require additional memory while processing.

2) Visibility Graph Node Degree: The baseline VG ND algorithm
for time-series is an O(N3) algorithm that counts for every sample
in an N-length vector ~x (e.g. a digitized EEG epoch) how many other
samples within the same vector satisfy the visibility condition. For
every pair of samples (i.e. (xi, xj)) it checks if no samples between
indices i and j block the visibility. This implementation is slow as
the same combinations of samples are checked multiple times (e.g.
for pairs (xi, xj) and (xi, xj+1) points between i and j are checked
twice). Since we are only interested in the ND vectors of the NVG,
HVG and DVG, we skip the explicit adjacency matrix calculations
and fuse the calculation of the ND vectors with the visibility checks
to save memory. Unlike popular signal processing kernels like FFT
and MatMul, there are no reference implementations of the VG
ND degree kernel. Therefore we have provided a description of the
considered baseline implementation in Alg. 1.

A faster approach to compute the VG of a time-series with O(N2)
time complexity was introduced in [34]. The algorithm tracks the
minimum slope and eliminates duplicate visibility checks of points
between i and j. When this approach is integrated in the VG ND

Algorithm 1 Baseline normal and horizontal visibility graph node
degree calculation for N -length input ~x. ΘN and ΘH correspond
to the node degree vectors for the normal and horizontal visibility
graphs, respectively.

1: Initialize ΘN = ΘH = {1, 2, ..., 2, 1}. . minimum visibility of
any node are his neighbours

2: for i = 0→ N − 2 do
3: for j = i+ 2→ N do
4: C = {xk | xk ≥ min(xi, xj) for i < k < j} . possible

blocks
5: if C = ∅ then . horizontal visibility
6: ΘH

i = ΘH
i + 1; ΘH

j = ΘH
j + 1

7: if ∀xk ∈ C
{
xk − xi
k − i <

xj − xi
j − i

}
then . normal

visibility
8: ΘN

i = ΘN
i + 1; ΘN

j = ΘN
j + 1

Algorithm 2 Improved Sample Entropy algorithm for N -length input
~x, sub-vector length m and threshold r with optimizations of [36],
[37] and inline early stopping.

1: Initialize similarity counters A = B = 0.
2: ind = {sort indices of X0

0 to X0
N−m+1 in ascending order}.

3: for i = ind0 → indn−m do
4: for j = indi+1 → indn−m+1 do . skip redundant checks
5: if xj > xi + r then . inline early stopping
6: break;
7: if max |Xm

i −Xm
j | ≤ r then

8: B = B + 1 . φ(m, r) = B / (N −m+ 1)

9: if j +m < N and max |Xm+1
i −Xm+1

j | ≤ r then
10: A = A+ 1 . φ(m+ 1, r) = A/ (N −m)

11: Compute SampEn(m, r) using Eqn. 3.

computation, the run-time is improved by 17.1×, on average. More
recently, a divide-and-conquer (D&C) algorithm with O(N log2N)
time complexity (on average) was proposed [35]. This algorithm
works based on the observation that all nodes to the left of the
largest node in ~x are not visible for nodes to the right and vice
versa. This principle is then recursively applied to both partitions.
We apply the proposed optimizations to the VG ND feature, and
optimize the run-time and memory-efficiency on the BrainWave
processor. A direct implementation with the slope-tracking and D&C
optimizations leads to a stack overflow on our RISC-V processor.
As such, we reduce the stack usage and call-recursion overhead
by implementing the recursive algorithm as an iterative algorithm.
Despite its more complex control flow, it turned out to be almost
4× faster (on average) compared to the O(N2) algorithm for 256-
point EEG vectors, with a break-even point around 128 samples.
To save memory the partition stack depth is limited from N to
log2(N) by prioritizing exploration of the smallest partition first.
Finally, as the iterative hardware divider on the RISC-V processor
is quite slow, thus divisions in the visibility condition are eliminated
by re-arranging, which results in a total speedup of 156.6× over the
baseline implementation with limited memory overhead.

3) Non-linear features - SampEn: The baseline implementation to
compute the SampEn feature follows from the definition. We consider
a time series with N samples: ~x = {x1, x2, ..., xN}. From this
sequence we extract N −m+ 1 partially overlapping subvectors of
length m, where Xm

i = {xi, xi+1, ..., xi+m−1}. We define Pi(m, r)
as the likelihood of any subvector to be similar to Xm

i (excluding
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Fig. 5. (a) Architecture overview of BrainWave processor with different power domains. (b) Detailed overview of instantiated CGRA. Note that the CGRA
is split between the two logic power domains to balance the activity in voltage-stacked mode. (c) Chip die photograph and test setup.

self-similarity):

Pi(m, r) = (N −m)−1
N−m+1∑
j=1, j 6=i

C(Xm
i , X

m
j ) (1)

where the similarity condition for threshold r is defined as:

C(Xm
i , X

m
j ) =

{
1, if max |Xm

i −Xm
j | ≤ r.

0, otherwise.
(2)

Sample Entropy is now computed as follows [38]:

SampEn(m, r) = lnφ(m, r)− lnφ(m+ 1, r), (3)

where φ(m, r) =

∑N−m+1
i=1 Pi(m, r)

N −m+ 1
(4)

The run-time of SampEn is determined by the number of similarity
condition checks. To reduce the execution time several basic opti-
mizations are typically used [36]. More specifically, the computation
of φ(m, r) and φ(m + 1, r) can be fused and redundant similarity
checks can be skipped due to symmetry in the distance function.
These optimizations yield a 3.6× speedup, over the baseline imple-
mentation.

A faster algorithm for SampEn (and ApEn) was proposed by Pan
et al. [37]. By performing the vector similarity check in Equation
1 in ascending order, i.e. sorted based on the first element of every
sub-vector, an early stopping rule can be constructed. The main idea
is that if we iterate j in ascending order until Xm

j becomes dissimilar
to Xm

i , then the remaining sub-vectors will also be dissimilar and can
be skipped. The number of similarity comparisons is heavily reduced
from (N−m)2/2 to c·(N−m), where c is a data-dependent constant.
Compared to the baseline, we report a speedup of 5.8×. The memory
usage of this implementation is 2N bytes to store the sorted indices
and 2N bytes to store the stopping condition for every Xm

i .
At the cost of a small performance penalty (i.e. 0.34 to

0.37 Mcycles, Table V) we can reduce the memory usage signifi-
cantly, by computing the the early-stopping condition on the fly, as
depicted in Algorithm 2. Note that this implementation can be further
accelerated by exploiting SIMD-parallelism to compute multiple
independent EEG channels in parallel, if the early stopping condition

of individual EEG channels is fused in a logical-AND tree. Since
threshold r scales with the standard-deviation of the input vector,
the early-stopping points of different input vectors are relatively
close to each other. Some preliminary experiments indicated that the
instruction energy reduction due to SIMD-parallelism is mostly offset
by the throughput penalty, which makes this parallelization strategy
only useful for throughput-constrained applications.

All discussed optimizations for SampEn were also applied to
accelerate ApEn on the RISC-V core and CGRA. ApEn is slightly
more expensive to compute, since it requires more natural logarithm
calls, but the run-time is still dominated by the number of vector
similarity checks and the sort.

V. BRAINWAVE PROCESSOR ARCHITECTURE

A. Architecture overview

An overview of the implemented BrainWave processor is depicted
in Fig. 5a. The SoC comprises a RISC-V core and CGRA and
contains 80 kB of SRAM memory to store the RISC-V core and
CGRA programs, the EEG history buffers, pre-trained classification
model and the necessary scratchpad space to perform computations. A
detailed overview of the instantiated CGRA is depicted in Fig. 5b. It
consists of 21 FUs and 11 private 256-word standard-cell instruction
memories (IM) that can be connected to one or more FUs over the
instruction network. Inputs and outputs of FUs can be interconnected
over the data network to enable spatial computing and register file
bypassing. 4 private data memories (DM) of 1 kB each are used to
facilitate energy-efficient local data movement.

B. Physical implementation

The BrainWave processor was fabricated in a Foundry 28-nm
FDSOI high-density 8-track low-Vth (LVT) standard-cell library
with Foundry 6T-SRAM memories. The three power domains can
externally be reconfigured for flat or voltage-stacked operation mode.
The level-shifters between these power domains are designed to
work in both configurations. The chip is designed to operate in
near-Vth (0.4 V–0.5 V), but can run up to 100 MHz at nominal
voltages (in flat mode). The top stack with the SRAMs operates at
0.9 V (Vtop–Vmid). The middle stack with the RISC-V core and half
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stacked mode for real-time non-convulsive seizure detection.

TABLE VI
OVERVIEW OF EVALUATED KERNELS.

Kernel Description

Band-pass filter1 5-stage Biquad band-pass filter
DWT decomposition1 full db4 wavelet decomposition
Index Sort1 mergesort that sorts array indices
Sim. checking (ApEn)1 vector comp. loop with early exit
Sim. checking (SampEn)1 vector comp. loop with early exit
NVG/HVG Node Degree1 slope-following NVG/HVG algorithm
NVG/HVG Node Degree (D&C) + D&C optimization

FFT 256-point 16-bit fixed-point DIF cFFT
MatMul 32×32 16-bit fixed-point MatMul
1 Tested on 2 channels × 256-point vector to account for parallel processing

on the CGRA.

of the CGRA, operates at 0.45 V (Vmid–Vbot). The bottom stack
contains the remaining half of the CGRA, peripherals, and IO-cell
control logic, operating at 0.45 V (Vbot). The partitioning of the logic
domains is based on a post-synthesis leakage power distribution. The
voltage-stacked system is designed such that the top domain supplies
a stable current for the logic domains to operate, as the system
cannot supply additional current (only sink excess current). The idea
is that when the logic operates in near-threshold, the constant memory
leakage current dominates the switching current, thereby becoming
easier to stabilize, The design and evaluation of the level-shifters,
current sink and adaptive body-biasing controllers is detailed in [24].

C. Measurement setup and demonstration

The chip die is packaged and put onto a test PCB. The test PCB
includes decoupling capacitors and level-shifters to connect to an
SoC-FPGA board. The SoC-FPGA board is used to program and
control the chip. The chip is programmed via a JTAG interface, and
can interface and communicate with the SoC-FPGA using the SPI and
UART interfaces. The testing and measurement setup is illustrated in
Fig. 6. The PCB contains jumpers to configure the power domains
in flat (conventional) mode or voltage-stacked mode. In flat mode
the chip requires an external clock signal and power supply which
provides Vlogic, Vmem and Vio, while in voltage-stacked mode Vtop

and two reference voltages are required to balance Vmid and Vbot

using the ABB controllers and current sink. In a future design the
clock generator and reference voltage generation circuitry should be
embedded on-chip, but for now their energy impact is ignored.

To measure the throughput and energy-efficiency of the system,
an external multi-meter monitors the power dissipation of the Vlogic

and Vmem rails in flat mode (and compensates for the system voltage
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Fig. 7. Seizure detection performance (with standard error) for different EEG
quantization levels (using a high-precision pre-trained classification model).

TABLE VII
SEIZURE DETECTION PERFORMANCE AFTER QUANTIZATION OF FEATURE

EXTRACTION STAGE (QUANTIZED) AND THE CLASSIFICATION AND
POST-PROCESSING STAGES (EMBEDDED).

Version Accuracy Sensitivity Specificity Precision

Baseline (float32) 94% 91% 94% 50%
Quantized1 95% 85% 96% 53%
Embedded1,2 94% 87% 95% 54%

1 Feature extraction mapped onto 32-bit integer data path.
2 Classification and post-processing mapped onto 32-bit integer data path.

conversion losses, as indicated in Fig. 4). The execution time of
applications and kernels is measured using on-chip timers. In voltage-
stacked mode the total system power dissipation of the Vin voltage
rail is monitored, as well as the power dissipation of the memory and
logic rails (Vtop and Vmid). Table VI provides a brief summary of
the evaluated kernels on the CGRA. Most of these kernels were used
in the seizure detection application. A fixed-point FFT and MatMul
kernel were added to showcase the CGRA flexibility and allow for
easier comparison with other works.

We have implemented the complete non-convulsive seizure de-
tection on the BrainWave processor. The seizure detection accuracy
on the full dataset is evaluated off-line. The functional equivalence
between the off-line fixed-point C-implementation and the real-
time implementation that runs on the BrainWave processor was
manually verified over 100 epochs. The implementation of this
algorithm requires approximately 20 kB of data memory (11 kB for
the EEG history buffers (2.56 s× 21 channels× 2 B/sample), 1 kB
for the Hanning window, 3 kB for the BPF delay lines, 5 kB for
the RUSBoost classifier model, 2 kB is reserved for the stack, and
approximately 10 kB for auxiliary scratchpad memory. The RISC-V
application requires approximately 24 kB of instruction memory. If
we use the CGRA for offloading, an additional 16 kB is required to
store the CGRA kernels.

A patient-specific classification model is trained and evaluated
using a leave-one-subject-out cross-validation approach [5]. We split
the EEG data chronologically, with the first 25% of the left-out
subject being used to calibrate the patient-specific threshold, and the
final 75% being used as a test set for evaluation of the algorithm
accuracy. The test sets include 164 out of the 316 seizure events that
were present in the complete dataset. Given the test set true/false
positive/negative detections, we report the average event detection
accuracy on the test set of all subjects in terms of Accuracy, calculated
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TABLE VIII
BLOCKS CGRA PERFORMANCE EVALUATION ON KERNELS FROM TABLE VI (Vlogic = 0.7 V, Vmem = 0.95 V, 50 MHz).

Execute on CGRA Execute on RISC-V core

Kernel #instr Ops Cycles FUs active Utilization1 Energy (µJ) Cycles Energy (µJ)

Band-pass filter 34634 66756 9221 19/21 38% 0.61 49276 2.18
DWT decomposition 31736 49654 7671 19/21 34% 0.36 46605 2.20
Index Sort 93340 166165 26443 16/21 32% 0.95 114982 5.03
Similarity checking (ApEn)2 845325 1500970 162106 16/21 42% 6.68 702015 30.32
Similarity checking (SampEn)2 556882 946121 104438 16/21 41% 4.65 622805 27.12
NVG/HVG Node Degree 1532324 2994316 297915 18/21 48% 16.59 1357594 59.49
NVG/HVG Node Degree (D&C)2 608121 660603 164957 11/21 19% 5.84 355696 15.71
FFT 29220 46318 9014 17/21 28% 0.38 30943 1.46
MatMul 64872 131018 23576 16/21 34% 1.43 133193 6.10

1 Utilization = Ops / (FUs · Cycles). FUs = 21 for the instantiated CGRA.
2 Considering an input data vector that is close the the average run-time (as depicted in Table IX).

TABLE IX
AVERAGE APPLICATION RUN-TIME (IN CYCLES ×106) BREAKDOWN ON

THE BRAINWAVE PROCESSOR.

Baseline Optimized

Stage SW-only SW-only SW+CGRA

Band-pass filter 0.89 0.26 0.05

Non-linear features1 40.61 7.80 1.54
Index sort 0.00 1.22 0.29
Similarity checking (SampEn) 40.60 6.58 1.25
Feature calculation 0.01 0.01 <0.01

Morphological features1 624.05 28.35 7.22
NVG/HVG Node Degree 506.05 3.28 1.61
Index sort2 0.00 3.74 0.87
Similarity checking (ApEn)2 115.92 19.24 4.51
Feature calculation2 2.09 2.09 0.23

Time-Frequency features 0.52 0.52 0.09
DWT decomposition 0.49 0.49 0.08
Feature calculation 0.03 0.03 0.01

Remaining stages (Table II) 0.78 0.81 0.57

Total (Speedup) 666.85
(1×)

37.74
(17.7×)

9.48
(70.34×)

1 Subvector length m = 2 and threshold r = 0.2 · σ(~x) was used.
2 Executed for NVG/HVG/DVG Node Degree vectors (3× per channel).

as (tp+ tn)/(tp+ tn+ fp+ fn), Sensitivity (Recall), calculated as
tp/(tp+fn), Specificity, calculated as tn/(tn+fn), and Precision,
calculated as tp/(tp+ fp).

VI. SYSTEM MEASUREMENTS AND EVALUATION

A. EEG data precision and seizure detection accuracy

The average high-precision baseline performance of the NCSE
seizure event detection algorithm on the test set of all 10 patients
is summarized in Table VII. On average the baseline implementation
is able to detect 91% of all seizures with an average precision of
50% which is comparable to the previously published results in [5].

To ensure that that the system in Section III is representative for
our task, we have investigated the algorithm accuracy degradation
when the dynamic range of the EEG data is reduced. It follows
from the results in Fig. 7 that the dataset can be quantized down
to 12 bits without a significant performance degradation. Below
12-bit quantization, the system starts to miss many seizure events,
which is not acceptable. These results are in line with state-of-the-art

Avg: 103 µA

Avg: 126 µA

BrainWave

processorGet next EEG 
epoch (SPI)

Print results 
(UART)

RISC-V core active (30.49%)

Blocks CGRA active (92.44%)

Seizure detection latency: 
1.19s @ 8MHz (9.5Mcycles)

Fig. 8. Measured current (top) and processor activity (bottom) in voltage-
stacked mode when running the seizure detection application on the Brain-
Wave processor (SW+CGRA, Vtop = 1.77 V, Vmid = 0.92 V, Vbot = 0.46 V).

EEG-based seizure detection systems [9], [13], [29], which typically
consider 10 to 12 bits of dynamic range sufficient.

To enable deployment on the BrainWave processor, the classifier
and post-processing stage were trained using a quantized fixed-point
feature extraction stage. After training, the resulting classification
model and patient-specific thresholds were quantized as well to
have an end-to-end quantized NCSE seizure detector. The resulting
accuracy is depicted in Table VII.

In general, the performance of the embedded algorithm is very
similar to the high-precision reference. On average, the embedded
version is able to detect 87% of all seizures with an average precision
of 54%.

B. Kernel-level speedup and energy savings using the CGRA

We measure the speedup and energy-efficiency improvements when
offloading the complex EEG kernels to the Blocks CGRA. To get
a stable measurement for these individual kernels we continuously
execute the kernel. All CGRA programs were manually converted
from C to assembly code, as a compiler is currently not available.

It follows from the results in Table VIII that using the Blocks
CGRA for kernel off-loading leads to a speedup of 2.2–6.1× (4.7×
on average) and energy savings of 2.7–6.1× (4.4× on average),
compared to highly tuned implementations on the RISC-V core
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Fig. 9. Measured energy per epoch versus maximum clock frequency
for different configurations when running the optimized seizure detection
application on the BrainWave processor.

[21]. A large fraction of the speedup can be attributed to parallel
processing. While the RISC-V core executes close to 1 instruction per
cycle (IPC), the CGRA mappings have an IPC between 4–10 (7 on
average). As a consequence, the CGRA utilization ranges from 19%
to 42% (35% on average), which is competitive with other CGRAs,
as was recently reviewed in [39].

The CGRA code was written such that most mappings can cal-
culate features for 2 EEG channels in parallel, thereby exploiting
SIMD-parallelism, which shows from the ratio between FU oper-
ations and instructions. Most kernels are able to use most of the
available FUs. One exception is the D&C algorithm for VG Node
Degree calculation, which has data-dependent branches that cannot
be parallelized in a meaningful way, and does not have enough
instruction-level parallelism to utilize all units. However, it is still
faster and more energy-efficient than the slope-following algorithm.
Therefore we consider it for our performance evaluation.

In general the results indicate that the Blocks CGRA is a suitable
platform for acceleration of a wide variety of signal processing and
EEG processing features. A future version of the Blocks CGRA will
be able to exploit more parallelism by utilizing multi-processing for
data-dependent features, consist of a larger CGRA fabric with more
FUs to support wider SIMD-processing, and will be able to disable
unused units completely to minimize leakage.

C. Application-level speedup and energy savings

1) Real-time embedded seizure detection: A detailed run-time
breakdown which shows the throughput improvements of the algo-
rithmic optimizations and CGRA off-loading is depicted in Table
IX. Using the algorithmic optimizations that were presented in
Section IV leads to baseline throughput improvements of 17.7×,
without compromising on seizure detection accuracy. Compared to
the optimized SW-only version, the active time of the RISC-V
core is reduced by approximately 92.25% by off-loading work to
the CGRA (SW+CGRA version). To further optimize the seizure
detection latency, the RISC-V core operates in parallel with the
CGRA. This reduction in run-time through latency hiding is visible
in Table IX for the ’Feature calculation’ and ’Remaining stages’
stages, which are performed on the RISC-V core. In this way 73.75%
of the remaining cycles on the RISC-V core can be hidden by
means of parallel processing. Also CGRA reconfiguration overhead
(approximately 1.89% of the epoch time) can be hidden.
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Fig. 10. Measured energy per cycle and maximum clock frequency versus
logic voltage when running the optimized seizure detection application on
the BrainWave processor (SW+CGRA) in flat mode. The shown power and
energy numbers between brackets is without conversion losses.

By off-loading computationally intensive parts of the pipeline to
the CGRA, an additional 3.98× speedup is obtained. This is expected,
given that the primary bottleneck kernels have slightly more than 4×
speedup on the CGRA (see Table VIII). These efforts result in a final
speedup of 70.34× from the initial baseline SW-only implementation.
For real-time operation of the algorithm a minimum clock rate of
37.74 Mcycles / 1.28 s = 29.48 MHz and 7.41 MHz are required,
for the optimized SW-only and SW+CGRA versions, respectively.

The measured run-time behavior of the SW+CGRA version is
depicted in Fig. 8 (bottom). Two GPIO pins were toggled when the
RISC-V core and CGRA were active. To ensure correctness, results
are printed over UART after every epoch, which causes some delay
that will not be present in a real system. It follows that the total active
time of the RISC-V core and the CGRA is approximately 30.49%
and 92.44% of the epoch time, respectively. Idle components are
explicitly clock-gated to save dynamic power.

2) Near-threshold operation and voltage-stacking: We execute
the seizure detection application on the BrainWave processor and
measured the average power dissipation over several epochs (i.e.
the total current supplied to Vlogic and Vmem), as depicted in Fig.
8. We sweep the logic voltage from 0.4 V to 0.9 V and find the
maximum operation frequency while the application is still operating
correctly (i.e. EEG data is correctly sampled over QSPI interface
and feature values and classifier output match reference). Since the
system is designed for near-threshold operation, the system frequency
is constrained by the logic, as the voltage of the SRAMs can only
be scaled down to 0.8 V.

Fig. 10 shows the measured energy per cycle and clock frequency
in flat mode. It follows from the figure that the MEP is at 0.5 V
and corresponds to 20.7 pJ/cycle before or 34.6 pJ/cycle after
taking conversion losses into account (computed as in Fig. 3a).
Compared to the highlighted nominal operation point (Vlogic = 0.7 V,
Vmem = 0.95 V), an energy per cycle improvement of 35% is ob-
served before, and 27% after conversion losses were taken into
account. These numbers indicate that a significant fraction of the
energy is spent in the SRAM memories and that voltage-conversion
overhead reduces the energy-efficiency significantly, as can be seen
from the relative difference between the sum of Plogic and Pmem

over the total system power Ptotal (excluding IO).
We further investigate the energy impact of the considered archi-

tectural and circuit-level optimizations. Fig. 9 shows the measured
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TABLE X
OVERVIEW OF STATE-OF-THE-ART PROGRAMMABLE ULP BIO-MEDICAL/IOT PROCESSORS AND SYSTEMS.

Metric This work ULP-SRP [15], [25] PULPv1 [12], [40] Blackghost [26] S. Song et al. [28] Catena [27]

Year 2021 2013 2016 2018 2019 2020
Technology 28-nm FDSOI 40-nm LP 28-nm FDSOI 28-nm FDSOI 55-nm LP 65-nm LP
Chip area 1.21 mm2 6 mm2 3 mm2 9 mm2 18.49 mm2 6.5 mm2

SoC arch. RISC-V MCU +
CGRA

VLIW MCU +
CGRA

4-core RISC-V
MCU

ARM M0 MCU +
DSP + Vision acc.

ARM M4F MCU +
FFT/MP/SRC acc.

16-core spatial
processor

On-chip SRAM 80kB (foundry 6T) 512 kB (foundry 6T) 36 kB 320 kB (custom 8T) 192 kB 16 kB (custom 6T)
Algorithms Non-convulsive

seizure detection
Heart-beat
detection

Convulsive
seizure detection

Face recognition
application

E-health monitoring
application

Fixed-point MatMul
micro-benchmark

Voltages logic: 0.46 V,
memory: 0.85 V

logic: 0.5 V,
memory: 0.7 V

logic: 0.5 V,
memory: -

logic: 0.55 V,
memory: 0.7 V

logic: 0.8 V,
memory: 1.2 V

logic: 0.54 V,
memory: 0.77 V

Frequency 8 MHz 7 MHz 6.4 MHz 50 MHz 10 MHz 1.56 MHz
Power diss. 223 µW 213.1 µW 419 µW† 4 mW 331 µW†§ 356.8 µW†

Energy/cycle 27.9 pJ 30.4 pJ 65.5 pJ† 80 pJ 33.1 pJ†§ 228 pJ†

System efficiency 90.6% 70–86 % N/A 70 % 80 % N/A

FFT throughput 26 MOPS @ 5 MHz 33 MOPS 25 MOPS‡ 800 MOPS* N/A 7.8 MOPS @ 1 MHz
FFT efficiency 164.9MOPS/mW 59.4 MOPS/mW 60 MOPS/mW‡ 200 MOPS/mW* N/A 46.2 MOPS/mW†

Energy/FFT 0.28 µJ 0.66 µJ N/A N/A N/A 2.31 µJ†

† Power dissipation and energy per cycle is excluding voltage-conversion losses.
§ Power dissipation and energy per cycle is excluding AFE, BLE radio and PLL power contribution (only processor, accelerators and memory).
* Throughput and efficiency calculated using best-case DSP throughput of 16 operations per cycle (and 4 mW @ 50 MHz).
‡ Throughput and efficiency values taken from [40] while executing MatMul benchmark on all 4 cores, excluding voltage-conversion losses (optimistic estimate).

TABLE XI
SUMMARY OF SYSTEM-LEVEL ENERGY SAVINGS BASED ON BRAINWAVE

PROCESSOR CHIP MEASUREMENTS.

Version Energy per epoch Energy savings

Baseline - SW-only1 (Section III) 25.76 mJ -
+ SW optimizations 1441 µJ 94.4% (1×)
+ CGRA acceleration 387 µJ 73.1% (3.7×)
+ Near-threshold operation 328 µJ 15.2% (4.4×)
+ Voltage-stacking 264 µJ 19.5% (5.4×)
1 This version cannot run in real-time on the BrainWave processor.

energy per epoch while running the seizure detection application. The
optimized SW-only version requires at least 29.48 MHz to operate
in real-time and can therefore not run at the MEP. Off-loading
work to the CGRA improves the average energy per epoch from
1441 µJ to 387 µJ. The speedup that the CGRA provides allows
us to operate at the MEP, thereby lowering the energy per epoch
further to 328 µJ. When the BrainWave processor is configured in
voltage-stacked mode, its average energy per epoch is reduced to
264 µJ at the MEP of 27.9 pJ/cycle, 8 MHz. In this operating
condition the BrainWave processor obtains a state-of-the-art system
efficiency of (95 µW + 107 µW) / 223 µW = 90.6%, while executing
the seizure detection application in real-time. For completeness, the
corresponding current measurements are also depicted in Fig. 8.

Finally, Table XI summarizes the energy reduction of the individual
optimizations. The software optimizations on the RISC-V processor
resulted in a 17.7× speedup compared to the baseline SW-only
implementation, which translates in an energy-reduction of 94.4%.
This result stresses the importance of multi-level optimization, as
the algorithmic optimizations have a tremendous impact on energy
consumption. The use of the Blocks CGRA for energy-efficient of-
floading improves the efficiency by another 73.2% at the application-
level, primarily caused by the reduction in instruction overhead,
SIMD-processing and explicit register file bypassing. This result
indicates that the Blocks CGRA is an effective solution for bio-
medical signal processing, due to its ability to execute a wide diversity
of workloads efficiently Using the CGRA leads to an 3.98× speedup
which allows for voltage-frequency scaling of the logic from 0.7 V

to 0.5 V, which saves another 15.2%. Finally, voltage-stacking is
exploited to minimize voltage-conversion overhead, resulting in an
additional 19.5% savings at the system level.

D. System-level evaluation

In the wearable EEG processing system that was presented in
Section III, the digital signal processing was a significant energy
bottleneck. We have performed a multi-level energy optimization at
the system-level, algorithm-level, architecture-level and circuit-level.
As such, the measured real-time seizure detection energy of the Brain-
Wave processor is reduced from 25.76 mJ/epoch to 264 µJ/epoch,
without compromising on seizure detection accuracy. Compared to
the baseline SW-only edge processing case in Table IV, the system-
level energy is reduced from approximately 26.26 mJ/epoch to
0.76 mJ/epoch, a 35× energy reduction. Compared to the cloud
processing case, which consumed approximately 3.44 mJ/epoch, a
4.5× energy reduction is obtained at the system-level. Using a typical
R2032 coin-cell battery with a capacity of 600 mWh, the BrainWave
system could potentially perform real-time non-convulsive seizure
detection and data logging on 21 EEG channels for up to 6 weeks
on a single charge.

VII. COMPARISON WITH PRIOR ART

Many integrated systems towards wearable automated detection
of epileptic seizures have been proposed over the last decade. [41]
provides a recent overview. Most works focus on the optimization of
traditional algorithms for detection of convulsive epileptic seizures,
based on spectral, time-frequency and entropy features [6]–[10],
[12], [13]. Systems optimized for non-convulsive seizure detection
require more computationally demanding algorithms [5], [14]. The
differences in applications prohibit a fair comparison in terms of
seizure detection accuracy and energy per classification.

In contrast to prior EEG monitoring systems, we keep our system
flexible with a programmable CGRA accelerator to account for future
algorithmic improvements. To the best of our knowledge, we are
the first to present accuracy and energy numbers for a real-time
and embedded implementation of a non-convulsive epileptic seizure
detection algorithm. On average the algorithm is able to detect 87%
of all seizures in the test set, with an average precision of 54%..
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Table X provides an overview of recent state-of-the-art works. For
a fair comparison we consider programmable ULP processors and
systems with support for energy-efficient signal processing in the bio-
medical/IoT domain. We compare the systems in terms of system
efficiency and energy-efficiency on a common FFT benchmark. In
contrast to the works in the Table, the current BrainWave processor is
not optimized for duty-cycling. The focus of this work was on energy-
efficient 24/7 EEG monitoring, which requires always-on processing.

Having an integrated power delivery solution with multiple volt-
ages for logic, memory, and IO pins comes with a large area penalty
and significant voltage-conversion losses. A state-of-the-art work
obtains 85 % system efficiency using on-chip voltage-converters with
36 % area overhead on a MatMul micro-benchmark [23]. However,
for more dynamic real-world use cases, a system efficiency of 80 % is
already challenging, as follows from the table. We measure a state-
of-the-art average system efficiency and 90.6 % at 223 µW, while
executing the seizure detection application, as depicted in Fig. 8.

In terms energy-efficiency, our system is competitive on a repre-
sentative 256-point 16-bit fixed-point FFT benchmark, compared to
[15], [25], [27]. We report the efficiency in MOPS/mW (Million
Operations Per Second per MilliWatt). At the MEP, the FFT bench-
mark runs at 26 MOPS (RISC-like operations) on the Blocks CGRA,
which is approximately 25 % of its peak throughput. The authors
of [26] report a higher energy-efficiency, but only report the power
consumption while executing an FFT benchmark. As such, the table
lists the theoretical peak energy-efficiency while assuming 100 %
DSP utilization. We expect the actual utilization to be somewhere
in the range of 25 %–50 %. [12], [40] presents energy numbers of a
real-time convulsive seizure detection algorithm that is mapped onto
a 4-core MCU. Overall, we can conclude that the combination of a
CGRA with near-threshold computing and voltage-stacking leads to
a competitive system for ULP bio-medical signal processing.

VIII. CONCLUSIONS

Ambulatory or remote health monitoring of common chronic
diseases demands an energy-efficient and programmable processing
platform, capable of real-time monitoring in a tiny power budget of
<1 mW. In this work we have provided the first systematic evaluation
and optimization of a complex non-convulsive seizure detection
algorithm, running in real-time with only 80 kB of Foundry-provided
on-chip memory on the BrainWave processor, while maintaining an
average 90.6 % system voltage-conversion efficiency. A total of 9
complex kernels were benchmarked on the CGRA, resulting in an
average 4.7× speedup and average 4.4× energy savings over highly
tuned SW-only implementations, demonstrating the Blocks CGRA to
be both flexible and energy-efficient. At the system-level a 73.1 %
energy reduction was achieved by utilizing the Blocks CGRA, 15.2 %
by operating in the near-Vth region, and up to 19.5 % by exploiting
charge recycling using a 3-level voltage-stacked configuration. This
results in a total energy reduction of 5.4× over a highly tuned
SW-only implementation. The system presented in this work opens
opportunities for future development of battery-operated wearable
monitoring systems and algorithms for emerging applications, such as
non-convulsive epileptic seizure detection and PD Freezing-of-Gait
prediction.
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