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Summary

Until automated driving systems are capable of performing all driving 

tasks under all road conditions, drivers will have to take over control 

when the automation fails or reaches its operational limits. This thesis 

tackles challenging Human Factors issues related to control transitions to 

manual, particularly in automated truck platooning scenarios. The research 

findings contribute to a better understanding of driver take-over process 

and the variability between and within drivers.
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1. Introduction 

1.1 General introduction and problem statement 

Motor vehicles radically changed the way we live and work, ever since its introduction 130 

years ago. Although they have often been a symbol of independence and freedom (Steg, 2005), 

times are changing and the negative impacts are getting more and more attention, such as road 

accidents, traffic congestion, and pollutant emissions. According to the World Health 

Organization (2018), every year more than 1.3 million people worldwide are killed, and up to 

50 million are injured in road traffic crashes. The National Highway Traffic Safety 

Administration (NHTSA) estimates that “dangerous choices or errors people made behind the 

wheel” contribute to more than 90% of serious crashes, which can be caused by various human-

related factors such as intentional violations, attention lapses, distraction, fatigue, and alcohol 

use. Automated driving technology has great potential to fundamentally solve road traffic issues 

and improve our quality of life (Fragnant & Kockelman, 2015; Kyriakidis et al., 2019). By 

assisting or replacing human operation in normal and critical driving tasks, serious crashes that 

are dominantly caused by human errors are assumed to be largely reduced. If connected and 

coordinated through advanced communication systems in the form of a platoon, automated 

vehicles are able to travel safely even with much smaller headways, which can largely increase 

road capacity, improve traffic flow efficiency, and reduce energy consumption (Coppola & 

Silvestri, 2019; Rios-Torres & Malikopoulos; 2017, Shladover, 2018; Talebpour & 

Mahmassani, 2016).  

Decades of effort and technology advancement seem to bring automated vehicles from science 

fiction fantasy closer to reality, but a long and windy road is still ahead to the realization of full 

automation where no human intervention would be needed in any road situation. Safe human-

system interactions, particularly at transitions of control to the driver when the system cannot 

cope with the current driving situation, pose key challenges for a successful deployment of 

automated intelligent systems at different stages of development. When the system is less 

capable and reliable, the driver has to closely monitor the system and take over imminent 

manual control when necessary. This challenges humans’ inherent weak point of staying 

vigilant over a prolonged period of time (Mackworth, 1948; Davies & Parasuraman, 1982; 
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Parasuraman 1987), and drivers’ capability to respond adequately within a short time budget 

(Banks, Eriksson, O'Donoghue, & Stanton, 2018; Casner, Hutchins, & Norman, 2016). When 

the technology becomes more mature, the system is supposed to largely replace human 

operation in most situations. However, even in these cases, driver interventions due to system 

limitations or failures, or the exceedance of the system’s operational limits are still needed. A 

main challenge at this stage is how drivers respond in these conditions and how they can be 

supported in taking back control in a safe and smooth manner.  

Since the past decade, an increasing number of studies have addressed human factors issues 

related to control transitions (for an overview, see Lu, Happee, Cabrall, Kyriakidis, & De 

Winter, 2016 and Kyriakidis et al., 2019), and suggest that multiple factors related to the driver, 

the automation system, and the situation potentially influence driver readiness to take back 

control. This means that no single criterion for an optimal take-over time budget exists today 

that fits all drivers in all situations, and design solutions are called for to support individual 

drivers in taking over control. To achieve this goal, a good understanding of driver take-over 

process and the variability between and within drivers is needed, which requires further efforts 

because the large majority of studies merely focus on mean take-over response times measured 

in stand-alone automated car scenarios. This thesis tackles the issues stated above and 

investigates driver behaviour and performance at control transitions and the variability, 

particularly in automated platooning scenarios. The aim is to contribute to designing safe and 

comfortable control transitions to manual. 

The following part of this chapter first provides a state of the art on development of automated 

driving (Section 1.2), then introduces levels of driving automation and related human factors 

challenges (Section 1.3), followed by fundamental knowledge on transitions of control, driver 

take-over process, and driver take-over performance (Section 1.4). In Section 1.5, the research 

objectives and research questions are formulated and explained. The overall structure of the 

thesis is outlined in Section 1.6. 

1.2 Development of automated driving 

Even long before the wish to solve traffic safety issues by means of automated vehicles, people 

started to dream of cars driving by themselves. One very early prototype of “driverless” cars 

dates back to mid-1920s when Houdina Radio Control demonstrated “American Wonder” in 

New York – a 1926 Chandler controlled by the following car via radio impulses (Time 

Magazine, 1925). At the 1939 World’s Fair in New York, General Motors sponsored the 

“Futurama” exhibit to envision American lifestyle 20 years in the future. The highlight was an 

infrastructure system that could guide radio-controlled cars through electromagnetic fields 

embedded within the roadways, which was generally seen as the first proposal of an automated 

highway system in the world. In the late 1950s, General Motor together with the Radio 

Corporation of America (RCA) brought this idea to life and demonstrated a full-size electric 

guide-wire system on a test track that enabled automated lateral and longitudinal control of 

vehicles. Research and development that revolved around this concept continued for another 

20-30 years in the United States, UK, Germany, and Japan. 

From the 1980s, the rapid advances in electronics, computers, communications, controls, and 

sensor technologies started to shape modern automated driving systems that operate mainly 

based on onboard sensors and control units without dedicated infrastructure support (also 

known as stand-alone automation systems). In the early 1980s, Ernst Dickmanns and his team 

at Bundeswehr University Munich developed the first automated vehicle of this type: a 

Mercedes van incorporating a vision-based system that was capable of detecting road markings 
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and controlling steering wheel, throttle, and brakes of the van based on real-time evaluation of 

image sequence. In successive years, various projects tackling technological challenges in 

automated driving and practical road traffic problems were launched worldwide, including the 

EUREKA Prometheus project of the European Union (Williams and Preston, 1987), the 

DARPA Autonomous Land Vehicle (ALV) project in the United States (Schefter, 1985), and 

the Super-Smart Vehicle Systems program in Japan (Tsugawa, 1991). These intensive research 

and development efforts largely increased the capability and efficiency of vehicle automation, 

as evidenced by a series of successful demonstrations and challenges conducted during the 

1990s and 2000s, such as DARPA Grand Challenges (Buehler, Iagnemma, & Singh, 2007) and 

the Urban Challenge (Buehler, Iagnemma, & Singh, 2009).  

In the late 2000s and the early 2010s, Google and many major automotive manufacturers 

initiated commercial research on automated driving systems and began various testing on public 

roads. Meanwhile, several core advanced driver assistance systems (ADAS) such as adaptive 

cruise control (ACC) and lane keeping assist systems (LKAS) were gradually introduced to the 

market. Driving automation began to receive considerable attention in mass media, raising 

increasing interest in publicity and industry. In 2015, Tesla became one of the first car 

manufacturers to release partial automated driving features (Autopilot) to its customers, 

followed by other major automakers including BMW, Mercedes Benz, Audi, and VOLVO. 

Incorporating multiple advanced sensors (e.g., stereo camera, radar, and ultrasonic sensor) and 

enhanced processing capabilities, these commercialized automation systems are able to conduct 

longitudinal and lateral control of the vehicle in simple traffic situations under non-adverse 

weather conditions. Despite the image that is being presented by some users, industry or the 

media, the driver of these commercially available vehicles has to constantly monitor the driving 

environment and be prepared to take immediate control when necessary since its functioning is 

not reliable yet. Around 2015, at the time of the introduction of Autopilot by Tesla, the concept 

of automated driving reached its peak in expectation in the Hype Cycle (Figure 1.1 Left), 

implying an expected mainstream adoption within 5 to 10 years  

As more time passed, the high expectations have diminished to a more realistic level in 2019 

(Figure 1.1 Right), due to increasing real-world experience with automated driving technology 

and a better understanding of its capabilities and limitations (for an overview of expert opinions, 

see Bazilinskyy, Kyriakidis, Dodou, & De Winter, 2019). For example, it is now more widely 

recognized that currently, commercially available automation systems requiring constant driver 

supervision involve safety risks (for an overview of expert opinions, see Kyriakidis et al., 2019), 

as evidenced by a number of fatalities involving Autopilot that occurred in recent years (Mider, 

2019). Also in the Netherlands, the Dutch Safety Board has identified a number of new road 

safety risks associated with current commercially available vehicles with automated functions 

(Dutch Safety Board, 2019). 
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Figure 1.1: Gartner Hype Cycle for Emerging Technologies illustrated for the year 2015 

(Left) and 2019 (Right). The red circles highlight the position of automated driving 

technology. 

In parallel with the development of stand-alone automated vehicles, extensive research on 

connected automated vehicles began in the late 1980s with the California PATH (Partners for 

Advanced Transportation Technology) program. The core concept is to operate vehicles in 

platoons, in which virtually connected vehicles travel closely together as one cooperative 

system, with its primary goal to maximize highway capacity, energy efficiency, and safety 

(Shladover, 2006). The early research of PATH focused on passenger cars platoons, revolving 

around the idea that all vehicles (including the platoon leader) would be fully automated on 

dedicated lanes to eliminate negative impact caused by human error. Since the late 1990s, 

research and development interest has shifted towards platooning of heavy-duty trucks, largely 

driven by the fuel economy in freight transportation (Tsugawa, 2013). Advanced longitudinal 

control functionalities that combine onboard sensors and vehicle-to-vehicle (V2V) 

communication, such as cooperative adaptive cruise control (CACC), have also become 

subjects of intensive research to achieve more flexible and reliable platooning systems. 

Although platooning has not yet been deployed in commercial use, current efforts are made 

towards operating truck platooning in real life cases and implementation of multi-brand 

platooning (e.g., ENSEMBLE, see Willemsen et al., 2018). A milestone is the European Truck 

Platooning Challenge initiated by the Dutch EU Presidency, in which six European truck 

manufactures brought truck platoons onto public roads for the first time, travelling from various 

European cities to the final destination of the port of Rotterdam in the Netherlands in April 

2016. Due to safety concern and legal issues, the trucks participating in the challenge only 

performed automated longitudinal control, despite the capability of automated steering as 

demonstrated on test tracks, leaving an important role for the human in the platooning scenarios. 

1.3 Levels of driving automation and human factors issues 

It can be seen that automated vehicles of various forms are merging into our roadways more or 

less along an evolutionary path. As the capability of a driving automation system increases, a 

wider range of driving tasks could be carried out by the system, leading to a reduction in human 

engagement and a change in the role of the human driver. It is highly important to provide 

common classifications that facilitate the exchange of knowledge across domains, and to avoid 

confusion and imprecisions when describing system functionalities and limitations (Shladover, 

2018).  
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Michon’s (1985) hierarchical structure is typically referenced to categorize manual driving 

tasks, which comprises three levels. The lowest level (operational level) concerns longitudinal 

and lateral motion control to maintain the vehicle’s lane position in traffic, which are normally 

carried out with little cognitive effort. At the intermediate level (tactical level), driving 

manoeuvres are planned and executed based on the pre-defined goals and in response to the 

objects and events in the driving environment, which normally requires greater mental efforts, 

and more elaborate physical movement. Examples of such manoeuvres are a lane change, 

obstacle avoidance, and overtaking. At the highest level (strategical level), the general planning 

of a trip is conducted, including scheduling of the trip and selection of destinations and routes. 

At the current stage, automated vehicles are mainly expected to carry over driving tasks at the 

operational and the tactical levels, which are often referred to as dynamic driving tasks (SAE, 

2018; Merat et al., 2019).  

The German Federal Highway Research Institute (BASt; Gasser & Westhoff, 2012), the United 

States National Highway Traffic Safety Administration (NHTSA, 2013), and the Society of 

Automotive Engineers (SAE, 2018) have each developed a taxonomy of levels of driving 

automation. Despite differences in definitions and terminologies, the three taxonomies share 

similar criteria to categorize the automated driving systems, mainly based on how primary 

dynamic driving tasks (i.e., longitudinal and lateral vehicle motion control, and monitoring of 

the driving environment) are distributed between the human driver and the automation system 

(Lu et al., 2016). Because the SAE taxonomy provides relatively more precise definitions and 

is the most-cited reference for automated-vehicle capabilities in both industry and academic 

research (Shuttleworth, 2019), it is adopted in this thesis and is explained below (according to 

the latest version released in 2018).  

As depicted in Table 1.1, six levels of driving automation are defined by SAE (2018), ranging 

from SAE L0 (no driving automation) to SAE L5 (full driving automation). Differences 

between levels are primarily determined by means of who is performing the dynamic driving 

task, who is the fallback-ready agent (i.e., who performs the dynamic driving tasks in case of 

system failures), the limit of the operational design domain (ODD, the specific conditions under 

which the system is supposed to function), and the role that is required of the driver in that 

specific level.  

SAE L0 is equivalent to manual driving, which means that the driver executes all dynamic 

driving tasks, possibly assisted by lower levels of ADAS that provide warnings or momentary 

assistance (e.g., emergency braking assistance).  

In SAE L1 (Driver assistance), the driving automation system executes either longitudinal or 

lateral control of the vehicle, while the driver performs the remaining dynamic driving tasks. 

Examples of such systems are the Adaptive Cruise Control (ACC) or Lane-Keeping System 

(LKS).  

In SAE L2 (Partial driving automation), vehicle motion control in both dimensions are executed 

by the system (e.g., combining ACC and LKS), but the driver is required to constantly monitor 

the driving environment and supervise the system, and intervene as necessary to maintain safe 

operation of the vehicle even without notification. From this level on (L3 and higher), the 

human driver’s role as an active operator is fundamentally changed. 

In SAE L3 (Conditional driving automation) and L4 (High driving automation), the system 

performs all dynamic driving tasks within the limit of the ODD, so the driver does not need to 

permanently monitoring the driving environment and is allowed to engage in non-driving tasks. 

This is the level where automated driving becomes interesting for users, since they can make 
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better use of travel time for work and relaxation. A SAE L3 system expects the driver to 

intervene in case the system approaches the limits of its ODD (for instance when approaching 

a workzone or extreme weather conditions) or when system failures occur (i.e., the driver serves 

as the fallback-ready user within a reasonable time budget because the camera is obstructed). 

The system is capable to determine the necessity for driver intervention and issues a timely 

request to intervene (also known as take over request (TOR) in a rich body of literature). In 

SAE L4, the system does not primarily rely on the driver to be the fallback-ready user, even 

though a request to take back control may be provided. In case a system failure occurs or the 

driver does not respond to the issued request, the system performs the fallback itself and 

transitions automatically to a minimal risk condition (e.g., conducting an emergency stop at a 

‘safe’ spot). Currently, SAE L4 automation is predominantly developed for public transport 

concepts such as last mile transits and automated shuttle buses on limited trajectories. Public 

transport solutions will not be part of this thesis since there is no transition of control back to 

manual driving.  

In SAE L5 (Full driving automation), the system is capable of all dynamic driving tasks in all 

situations (i.e., the ODD is unlimited) without involvement from human drivers. However even 

there, some situations may occur where the car cannot continue, such as flooded roads or 

extreme snow storms. Since L5 vehicles are not designed for a transition of control, this level 

will also not be discussed in this thesis. 

There have been discussions that the taxonomies with numbered levels may induce 

misinterpretation and false expectation among the public, because the ascending levels do not 

necessarily correspond to the actual evolution of the technology (Templeton, 2014). For 

instance, a L3 system may be only available during traffic congestions with speeds under 

50km/h in the operational design domain, whereas on a trip without any congestion, it will not 

have this level available at all. And even with a L4 system, it still may be the case that it may 

only work on motorways for 10% of the time, and not be available on other roads or under 

adverse weather conditions. Some also argue that the SAE levels are not sufficient to describe 

the variety of automation systems, for instance public transport on pre-defined routes only, or 

systems that are related to connected and cooperative technology (e.g., automated platooning 

systems). Due to the very short inter-vehicular gaps, it is very risky for drivers in a platoon to 

respond to longitudinal critical events in case of system failures, so the platooning system 

should perform the fallback even in lower SAE levels. In addition, the lead vehicle is normally 

operated by a professional driver in a lower level of automation (e.g., in SAE L0 or L1) than 

the following vehicles (e.g., in SAE L3 or L4), which makes it difficult to apply the SAE 

taxonomy to the whole platooning system. 

Despite the limitations of the SAE levels to describe all possible types of automation, the key 

element remains the role of the human driver in driving tasks. Irrespective of whether a vehicle 

does or does not use cooperative technology or has an extended or a limited operational design 

domain, it is important to know if the driver needs to monitor the road or not, and what will 

happen when a driver needs to intervene under various conditions. While it may be true that 

only fully automated vehicles that completely remove driver responsibilities throughout the ride 

could maximize safety benefits of driving automation, experts generally believe that there is 

still a long way to go until this ultimate goal can be achieved (Kyriakidis et al., 2019; Shladover, 

2016; Gomes, 2014; Underwood, 2014; Yoshida, 2014). As long as human intervention in any 

form is still expected, a safe human-automation interaction would play a central role in a 

successful deployment of driving automation on public roads (Carsten & Martens, 2019). 
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Table 1.1: Summary of levels of driving automation defined by SAE (2016). DDT = 

Dynamic driving task, OEDR = Object and event detection and response (incl. 

monitoring the driving environment and the automation system), ODD = Operational 

design domain, ADS = Automated driving system. 

An increasing number of studies have addressed human factors issues that hinder drivers’ 

capabilities to maintain safe control at different levels of automation (Saffarian, De Winter, & 

L
ev

el
 

Name Narrative definition 

DDT 

DDT 

fallback 
ODD 

Sustained 

lateral and 

longitudinal 

vehicle motion 

control 

OEDR 

Driver performs part or all of the DDT     

0 
No Driving 

Automation 

The performance by the driver of 

the entire DDT, even when 

enhanced by active safety systems. 

Driver Driver Driver n/a 

1 
Driver 

Assistance 

The sustained and ODD-specific 
execution by a driving automation 

system of either the lateral or the 

longitudinal vehicle motion 

control subtask of the DDT (but 
not both simultaneously) with the 

expectation that the driver 

performs the remainder of the 

DDT. 

Driver and 

system 

Driver Driver Limited 

2 

Partial 

Driving 

Automation 

The sustained and ODD-specific 

execution by a driving automation 
system of both the lateral and 

longitudinal vehicle motion 

control subtasks of the DDT with 

the expectation that the driver 
completes the OEDR subtask and 

supervises the driving automation 

system. 

System Driver Driver Limited 

ADS (“System”) performs the entire DDT (while engaged)     

3 

Conditional 

Driving 

Automation 

The sustained and ODD-specific 

performance by an ADS of the 

entire DDT with the expectation 

that the DDT fallback-ready user 
is receptive to ADS-issued 

requests to intervene, as well as to 

DDT performance-relevant 

system failures in other vehicle 
systems, and will respond 

appropriately. 

System System Fallback-

ready user 

(becomes 

the driver 
during 

fallback) 

Limited 

4 

High 

Driving 

Automation 

The sustained and ODD-specific 

performance by an ADS of the 

entire DDT and DDT fallback 

without any expectation that a user 
will respond to a request to 

intervene. 

System System System Limited 

5 

Full 

Driving 

Automation 

The sustained and unconditional 

(i.e., not ODD-specific) 

performance by an ADS of the 

entire DDT and DDT fallback 
without any expectation that a user 

will respond to a request to 

intervene. 

System System System Unlimited 
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Happee, 2012; Van den Beukel; & Martens, 2013; Cunningham, & Regan, 2015; Kyriakidis et 

al., 2019; Navarro, 2019). In partial automation (SAE L2), the current state of technology 

requires the driver to be prepared for imminent intervention and does not allow drivers to be 

able to take their eyes off the road. Therefore, it is crucial to constantly keep the driver in the 

monitoring loop, so that a high level of situation awareness (Endsley, 1995) can be maintained. 

The problem with this is that humans are by nature poor at vigilance tasks (i.e., to sustain 

concentrated attention and respond to irregular and infrequent target stimuli for extended 

period), as is the case with monitoring driving automation systems (Onnasch, Wickens, Li, & 

Manzey, 2014; Norman, 2015). Accumulating evidence suggests that vigilance performance 

(e.g., detection accuracy and response speed) inevitably declines over time on task due to the 

depletion of attentional resources (Mackworth, 1948; Davies & Parasuraman, 1982; 

Parasuraman 1987; Scerbo, 2001). The monotonous nature of monitoring tasks would also 

induce intentional or unintentional attention switching towards task-unrelated thoughts and 

stimuli (Scerbo, 1998; Helton et al., 2005; Casner & Schooler, 2015), and consequently cause 

a loss of situation awareness.  

In addition, overreliance (or complacency), resulting from inappropriately high trust (overtrust) 

in automation, is another major cause for monitoring failures (Ensley, 2017; Singh, Molloy& 

Parasuraman, 1993; Parasuraman & Riley, 1997; Carsten & Martens, 2019). Poor trust 

calibration is directly associated with an inaccurate mental model of system capabilities and 

limitations, which can be caused by insufficient information provided about system 

functionalities, little or no feedback on the system status, and a lack of prior experience with 

such systems (Lee & See, 2014; Endsley, 2017; Walker, Wang, Martens, & Verwey, 2018; 

Carsten & Martens, 2019). Also, for people it may seem counter-intuitive that they are driving 

cars with automated functions, without any of the benefits of vehicle automation such as being 

able to (temporarily) do something else. 

In higher levels of automation (SAE L3 and L4), the driver would be allowed to be temporarily 

out of the monitoring loop and to engage in a wide range of non-driving tasks (Naujoks, 

Befelein, Wiedemann, & Neukum, 2017), which would result in a large variability in drivers’ 

activities, mental states, and body postures. How the systems can adapt to broad variations 

within and between drivers in taking over control, becomes the main challenge at this stage. 

Great caution is also needed to minimize automation surprises caused by unexpected system 

performance (Sarter & Woods, 1997), which are more prone to occur with increasing system 

reliabilities (Carsten & Martens, 2019; Endsley, 2017). Although ideally the system should only 

be allowed to be activated under conditions that it can cope with, accidents cannot always be 

avoided. Another potential issue induced by extensive use of automation is the loss of manual 

control skills, which has been frequently found among pilots that have become accustomed to 

autopilot systems (Veillette, 1995; Young, Fanjoy, & Suckow, 2006; Haslbeck & Zhang, 2017). 

Safety critical situations would occur when the driver has to take over control due to system 

failures, while he/she is no longer proficient in manual driving.  

The human factors challenges described above largely revolve around transitions of control 

from automation to the driver and vice versa. A good understanding of drivers’ performance at 

control transitions in various states and conditions remains substantial for the development of 

safe driving automation platforms. In the following section, we introduce the mechanism of 

control transitions in driving automation, driver take-over process, and the measures for driver 

take-over performance.  
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1.4 Control transitions in driving automation  

Transitions of driving tasks between the human driver and the automation system may occur at 

different automation levels, due to various reasons such as drivers’ personal preferences, 

entering or exiting the ODD, sensor limits or in extreme cases malfunctioning This can be 

further differentiated between transitions of control and transitions of monitoring activity (Lu 

et al., 2016). A transition of control mainly involves a reallocation of vehicle motion control 

tasks, while a monitoring transition concerns a change in status between driver (temporarily) 

monitoring and system (temporarily) monitoring. An overview of all possible transitions is 

illustrated in Figure 1.2.  

 

Figure 1.2: All possible transitions between the driver and the automation system at 

different levels of automation, adapted from Flemisch, Kelsch, Löper, Schieben, & 

Schindler, (2008) and Lu et al., (2016). The solid green lines indicate transitions of both 

longitudinal and lateral vehicle motion control; the dashed green lines indicate transitions 

of vehicle motion control in only one dimension; the orange lines indicate monitoring 

transitions.  

Martens et al., (2008) outlined three fundamental questions to classify control transitions: 1) 

who has it (who conducts the control task at the start of the transition); 2) who should get it 

(who should conduct the control task after the transition); and 3) who initiates the transition. 

Based on this classification scheme, Lu et al., (2016) further integrated the underlying reason 

of the transition into their framework, (i.e., whether the transition is mandatory based on certain 

decision rules or requirements, or optional based on the driver’s voluntary intention while both 

agents are capable of the control task), yielding six types of control transitions between the 

driver and the automation as depicted in Figure 1.3. 

 

Figure 1.3: Classification tree of transitions of control (Lu et al., 2016). 
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Control transitions to the automation are normally performed within the ODD of the system. 

In optional Driver-Initiated transitions, the driver decides to activate the automation system 

because he/she feels like doing so, such as switch on the ACC on a normal highway. In turn, 

the driver may choose to deactivate the automation and start driving manually even though the 

system is functioning well. Mandatory Driver-Initiated transitions concern situations where the 

driver has to switch on the automation to avoid or minimize undesirable consequences or safely-

critical situations. For example, the driver has to activate the automation in order to enter an 

area specially equipped for automated vehicles, or to join in an automated platoon. Another 

possible use case is that the driver hands over control to the automation because he/she is no 

longer able to drive safely (e.g. due to emergency health issues or with driver fatigue). 

Mandatory transitions to automation could be automatically initiated by the automation system 

as well, depending on the implemented transition strategies. Currently, these transitions do not 

exist yet in current levels of automation of commercially available vehicles. 

Mandatory control transitions to the driver (also referred to as driver take-over) are generally 

seen as a major challenge facing automotive engineers and human factors researchers, which 

would occur upon exceeding the system’s ODD or due to system failures. In such situations, 

the driver is forced to take over control because the automation can no longer drive safely or 

cannot drive safely under conditions that are coming up soon. Safety critical situations would 

occur if the driver cannot intervene adequately in time. 

In Automation-Initiated transitions, the system is able to determine the necessity to transfer 

control to the driver and issue a TOR, which allows the driver to respond within a certain time 

budget before causing adverse consequences (e.g., a collision) or triggering the system fallback 

performance. The available time budget may vary largely between different types of take-over 

scenarios (Gold, Naujoks, Radlmayr, Bellem, & Jarosch, 2018). If, when or where the system 

reaches its functional limit can be estimated in advance from system backend, map or V2X 

communication (i.e., scheduled take-over). Therefore, the system is able to provide a timely 

TOR with a longer time budget. The take-over scenario is normally more critical when it is 

related to the behaviours of other road users or system failures (i.e., unscheduled take-over). 

The available time budget depends on the predictability of the unfolding situation and the 

capabilities of the onboard sensors. 

In Driver-Initiated transitions, the driver diagnoses that the system can no longer handle the 

current situation based on kinematic feedback from the vehicle, cues in the driving environment 

and his/her expectations, and takes over control without being requested by the system. This 

type of transition would occur when the system is not acting according to what a driver expects, 

or when a system is not able to detect (in time) a critical event or fails to diagnose its 

malfunction (i.e., silent automation failures, Louw, Kuo, Romano, Radhakrishnan, Lenné, & 

Merat, 2019), which is more likely in lower levels of driving automation. The hazardous 

situation could have already become highly critical when it is detected by the driver.  

1.4.1 Driver take-over process and take-over performance 

As with most of the human executed activities in dynamic environments, taking over control in 

response to external input involves multiple psychological and motor processes. Referencing 

Wickens’ information processing model (Wickens, Hollands, Banbury, & Parasuraman, 2015), 

the take-over process covers 1) the detection and perception of the take-over stimulus (i.e., a 

TOR or an environmental event that can initiate a driver take-over), 2) cognitive processing of 

the stimulus (to comprehend the necessity to take over control) and the current driving situation 

(to determine how to take over control), 3) establishment of motor readiness by repositioning 
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the hands on the wheel and foot on the pedal, and 4) execution of an action that influences 

vehicle motion control (by steering, pressing the braking/gas pedal, or pressing a button to 

disengage the automation).  

Wickens et al. (2015) described speed, accuracy, and attentional demand as “the big three” 

measures of human performance. Generally speaking, the faster, the more accurately, and the 

more effortlessly a task is being conducted, the better the performance. Correspondingly, driver 

take-over performance can be evaluated using measures related to the response time (RT) to 

complete the take-over process, the quality of the manoeuvre that is required for a specific take-

over scenario, as well as the workload involved in the process. They are introduced in turn 

below. 

Take-over time 

Driver take-over response time, or in short take-over time (TOT), is an essential parameter to 

evaluate driver take-over performance. A successful take-over first requires the driver to 

respond before the situation exceeds his/her controllability (Nilsson, Falcone, & Vinter, 2015). 

TOT is generally measured from the onset of the take-over stimulus (a TOR or an environmental 

event) until the driver makes a conscious intervention (Gold & Bengler, 2014). 

Additional response time metrics can be measured for a sequence of actions to break down the 

take-over process, in order to analyse driver behaviour at a fine-grained level. An overview of 

measurable RTs is given in Figure 1.4. In a few studies, gaze reaction time, eyes-on-road time, 

and hands-on wheel time were registered to reflect the moments when the driver senses the 

take-over stimulus, starts perceptual and cognitive processing of the driving environment, and 

establishes motor readiness, respectively (e.g., Gold, Damböck, Lorenz, & Bengler, 2013; 

Körber, Gold, Lechner, & Bengler, 2016; Feldhütter, Gold, Schneider, & Bengler, 2017). Less 

commonly registered is the initial start of the driver’s hand movement (Kerschbaum, Omozik, 

Wagner, Levin, Hermsdörfer, & Bengler, 2017; Kerschbaum, Lorenz, & Bengler, 2015), 

possibly because time consuming video annotation is needed. RTs measured until the first hand 

movement provide some insight in the time elapsed until the driver has comprehended the 

necessity to take over control and starts to regain motor readiness. This is similar to perception 

time in the concept perception-response time to analyse drivers’ braking response in the manual 

driving context (Olson, 1986; Green, 2000). Movement time, or motor response time 

(corresponding to the second component of perception-response time), can be measured from 

the start of the movement until the moment when the driver grasps the steering wheel, which 

reflects the time it takes to execute the actual response to establish motor readiness.  

It has to be noted that the RTs above may only apply to the analysis of more basic responses 

towards the take-over stimulus. How long it takes for the driver to fully comprehend the 

different aspects of the driving situation and how the process of selecting a specific driving 

manoeuvre is difficult to observe and determine. These processes may overlap with other 

information processing stages and may even continue after the start of the manoeuvre. The 

driver may respond inadequately or even incorrectly if he/she takes over control before 

acquiring a sufficient level of situation awareness, particularly in complex and critical 

situations.  
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Figure 1.4．Measurable response times (RT) within the take-over process in temporal 

order, adapted from Gold et al., (2013) with modifications. 

Take-over quality  

Besides take-over time, the quality of the take-over performance is also important to be 

measured. The evaluation of take-over quality depends on required actions to handle a certain 

take-over scenario (Gold et al., 2018; International Organization for Standardization [ISO], 

2020). In some simple scenarios, such as taking over at the end of an ODD zone or due to the 

absence of lane markings, operational actions to stabilise the vehicle in its lane is sufficient. 

Desired performance is to maintain a steady lane position, a smooth, appropriate speed, and a 

safe following distance to the front vehicle. Correspondingly, metrics related to the variability 

of lane position (e.g., Standard Deviation Lane Position, SDLP), steering activity (e.g., the 

number of steering wheel reversals per minute), driving speed, and time headway can be 

employed to assess the quality of lateral and longitudinal driving performance. The 

performance data are often assessed in small windows after the control transition to explore the 

course of manual driving performance “recovery” as a function of time or travelling distance 

(Merat, Jamson, Lai, Daly & Carsten, 2014; Skottke, Debus, Wang, & Huestegge, 2014; 

Pfromm, Khan, Oppelt, Abendroth, & Brudera, 2015; Eriksson & Stanton, 2017). In order to 

estimate when the carryover effects of automated driving have sufficiently diminished and the 

driver could continue driving in a safe manner, driving performance after a take-over is often 

compared to driving performance in a baseline manual driving condition or reference threshold 

(ISO, 2020). More complex take-over scenarios require the driver to perform tactical 

manoeuvres according to pre-defined goals or rules, such as lane changing and turning, stopping 

at a traffic light, and adjusting speed to a new speed limit. These types of scenarios are less 

addressed in empirical studies. Whether the driver was able to respond correctly and timely to 

achieve the specific goal is the main criterion used in studies for the assessment of take-over 

quality.  

In most challenging scenarios, the driver has to perform imminent tactical actions to achieve 

the goal of avoiding a collision with obstacles or other road users. Quality assessment for 

collision avoidance scenarios mainly concerns if the driver can operate the vehicle in a 

relatively safe manner and as a minimum can prevent a collision without endangering him or 

herself and other road users. First it has to be evaluated if crashes or other non-controllable 

events occur (skidding, rotating, swerving across several lanes or off paved road), which self-

evidently would indicate take-over failures (Naujoks, Wiedemanna, Schömig, Jarosch, & Gold, 

2018). For successful take-overs, low risk should be involved in the manoeuvre, which can be 
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estimated using surrogate safety metrics such as minimum time to collision (TTC) and 

minimum clearance towards the obstacle or other road users (Gettman & Head, 2003; Happee, 

Gold, Radlmayr, Hergeth, & Bengler, 2017; Tarko, 2018). A higher value indicates a larger 

time gap or spatial safety distance and a lower degree of endangerment (Naujoks et al., 2018). 

Measures related to acceleration profiles such as maximum longitudinal and lateral acceleration 

are commonly used to reflect the intensity of the executed manoeuvres. Lower accelerations 

generally suggest smoother and safer manoeuvring. Both TOT and take-over quality should be 

taken into consideration to determine take-over performance. While a faster response is 

generally preferable, it can be assumed that drivers are more prone to making errors. Such a 

speed-accuracy trade-off (Fitts, 1966; Wickelgren, 1977) in control transitions has been 

suggested in a number of empirical studies that reported a higher take-over quality when drivers 

responded later (e.g., Damböck, Weissgerber, Kienle, & Bengler, 2013; Gold et al, 2013; Clark 

& Feng, 2017; Ito, Takata, & Oosawa, 2016). To find a “sweet spot”, balancing take-over 

quality and TOT is a key aspect in determining a desirable take-over time budget and providing 

implications for the development of driving automation systems.  

Workload 

Workload can be understood as the amount of work or effort necessary to perform a task, which 

concerns both physical and mental aspects (Meijman & Mulder, 1998). When taking over 

control, the driver experiences physical workload to reposition his/her hands back on the wheel 

and feet back on the pedals, and mental workload to process the take-over stimulus and the 

take-over situation, and to make decisions on a take-over action. The physical load would be 

relatively small, while the mental workload may vary largely depending on task difficulty, 

situation complexity, and the driver’s capability and states (Lee, Regan, & Horrey, 2020). 

There are three main categories of workload measurement techniques: subjective measures, 

physiological measures, and performance measures (De Waard, 1996; O’Donnell & Eggemeier, 

1986). Subjective measures assess and quantify personal judgements of experienced workload, 

which are usually well-established rating scales, such as the NASA-TLX (Task Load Index) 

(Hart & Staveland, 1988), the SWAT (Subjective Assessment Technique) (Reid & Nygren, 

1988), and the RSME (Rating Scale Mental Effort) (Zijlstra & Van Doorn,1985). Physiological 

measures are used to infer variations in workload through changes in an individual’s 

physiological states. Commonly used measures concern brain activity (EEG), cardiac activity 

(heart rate, heart rate variability, blood pressure), respiratory activity (respiration rate), eye 

activity (pupil diameter, eye fixation), and galvanic skin response (De Waard, 1996; Charles & 

Nixon, 2019). Performance-based measurement techniques are developed based on the 

assumption that the human operator has limited attentional resources (Kahneman, 1973; Yeh & 

Wickens, 1988). Decrements in primary task (i.e., the task of interest) performance can be an 

indicator that the workload is too high or too low, as both overload and underload can diminish 

performance. The performance on an additional, low-priority task, also called secondary task, 

can reflect the remaining capacity of the operator while performing the primary task (see e.g., 

Jahn, Oehme, Krems, & Gelau, 2005; Martens & Winsum, 2001; and Verwey, 2000 for 

applications of secondary task measures in the manual driving context). 

In the context of automated driving, driver workload during the use of automation systems is a 

frequently recurring research topic (e.g., Stanton, Young, & McCaulder, 1997; Heikoop, De 

Winter, Van Arem, & Stanton, 2019; Stapel, Mullakkal-Babu, & Happee, 2019; see De Winter, 

Happee, Martens, & Stanton, 2014 for a review), while workload directly related to control 

transitions is hardly touched upon. One possible reason is a lack of suitable workload measures. 

Physiological and performance measures are usually aggregated over time and consequently 
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not applicable for assessing workload in a fragment of seconds (De Waard, 1996; Verwey & 

Veltman, 1996). They are also likely to interfere with the take-over process involving rapid 

physical movements. Subjective assessment causes least intrusion, but may induce biases if the 

driver cannot precisely recall workload experienced during one specific control transition, 

especially when multiples transitions are performed within one drive. Focusing on safety 

aspects of control transitions, this thesis will mainly assess time and quality aspects of take-

over performance, which are direct indicators of transition safety and can be objectively 

assessed in simple, and non-intrusive manners. 

1.5 Research objectives and research questions 

This thesis focusses on Human Factors issues related to the transition of control from SAE 

L2-L4 vehicle automation to manual control, in both stand-alone automated driving scenarios 

and automated platooning scenarios. The research in this thesis addresses the challenges of 

take-over times and take over quality in various conditions. In order to contribute to a better 

understanding of behaviour during transitions of control to manual driving, the following 

research objectives are proposed: 

• Obj. 1: Explore determinants of TOT and TOT variability in normal and critical 

take-over scenarios and gain a deeper insight in the actual driver take-over 

process. 

The first objective is to study the factors that affect TOT under various circumstances, in order 

to get more insight in inter- and intra-individual differences. Knowing the factors that affect 

TOT may help support drivers in taking back control in a safe and smooth manner. Although 

existing research provides useful insight into some factors that affect TOTs, findings of the 

individual studies are hardly generalizable across different driving contexts, because only a 

small number of variables are manipulated per study. Up to now, little effort has been made to 

quantitatively synthesize all the available TOT studies for a more holistic picture. In addition, 

most studies only focus on mean or median TOT values without addressing intra- and inter-

individual differences (Dinparast, Djadid, Lee, Domeyer, Schwarz, Brown, & Gunaratne, 2019; 

Eriksson & Stanton, 2017; Mole et al., 2020). Nevertheless, outliers in the response time 

distribution are most prone to safety critical accidents and other adverse situations (Horrey & 

Wickens, 2007). This would indicate that taking mean TOT of one study as the basis for 

understanding how long it takes before a driver takes back control may lead to an unsafe design. 

More research efforts are needed to focus on variability in TOTs in various conditions, and to 

investigate the cause for large outliers. Wickens & Corlett (2015) even claim that the ultimate 

goal is to design safe automation systems that can accommodate as close to 100% of the target 

driver population.  

• Obj. 2: Study driver take-over time and performance with professional drivers in 

automated truck platooning scenarios. 

The second objective is to fill in the research gap of TOT in platooning scenarios, particularly 

that of professional truck drivers. Truck platooning is considered as a first step towards 

automated freight transportation in an open and uncontrolled environment (Bhoopalam, Agatz, 

& Zuidwijk, 2018; Janssen, Zwijnenberg, Blankers, & De Kruijff, 2015; World Maritime 

University, 2019). Nevertheless, the large majority of human factors studies merely focus on 

passenger car scenarios in a non-platooning situation. Research on professional truck drivers’ 
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take-over behaviour is very limited, and at the start of this thesis, we were not aware of any 

attempts that were made to systematically study driver take-over performance when leaving an 

automated platoon. It still remains to be understood if the specific features of platooning, such 

as the very short inter-vehicular distance and blocked front view, and the driver categories 

(professional or non-professional drivers), influence the way drivers take over control. If we 

are able to identify the specific requirements of platoon drivers, and the differences between 

professional truck drivers and normal passenger car drivers in take-over behaviour, we can 

deliver valuable input for designing safe control transitions in platooning systems.  

• Obj. 3: Explore potential approaches that prime drivers for a safe and smooth 

take-over. 

The third objective is to design and evaluate solutions that prime drivers for a safe and smooth 

take-over. As mentioned in the previous sections, a TOR with a large time budget cannot always 

be provided, particularly in on-road settings where critical yet unpredictable situations may 

occur. However, it is ineffective and unrealistic to require the driver to sustain attention and 

stay prepared to take back control throughout the ride. It is important to explore possible 

countermeasures that adapt to the uncertainty and complexity of the road situations and allow 

the driver to allocate attention accordingly. As mentioned above (Obj. 1), several previous 

studies pointed to a large variation between individual drivers in taking over control, and no 

single take-over time budget exists that fits all situations. The feasibility of an adaptive and 

personalized control transition approach will also be discussed in this thesis.  

Based on the research objectives, the following research questions are formulated:  

• RQ1: What factors influence driver response times in taking back control from 

automated to manual driving? 

This research question focuses on TOT and mainly links to research Obj. 1. To answer this 

question, a comprehensive literature search and meta-analysis has been conducted to provide 

the state of the art on driver take-over research, and to explore determinants of TOT on an 

aggregated level (i.e., what determined the mean/median TOTs). Data collected from empirical 

driving simulator studies performed in this thesis provide additional insight into influencing 

factors that were not included in the meta-analysis. 

• RQ2: How do car drivers and professional truck drivers perform when decoupling 

from highly automated platoons in normal, non-critical situations under the 

influence of various task conditions? 

This research question focuses on driver behaviour at control transitions in platooning 

scenarios, and mainly links to research objective 2. This question is answered by analysing car 

and truck drivers’ performance data when taking over in car and truck platooning driving 

simulator studies. 

• RQ3: Could a monitoring request help driver respond more adequately with take-

over performance in critical take-over situations? 

This research question focuses on designing and evaluating an innovative HMI concept that 

may prepare the driver for potential critical takeovers, which mainly links to research Obj. 3.  

To answer this question, an empirical car driving simulator study is conducted that compares 

drivers’ take-over performance and subjective ratings when using the innovative system to the 

conventional system that only issues TORs. 
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• RQ4: What explains variability in driver take-over times and is an adaptive 

approach tuned to a specific driver or conditions a feasible solution for a safe and 

smooth transition to manual driving? 

This RQ focuses on variability in TOT between and within drivers (Obj. 1), based on which 

the feasibility of adaptive driving automation tuned to a specific driver’s states is discussed 

(Obj. 3). This question is answered combining the meta-review study, from which the 

correlation between the mean and standard deviation of TOT can be yielded, and all empirical 

studies performed in this thesis, which allow inspection into individual drivers’ takeover 

response. 

This research contributes to the literature on Human Factors in transport, primarily in the 

domain of highly automated driving in the context of driver behaviour at transitions of control. 

Especially, this research is one of the initial studies that focuses on automated truck platooning 

and adaptive automotive automation. The results contribute to the development of an improved 

human-system interaction for comfortable and safe transitions of control. 

1.6 Thesis structure 

This thesis consists of eight chapters. The structure of the thesis and the links between the 

chapters and the research questions are depicted in Figure 1.5, and explained below. 

In Chapter 1, the general research background, research objectives and research questions have 

been introduced.  

Chapter 2 presents an exhaustive meta-review of 129 driver take-over time studies. The aim of 

this meta-review is to provide the state of the art on the relevant research on TOT, and to explore 

the effects of a wide range of factors on driver TOT and its variability on an aggregated level. 

This study mainly aims to answer RQ 1. Three complementary meta-analytical approaches 

were employed: (1) a within-study analysis, in which differences in mean TOTs were assessed 

for pairs of experimental conditions, (2) a between-study analysis, in which correlations 

between experimental conditions and mean TOTs were assessed, and (3) a linear mixed-effects 

model combining between study and within-study effects.  

Chapter 3, 4, 5 and 6 present empirical studies that systematically investigate driver take-over 

performance in platooning scenarios. Data for driver performance analyses were generated from 

three simulator-based studies conducted in the project Adaptive Virtue Tow-Bar (A-VTB) 

within TNO’s Early Research Program Human Enhancement. Chapter 3 and 4 describe two 

truck platooning studies with professional truck drivers in non-critical scenarios. In Chapter 5, 

we compared a passenger car platooning study with one truck platooning study to explore the 

difference between car and truck drivers. Chapter 6 concerns truck drivers’ take-over 

performance in a critical system failure scenario. 

The four chapters together provide a holistic picture of drivers’ take-over performance in 

platooning scenarios and address RQ 2. In addition, we conducted manual video annotations to 

break down the total TOT. TOT was divided into the perception response time and the hand 

movement response, in order to analyse driver take-over processes at a fine-grained level. Video 

recordings of participants’ behaviours during the take-over process were also analysed to 

explore individual differences. This contributes to a better understanding of the driver take-over 

process and contributes to RQ 1. A more detailed overview of each chapter is presented below. 
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• Chapter 3 and Chapter 4 describe two truck platooning experiments with professional 

truck drivers in a truck driving simulator. The aim is to investigate how truck drivers 

take over control to leave the truck platoon in normal situations under three task 

conditions: monitoring the driving situation, performing non-driving tasks on a tablet 

PC, and resting with the eyes closed. The difference between the two experiments lies 

in whether the tablet PC was hand-held or mounted on the centre console. In both 

experiments, driver TOTs and take-over quality in terms of vehicle stabilization and 

responses to an emergency brake event were analysed and compared between task 

conditions 

 

• Chapter 5 presents a comparison study. A car platooning experiment was conducted in 

which identical experimental designs were used as in the first truck experiment (Chapter 

4), but with the driving simulator in car configuration and with 18 passenger car drivers 

as participants. Car drivers’ take-over performance was compared to that of the truck 

drivers to explore potential differences between two driver types and vehicle types.  

 

• Chapter 6 describes a critical truck platooning scenario in which a system failure 

occurred and the participants had to take over control within a short time budget. 

Besides investigating truck drivers’ take-over performance in abnormal and emergency 

situations, this study also explored the effects of a “see-through” screen that was 

developed in the driving simulation that allowed the driver to obtain images of the road 

situation in front of the lead vehicle. The see-through screen was simulated as a large 

LED screen attached at the back of the lead simulated vehicle. For drivers in the truck 

platoon, monitoring surrounding traffic environment and foreseeing upcoming 

hazardous situations is very difficult due to very short inter-vehicular distances and 

consequently a heavily blocked front view. It is therefore meaningful to explore whether 

providing drivers in a truck platoon with additional visual information of the front view 

can influence their monitoring pattern and increase awareness for an upcoming event.  

 

Chapter 7 presents an empirical study to evaluate an approach that stimulates a dynamic 

allocation of monitoring tasks to human and automation, addressing RQ 3.  First, an HMI 

concept was designed that provides a monitoring request (MR) when approaching a location 

where driver take-over may or may not be requested. The MR asked the driver to pause the 

non-driving task, monitor the traffic environment, and be prepared for a potential take-over. If 

a critical event was detected, the system provided a take-over request (TOR) as well. The effects 

of the MR+TOR system were assessed in a driving simulator study with 41 participants by 

comparing driver take-over performance and gaze behaviour to a conventional system that only 

issued a TOR. Because only a small portion out of all MRs required an actual driver take-over, 

an additional analysis was conducted to investigate how drivers’ compliance with MRs was 

associated with previously experienced scenarios. The compliance level was measured based 

on drivers’ eye, hand, and foot preparatory behaviours retrieved from manual video 

observation.  

The empirical studies described in Chapter 3 – 7 also allow a deeper insight into individual 

drivers’ take-over behaviour and performance under various conditions, which complement the 

knowledge obtained from the meta-review (Chapter 2). All together they answer RQ 1 and RQ 

4.  

Chapter 8 discusses the main research findings, conclusions, implications for practice, and 

recommendations for further research.  
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Figure 1.5: Overview of the thesis structure.  
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2.1 Introduction 

Until automated driving systems are capable of performing all driving tasks under all road 

conditions (i.e., full automation as defined by SAE International, 2016), drivers will have to 

take over control when the automation fails or reaches its operational limits. Partial automation 

(SAE L2), which is already made available by several car manufacturers, requires drivers to 

monitor the road and to be prepared for immediate intervention at all times. At higher levels of 

automation (SAE L3 ‘conditional automation’ and L4 ‘high automation’), drivers are allowed 

to engage in non-driving activities, while the automation executes the monitoring task and 

issues a take-over request (TOR) when the driver has to intervene. How long it takes drivers to 

reclaim manual control and what factors determine take-over time are important questions for 

both scientific researchers and automobile manufacturers. 

2.1.1 Driver take-over process and response times 

The driver take-over process comprises several information-processing stages: perception of 

visual, auditory, and/or vibrotactile stimuli, cognitive processing of the information, response 

selection (decision making), resuming motor readiness (by repositioning the hands and feet on 

the steering wheel and pedals), and the actual action (e.g., steering and braking input to the 

vehicle) (Gold & Bengler, 2014; Gold, Damböck, Lorenz, & Bengler, 2013; Petermeijer, De 

Winter, & Bengler, 2016; Zeeb, Buchner, & Schrauf, 2015; Zhang, Wilschut, Willemsen, & 

Martens, 2019). Gold, Damböck et al. (2013) described four response (RT) measures: (1) gaze 

response time, (2) eyes-on-road time, (3) hands-on-wheel response time, and (4) take-over time 

(i.e., intervention time). In addition, researchers have used task-specific measures, such as hand 

movement response time (e.g., Kerschbaum, Lorenz, & Bengler, 2015; Kerschbaum, Omozik, 

Wagner, Levin, Hermsdörfer, & Bengler, 2017; Zhang et al., 2019), mirror check response time 

(e.g., Gold, Damböck et al., 2013; Vogelpohl, Kühn, Hummel, Gehlert, & Vollrath, 2018) and 

lane change response time (e.g., Petermeijer, Cieler, & De Winter, 2017; Eriksson et al., 2019). 

Although different response time measures can be distinguished, take-over time (TOT), defined 

as the time that drivers take to resume control from automated driving after a critical event in 

the environment or after having received a TOR, appears to be the most frequently used measure 

in the literature.  

The temporal sequence of the take-over process is illustrated in Figure 2.1. Typically, the driver 

has to take over within the ‘time budget’ available until the system limit of the automation is 

reached. Such system limits may comprise an upcoming collision (e.g., with a stationary vehicle 

in the ego lane) or operational limits of the automated driving system (e.g., due to missing lane 

markings). If drivers do not take over within the available time budget, serious safety issues 

may occur. 

 

Figure 2.1: Illustration of the take-over procedure. The present meta-analysis focuses on 

the take-over time (TOT), defined as the time between the take-over stimulus (take-over 

request or critical event in the environment) and the intervention by the driver. 
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2.1.2 Previous Review Studies 

The empirical literature reports a wide range of TOT values. For example, De Winter, Stanton, 

Price, and Mistry (2016) reported a mean TOT of 0.87 s (SD = 0.24 s) when the participants 

were required to brake in response to a salient red stop sign, whereas, in Politis et al. (2018), 

participants took over control on average 19.8 s (SD = 9.3 s) after the onset of a 60 s countdown 

TOR. 

Several researchers have provided narrative reviews of TOT studies. Radlmayr and Bengler 

(2015) summarised eleven studies that investigated the effect of take-over time budget and 

concluded that longer time budgets are associated with longer TOTs and better take-over 

quality. A time budget smaller than 7 s was regarded as insufficient for a fully distracted driver 

to successfully take over control. Vogelpohl, Vollrath, Kühn, Hummel, and Gehlert (2016) 

provided an overview of 22 TOT studies involving a transition from highly automated driving 

(SAE L3) to manual driving and identified potentially influential factors related to the 

environment, the driver, the human-machine interface, and the vehicle. The authors suggested 

that the complexity of the take-over situation, the modality of the TOR, and the non-driving 

task (NDT) performed at the moment of the TOR are important factors. Furthermore, a traffic 

situation of high complexity and engagement in NDTs were argued to lead to slow responses, 

whereas multi-modal TORs shortened the TOT and improved the take-over quality. In another 

literature survey, Walch et al. (2017) discussed 17 take-over studies, focusing on the effect of 

the time budget, traffic complexity, NDT, and driver age. The authors concluded that 10 s seems 

an adequate time budget, while pointing out that the driver state and situational circumstances 

affect the driver’s ability to take over control. Vogelpohl et al. (2016) and Walch et al. (2017) 

both noted that outcomes were sometimes inconsistent between the surveyed studies. For 

example, it was observed that Gold, Berisha, and Bengler (2015) and Petermann-Stock, 

Hackenberg, Muhr, and Mergl (2013) reported significantly longer TOTs when the participants 

were engaged in visual-motor NDTs compared to cognitive-auditory NDTs, whereas this effect 

was not statistically significant in the experiment by Radlmayr, Gold, Lorenz, Farid, and 

Bengler (2014). Another example of an inconsistency is that a negative effect of higher traffic 

complexity on TOT was found in Radlmayr et al. (2014) and Gold, Lorenz, and Bengler (2014), 

but not in Shen and Neyens (2014). This heterogeneity suggests that a larger number of studies 

need to be reviewed to draw reliable conclusions. 

Although a number of narrative reviews exist, little effort has been devoted to quantitatively 

synthesising the available TOT studies. Eriksson and Stanton (2017) reviewed 25 take-over 

studies; they extracted 43 take-over time budgets (lead times) which varied between 0 and 30 s 

(mean = 6.37, SD = 5.36 s), and 87 TOTs from 1.14 s to 15 s (mean = 2.96, SD = 1.96 s). The 

authors noted that 3 s, 4 s, 6 s, and 7 s were the most frequently used time budgets and that the 

corresponding mean TOTs were 1.14, 2.05, 2.69, and 3.04 s. Apart from the time budget, 

Eriksson and Stanton (2017) did not review the effect of study variables that may affect the 

TOT. Gold, Happee, and Bengler (2018) provided a predictive model of TOTs based on the 

datasets obtained from six driving simulator experiments. Out of the seven variables considered 

in the model, the time budget, traffic density, and repetition (i.e., prior experience) turned out 

to be significant predictors, whereas driver age, physical and cognitive load of NDT, and the 

lane in which the ego car was driving (i.e., left, right, or middle) showed only minor effects. A 

limitation of Gold, Bengler et al. (2018) is that only six experiments were analysed and that the 

experimental settings were similar (i.e., in all the experiments, the take-over scenario was 

represented by two crashed vehicles blocking the ego lane). 
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The above reviews suggest that the time budget potentially affects TOTs. However, the existing 

reviews have several limitations. First, the available reviews analysed only a small number of 

study variables. Second, most reviews did not numerically synthesise the effects of study 

variables. Third, the number of reviewed studies is small: The maximum number of studies 

reviewed was 25 (Eriksson & Stanton, 2017), while this study included 129 TOT studies. 

2.1.3 Research Objectives 

As pointed out above, there is a need for a new quantitative synthesis of the various TOT 

studies, having a higher statistical power (i.e., a larger number of included studies) and broader 

scope (i.e., multiple variables examined simultaneously) as compared to previous reviews. We 

conducted a comprehensive search of empirical studies and employed meta-analytic methods 

to examine the predictors of TOT. 

Cronbach (1975) discussed two disciplines of scientific psychology: experimental psychology, 

which is concerned with studying the effects of experimental manipulations, and correlational 

psychology, which is concerned with understanding differences between individuals and 

groups. In his work, Cronbach called for combining these two disciplines. A similar approach 

was followed in the present paper. 

First, a within-study meta-analysis was performed to summarise studies that compared pairs of 

experimental conditions. The within-study analysis describes how mean TOTs are affected by 

a particular study variable when holding all other study variables constant, thus allowing for 

statements about causal effects. 

Second, because individual experiments typically manipulate only a small number of variables, 

while experimental conditions differ across studies, we also examined the associations between 

experimental conditions and TOTs. The second approach concerned a correlation analysis to 

examine the relationships between the mean TOTs and a comprehensive list of study variables 

(related to the driver, the automation system, the human-machine interface, the take-over 

situation, and the experimental set-up) across all studies. The between-study analysis allows for 

predicting under which experimental conditions the mean TOTs will be low or high. 

Third, the within-study experimental approach and the between-study correlational approach 

were united in a linear mixed-effects model. The mixed model allows for a powerful analysis 

of the effects of study variables while controlling for the confounding effect of the other study 

variables. 

At the end of the paper, we discuss the similarity in the outcomes of the three methods. 

Consistent results across all three methods suggest high robustness and generalizability. 

2.2 Methods 

This study was performed in accordance with the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines (Moher, Liberati, Tetzlaff, & Altman, 

2009). No protocol was generated or registered. 

2.2.1 Information sources and search strategy 

We conducted a literature search with the aim to retrieve as many take-over studies as possible, 

including grey literature records to minimize publication bias (Rothstein, Sutton, & Borenstein, 

2005). Multiple search strategies were used, such as database searching (Google Scholar, 
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ResearchGate), scanning the reference lists of papers, using the ‘cited by’ feature of Google 

Scholar, snowballing strategies (Jalali & Wohlin, 2012), and asking fellow researchers for 

relevant studies. Most searches were conducted using Google Scholar, as it is the most 

comprehensive search engine, especially for works of the 21st century (De Winter et al., 2014; 

Martín-Martín et al., 2018). Typically used keywords were ‘takeover’, ‘take over’, and 

‘transition of control’ in combination with domain-specific keywords, to minimize false 

positives (e.g., ‘automated driving’, ‘driverless’, or the names of often-cited authors such as 

‘Bengler’ or ‘Merat’). The searches were performed between October 2, 2016 and December 

17, 2018. 

2.2.2 Eligibility criteria 

To be included in this review, studies had to fulfil the following six criteria: 

1. The study had to involve a transition from partially, conditionally, or highly automated 

driving (i.e., SAE L2 and above; hands off the steering wheel and feet off the pedals) to 

manual driving. 

2. The study had to involve an automation-to-manual take-over performed by a human 

(e.g., braking, steering, button pressing). 

3. The study had to involve a transition in response to a TOR or a critical event in the 

environment. That is, this meta-analysis includes only ‘mandatory driver-in-control 

(DC) transitions’ as defined by Lu, Happee, Cabrall, Kyriakidis, and De Winter (2016). 

Studies in which more than one take-over stimulus (i.e., both a TOR and a critical event 

in the environment) was presented at different moments were not included, because in 

such cases it cannot be determined to which stimulus the participants responded. For 

example, in Körber, Baseler, and Bengler (2018), the obstacle was visible three seconds 

before the TOR, and the drivers were, therefore, able to take over control before the 

TOR. 

4. The study had to report a mean or median take-over time (TOT), or the mean/median 

TOT should be calculable from the information reported. 

5. In the text of the paper, the TOT had to be defined as the time interval between the 

initiation of the take-over stimulus (i.e., the onset of the TOR or the start of an 

environmental event that can initiate driver take-over) and the moment of driver 

intervention (by means of braking, steering, or button pressing). 

6. The study had to be written in English or German. 

All types of studies were eligible, including journal publications, papers from conference 

proceedings, theses, reports, posters, and presentation slides. If a publication contained more 

than one experiment, we considered each experiment as a separate study. We applied no 

restriction on the year of publication. 

2.2.3 Study selection and data extraction 

After initial scanning and filtering, we retrieved 299 potentially relevant full-text records, which 

were further reviewed for eligibility. After removing 30 duplicate records and 1 record written 

in a language other than English or German (Japanese), 149 records were excluded for the 

following reasons: no TOT was measured (103 records), no mean/median TOT was reported (8 

records), TOT was not defined according to the fifth eligibility criterion or the TOT 

measurement was not clearly described (18 records), participants were required to have at least 

one hand on the wheel during automated driving (4 records), or multiple take-over stimuli were 

presented at different moments (16 records). In the end, 129 studies from 119 records met the 

inclusion criteria. These studies comprised 520 mean or median TOT observations. In studies 
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where mean TOT values were only available in figures, the numerical values were extracted 

using the online tool WebPlotDigitizer (Rohatgi, 2017). Besides the mean and median TOT, 

which are measures of central tendency and our primary meta-analysis outcome of interest (see 

Section 2.1.1), we also extracted the standard deviation of the TOT as an index of variability. 

The data extraction and variable coding (described in Section 2.2.4.2) were conducted by the 

first author. The second author supervised the process using a file hosting service (Dropbox), 

conducted multiple manual inspections of the annotated values, and corrected errors. 

Ten of the included studies reported no mean TOT, but only the median TOT. Since the 

distribution of human response times is right skewed, using unadjusted medians together with 

means would induce bias. To reduce this bias, we applied a multiplication factor of 1.123 to the 

median TOTs to obtain an estimate of the corresponding mean TOTs. This correction factor 

was established from the means and medians from 14 included studies in which both values 

were reported. 

An examination of the included studies showed similar experimental methods. That is, almost 

all studies used a virtual driving simulator and measured the TOT from the simulator sensor 

data (i.e., brake pedal depression or steering wheel angle). Although the studies involved 

simulators of different fidelity levels (e.g., motion base vs. no motion base), different 

experimental designs (e.g., between-subjects vs. within-subjects), and different experimental 

protocols (in terms of e.g., participant training, instruction, duration, and breaks), these 

differences provided no meaningful basis for assessing the study quality. Hence, we did not 

code the quality of individual studies and considered them of equal importance. 

Furthermore, we did not apply weights that depend on sample size (e.g., Hedges & Vevea, 

1998; Schmidt & Hunter, 2015). A preliminary analysis showed a substantial skewness of the 

sample size distribution, with a few large-sample studies including over 100 participants and 

many moderate-sample studies of about 20 participants. The use of unit weights has been 

recommended when the sample sizes are unequal, to avoid that the meta-analysis outcome is 

dominated by a small number of large-sample studies (Osburn & Callender, 1992). Our choice 

for unit weights is in line with simulation studies showing that unit weights offer similar or 

sometimes even superior predictive validity as compared to procedures that involve weighting 

(Bobko, Roth, & Buster, 2007; Einhorn & Hogarth, 1975). Unit weights are not estimated from 

the data and therefore do not have standard errors, as a result of which they can contribute to 

reduced estimation error as compared to a weighted average, especially when sample sizes and 

effect sizes are unequal (Bonett, 2008; Einhorn & Hogarth, 1975). 

2.2.4 Analysis methods 

2.2.4.1 Within-study analysis 

In the within-study analysis, pairs of experimental conditions were categorised (e.g., no NDT 

vs. NDT, young participants vs. old participants, etc.). A meta-analysis was performed for a 

category when at least four studies were available in that category, following the 

recommendation by Fu et al. (2011). The 21 identified categories are shown in Figure 2.3. 

Because all studies used the same unit to measure TOTs (seconds), the meta-analyses were 

performed on the raw (unstandardized) difference between mean TOTs (D). The use of Ds 

allows for intuitive interpretations as compared to standardised effect size measures (Bond, 

Wiitala, & Richard, 2003; Higgins & Green, 2005). In other words, we described the effect of 

an independent variable in seconds instead of a dimensionless index such as Cohen’s d. The 
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use of seconds as a unit allows for easy interpretation in regard to practical applications (e.g., 

time budgets, look-ahead time of sensors) and the scientific literature in general (e.g., literature 

about brake response times, psychometric literature about reaction times). 

The outcome of the meta-analysis was the unweighted average D per category. An absolute 

average D of 1 s was interpreted as a strong effect, and an absolute average D of 0.5 s was 

interpreted as a moderate effect. 

In addition, we examined whether the D values differ from 0 (i.e., no effect), using a two-sided 

Wilcoxon signed-rank test with an alpha value of 0.05. This statistical test is conservative, 

because a significant effect (p < 0.05) can only be obtained when six or more studies (D values) 

are available (i.e., 2 * 0.56 = 0.031 < 0.05). 

2.2.4.2 Between-study analysis 

In the between-study analysis, we examined the correlations between 18 study variables (Table 

2.1) and the mean TOTs. The 18 selected study variables were related to the driver, the 

automation system, the human-machine interface, the take-over situation, and the experimental 

set-up. More specifically, the variables concerned the mean age of participants, simulator 

fidelity, the level of automation, the modality of the TOR, the non-driving task (the modality 

of the task and if a device needed to be held in the hands), and the take-over situation (urgency 

of the scenario, complexity of the required driver response, and interaction with other road 

users). The selection of the study variables was based on the narrative reviews introduced 

above, studies providing guidelines for human factors research in the automated driving domain 

(e.g., De Winter, Happee, Martens, & Stanton, 2014; Gold, Naujoks, Radlmayr, Bellem, & 

Jarosch, 2018; Naujoks, Befelein, Wiedemann, & Neukum, 2017), and previous studies 

concerning driver response times in manual driving (e.g., Green, 2000; Summala, 2000). These 

variables were also selected based on whether they were available from the papers. For 

example, the physical intensity of the TOR, the level of drowsiness of the driver, and the 

duration of automated driving were not included as study variables, because these variables 

were often not documented, even though they are likely to affect the mean TOT. 

We used Pearson product-moment correlations (equivalent to point-biserial correlations if the 

study variable is binary) and Spearman rank-order correlations to describe the relationships 

between the mean TOT and the study variables. The Spearman rank-order correlation is robust 

to tailed distributions and outliers. 

A standard technique for assessing publication bias is to create a scatter plot showing the study 

outcome measures on the x-axis and a measure of sample size or precision on the y-axis, also 

called a funnel plot. An asymmetric relationship, where there exists a correlation between 

sample size and outcome measure, can be indicative of publication bias (Begg & Mazumdar, 

1994; Egger, Smith, Schneider, & Minder, 1997; Deeks, Macaskill, & Irwig, 2005). We 

expected no effects of publication bias regarding the mean TOT, as high and low TOTs could 

be regarded as equally interesting to authors, publishers, and editors. Nonetheless, we assessed 

whether the mean TOT was correlated with the corresponding sample size. 

Additionally, we computed correlations between sample size and all study variables (Table 2.1). 

These correlations allowed us to determine whether larger studies were associated with specific 

types of study design. 

  



34 Taking back the wheel: Transition of control from automated cars and trucks to manual driving 

 

Table 2.1: Study variables and coding 

Study variable Coding Description 

1. Age (AGE) Years  Mean age of the participant group. 

2. Level of 

automated driving 

(LAD) 

0 = L2; 1 = L3 and above The level of automated driving (SAE 

International, 2016) as reported by the authors 

of the paper. In L2 automated driving, 

participants are in charge of the monitoring 

task. In L3 automated driving and above, the 

drivers are not supposed to monitor the driving 

environment.  

3. Simulator (SIM)1 

 

0 = low fidelity  A desktop-based simulator or a simulator 

providing the environment through computer 

monitors. 

1 = medium fidelity  An instrumented-cabin simulator or a simulator 

providing more than 120 deg horizontal field of 

view. 

2 = high fidelity  A simulator with motion platform or a real car. 

4. Visual TOR 

(TOR_V) 

0 = no; 1 = yes  Whether the TOR contains a visual stimulus. 

5. Auditory TOR 

(TOR_A) 

0 = no; 1 = yes Whether the TOR contains an auditory 

stimulus. We applied no differentiation between 

vocal and acoustic TORs. 

6. Vibrotactile TOR 

(TOR_VT) 

0 = no; 1 = yes Whether the TOR contains a vibrotactile 

stimulus (i.e., vibrations are provided on one or 

more locations on the human body). 

7. Presence of TOR 

(TOR_P) 

0 = no; 1 = yes Whether a TOR is implemented. 

8. Visual NDT  

(NDT_V) 

0 = no; 1 yes Whether the NDT is visual (e.g., reading, 

watching a movie). 

9. Auditory NDT 

(NDT_A) 

0 = no; 1 = yes Whether the NDT is auditory (e.g., listening to 

the radio, watching movies with sound, 

communicating with the instructors and 

answering questions verbally).  

10. Motoric NDT 

(NDT_M) 

0 = no; 1 = yes Whether dynamic operation by hand is needed 

to perform the NDT (e.g., texting and tapping). 

11. Cognitive load 

(NDT_C) 

0 = normal cognitive load;  

1 = high cognitive load 

NDTs that require working memory (e.g., N-

back task) were assigned to the high cognitive 

load category. Otherwise, the task was assumed 

to involve normal cognitive load. 

12. Hand holding a 

device (HAND) 

0 = hands-free (No non-

driving task, the non-

driving task does not 

require a device, or the 

non-driving task is 

performed using a fixed 

device);  

Whether a device is handheld when undertaking 

the non-driving task. 
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1 = handheld 

13. Presence of a non-

driving task 

(NDT_P) 

0 = no; 1 = yes 

 

Whether a non-driving task is performed. 

14. Time budget to 

collision (TBTC)1 

Ratio variable The available time budget for a response from 

the initiation of the take-over stimulus until the 

collision with an obstacle. 

15. Time budget to 

other boundaries 

(TBTB)1 

Ratio variable The time from the initiation of the take-over 

stimulus until reaching the boundaries of the 

automated driving system other than collisions 

(e.g., due to the end of the automated zone, 

missing lane markers, or system failure).  

16. Urgency (URG)1 0 = low urgency No foreseeable collision risk or a high time 

budget to collision (≥ 15 s). 

1 = medium urgency Potential collision risk or disturbance to other 

road users if no response was made (e.g., the 

ego car drifting to the adjacent lane containing 

traffic), or a medium time budget (between 8 s 

and 15 s). 

2 = high urgency Immediate risk of collision (time budget ≤ 8 s) 

if no response was made, or the participants 

were instructed to react to a stimulus as quickly 

as possible.  

17. Driver response 

(DRE)1 

1 = low complexity The participant had to take over control on a 

straight road by stabilising the vehicle in its 

lane.  

2 = medium complexity The take-over scenarios required a specific 

driver response (braking or steering), such as 

when encountering a road narrowing, road 

constructions, or decelerating vehicles ahead, or 

when having to take over control on a curvy 

road. 

3 = high complexity The take-over scenario requires complex driver 

decision making. The participant had to decide 

whether to brake or steer in response to the 

event. 

18. Interaction with 

other road users 

(IRU)  

 

0 = no There were no other road users around, or other 

road users could not affect the driver’s decision-

making. 

1 = yes The participants had to take into account one or 

more other road users when choosing their 

optimal take-over action. For example, 

participants had to take over control while 

driving in the middle lane while the left lane 

contained traffic. 

1Note. The fidelity of the simulator was identified according to De Winter et al. (2014). The classification 

of URG and DRE was adapted from Gold, Naujoks et al. (2018). URG combines the TBTC and TBTB 

variables. TOR = Take-over request, NDT = Non-driving task. 
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2.2.4.3 Linear mixed-effects model 

We estimated a linear mixed-effects model describing the impact of the study variables on the 

mean TOTs, using the same dataset as the between-study analysis. A study-specific error term 

ϑ was introduced to capture unobserved effects that affect mean TOTs within a study (i.e., the 

intercept differs between studies). 

The model was estimated using the ‘Mixed Model’ command in SPSS 24 (IBM Corporation, 

2016) with the estimation method restricted maximum-likelihood (REML) (Molenberghs, 

Kenward, & Verbeke, 2009; Zuur, Leno, Walker, Saveliev, & Smith, 2009). Goodness-of-fit 

measures (log likelihood) and information criteria (AIC, BIC) were used to compare alternative 

model specifications. The SPSS script is provided in the supplementary materials. 

A log-normal probability density function was found to fit the mean TOT distribution better 

than the normal probability density function. All variables listed in Table 2.1 were tested as 

potential explanatory factors. The variables included in the final specification were selected 

based on their meaning (i.e., we selected non-redundant variables) and statistical significance 

(p < 0.05). One parameter was associated with each level of the explanatory variables and 

differences between levels were tested comparing alternative model specifications. Levels that 

did not differ significantly were merged. Variables that had a non-significant impact on the 

mean TOTs were excluded one by one. When a variable could not be extracted from one or 

more studies, a dummy variable was created to indicate the missing values. This variable was 

included in the model equation in addition to the original variable (dummy variable adjustment 

method). The advantage of this approach is that all observations could be analysed. 

2.3 Results 

2.3.1 Study characteristics 

The 129 included studies yielded 520 mean TOT observations from 4556 participants. 45 

studies were conducted in a high-fidelity driving simulator with motion platform (40 studies) 

or in a real car (five studies). The 129 studies comprised 68 papers from conference 

proceedings, 40 journals articles, 3 technical reports, 16 chapters from a PhD or master thesis, 

and 2 posters. The year of publication ranged between 2000 and 2018, with the majority of the 

studies being published in and after 2015 (116 out of 129). A list of the included studies, the 

scores per study variable, and a MATLAB script that processes these data are provided in the 

supplementary materials. 

The mean TOT across studies and conditions ranged from 0.69 s to 19.79 s, and the average 

mean TOT was 2.72 s (SD = 1.45, n = 520). Figure 2.2 shows the distribution of the mean 

TOTs, which is right-skewed. 
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Figure 2.2: Distribution of 520 mean take-over times (TOTs) reported in the included 

studies. The bin width is 0.25 s. 

2.3.2 Within-study analysis 

Twenty-one categories with four or more studies were identified in the experimental analysis. 

Figure 2.3 shows the average difference in mean TOTs (D) for each category (squares), as well 

as the Ds from each study (smaller circles). The presence of non-driving tasks and the modality 

of the take-over request (TOR) were frequently used independent variables. 

The following statistically significant findings stand out from Figure 2.3: 

• A strong effect of time budget was found, with a higher mean TOT (average D = 1.35 

s) for a large time budget compared to a small time budget.  

• The mean TOT was substantially lower when taking over control for the second time 

(when asked to take over twice in the same driving session or perform the same scenario 

in a second driving session) compared to the first time (average D = -1.00 s). 

• The use of a handheld device strongly increased the mean TOT (average D = 1.33 s). 

• For hands-free non-driving tasks, performing a visual non-driving task slightly 

increased the mean TOT compared to not performing a non-driving task (average D = 

0.29 s). 

• The presentation of a TOR moderately decreased response times compared to when no 

TOR was provided (average D = -0.58 s). 

In addition, the following findings are noteworthy, although based on five or less studies.  

• Having eyes closed before taking over control strongly increased TOTs compared to not 

performing a non-driving task and staying alert (average D = 1.19 s). 

• Strongly reduced TOTs were found when an auditory or vibrotactile TOR was provided 

compared to a visual-only TOR (average D = -1.41 and -1.41 s, respectively). 

• Being able to anticipate the TOR (e.g., when the TOR was periodically scheduled or 

could be anticipated from environmental cues such as the traffic and weather) 

moderately shortened the mean TOT (average D = -0.54 s). 

• The effect of traffic compared to no traffic was moderate (average D = 0.49 s). 
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Figure 2.3: Within-study effects. The circles represent the difference in mean take-over 

time between two conditions (D) of a particular study. A positive D indicates that a larger 

mean TOT was obtained from the latter condition compared to the former condition. The 

large square markers represent the average D in the category. k represents the number 

of studies (D values) in the category. p is the p-value from a two-sided signed rank test for 

the hypothesis that the D values come from a distribution having a median of 0. TOR = 

Take-over request, NDT = Non-driving task. A directional TOR is a TOR that is 

informative about the location of the hazard. Peripheral visual stimuli are stimuli that 

indicate the status of the automation or the environment (e.g., using ambient LEDs). 

2.3.3 Between-study analysis 

The correlations between the 18 study variables and the mean TOT are shown in Table 2.2. As 

in the within-study analysis, urgency of the take-over scenario and holding a handheld device 

showed strong correlations with the mean TOT: higher-urgency levels and shorter time budgets 

were associated with lower mean TOT (URG: r = -.44; ρ = -.42; TBTC: r = .53, ρ = .43; TBTB: 

r = .73, ρ = .31), and holding a handheld device (HAND) yielded higher mean TOT (r = .30, ρ 

= .35). The correlations between mean TOT and other categorical variables were weak to 

moderate, with absolute values below 0.3. That is, the mean TOT did not substantially correlate 

with the modality of the TOR or the type of non-driving task. 
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Table 2.2: Correlations between the study variables and mean TOTs in the between-

study analysis. Both Pearson product-moment correlations (r) and Spearman rank-

order correlations (ρ) are reported. 

Study 

variable 

Correlation 

with mean 

TOT  

 

r ρ Study variable conditions n 

Average 

mean 

TOT (s) 

SD 

mean 

TOT 

(s) 

1. AGE .22 .24 - 485 - - 

2. SIM 
-

.04 
.02 

0 (low fidelity) 81 2.67 2.39 

1 (medium fidelity) 268 2.84 1.33 

2 (high fidelity) 171 2.57 0.95 

3. LAD .15 .19 
0 (L2) 62 2.14 1.17 

1 (L3 and above) 458 2.80 1.47 

4. 

TOR_V 
.04 .08 

0 (no visual TOR) 160 2.63 1.75 

1 (with visual TOR) 360 2.77 1.29 

5. 

TOR_A 
.12 .12 

0 (no auditory TOR) 84 2.33 1.00 

1 (with auditory TOR) 436 2.80 1.51 

6. 

TOR_VT 

-

.11 
-.10 

0 (no vibrotactile TOR) 447 2.79 1.50 

1 (with vibrotactile TOR) 73 2.35 0.99 

7. 

TOR_P 
.06 .06 

0 (no TOR) 34 2.40 1.08 

1 (TOR present) 486 2.75 1.47 

8. 

NDT_V 
.13 .13 

0 (no visual NDT) 204 2.49 1.12 

1 (the NDT is visual) 309 2.89 1.62 

9. 

NDT_A 

-

.03 
-.07 

0 (no auditory NDT) 384 2.75 1.29 

1 (the NDT is auditory) 129 2.67 1.88 

10. 

NDT_M 

-

.01 
-.04 

0 (no motoric NDT) 289 2.74 1.27 

1 (the NDT requires a motoric manoeuvre) 224 2.72 1.67 

11. 

NDT_C 

-

.05 
-.11 

0 (without highly cognitively demanding NDT) 385 2.78 1.28 

1 (with highly cognitively demanding NDT) 128 2.60 1.90 

12. 

HAND 
.30 .35 

0 (no handheld device) 371 2.54 1.42 

1 (NDT device held in the hands) 108 3.61 1.46 

13. 

NDT_P 
.11 .11 

0 (no NDT present at the moment of TOR) 143 2.46 1.17 

1 (NDT present at the moment of TOR) 377 2.82 1.53 

14. URG 
-

.44 
-.42 

0 (low urgency) 83 3.95 2.35 

1 (medium urgency) 114 3.03 1.32 

2 (high urgency) 295 2.25 0.81 

15. DRE 
-

.16 
-.07 

0 (low response complexity) 108 3.43 2.21 

1 (medium response complexity) 134 2.34 1.16 

2 (high response complexity) 253 2.66 1.04 

16. IRU .08 .14 
0 (no interaction with other road user) 344 2.67 1.55 

1 (interaction with other road user) 141 2.93 1.24 

17. 

TBTC 
.53 .43 — 

240 — — 

18. 

TBTB 
.73 .31 — 

160 — — 

Note. TOR = Take-over request, NDT = Non-driving task. 
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Additionally, we calculated the correlation between the mean and the standard deviation of the 

TOTs and found a strong association (Figure 2.4; r = .82; ρ = .73, n = 397). The correlations 

between the mean TOTs and the three continuous study variables: AGE, TBTC, and TBTB are 

depicted in Figure 2.5. 

A weak to moderate correlation was observed between sample size and mean TOT (r = .21, ρ 

= .14, n = 520), see Figure 2.6. The correlations between sample size and all study variables 

were weak with an absolute r and ρ smaller than 0.20, except for the correlation with the time 

budget to collision (TBTC, r = .26, ρ = 27, n = 240) and simulator fidelity where ρ was smaller 

than -0.20 (SIM; r = -.13, ρ = -.25, n = 520). In other words, studies in high-fidelity simulators 

involved smaller sample sizes than studies in low-fidelity simulators. 

Table 2.3 shows the correlations between the study variables, providing insight into the patterns 

of the experimental design. For a higher level of automation, the studies tended to implement a 

TOR (ρ = .65), instruct the participants to perform a non-driving task (ρ = 0.34), and provide 

longer time budgets to collision (ρ = .35). These observations are in accordance with the 

definition of SAE International (2016). 

Concerning the modalities of the non-driving task and TOR, strong positive correlations were 

found between the presence of a motoric and visual non-driving task (ρ = 0.68). Visual and 

auditory TORs tended to be combined (ρ = 0.35), which was not the case for the auditory and 

vibrotactile modalities (ρ = -0.35). 

A complex driver response was more likely to be required when the take-over situation was 

more urgent (ρ = 0.52), and when other road users were involved in the take-over process (ρ = 

0.46). Also, it is worth noting that studies that used higher fidelity simulators tended to employ 

older participants (ρ = 0.38). 
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Figure 2.4 Scatter plot of the standard deviation of the take-over time (SD TOT) as a 

function of the mean take-over time (mean TOT), with a fitted least-squares regression 

line (n = 397). 

 

 

Figure 2.5 Scatter plot of the mean take-over time (mean TOT) as a function of a) mean 

age of the participant group (n = 485), b) take-over time budget to collision (TBTC, n = 

240), c) take-over time budget to other boundaries (TBTB, n = 160), with a fitted least-

squares regression line. A TBTB of 0 s means that the automation was deactivated at the 

moment of the take-over stimulus. 
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Figure 2.6 Scatter plot of the sample size of the participant group as a function of the 

corresponding mean take-over time (mean TOT), with a fitted least-squares regression 

line (n = 520). The vertical line represents the grand mean TOT. 

2.3.4 Linear mixed-effects model 

The goodness of fit indicators of the linear mixed-effects model are shown in Table 2.4. Table 

2.5 shows the estimation results where effects for most study variables were strongly 

statistically significant (i.e., low p-values). The model predicting "ln(TOT)"  (i.e., the logarithm 

of the mean TOT ) is specified according to Eq. (1): 

𝑙𝑛(TOT) =  𝛼 + 𝛽LAD ∙ LAD + 𝛽TORA
∙ TORA + 𝛽TORVT

∙ TORVT + 𝛽NDTV
∙ NDTV

+ 𝛽MissNDTV
∙ MissNDTV + 𝛽HAND ∙ HAND + 𝛽MissHAND ∙ MissHAND

+ 𝛽URGHigh
∙ URGHigh + 𝛽URGMed

∙ URGMed + βMissURG ∙ MissURG + 𝛽IRU

∙ IRU + βMissIRU ∙ MissIRU + 𝛾 ∙ 𝜗 + 𝜎
∙ 𝜀                                                                    (1)    

where α  is the intercept, 𝛽LAD,  𝛽TORA
, 𝛽TORVT

, 𝛽NDTV
,  𝛽HAND, 𝛽URGHigh

, 𝛽URGMed
, 𝛽IRU are 

the parameters associated with the study variables listed in Table 2.5, 

𝛽MissNDTV
, 𝛽MissHAND, 𝛽MissURG, 𝛽MissIRU are parameters associated with the dummy variables 

indicating the missing values, γ is the parameter associated with the study-specific error term 

ϑ ~ N(0,1) , and 𝜎  is the parameter associated with the observation-specific error term 

ε ~ N(0,1). The study-specific error term captures between-study variance and the observation-

specific error term captures residual variance between observations. We selected the study 

variables based on statistical significance. The other study variables listed in Table 2.1 did not 

significantly influence the mean TOT. 

 

Studies carried out with high levels of automation (≥ SAE level 3) showed longer mean TOTs 

than studies with partial automation (SAE Level 2). The fidelity of the driving simulator did 

not significantly influence mean TOTs (i.e., was not a sufficiently strong predictor to be 

included in the model as a predictor variable). Auditory and vibrotactile TOTs were associated 

with shorter mean TOTs, whereas visual warnings did not have a statistically significant impact 

on mean TOTs. Participants were slower in taking over control when they were engaged in 
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visual non-driving tasks. Other types of non-driving tasks (auditory, motoric, and cognitive) 

did not significantly influence mean TOTs. Participants showed longer mean TOTs when 

holding a handheld device. Take-over situations with high and medium levels of urgency were 

related to shorter TOTs than situations with a low level of urgency. Finally, taking into account 

one or more other road users was associated with a longer mean TOT as compared to when no 

road users were driving in the vicinity.   

Table 2.4: Characteristics of the linear mixed-effects model 

Number of parameters  14 

Number of studies  129 

Number of observations 520 

-2 Restricted log likelihood 132.2 

Akaike’s Information Criterion (AIC) 136.2 

Schwarz’s Bayesian Criterion (BIC) 144.6 

 

Table 2.5: Results of the linear mixed-effects model. The parameters represent the 

unconditional marginal effects of the study variables on the logarithm of the mean TOT. 

Variable Description Parameter Estimate df t p 

 Intercept α 1.06 203.39 11.12 9.39*10-23 

LAD 

Equal to 1 when the level of 

automated driving (SAE 

International, 2016) is L3 or 

above as reported by the 

authors of the paper 

βLAD 0.285 140.51 3.11 2.24*10-3 

TORA 
Equal to 1 when the TOR 

contains an auditory stimulus 
βTORA

 -0.213 451.50 -5.29 1.89*10-7 

TORVT 
Equal to 1 when the TOR 

contains a vibrotactile stimulus 
βTORVT

 -0.180 450.54 -4.00 7.53*10-5 

NDTV 
Equal to 1 when the NDT is 

visual 
βNDTV

 0.0975 450.68 3.32 9.56*10-4 

MissNDTV 

Equal to 1 when it is not 

mentioned whether the NDT is 

visual 

βMissNDTV
 -0.155 151.99 -0.62 5.36*10-1 

HAND 

Equal to 1 when a device is 

handheld when undertaking the 

NDT 

βHAND 0.231 461.09 6.32 6.22*10-10 

MissHAND 

Equal to 1 when it is not 

mentioned whether a device is 

handheld when undertaking the 

NDT 

βMissHAND -0.0559 507.00 -0.63 5.29*10-1 
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URGHigh 

Equal to 1 when there is an 

immediate risk of collision 

(time budget ≤ 8 s), or the 

participants were instructed to 

react to a stimulus as quickly as 

possible. 

βURGHigh
 -0.466 491.88 -8.14 3.17*10-15 

URGMed 

Equal to 1 when there is 

potential collision risk or 

disturbance to other road users 

if no response is made, or a 

medium time budget (between 

8 s and 15 s). 

βURGMed
 -0.219 506.95 -3.62 3.21*10-4 

MissURG 

Equal to 1 when it is not 

mentioned whether there is an 

immediate risk 
βMissURG -0.142 145.68 -0.77 4.44*10-1 

IRU 

Equal to 1 when the 

participants had to take into 

account one or more other road 

users when choosing their 

optimal take-over action. 

βIRU 0.182 502.89 4.57 6.13*10-6 

MissIRU 

Equal to 1 when it is not 

mentioned whether the driver 

had to take into account one or 

more other road users when 

choosing their optimal take-

over action. 

βMissIRU -0.0220 336.49 -0.18 8.59*10-1 

Error term Description Parameter Estimate  
Wald-

Z 
p 

ϑs 
Study-specific error term 

(between-study variance) 
γ 0.136  6.89 5.40*10-12 

εs 

Observation-specific error term 

(between-observation 

variance) 

σ 0.0375  13.73 6.73*10-43 

p < 0.05 is indicated in boldface 

The model coefficients in Table 2.5 are defined on a logarithmic scale, which enhances the 

model fit, but complicates the interpretation. To illustrate the impact of the study variables on 

the mean TOT in seconds, we used the linear mixed-effects model to calculate the mean TOT 

in a baseline observation and the mean TOT where one variable was changed while keeping all 

the other variables fixed. In the baseline observation, the level of automation was high (≥ SAE 

level 3), the TOR was auditory, the NDT was visual, and the level of urgency was high. In 

addition, drivers did not use a handheld device and did not have to take into account other road 

users. These baseline values were selected because they represent the majority of the conditions 

available. The impact of the study variables on the mean TOTs is shown in Table 2.6. The level 
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of urgency, holding a device in the hands, and the use of an auditory TOR had the largest impact 

on the mean TOTs. 

Table 2.6: Effect of the study variables on the baseline TOTs (average baseline TOT = 

2.15 s). 

Variable Estimated mean TOT (s) 

LAD = 0 1.62 

TOR_A = 0 2.66 

TOR_VT = 1 1.80 

NDT_V = 0 1.95 

Hand = 1 2.71 

URG_Low = 1 3.43 

URG_Med =1 2.75 

IRU = 1 2.58 

2.4  Discussion 

2.4.1 Findings from this Meta-Analysis  

This meta-analysis quantified the determinants of mean take-over time (TOT) as observed in 

129 experiments using three complementary approaches: a within-study analysis, a between-

study analysis, and a linear mixed-effects model. The within-study analysis provides a synthesis 

of causal experimental effects (Figure 2.3). The between-study analysis is based on correlations 

that involve hundreds of mean TOT values (Table 2.2), and may, therefore, feature higher 

generalizability than the within-study analysis. However, the between-study analysis is a 

synthesis of correlations rather than causal effects, and may therefore be susceptible to various 

confounding factors. The linear mixed-effects model is statistically powerful because it uses 

the dataset of the between-study analysis while taking into account whether the mean TOT 

values were obtained from the same study. Although all models are wrong if taken literally 

(Box, 1976), we would argue that our three-fold complementary approach provides a good 

picture of the current take-over literature. 

Several main findings stand out from the three meta-analysis methods. First, the urgency of the 

situation, defined in terms of (1) the hand-coded urgency level (URG), (2) time budget to 

collision with an obstacle (TBTC), and (3) time budget to boundaries (TBTB), has substantial 

associations with the mean TOT. In other words, if more time is available, drivers use more 

time to take over. This observation is consistent with previous reviews (see Section 2.1.2) and 

can be interpreted using a literature review by Summala (2000) on brake reaction times in 

manual driving. Summala argued that a distinction exists between drivers’ ability to intervene 

quickly and their motivation to intervene, and explained that “it is not always necessary to react 

as soon as possible”. If there is sufficient time, drivers do not take-over as quickly as they can, 

but first assess the situation (e.g., by checking the mirrors) (Gold, Damböck et al., 2013) and 

resume an optimal driving posture (e.g., by adjusting the seating position) (Zhang et al., 2019) 

before taking over. 

The second finding is that performing a non-driving task with a handheld device strongly 

increases the mean TOT, as confirmed by each of the three analyses. Among the studies without 

a handheld device, performing a visual NDT yielded a moderate increase in mean TOT as 

compared to not performing such a task. The mixed-effects model confirmed that engagement 
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in a visual NDT increased mean TOTs. The other modalities of the NDT, that is, whether the 

task demand is auditory or cognitive, did not show significant associations with the mean TOTs. 

Zhang et al. (2019) examined driver perception and movement response times during take-over 

process, and found that physically switching arm posture from the current NDT to the driving 

control task requires more time than perceiving and cognitively processing the take-over 

stimuli, especially when the arm movement amplitude is high (cf. Fitts, 1954). 

Third, a high level of automation (SAE L3 and above) showed higher mean TOTs compared to 

partial automation (SAE L2), possibly due to a combined effect of a longer time budget, lower 

urgency, and more involvement in (handheld) NDTs, consistent with the definition provided by 

the SAE International (2016). 

Fourth, as shown in the within-study analysis, prior experience with taking over has a strong 

effect: drivers responded about 1 second faster if the take-over scenario occurred the second 

time compared to the first time. The majority of the included studies (92 out of 129) used a 

within-subject design. In a review about brake response times in manual driving, Green (2000) 

pointed out that in most studies, participants performed multiple trials to generate more data. 

The repeated trials would contribute to shorter response times, which calls for caution when 

interpreting the results. Our meta-analysis also showed that drivers responded about 0.5 seconds 

faster when the TOR could be anticipated from task-related or environmental cues. This finding 

is in line with publications indicating that expectancy is an important factor influencing brake 

response times (Green 2000; Warshawsky-Livne & Shinar, 2002; Young & Stanton, 2007). 

Fifth, visual-only TORs showed longer mean TOTs than auditory or vibrotactile TORs. The 

mixed-effects model further showed that auditory and vibrotactile TORs reduce the mean TOTs 

as compared to when such TORs are not present or the TOR is visual only. Petermeijer, Doubek, 

and De Winter (2017) argued that a visual-only warning is not suitable as a TOR, as drivers 

may overlook a visual signal (especially if they are performing a visually distracting NDT) or 

may not interpret a visual signal as urgent. Auditory warnings, on the other hand, are well 

established due to their omnidirectional characteristics (Bazilinskyy & De Winter, 2015). 

Vibrotactile TORs are effective as well, as they can attract the driver’s attention when the driver 

is performing a visual or auditory NDT (Petermeijer et al., 2016). 

Sixth, we found no clear effect of age in the within-study analysis or the multi-level model, 

which is interesting because age is known to be associated with a slower speed of processing 

(e.g., Salthouse, 2009). One possible explanation is that TOTs largely reflect motivational 

processes, not biological limitations, as pointed out above. For example, although older drivers 

have a slower simple reaction time, they could have a more cautious driving style and are likely 

to take over quickly even when not strictly necessary (Körber, Gold, Lechner, & Bengler, 

2016). Compensatory behaviours, such as a less intensive involvement in NDTs, may also 

alleviate ageing effects (Clark & Feng, 2017). Furthermore, the positive correlation between 

age and mean TOT in the between-study analysis may point to a confounding effect, where 

older drivers have participated in different types of experiments, as discussed below. We argue 

that the lack of observed age effects in the within-study analysis is not due to range restrictions, 

as the differences in mean age for the six included studies were substantial (23 vs. 67 years, 20 

vs. 70 years, 34 vs. 60 years, 18 vs 70 years, 18 vs. 37 years, 26 vs. 71 years). It has been 

recommended that future take-over studies include even older drivers, above 80 years of age 

(e.g., Körber et al., 2016, Li, Blythe, Guo, & Namdeo, 2018). Additionally, we would 

recommend that future research on the effect of biological age on TOT should try to obtain a 

more in-depth understanding by examining the effects of covariates, such as years of driving 
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experience, psychometric performance (e.g., simple, reaction time, perceptual speed), and 

sensation seeking scores. 

Finally, we found a moderate effect of surrounding traffic (IRU) on the mean TOT. This can be 

explained by the fact that drivers, in case of surrounding traffic, need time for visual scanning 

and situation assessment before taking over. However, we found that a more complex driver 

response (i.e., higher DRE) was associated with a shorter mean TOT in the between-study 

analysis. This counterintuitive finding could be due to the strong positive correlation between 

DRE and urgency. In other words, although complex responses require cognitive processing 

time (see e.g., Gold, Naujoks et al., 2018, and Green, 2000 for discussion in manual driving 

context), such responses are more likely to be performed in urgent situations, which are 

associated with lower mean TOTs. 

2.4.2  Limitations 

The current study was performed using mean TOTs. In the end, collision risk is not determined 

by the mean TOT, but by outliers in the TOT distribution (Horrey & Wickens, 2007). We found 

that the mean and standard deviation of TOT are highly correlated (r = .82; ρ = .73), indicating 

that mean TOTs are informative about the tail of the TOT distribution. However, we note that 

accidents may be due to extreme values (e.g., TOTs that exceed the 99.999th percentile, such 

as due to a driver being asleep behind the wheel). Our meta-analysis is not suitable for making 

inferences about crash likelihood or for proposing generic guidelines about what time budget 

constitutes safety. 

A second limitation is that this meta-analysis investigated take-over time, not take-over quality. 

A number of studies found fast but also hazardous responses (severe braking or steering) under 

higher mental workload and short time budgets (e.g., Gold, Damböck et al., 2013; Clark & 

Feng, 2017; Ito, Takata, & Oosawa, 2016). Put differently, a short TOT does not necessarily 

indicate a safe situation, but could actually be a sign of hazard, because short TOTs typically 

occur in urgent situations for which an evasive manoeuvre may be needed. We found that 

directional TORs (i.e., TORs that are informative about the location of the hazard) have no 

beneficial effects on mean TOT, but this does not imply that directional TORs are ineffective, 

as they could be useful to enhance take-over quality (e.g., to enhance situation awareness). We 

recommend that researchers publish not only the mean and standard deviation of the TOT, but 

also provide data files with TOT values per event. This would allow meta-analysts to make 

inferences about the TOT distribution. Additional response variables, such as minimum time to 

collision and maximum longitudinal/lateral acceleration would enable the assessment of take-

over quality. 

Third, the starting moment of the take-over response is a source of ambiguity (Liu & Green, 

2017). While some researchers used criteria such as “the moment the driver gave an input either 

on the pedals or the steering wheel” (Payre, Cestac, Dang, Vienne, & Delhomme, 2017), other 

researchers provided exact criteria. For example, Gold, Damböck et al. (2013) adopted a 2 

degree steering angle or 10% brake pedal position, which was employed in a number of 

subsequent studies (Feldhütter, Gold, Schneider, & Bengler, 2017; Gold et al., 2015; Gold, 

Körber, Lechner, & Bengler, 2016; Gold et al., 2014; Gold, Lorenz, Damböck, & Bengler, 

2013; Kerschbaum et al., 2015; Körber et al., 2016; Radlmayr et al., 2014). Somewhat different 

criteria can be found in other studies, such as absolute steering acceleration larger than 5 deg/s2 

(Zeeb, Buchner, & Schrauf, 2015, 2016). Another issue is that the TBTC posed an upper limit 

to the TOTs that could be observed; if a participant would not react at all (which sometimes 
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happened, see Gold, Lorenz et al., 2013; Young and Stanton, 2007), their results were not taken 

into account in the reported mean TOT, which would underestimate the mean TOT. 

Fourth, although a large number of study variables were investigated, there may still be 

unobserved study variables that affect TOT. Examples of hidden moderators are driving speed, 

the intensity of the TOR, and the state of the operator (e.g., whether he or she is fatigued or 

impaired by alcohol, see Wiedemann et al., 2018). Hidden moderators may also explain why 

the study-specific error term is strong in the mixed-effects model. 

Fifth, nearly all included studies were conducted in a driving simulator. Despite advantages 

such as controllability and safety, driving simulators have limited fidelity, which raises the issue 

about behavioural validity (De Winter, Van Leeuwen, & Happee, 2012; Green, 2000; Kaptein, 

Theeuwes, & Van der Horst, 1996; Riener, 2010; Risto & Martens, 2014). Also, the driver’s 

level of perceived risk perception may be low in simulators as compared to on-road conditions 

(Carsten & Jamson, 2011), which could discourage a fast take-over response. While the TOTs 

measured in simulator studies may not accurately reflect the numeric values of the TOTs in the 

real world, the results may still be valid concerning the direction of the effects (Kaptein et al., 

1996). 

Sixth, although our meta-analysis is much more comprehensive compared to previous reviews 

on the same topic (see Introduction), the within-study analysis would still benefit from a larger 

sample of studies. The Ds in Figure 2.3 are based on 4 to 17 studies. Although each of these 

individual studies may present credible findings, more studies should be conducted to examine 

whether the experimental effects are generalizable. 

Finally, as in any meta-analysis, there may be sources of bias or confounding effects. In a 

previous review on automated driving, De Winter et al. (2014) observed a confounder, namely 

that young participants are overrepresented in lower-fidelity driving simulators. The authors 

explained that lower-fidelity simulators are available at universities where participants are 

usually students, whereas companies with high-fidelity simulators tend to recruit middle-age 

drivers. A similar association between simulator fidelity level and participant age was observed 

in the between-study meta-analysis (ρ = 0.38). We also found studies in lower-fidelity 

simulators involved larger sample sizes (ρ = -0.25), which could be explained because students 

participate in relatively large amounts, e.g., for course credit. Such confounds affect some of 

the correlations in the between-study analysis (Table 2.2), but are controlled for in the mixed-

effects model. In the between-study analysis, a weak-to-moderate correlation was observed 

between sample size and mean TOT, which may be related to the confounding effect of 

simulator fidelity discussed above.  

We expect that publication bias regarding mean TOT in the between-study analysis is small as 

compared to other types of research such as drug trials where researchers and sponsors may 

favour a positive drug efficacy. That is, we are not aware of a mechanism by which the mean 

TOT would affect the likelihood of publication. The scatter plot of sample size vs. mean TOT 

(Figure 2.6) showed no characteristic funnel shape, likely because the observed spread in mean 

TOT reflects study heterogeneity rather than imprecision of the mean TOT values. 

Regarding the within-study analysis, where we assessed differences in mean TOT (D), 

publication bias is possible but not evident from our findings. For example, innovative types of 

TORs where publication bias may be expected (e.g., directional and peripheral TORs) showed 

near-zero effects (Figure 2.3), thus indicating that small (null) effects were published. The 

number of studies per category of the within-subject analysis was too small to create funnel 

plots or perform a formal test of publication bias. 
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2.4.3 Conclusion and Recommendations for Future Research 

The meta-analysis included 129 studies that measured driver TOTs when resuming manual 

control after automated driving and investigated the effect of multiple factors related to the 

driver, the automation system, the human-machine interface, the driving situation, and the 

experimental setup. Notable findings are that the available time, a lack of experience with 

TORs, and using a handheld device were associated with substantially increased mean TOT. 

Although providing a take-over request yields a lower mean TOT than no take-over request at 

all (or a visual-only take-over request), the modality of the TORs had relatively minor effects 

on the mean TOT. 

These findings have important implications for future research and design. In particular, instead 

of designing new types of take-over requests that may have only incremental effects on mean 

TOT, efforts could be made towards ensuring that drivers are prepared and trained to take over. 

Also, drivers should not be permitted to engage in handheld non-driving tasks if take-over 

situations can be urgent. Conducting non-driving tasks on a mounted (head-up) display could 

be a safer option in such cases. 

Finally, our meta-analysis suggests that achieving a low mean TOT should not necessarily be a 

design target. We showed that drivers take more time (i.e., the mean TOT is higher) when they 

have more time (i.e., when the urgency is lower). Future engineering efforts should be directed 

towards ensuring that drivers actually have sufficient time, which could be done by building 

better sensors with larger look-ahead time or by using vehicle-to-vehicle communication. 

2.5 Supplementary material 

Supplementary materials are accessible via this link: https://doi.org/10.4121/uuid:75c28abe-

6559-4273-85f4-927e969c1c59 
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3.1 Introduction 

Over the past decade, the rapid advancement of intelligent transport systems (ITS) and sensor 

technology has been dramatically changing the automotive industry. The first (semi-)automated 

systems already available are designed for specific driving situations. For example, some cars 

already have systems such as traffic jam assist that work at low speeds, or automated driving 

on highways. These systems are primarily based on Adaptive Cruise Control (ACC), which 

allows a vehicle to maintain a predefined headway to the vehicle in front, combined with Lane 

Keeping Assist Systems (LKAS) that take control of the lateral position of a car within its lane 

primarily on the basis of road markings. In a recently published naturalistic driving study, 

Endsley (2017) reported her experience with the Tesla Model S over a period of six months, 

during which considerable number of trips were performed in autopilot mode. Besides 

automated passenger cars, automated truck platooning, defined as a team of virtually connected 

trucks traveling together at short following distances, is also getting increasing attention for its 

potential positive effects on energy saving, driver workload, traffic flow, and safety (Alam, 

Besselink, Turri, Martensson, & Johansson, 2015; Bergenhem, Shladover, Coelingh, Englund, 

& Tsugawa, 2012; Hjälmdahl, Krupenia, & Thorslund, 2017; Willemsen, Stuiver, & Hogema, 

2015). The lead truck is normally driven by a human driver, and the trucks behind follow the 

lead truck with automated longitudinal control (e.g., via Cooperative Adaptive Cruise Control 

(CACC), as described in Ploeg, Van de Wouw, & Nijmeijer, 2014) or with both automated 

longitudinal and lateral control (e.g., combining CACC and LKAS). Although truck platooning 

has not yet been implemented as a commercial product, various demonstrations and pilots 

already showed its potential. One example is the European Truck Platooning Challenge (2016), 

in which six European truck manufacturers brought platoons of trucks equipped with various 

automation technologies on public roads, travelling from various European cities to the final 

destination of the Port of Rotterdam. 

In these real-life applications and truck platooning demonstrations, drivers are still required to 

attentively monitor the driving environment and be prepared to take over instant manual control 

upon the detection of operational limits of the system (i.e., Level 2 automation as defined by 

SAE International, 2016). Studies with passenger cars have shown that this level of automation 

may not require less attentional demand compared to manual driving (Stapel, Mullakkal-Babu, 

& Happee, 2019; Stapel, Mullakkal-Babu, & Happee, 2017). Unscheduled and critical 

transitions of control can be particularly dangerous for drivers in the platoon, because the 

available time budget is usually very small due to the short following distance used for 

platooning. In the foreseeable future, the working range and the reliability of these systems will 

continue to develop towards a situation in which the driver is allowed to be temporarily out of 

the loop (Merat et al., 2018) and relax (SAE level 3 or level 4 automation). In certain situations, 

such as approaching the exit of a motorway and thus dissolving the platoon, transitions of 

control to human drivers may still occur. These transitions will have to be sophisticatedly 

designed to ensure that drivers will be ready to take over control safely and comfortably. This 

can be challenging, because increasing levels of automation may have negative impact on 

drivers’ ability to take over control due to factors such as increasing engagements in non-driving 

tasks (Jamson, Merat, Carsten, & Lai, 2013), loss of situation awareness (Endsley, 1995), 

boredom, and fatigue (Körber, Schneider, & Zimmermann, 2015). Also, the variability in driver 

activities and mental states during automated driving can subsequently cause large differences 

in driver response towards similar stimuli. A good understanding of driver takeover behaviour 

and performance under various task conditions becomes essential for the development of future 

intelligent vehicles.  
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Typically, taking over control includes several mental and physical processing procedures: 

perception of the take-over stimulus (normally a take-over request (TOR) issued by the system), 

cognitive processing of the traffic situation, response selection, resuming motor readiness (by 

repositioning the hands on the steering wheel and feet on the pedals), and implementation of an 

intervention (Gold & Bengler, 2014; Petermeijer, De Winter, & Bengler, 2016; Zeeb, Buchner, 

& Schrauf, 2015, 2016). Multiple factors have been suggested to influence the response time 

(RT) to complete the take-over process (i.e., take-over time) and other take-over performance 

parameters, such as human-machine interface (HMI) design (Carsten & Martens, 2019; 

Melcher, Rauh, Diederichs, Widlroither, & Bauer, 2015; Van den Beukel, Van der Voort, & 

Eger, 2016; Willemsen, Stuiver, Hogema, Kroon, & Sukumar, 2014), driver inattention and 

engagement in non-driving tasks (Louw, Kountouriotis, Carsten, & Merat, 2015; Petermann-

Stock, Hackenberg, Muhr, & Mergl, 2013; Radlmayr, Gold, Lorenz, Farid, & Bengler, 2014; 

Wandtner, Schömig, & Schmidt, 2018; Zeeb, Härtel, Buchner, & Schrauf, 2017), urgency of 

the take-over situation (Gold, Damböck, Lorenz, & Bengler, 2013; Ito, Takata, & Oosawa, 

2016; Roche & Brandenburg, 2018), and traffic complexity (Gold, Körber, Lechner, & Bengler, 

2016; Jamson et al., 2013; Radlmayr et al., 2014). Zhang, De Winter, Varotto, Happee, and 

Martens (2019) conducted a meta-analysis on take-over times from 129 studies with SAE level 

2 automation or higher, showing that the mean values ranged largely between 0.7 s and 20 s 

across various experimental studies and conditions. The reviewed studies were predominantly 

car automation studies. Eriksson and Stanton (2017) pointed out that most of the previous 

efforts focused on driver take-over time in critical situations, given a predetermined take-over 

lead time (i.e., the maximum time allowed for a driver to response to a critical event). Greater 

perceived urgency can shorten take-over times, but on the other hand can also force the driver 

to take over before being well prepared (Gold et al., 2013; Lu, Happee, Cabrall, Kyriakidis, & 

De Winter, 2016). Therefore, take-over times measured under critical situations cannot reflect 

the time drivers ideally need to get prepared, and achieving a short take-over time is not always 

necessary or beneficial (Zhang et al., 2019). Advanced strategies such as multi-step control 

transitions and adaptive control transitions (e.g., taking driver states into consideration) may 

help the driver to gradually get back into the loop, and take over more safely and comfortably. 

To be able to develop such strategies, and to design scheduled (and therefore non-critical) 

transitions, it’s necessary to understand how long it takes for a driver to conduct the self-

regulated control transition process. Eriksson and Stanton (2017) exclusively looked into non-

critical take-over scenarios without time restrictions in a passenger car mock-up simulator, and 

reported largely varied take-over times ranging from 1.9 s to 25.7 s. We have not been able to 

identify studies that have used professional truck drivers as participants in a truck mock-up 

driving simulator, with the focus on take-over response times and performance when leaving a 

platoon in non-critical scenarios. 

Due to the fact that driver take-over is a complex procedure, it is of interest to understand how 

long it takes to complete various information processing stages and come to action, and how 

these take-over time components are influenced by various factors. In previous studies, 

researchers often reported RTs measured from the TOR onset until the first contact with the 

steering wheel/pedal to indicate the motor or physical readiness of the driver, and the start of 

the intervention (by braking, steering, or button pressing) to indicate the initiation of a conscious 

response to the take-over scenario (e.g., Zeeb et al., 2015, 2016, 2017). If the driver was visually 

distracted before the TOR onset, some researchers also measured the RTs when the driver first 

shifted the gaze away from the visual non-driving task, and when the first fixation on the road 

occurred (e.g., Gold et al., 2013; Körber, Gold, Lechner, & Bengler, 2016; Feldhütter, Gold, 

Schneider, & Bengler, 2017). This was done to investigate when the driver shifted the visual 

attention to the road and started to process the information gathered from the driving 
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environment. In a few studies, additional actions were registered, such as the first mirror check 

and the first operation of a turn signal (e.g., Gold et al., 2013; Petermeijer, Doubek, & De 

Winter, 2017).  

In studies on manual driving, the concept of perception-response time is frequently utilized to 

investigate drivers’ brake responses (see the review of Green, 2000), which comprises two 

components: the perception RT and the movement RT. The perception RT can be defined as 

the time it takes for the driver to perceive a stimulus, cognitively process the situation, and 

decide on a response. The movement RT is the time required to perform the actual programmed 

motoric action. For the analysis of driver take-over times, if only considering the basic response 

to the TOR, the division between the perception RT and the movement RT would be the start 

of the hand/foot movement towards the steering wheel/pedal. Moving hands or feet indicates 

that the driver has perceived and recognized the meaning of the TOR (i.e., they need to take 

over control), and has decided to regain motor readiness, which marks the end of the perception 

RT and the start of the movement RT. These two RT components are suggested to have different 

explanatory variables. For instance, the perception RT can be more related with the 

characteristics of the take-over stimulus (e.g., modality and intensity of the TOR) and driver 

monitoring strategies (e.g., how long and how frequently did the driver look onto/off the road, 

see Zeeb et al., 2015, 2016), while the movement RT can be more related to the complexity and 

the amplitude of the motoric manoeuvre (cf. Fitts, 1954), such as putting away a hand-held 

device. Note that the movements of hands and feet do not have to be the result of a decision 

about the required action after the comprehension of the current situation, especially in critical 

scenarios where the movements could be an automated response (i.e. as a reflex). To regain 

situation awareness may require a considerable amount of time (Lu, Coster, & De Winter, 

2017), the process of which could overlap with, or even exceed the movements to resume 

manual control.  

In the manual driving context, the movement RT is often neglected since it only refers to the 

foot traveling time from the acceleration pedal to the brake pedal, which normally takes less 

than 0.5 s (Green, 2000). When studying driver behaviour in highly automated driving, taking 

over control is more of a task-switching process (i.e., to perform two tasks in succession, see 

Monsell, 2003) rather than multi-tasking such as being distracted during manual driving (Louw, 

Merat, & Jamson, 2015; Young & Stanton, 2007; Zeeb et al., 2017). This change of paradigms 

leads to an expansion of non-driving task classifications from simply listening to the radio to 

complex tasks incompatible with driving, such as writing emails, playing computer games, or 

even resting with eyes closed (see Naujoks, Befelein, Wiedemann, & Neukum, 2017 for a 

review). When engaged in non-driving tasks, drivers’ postures become less predictable and may 

heavily influence take-over times. Therefore, the distinction between the perception RT and the 

movement RT has its added value for a deeper insight into factors influencing driver take-over 

times and the individual differences. However, very few researchers reported the start of the 

hand movement when studying take-over times (Kerschbaum, Omozik, Wagner, Levin, 

Hermsdörfer, & Bengler, 2017; Kerschbaum, Lorenz, & Bengler, 2015). The perception-

response time during driver take-over process is little addressed up to now. 

In summary, a closer examination of drivers’ take-over process and the variability in non-

critical take-over situations, particularly in case of truck platooning, is needed to design safe 

and comfortable transitions of control. The current study aims to investigate how various task 

conditions influence truck drivers’ perception-response times when receiving a request to leave 

the platoon and take back control, and to explore the factors influencing the variability in this 

process based on video observations. The factors explaining the RT components and their 

variability can be used towards the design of an adaptive transition approach. 
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3.2 Methods 

3.2.1 Participants 

Twenty-two participants (2 females) took part in the experiment. They all held a truck driver’s 

license for at least eight years (M = 28 years, SD = 12) and drove at least 10.000 km per year 

in a truck (M = 35219 km/year, SD = 27508). On average, the participants were 47.4 years old 

(SD = 11.5), ranging from 27 to 64 years old. The research was approved by the Ethical 

Committee for participant studies of TNO. 

3.2.2 Apparatus 

The experiment was conducted at TNO in a high fidelity moving base driving simulator 

consisting of a DAF truck mock-up (see Figure 3.1). The road and traffic environment were 

projected on cylindrical screens around the vehicle with an 180 degree field of view. Two 

screens placed behind the vehicle showed the scenery for the rear view mirrors. Vehicle related 

data including the input of the control elements and the status change of the automation system 

were recorded by the simulator at a sampling rate of 50 Hz. In addition, the participants’ head 

motion and eye movements were recorded by a non-obtrusive remote eye tracker (SmartEye 

AB, Gothenburg, Sweden). The mock-up was also equipped with three cameras to observe the 

drivers’ full body postures, facial expressions, and feet positions, respectively. 

 

Figure 3.1: TNO truck driving simulator with moving hexapod and cylindrical 

projection screen 

3.2.3 Two-truck platoon system 

An automated system was simulated that allows a truck to follow a lead truck at a short 

following distance on public motorways, initially limited to platoons of two trucks. The first 

truck is intended to be driven by a human truck driver (but is controlled by the simulator in this 

experiment). Once engaged, the second truck is controlled by the automation system (Figure 

3.2). The participant in the driving simulator was the driver of the second truck in the platoon. 

For the participant, the center view of his/her own lane was blocked by the lead truck, but the 

view of the adjacent lanes was unblocked, as shown in Figure 3.3.  
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The automated system was modelled as a combination of CACC and LKAS. The driver could 

push a button normally used for cruise control on the right side of the steering wheel to switch 

the automation system on/off. To be able to switch the system on, the driver had to drive in an 

activation zone behind the lead truck. After activating the system, the vehicle controlled both 

longitudinal and lateral control and did not have to be monitored, thus simulating SAE L4 

automated driving. At the end of the automated driving period, the system would indicate that 

the driver had to take over control by displaying a text message on the screen (Figure 3.4, in 

Dutch: ‘‘Neem de controle over”, in English: ‘‘Take over control”), accompanied by an 

auditory signal. The driver had to push the button again to resume both longitudinal and lateral 

manual control and leave the platoon. 

 

Figure 3.2: Two-truck platoon system 

 

Figure 3.3: Front view in the second truck. The center of the ego lane was blocked by the 

lead truck, while the driver was able to perceive traffic information from the adjacent 

lanes 
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Figure 3.4: Visual interface of the take-over request (text in Dutch: “Take over control”) 

3.2.4 Experimental design and test procedures  

The participants were instructed to drive on the right-hand lane of a two-lane motorway behind 

a lead truck at an average speed of 80 km/h. The route included slight curves and moderate 

surrounding traffic, but no entries or exits. All participants started with a training session to get 

familiar with the driving simulator and with platooning. They were asked to perform the 

coupling and decoupling procedures at least three times, until they felt familiar and comfortable 

with the system.  

After the training, each participant performed eight platooning trials in different test conditions, 

in which four variables were manipulated: non-driving tasks (no task, using a handheld tablet 

PC, and relaxing with eyes closed), criticality of the control transition (self-regulated non-

critical transition vs. critical transition due to unexpected system failure), time gaps between 

the trucks (0.8 s vs. 0.3 s), and whether a brake event was implemented after the control 

transition back to the driver. The system failure trial was always performed at the end of the 

experiment, while the other trials were conducted in a counterbalanced order. This paper only 

discusses the five non-critical trials in which the time gap was set to 0.8 s during automated 

driving. This distance is the minimum allowed time gap defined in ISO 15622, and is considered 

as an accepted distance for testing the first platooning concepts with truck drivers. The other 

trials will not be further described (please see Wilschut, Willemsen, Hogema, & Martens, 2016 

for more details on this project, and Zhang, Wilschut, Willemsen, Alkim, & Martens, 2017 for 

the critical transition trial).  

In three trials, no events were programmed after the control transition back to the driver. They 

serve as the basis of the study to investigate drivers’ performance when leaving the platoon and 

stabilizing the truck in normal, uneventful transitions. In each trial, participants started with a 

short period of manual driving, then activated the platooning system to follow the lead truck 

automatically. During the automated driving segment, each participant was subjected to one of 

the three task conditions as briefly mentioned above: Driver Monitoring (participants were 

instructed to monitor the surroundings constantly, so hands-off, feet-off, and eyes on the road), 

Driver Not-monitoring (participants were provided with a tablet PC and were asked to use this, 

so hands-off, feet-off, and eyes off the road, but they were allowed to scan the outside world if 

they wanted to) and Eyes-closed (participants were not allowed to open their eyes, so hands-

off, feet-off, and eyes off the road). These conditions manipulated participants’ attentiveness 

and represented three activities likely to be performed by the driver in future automated 

vehicles. In particular, the Eyes-closed condition emulated the situation that drivers take a rest 
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with their eyes closed and cannot perceive any visual information, which is very likely to occur 

at higher levels of automation. After four minutes in the Driver Monitoring condition, or eight 

minutes in the Driver Not-monitoring and Eyes-closed conditions, the TOR was issued and 

participants were asked to take over control by pressing the button whenever they felt ready to 

do so without time restrictions. The automation duration was shorter for the Monitoring 

condition to increase the possibility that drivers were still paying attention and were alert, and 

longer for the other two conditions increase the chance of the driver being out-of-the loop. After 

taking over control, participants continued with a short manual driving phase until the end of 

the scenario.  

To explore whether participants possessed sufficient readiness and situation awareness to cope 

with more complex situations after the self-regulated transition of control, two additional trials 

(in Driver Monitoring and Driving Not-monitoring conditions, respectively) with a brake event 

were implemented. Three seconds after participants took over control, the lead truck started to 

brake at a deceleration rate of 5 m/s2 for two seconds. No forward collision warnings or brake 

assist systems were available, and participants had to brake to avoid accidents. The 

experimental scenario before the brake event was identical to the uneventful trials described 

above. 

3.2.5 Dependent variables 

For the basic trials without brake events, three take-over RT components were measured and 

evaluated, namely the total RT (TRT), the perception RT (PRT), and the movement RT (MRT). 

The TRT was defined as the time interval from the TOR onset until the moment when 

participants pressed the button to reclaim control. This value could be directly obtained from 

the driving simulator data. The PRT was measured from the onset of the TOR until the start of 

participants’ hand movement reaching for the steering wheel, indicating the time elapsed for 

the participant to perceive and understand the message that they need to take over control, and 

to decide to resume motor readiness. Subtracting the PRT from the TRT, the MRT was 

retrieved, showing how long it took the participant to get physically ready. Because this study 

was about non-critical conditions without time restraints, we assumed that the information 

perception and processing cycle (in terms of perceiving and understanding the TOR) was 

finished before participants started to move their hands. The timestamps for the start of the hand 

movement were manually annotated from the video recordings by two independent observers. 

A high degree of reliability between the observers was found (the average intraclass correlation 

coefficient (ICC) was 0.912 with a 95% confidence interval from 0.880 to 0.936). Participants’ 

behaviours during the take-over process were also recorded by the observers to explore the 

individual differences.  

To assess take-over performance (i.e., quality) in stabilizing the truck in its lane, standard 

deviation of lateral position (SDLP), the number of steering wheel reversals (with a gap of 3 

degrees, according to the definition described in SAE International (2015)), the longitudinal 

speed as well as its standard deviation were analysed. Smaller deviations in lateral position and 

longitudinal speed, as well as fewer strenuous steering wheel reversals indicate more consistent 

and seamless control. Previous research showed that to stabilize the vehicle after taking over 

manual control required around 35–40 s (Merat, Jamson, Lai, Daly, & Carsten, 2014). In the 

current study, we observed the performance metrics for the first 40 s after the transition. The 

observation was divided into four timeslots of 10 s except for the steering wheel reversals, 

which did not occur frequently within such short timeslots. This measure was reported for the 

entire observation period of 40 s. Additionally, we measured the time gap after taking over 
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control, aiming to understand how drivers regulated the following distance when leaving the 

platoon.  

For the additional trials with brake events, participants’ responses to the braking lead truck were 

evaluated using the brake RT, the minimum time-to-collision (TTC) with the lead truck, and 

the minimum time headway (THW) to the lead truck. The brake RT was defined as the time 

interval between the onset of the braking light of the lead truck and the moment when the 

participant started pressing the brake pedal. The minimum TTC and the minimum THW were 

calculated for the 10 s after the onset of the braking light of the lead truck. A shorter brake RT, 

a longer minimum TTC, and a higher minimum THW suggest a safer collision avoidance 

behaviour and a better performance. 

3.3 Results 

Due to technical problems, the simulator data in 10 trials (for driving performance assessment), 

and the video recordings in 13 trials (for perception-response time assessment) were not 

available for analysis. An overview of data availability per condition is presented in Table 3.1. 

To make use of all available data on each subject instead of dropping the entire case due to 

incomplete data, before performing the statistical tests, the missing data were imputed using the 

expectation maximization (EM) method (Dempster, Laird, & Rubin, 1977) using the ‘Missing 

Data Analysis’ command in SPSS 24. The EM method is an iterative procedure that estimates 

missing data based on available observations using expectation and maximization algorithms, 

which is suggested to produce more reliable and less biased estimates as compared to traditional 

missing data handling methods (e.g., mean imputation and regression imputation, see Musil, 

Warner, Yobas, & Jones, 2002). Results from a preliminary Little’s Missing Completely at 

Random (MCAR) test suggested that the data were missing at random. That is, there appears 

no systematic or non-random pattern of data omission, and the EM method is considered 

appropriate. Note that the imputed data were only used for the purpose of statistical tests. All 

descriptive results were reported based on the raw data without imputation. All statistical 

analyses were conducted using SPSS 24. The significance level was set to 0.05. 

Table 3.1: Overview of data availability 

 Condition  Total trials 

performed by 

the participants 

Available datasets 

for perception-

response time 

Available datasets 

for driving 

performance 

 Driver Monitoring (w/o BE) 22 18 19 

 Driver Not-monitoring (w/o BE) 22 17 19 

 Eyes-closed (w/o BE) 22 18 20 

 Driver Monitoring (with BE) 22 - 21 

 Driver Not-monitoring (with BE) 22 - 21 

Note. BE = Brake event. The perception-response time was only reported for trials without 

brake events. 
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3.3.1 Take-over response times 

Averaged over all conditions, the participants took 4.45 s (SD = 2.21) to take over control. The 

TRT varied from 1.75 s to 11.31 s, and in 95% of the trials participants took over within 8.5 s. 

The stacked bar plot (Figure 3.5) and the descriptive data table below show an overview of 

PRTs and MRTs per condition. These two components add up to the TRTs. 

 

Figure 3.5: RT components compared across the three conditions, all measured in 

second. The bars show the means of MRTs and PRTs per condition; they add up to the 

TRTs. IQR = Interquartile range. 

Because the TRT is not independent from the PRT and the MRT, two separate repeated-

measures Analyses of Variance (ANOVA) were performed to examine the effects of task 

conditions on the total take-over time and its sub-components. A one-way repeated-measures 

ANOVA was first conducted to analyse TRT. Due to the violation of the assumption of 

sphericity (χ2(2) = 11.81, p = .003), degrees of freedom were corrected using Greenhouse-

Geisser estimates of sphericity (ε = 0.69). There was a significant main effect of task conditions 

on TRTs (F(1.38, 29.04) = 43.13; p < .001, η2 = 0.67). The post hoc tests showed a significantly 

shorter TRT in Driver Monitoring condition, in which participants deactivated the automation 

system on average 3 s earlier than in the other two conditions. No significant differences in 

TRTs were found between Driver Not-monitoring and Eyes-closed conditions. 

Regarding the sub-components of TRTs, a 3 (task conditions) × 2 (RT components) repeated-

measures ANOVA was conducted. Mauchly’s test indicated that the assumption of sphericity 
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was violated for task conditions (χ2(2) = 11.81, p = .003), and the interaction between task 

conditions and RT components (χ2(2) = 11.04, p = .004). Degrees of freedom were corrected 

using Greenhouse-Geisser estimates of sphericity (ε = 0.69 and 0.72). Results showed 

significant main effects for both task conditions (F(1.38, 29.04) = 43.13; p < .001, η2 = 0.67) 

and RT components (F(1, 21) = 85.34; p < .001, η2 = 0.80). The interaction between task 

conditions and RT components was also statistically significant (F(1.40, 29.49) = 17.96; p < 

.001, η2 = 0.46).  

Post hoc pairwise comparisons showed the longest PRT in Eyes-closed condition (M = 1.89 s, 

SD = 1.66), while no significant differences were found between Driver Monitoring and Driver 

Not-monitoring conditions. Significant differences in MRTs were found between all condition 

pairs. The longest MRT was found in the Not-monitoring condition in which the drivers were 

holding the tablet before the transition (M = 4.61 s, SD = 1.40), followed by the Eyes-closed 

condition (M = 3.53 s, SD = 1.90). The participants in the Driver Monitoring condition showed 

the shortest MRT (M = 1.67 s, SD = 0.49). The results further showed that MRTs were 

significantly higher than PRTs in both Driver Monitoring and Driver Not-monitoring 

conditions. Although a similar trend was found for the Eyes-closed condition, the difference 

between the PRT and the MRT didn’t reach statistical significance. 

3.3.2 Take-over performance in uneventful trials 

With respect to lateral control of manual driving (SDLP) (Figure 3.6), a 3 (Task condition) × 4 

(Timeslots: 0–10 s, 10–20 s, 20–30 s, 30–40 s) repeated-measures ANOVA showed significant 

effects of task conditions (F(2, 42) = 4.01; p = .026, η2 = 0.16) and time (F(3, 63) = 11.29; p < 

.001, η2 = 0.35). Pairwise comparisons showed a significantly smaller SDLP in the Driver 

Monitoring condition, but only for the first 20 s. Concerning the function of time, a significantly 

larger SDLP was found for the first 10 s in all conditions. SDLP became stable and didn’t show 

significant changes in the following timeslots. Another repeated-measures ANOVA was 

performed on the number of steering wheel reversals for the first 40 s after taking over control 

(Figure 3.7). No significant differences were found between task conditions. 

 

Figure 3.6: Average standard deviation of lateral position (SDLP) for the first 40 s after 

control was transferred back to the driver. The error bars represent the standard 

deviations. 
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Figure 3.7: Number of steering wheel reversals (>3 deg) for the first 40 s after control 

was transferred back to the driver. The error bars represent the standard deviations. 

Figure 3.8 and Figure 3.9 show longitudinal driving performance with respect to the 

longitudinal speed and its standard deviation. A main effect of time was found for speed (F(3, 

63) = 29.58; p < .001, η2 = 0.59), but there was no main effect of task conditions (F(2, 42) = 

2.89; p = .66, η2 = 0.12). The speed dropped significantly between 10 s and 20 s after the 

transition of control (from 21.71 m/s to 21.24 m/s averaged over all conditions), and increased 

again afterwards. Pairwise comparisons revealed that participants drove at the lowest speed in 

the Driver Not-monitoring condition, but only for the first 20 s. No differences were found 

between the other two task conditions.  

Main effects of both task conditions (F(2, 42) = 4.97; p = .01, η2 = 0.19) and time (F(3, 63) = 

50.96; p < .001, η2 = 0.71) were found for the standard deviation of the speed. The variability 

in speed was significantly larger for the first 10 s, after which the drivers in all task conditions 

were driving at a more consistent speed. The differences between task conditions only lasted 

for 10 s, with the deviation in speed in Driver Monitoring condition significantly smaller 

compared to the other task conditions. No significant differences were found between Driver 

Not-monitoring and Eyes-closed conditions for any of the timeslots. 

 

Figure 3.8: Average longitudinal speed for the first 40 s after control was transferred 

back to the driver. The error bars represent the standard deviations. 

2

4

6

8

10

12

Driver monitoring Driver not-monitoring Eyes-closed

N
u

m
b

e
r 

o
f 

s
te

e
ri

n
g

 w
h

e
e

l 
re

v
e

rs
a

ls

20.0

20.5

21.0

21.5

22.0

22.5

0-10 s 10-20 s 20-30 s 30-40 s

lo
n

g
it

u
d

in
a

l 
s

p
e

e
d

 (
m

/s
)

Timeslots after taking over control

Driver monitoring Driver not-monitoring Eyes-closed



Chapter 3 – ToMC from HAD in non-critical truck platooning scenarios (with hand-held NDT) 77 

 

 

Figure 3.9: Average standard deviation of longitudinal speed for the first 40 s after 

control was transferred back to the driver. The error bars represent the standard 

deviations. 

Figure 3.10 shows how participants regulated the following distances for the first 40 s after the 

transition of control.  A repeated-measures ANOVA revealed main effects of both task 

conditions (F(2, 42) = 4.38; p = .019, η2 = 0.17) and time (F(3, 63) = 131.74; p < .001, η2 = 

0.86). Post hoc tests showed that the following distance continued to increase as time passed 

by, and that participants in the Driver Monitoring condition drove with significantly smaller 

following distance compared to the other two conditions except for the first timeslot. In order 

to know when the driver stopped increasing the distance to the lead truck, we conducted a 

further observation until 120 s after leaving the platoon. No significant differences between 

timeslots were found from 90 to 100 s, and the time headway came to a stable status at around 

2.7 s.  

 

Figure 3.10: Average time headway for the first 40 s after control was transferred back 

to the driver. The error bars represent the standard deviations. 
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3.3.3 Driver response in the brake event 

In the two trials with brake events, all participants braked in response to the decelerating lead 

truck with an average brake RT of 1.07 s (SD = 0.36 s). No collisions occurred. Paired samples 

t-tests were conducted to examine whether significant differences existed when comparing the 

three performance measures between the two task conditions (Table 3.2). Despite of the slight 

tendency of a better performance in the Driver Monitoring condition, the differences didn’t 

reach the significance level. 

Table 3.2: Means and standard deviations of the performance measures in the two task 

conditions, as well as results of the paired t-tests between conditions. 
 Driver Monitoring Driver Not-monitoring Paired t-test 

M SD M SD t  df p 

Brake RT (s) 1.02 0.22 1.16 0.45 -1.14 21 0.267 

Minimum TTC (s) 2.41 0.83 1.99 0.79 2.01 21 0.057 

Minimum THW (s) 0.60 0.13 0.57 0.21 1.19 21 0.248 

3.4 Discussion 

This study mainly investigated driver perception-response times to take over control from 

highly automated truck platooning systems in normal, non-critical operation. We studied how 

this take-over process was influenced by three task conditions, namely when the driver was 

monitoring the road, when working on a hand-held tablet, and when resting with the eyes closed. 

In general, results show that most participants (95% as mentioned in Section 3.3.1) could 

indicate their readiness to take over manual control within 8.5 s regardless of the task conditions. 

When comparing with the non-critical take-over times of passenger car drivers measured in 

Eriksson and Stanton (2017), the median take-over times in the current study with truck drivers 

were 1.7 s and 0.7 s shorter in monitoring and visually distracted conditions, respectively. 

Several factors may contribute to the differences. First of all, the small time gap to the lead 

truck may lead to shorter take-over times. Because the front view of the ego lane was largely 

blocked by the lead truck, the driver in the truck platoon could not perceive as much traffic 

environment as in a passenger car that is not in a platoon (Zhang et al., 2017), which may reduce 

the information processing time. The small time gap might also lead to a higher risk perception, 

prompting the driver to respond faster (cf. Summala, 2000). Moreover, the take-over time was 

measured until the first intervention (steering or braking) of the participants in Eriksson and 

Stanton (2017), while in the current study the participants pressed a button to resume control. 

The decision making time to determine a proper intervention may contribute to the longer take-

over time in Eriksson and Stanton (2017). In addition, our study utilized within-study design 

with short automation duration for each trial, whereas in Eriksson and Stanton (2017), between-

study design was adopted. Repeated scenario exposure and the expectancy on the upcoming 

event could have led to shorter RTs (Engström, Aust, & Viström, 2010; Green, 2000; Zhang et 

al., 2019). 

Similar mean take-over times were found in the Driver Not-monitoring condition and the Eyes-

closed condition, both significantly longer than the Driver Monitoring condition. On a closer 

examination, different RT patterns were revealed. In the Driver Not-monitoring condition, the 

longer total take-over time was mainly due to the increase in the hand movement RT rather than 
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the perception RT. This is in line with previous findings that holding a hand-held device 

increased the take-over time largely by approximately 1–2 s compared to using a hand-free 

device in car drivers (Wandtner et al., 2018; Zeeb et al., 2017). With respect to the Eyes-closed 

condition, the perception RT was the longest among all task conditions, but the hand movement 

RT was shorter compared to the Driver Not-monitoring condition due to the absence of a hand-

held tablet. The outliers with extremely large perception RT values also occurred in the Eyes-

closed condition, possibly due of the tendency of drowsiness. We observed that one participant 

seemed to have fallen asleep at the moment of the TOR onset, and seemed confused for the first 

few seconds after ‘‘waking up”. It is therefore noteworthy that merely closing the eyes does not 

emulate sleeping, and caution should be made when interpreting the results obtained from such 

conditions. Worse situations could occur to fatigued drivers who are deeply asleep during 

automated driving. Multi-step warning systems can be particularly beneficial for sleeping 

drivers to get back into cognition loop gradually without causing startling effects. Another 

possible explanation for the slow perception response is that drivers with eyes closed could only 

rely on the auditory channel to perceive the warning signal, and thus the effect of the multimodal 

TOR was reduced (Baldwin & Lewis, 2014; Bazilinskyy & De Winter, 2015). In the other 

conditions, participants could also see the visual signals through their peripheral vision.  

In addition, we found higher movement RTs than perception RTs in all task conditions. This 

differs from the previous findings in manual driving context, whereby the movement RT is 

normally much shorter than the perception RT (Green, 2000). When driving in an automated 

vehicle, it would take on average 1.7 s for truck drivers to replace their hands at the steering 

wheel at a comfortable pace without non-driving tasks, which could be more than 2.5 times 

longer when drivers were engaged in non-driving tasks with hand-held devices. The variability 

in movement RT is also suggested to be the main cause for the individual differences in total 

take-over times. On a closer examination, we observed the postures of the participants at the 

moment of TOR onset, as well as their activities during the take-over process. Four typical 

activities were extracted and further combined with the conditions in which one particular 

activity occurred. The hand movement RTs in the corresponding trials are shown in Table 3.3. 

In all Driver Monitoring trials and 12 (out of 18) Eyes-closed trials, participants directly moved 

their hands to the steering wheel without any intermediate activities. The RT to complete this 

simple process was the shortest, also with the smallest variability. When participants had to put 

away the hand-held device in order to take over control, this RT was increased by approximately 

2.5 s. In two Driver Not-monitoring trials, the participants also had to put on/off their glasses 

to switch to driving tasks. This behaviour caused approximately 1 s extra movement time in 

addition to putting away the tablet only. Moreover, we discovered that in six Eyes-closed trials 

the participants leaned backwards to rest comfortably during automated driving, and had to 

adjust the seat position to be able to take over control, resulting in a large mean movement RT 

of 5.68 s. The variability in physical activities during the take-over process considerably 

influenced the take-over times. 
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Table 3.3 Activities performed by the participants during the taking over process 
pre-TO Activities Description Occurrence 

 number 

Condition MPT (s) 

Mean SD 

Direct hand-on The participant directly 

pressed the button without 

any intermediate activities. 

30 All 

Monitoring  

Eyes-closed 

(12/18) 

1.99 0.87 

Put away tablet The participant put away the 

hand-held tablet before 

pressing the button. 

15 Not-

monitoring 

4.50 1.37 

Put away tablet + 

glasses 

The participant put away the 

hand-held tablet, and put 

on/off the glasses before 

pressing the button. 

2 Not-

monitoring 

5.42  1.35 

Adjust the seat The participant adjusted the 

seat before pressing the 

button. 

6 Eyes-closed 5.68 1.28 

With respect to driving performance after the transition, the differences between the task 

conditions mainly persisted for the first 10 s, with the performance in the Driver Monitoring 

condition being slightly better compared to the other task conditions. Such differences between 

conditions disappeared when more time passed by. Driving performance with respect to SDLP, 

longitudinal speed and its standard deviation was stabilized within 20 s after the transition. 

Overall, participants could safely stabilize the truck after leaving the platoon in all task 

conditions. In the additional trials with brake events, all participants were able to respond 

quickly to avoid collisions with the decelerating lead truck, with no significant differences in 

performance between task conditions. Participants’ take-over times were suggested to represent 

the time they need to get ready for normal, uncritical transitions, and be prepared for moderately 

complex driving situation after the transition. 

There are several limitations to be discussed. First, this study focused on non-critical transitions, 

and participants only needed to stabilize the vehicle or respond to a brake event after leaving 

the platoon, which may require relatively low cognitive and physical load. The perception RT 

only concerned the time it takes to sense the TOR and interpret its meaning, which cannot reflect 

the time to build up adequate situation awareness, as mentioned previously. Therefore, caution 

should be exercised when generalizing the outcomes to highly complex and unexpected 

scenarios, which involve high hierarchical level of control tasks (e.g., respond to an unexpected 

traffic accident, see Michon, 1985). Zhang et al. (2017) focused on the critical transition trial in 

which participants had to take over control upon an unexpected system failure and avoid 

collisions with a suddenly exposed stationary truck. All participants could take over 

successfully without causing an accident, suggesting that they were capable to handle even more 

critical events. However, no non-driving tasks were permitted in this critical trial and the results 

may only apply for drivers that are still in the loop. Future studies could implement a larger 

variety of scenarios and task conditions, and investigate drivers’ take-over performance in more 

complex situations. Second, the duration of non-driving task engagement was short (8 min). 

The participants were free to choose how to interact with the tablet and no highly cognitively 

demanding tasks were instructed to be performed. These factors may generate better take-over 
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performance compared to that measured after prolonged automated drives and after being 

engaged in intensive cognitive tasks. Third, the utilization of a within-subject design may 

increase familiarization and expectancy, and generate shorter RTs. Moreover, our study was 

conducted in a driving simulator, which generally raises the issues of ecological validity such 

as reduced risk perception, simplified driving environment and reduced workload (Carsten & 

Jamson, 2011; De Winter, Happee, Martens, & Stanton, 2014; De Winter, Van Leeuwen, & 

Happee, 2012; Eriksson, Banks, & Stanton, 2017; Godley, Triggs, & Fildes, 2002; Green, 

2000). However, several studies have found relative validity and sometimes even absolute 

validity, depending on the type of simulator (Kaptein, Theeuwes, & Van der Horst, 1996; 

Riener, 2010; Risto & Martens, 2014). The high-fidelity driving simulator used in our study is 

designed to generate high behavioural validity.  

3.5 Conclusion 

This study mainly aims to investigate how long it takes truck drivers to get ready to leave a 

truck platoon in normal operations and how the take-over process is influenced by three task 

conditions: monitoring the driving environment, interacting with a hand-held tablet, and 

relaxing with the eyes closed. Additionally, we explored if drivers could cope with a brake event 

immediately after taking over control. The positive results suggested a sufficient readiness level 

for moderately complex driving situations. 

We found substantial differences in take-over times between the task conditions and large 

variability between the individual drivers. By exploring perception-response times instead of 

merely total take-over times, we found different RT patterns for different task conditions. After 

interacting with a hand-held tablet, the increase in the total take-over time was mainly caused 

by the hand movement RT to put away the tablet, whereas after relaxing with eyes closed, both 

longer perception- and movement RTs contributed to the longer total take-over time. 

Furthermore, the hand movement RT contributed to the total take-over time to a larger extent 

compared to the perception RT, which can be mainly explained by drivers’ activities to resume 

physical readiness. The results suggest the importance of adaptive approach with personal 

driver readiness predictors as input parameters for a safe and comfortable transition, and the 

importance to focus on cognitive and motoric preparation phases before resuming manual 

control. 
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4.1 Introduction 

This study can be seen as a replication of the truck platooning study described in Chapter 3, 

Both studies used the same truck driving simulator platform and experimental design, but 

differed in the set-up of the non-driving task performed on the tablet PC. Also, another group 

of professional truck drivers was invited for this study. In the truck driving simulator study 

described in Chapter 3, the drivers held the tablet in their hands and were free to interact with 

it (hand-held). In this study, the tablet was mounted on the centre console (hands-free) and the 

driver had to perform a standardized visual-motoric task.  

This study aims 1) to examine if the findings of the first truck platooning study hold for a 

different group of professional truck drivers to be generalized to a larger population (replication 

study), and 2) to investigate the effects of hand-held tablet use compared to hands-free tablet 

use on drivers’ take-over time and take-over quality. The meta-analysis in Chapter 2 pointed 

out that hand-holding a device is a major determinant of mean take-over response times above 

many other influential factors, causing an increase of approximately 1 - 1.5 s compared to 

hands-free task conditions in passenger car studies (e.g., Zeeb, Härtel, Buchner, & Schrauf, 

2017; Eriksson & Stanton, 2017; Miller, Sun, Johns, Ive, Sirkin, Aich, & Ju, 2015; Befelein, 

Naujoks, and Neukum, 2016). Results of the first truck platooning study further revealed a large 

variation in driver response to put away the tablet PC and to reposition their hands on the 

steering wheel, which caused a large variation in response times. It is expected that using a 

mounted tablet could largely shorten the hand movement response time and reduce its variation 

between drivers. Interestingly, Zeeb et al., (2017) found that using a handheld tablet PC 

significantly worsened drivers’ lane-keeping performance after the transition to manual driving, 

compared to using a mounted tablet during automated driving. The authors suggested that high 

motoric task load, such as holding a device in the hands, may impair drivers’ take-over quality 

in lateral vehicle control.  

The main aim of this study is to investigated if a similar phenomenon is also found in truck 

platooning take-over scenarios. 

4.2 Methods 

4.2.1 Participants 

Twenty-three participants (of which 2 females) took part in the experiment. They all held a 

truck driver’s license for at least two years (M = 23 years, SD = 8.8) and drove at least 1000 

km per year in a truck (M = 85600 km/year, SD = 42225). On average, the participants were 45 

years old (SD = 8.1), ranging from 27 to 58 years old. The research was approved by the Ethical 

Committee for participant studies of TNO. 

4.2.2 Apparatus 

In this experiment, the configuration of the truck driving simulator, the simulation of the two-

truck platooning system, and the human-machine interface were identical to the first truck 

platooning study as described in Chapter 3, and therefore will not be repeated here. Driving 
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performance data related to vehicle motion control and driver response times were recorded by 

the driving simulator software at a sampling rate of 50 Hz. Three cameras were installed in the 

truck cabin to observe the drivers’ face expression, hand movement, and feet movement, 

respectively.  

4.2.3 Experimental design and test scenarios 

Similar to the first truck study, a within-subject design was used and each participant performed 

eight test trials in different experimental conditions, including two baseline manual driving 

trials and six non-critical platooning trials. The order of the trials was counterbalanced. In each 

test trial, the participants drove in the right-hand lane (the slower lane) of a two-lane motorway 

behind a lead truck that was driving with a speed of 80 km/h. They were instructed to follow 

this lead truck and not change lanes. There were no entries or exits on the route. Slight curves 

and surrounding traffic were present to simulate realistic but low traffic volume conditions. The 

drives were always on the same road layout, but the surroundings were different to simulate a 

different stretch of road to the driver. Before the formal test, the participants were introduced 

to the concept of platooning, and practised with activating and deactivating the platooning 

systems in a six-minute-long training drive. 

In the automated trials, the ego truck of the participant followed the lead truck with a time gap 

of 0.8 s. Four minutes after the scenario started, a visual-auditory take-over request (TOR) was 

issued and the participants had to disengage the automation and take over manual control by 

pressing a button normally used for cruise control on the right side of the steering wheel. No 

time restraints were applied and the participants were instructed to press the button whenever 

they felt ready to resume manual control. After the transition, the participants drove manually 

for another 2.5 minutes until the end of the scenario.  

During the automated driving, the participants were instructed to either monitor the driving 

situation, or perform a visual-motoric task ‘Arrows’ (Engström, Johansson, & Östlund, 2005), 

or relax with their eyes closed. Performing a standardized task instead of freely using the tablet 

controlled for workload and allowed for measures of task involvement. Each task condition was 

assigned to two test trials. The Arrows task was performed on a tablet PC mounted on the centre 

console of the cabin. On the touch screen, metrics (5×5) of arrows were presented with or 

without a target arrow pointing upwards (among arrows pointing left or right, see Figure 4.1 as 

an example). The participants determined whether the target arrow was present, and gave their 

answers by pressing ‘‘yes’’ or ‘‘no’’ on the touch screen. After providing the answer, a new 

metric was presented automatically. 

In one of the two trials within the same task condition, a brake event was implemented 

immediately after the control transition. The lead truck braked at the deceleration rate of 5 m/s2 

for 2 s immediately after the driver pressed the button to switch off the automation. The 

participants had to brake in time to avoid a collision. This was identical to the first truck study. 

In the baseline (manual driving) trials, the participants followed the lead truck manually without 

any assistance from the automation system during a six-minute trial. In one of the trials, the 
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same brake event as described above was implemented five minutes after the scenario started. 

Table 4.1 shows an overview of all test conditions analysed in this study. 

 

 

Figure 4.1: Metrix of arrows with a target arrow pointing upwards. 

Table 4.1: Overview of test conditions analysed in this study. 

Condition Task during AD Brake event Duration (min) 

1 (MD) - no 6 

2 (MD) - yes 6 

3 (AD) Monitoring no 4 (AD) + 2.5 (AD) 

4 (AD) Monitoring yes 4 (AD) + 2.5 (AD) 

5 (AD) Arrow task no 4 (AD) + 2.5 (AD) 

6 (AD) Arrow task yes 4 (AD) + 2.5 (AD) 

7 (AD) Eyes closed no 4 (AD) + 2.5 (AD) 

8 (AD) Eyes closed yes 4 (AD) + 2.5 (AD) 

4.2.4 Dependent variables  

Driver take-over response times, post-transition manual driving performance, and response 

times and response quality in the brake event were analysed and compared between task 

conditions. To analyse drivers’ take-over process, the total take-over response time (TRT), the 

perception response time (PRT), and the hand movement response time (MRT) were measured 

in the same manner as in the first truck platooning study. TRT was defined as the time interval 

between the onset of the TOR until the moment when the participant pressed the button to 

reclaim control. PRT was measured from the onset of the TOR until the start of the participant’s 

hand movement to grasp the steering wheel, indicating the time elapsed to perceive and 

understand the necessity to take over control. MRT was the remaining time measured until the 
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driver pressed the button, indicating the time elapsed to regain motoric readiness for manual 

driving. Participants’ body postures at the TOR onset, and activities during the take-over 

process were logged from the video recordings by two annotators. A high degree of reliability 

between the observers was found (the average intraclass correlation coefficient (ICC) was 0.955 

with a 95% confidence interval from 0.943 to 0.965). All take-over response time measures 

were analysed for experimental trials without brake events. 

For the trials without brake events, drivers’ post-transition manual driving performance was 

assessed in terms of standard deviation of lateral position (SDLP), the mean and standard 

deviation of longitudinal speed, and the mean time headway (THW). Results of the first truck 

experiment showed that SDLP and speed related performance were stabilized within 10- 20 s 

after the transition, while the THW continued to increase until 90 – 100 s after the transition. In 

this study, we therefore analysed the SDLP, and mean and standard deviation of longitudinal 

speed in time windows of 10 s for 40 s after the control transition. THW was observed until 120 

s after the control transition. SDLP and THW were also compared to the performance measures 

in the baseline manual driving condition to explore carry-over effects of platooning, as 

suggested in Skottke, Debus, Wang, and Huestegge (2014). The observation time window in 

the baseline condition was 4.5 minutes after the scenario start during 40 s and 120 s.  

For the trials with brake events, we measured brake response times, minimum time-to-collision, 

and maximum deceleration rate to evaluate participants’ response to the braking lead truck. 

Brake response time was defined as the time interval between the activation of the brake lights 

of the lead vehicle and the moment when the driver pressed the brake pedal. 

4.3 Results 

Since the data of the first participant were lost, the data of 22 participants were analysed. Eight 

trials divided over six participants were excluded from the analysis of take-over response times 

due to missing video recordings (in five platooning trials) or participants not obeying the 

instructions (starting manual driving before pressing the button, in three platooning trials). Data 

from all trials were valid for the analysis of post-transition manual driving performance. All 

statistical analyses were conducted using SPSS 24. The significance level used was 0.05. 

4.3.1  Take-over response times 

An overview of drivers’ take-over response times measured in three task conditions is shown 

in the stacked bar plot (Figure 4.2). The descriptive data of the three response time measures 

are presented in the table below.  

The total take-over times ranged from 0.9 s to 13.27 s (on average 2.99 s) combining all task 

conditions. Results of Friedman tests indicated significant differences in TRT (χ2(2) = 21.50, p 

<.001), PRT (χ2(2) = 20.67, p <.001), and MRT (χ2(2) = 8.00, p <.02), between the three task 

conditions. Post-hoc Wilcoxon signed-rank tests using a Bonferroni-Holm correction revealed 

that differences in TRTs were significant between each of the two task conditions (Monitoring 

vs. Arrows task: p = .005; Monitoring vs. Eyes-closed: p <.001;  Arrows task vs. Eyes-closed: 
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p = .022), which is also the case for PRTs (Monitoring vs. Arrows task: p = .019; Monitoring 

vs. Eyes-closed: p <.001;  Arrows task vs. Eyes-closed: p = .011). Significant differences in 

MRTs were only found between the Monitoring condition and the Eyes-closed condition (p = 

.003). Additional pairwise comparisons were conducted to compare PRTs and MRTs in each 

task condition. Results showed that MRTs were significantly larger than PRTs in the 

Monitoring condition (p = .002) and the Arrows test condition (p = .005). No significant 

differences between PRTs and MRTs in the Eyes-closed condition were indicated.  

 

Figure 4.2: Driver take-over response times in seconds across the three conditions. The 

bars show the means of MRTs and PRTs per condition. They add up to the TRTs. IQR = 

Interquartile range. 

4.3.2 Post-transition manual driving performance 

Three 3 × 4 repeated measures ANOVA were performed to examine the effects of task 

conditions and time elapsed after the transition on drivers’ SDLP, mean longitudinal speed, and 

standard deviation of longitudinal speed, respectively. With respect to SDLP (Figure 4.3), there 
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were a significant main effect of time (F (3, 63) = 7.64, p <.001, η2 = .27), no main effect of 

task, and a significant interaction between task and time (F (6, 126) = 3.41, p = .004, η2 = .14).  

Post-hoc pairwise comparisons revealed a significantly higher SDLP in the first 10 s in the 

Monitoring condition. No differences between timeslots were found in the other two conditions. 

When comparing between task conditions, no significant differences were found in any 

timeslots. Additionally, we compared the post-transition SDLP to that measured in the baseline 

(manual) driving condition. Post-transition SDLP was significantly higher than baseline SDLP 

only in the first 10 s in the Monitoring condition. 

 

Figure 4.3: Mean standard deviation of lateral position (SDLP) in the first 40 s after the control 

transition back to the driver measured in three task conditions (purple bars) and the baseline 

driving condition (the grey bar). The error bars represent the standard deviations. 

Figure 4.4 and Figure 4.5 depict drivers’ performance with respect to longitudinal speed and its 

variation. When examining the effects on longitudinal speed, we found significant main effects 

of both task (F (2, 42) =5.84, p =.006, η2 = .22) and time (F (1.69, 35.54) = 27.66, p <.001, η2 

= .57, degrees of freedom adjusted using Greenhouse-Geisser estimates of sphericity), but no 

significant interaction between the main effects. Post-hoc pairwise comparisons showed that 

the mean speed significantly decreased in the first 20 s after the transition, and gradually 

increased between 30 – 40 s. Effects of task conditions became noticeable from 10 s after the 

transition: Participants drove with a significantly lower mean speed in the Arrows task condition 

and the Eyes-closed condition compared to the Monitoring condition.  

There was a main effect of time (F (3, 63) = 59.16, p <.001, η2 = .74) on the variation in 

longitudinal speed. The main effect of task and the interaction between the main effects were 

not significant. Post-hoc pairwise comparisons showed that the variation in speed significantly 

decreased in the first 20 s and came to a stable status in the following timeslots. 
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Figure 4.4: Mean longitudinal speed in the first 40 s after the control transition back to 

the driver. The error bars represent the standard deviations. 

 

Figure 4.5: Mean standard deviation of longitudinal speed in the first 40 s after the control 

transition back to the driver, measured in three task conditions. The error bars represent 

the standard deviations. 

With respect to the regulation of the following distance (Figure 4.6), a 3 × 12 repeated measures 

ANOVA showed significant main effects of task (F (2, 42) =  4.94, p =.012, η2 = .19) and time 

(F (1.43, 29.96) =  55.64, p <.001, η2 = .73). The interaction between the main effects was 

marginally significant (F (3.30, 69.36) = 55.64, p = .087, η2 = .10). The degrees of freedom for 

time and the interaction were adjusted using Greenhouse-Geisser correction due to the violation 
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of sphericity. Post-hoc pairwise comparisons revealed that in the Monitoring and Eyes-closed 

conditions, THW continued to increase until 70 - 80 s after the control transition. In the Arrows 

task condition, a significant increase in THW was not observed after 50 – 60 s. Differences 

between task conditions were observed between 40 s to 100 s after the control transition. THW 

in the Monitoring condition was significantly lower than the other two conditions between 40 

– 60 s. From 60 s to 100 s, significant differences only existed between the Monitoring and the 

Eyes-closed conditions. THW in the Arrows task and the Eyes-closed conditions did not differ 

significantly in any of the timeslots, despite the tendency of a higher THW in the Eyes-closed 

condition. We performed additional pairwise comparisons to examine the carry-over effects of 

platooning on THW, and found that the post-transition THW in the Monitoring and the Arrows 

task conditions were significantly lower than the baseline TWH throughout the observation 

window. In the Eyes-closed condition, significant differences between the post transition THW 

and the baseline THW disappeared 80 – 90 s after the transition. 

 

Figure 4.6: Mean time headway (THW) in the first 120 s after the control transition back 

to the driver measured in three task conditions (purple bars) and in the baseline driving 

condition (the grey bar). The error bars represent the standard deviations. 

4.3.3 Response in the post-transition brake event 

In response to the brake event immediately after the control transition, one participant collided 

with the decelerating lead truck in the initial Eyes-closed condition due to late response. 

Minimum TTC and maximum decelerating in this trial were therefore not included in the 

analysis, although interesting from an outlier and traffic safety perspective. Three one-way 

repeated measures ANOVA were performed to compare brake response times, minimum TTC, 

and maximum deceleration between task conditions. The main effect of task conditions was not 

significant with respect to any of the performance measures. Table below showed the 

descriptive statistics and the results of the ANOVAs.  
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Table 4.2: Means and standard deviations of the brake response measures, as well as the 

results of repeated measure ANOVAs. 

 Monitoring  Arrows task Eyes-closed Repeated measures ANOVA 

 M (SD) M (SD) M (SD) F df p η2 

Brake response time (s) 1.09 (0.36) 1.02 (0.34) 1.19 (0.38) 1.22 2, 42 n.s. .06 

Minimum TTC (s) 2.50 (1.05) 2.85 (1.25) 2.55 (1.23) 0.60 2, 40 n.s. .03 

Maximum Deceleration (m/s2) 5.66 (0.87) 5.75 (0.82) 5.94 (0.70) 1.79 2, 40 n.s. .08 

4.4 Discussion 

4.4.1 Take-over response times 

Take-over response times showed significant differences between the three conditions. The 

Monitoring condition yielded the shortest mean total response time, followed by the Arrows 

task condition and the Eyes-closed condition. In line with the first study, hand movement time 

was longer than the perception time except for the Eyes-closed condition, in which the 

perception time increased largely and did not show significant difference compared to the hand 

movement time. In both experiments, extremely long take-over times (outside the 95th 

percentile, i.e., larger than 8.6 s) were all generated in the Eyes-closed condition, by participants 

seemingly fallen asleep when the TOR was issued.  

As expected, the effect of hand-held or hands-free tablet use showed a large impact on take-

over times when comparing between the two studies. When performing a task on a mounted 

tablet instead of holding the tablet in the hands, truck drivers took over on average 2.8 s faster 

with a smaller variation. This was mainly due to the largely reduced hand movement time while 

using the mounted tablet (3 s faster than the hand-held condition in Chapter 3), which no longer 

significantly differed from the hand movement time in the Monitoring condition. Also worth 

noting was that drivers’ perception time while performing the Arrows task was significantly 

longer than the Monitoring condition. In the first study, drivers did not show increased 

perception time when freely interacting with the tablet compared to monitoring the driving 

situation. It could be that the standardized task in the second experiment required more 

engagement and generated a higher level of workload than naturalistic task (Shinar, Tractinsky, 

& Compton, 2005). Another possible explanation is that participants might have checked the 

driving situation less frequently when performing the Arrows task (the next level automatically 

started after giving the answer) than using the tablet freely, which negatively influenced take-

over response times (Zeeb, Buchner, & Schrauf, 2015). 

4.4.2 Post-transition manual driving performance 

In line with the first study, drivers in all task conditions could stabilize the lateral and 

longitudinal vehicle motion within 10 – 20 s after the control transition, seeing that the SDLP 

and the variation of longitudinal speed no longer significantly varied in the successive timeslots 

(Figure 4.3, Figure 4.5). In the first study, drivers showed worse lane-keeping performance in 



Chapter 4 – ToMC from HAD in non-critical truck platooning scenarios (with mounted NDT) 97 

 

the Tablet and the Eyes-closed conditions compared to the Monitoring condition in the first 10 

s after the transition, which was not observed in this study. It could be that using a mounted 

tablet instead of a handheld tablet reduced motoric task load and led to a better steering 

performance immediately after the transition (the mean SDLP was 0.12 m smaller), as 

suggested in Zeeb et al., (2017). Nevertheless, this could not explain the differences between 

the two studies regarding the Eyes-closed condition (i.e., the differences could be merely by 

chance). More studies are needed to examine the relation between motoric task load and take-

over quality in lateral control for valid conclusions. 

Truck drivers in both studies showed similar behaviours in regulating the longitudinal speed 

and the following distance after the control transition. Drivers reduced the speed within the first 

20 – 30 s to rapidly increase the THW, then gradually increased the speed in the following 

timeslots. The mean THW continued to increase until 1 – 1.5 minutes after the transition, then 

reached a relatively stable status. The carry-over effect of platooning on THW was still 

significant two minutes after the control transition, particularly in the Monitoring and the Tablet 

conditions. It has to be noted that the baseline manual driving THW was generated in low-

volume traffic conditions, which is usually 1-2 s higher than that measured in high-volume 

traffic conditions (Ayres, Li, Schleuning, & Young, 2001). Within two minutes after the 

transition, THWs in all conditions surpassed the safe time headway requirement of 2 s, and can 

be considered acceptable even though they still appeared lower than the baseline THW. Results 

of both studies also pointed to the tendency of a lower post-transition THW in the Monitoring 

condition. The carry-over effect appeared to be stronger when drivers were monitoring the lead 

truck during the platooning, and therefore may have visually adapted to the small gap between 

vehicles. 

4.4.3 Performance in the brake event 

When examining drivers’ response in the brake event immediately after the control transition, 

no significant differences in brake response times, minimum TTC, and maximum deceleration 

were found between the monitoring and the tablet conditions, in line with the findings of the 

first study. Also noteworthy was that one crash occurred in the Eyes-closed condition, but not 

in the other task conditions. This finding, together with the high perception take-over response 

times generated in this condition, suggested that resting with eyes closed impairs drivers’ 

cognitive performance when resuming manual control from automated driving. 

4.5 Conclusion  

In general, the findings of this replication study are in line with the results of the first truck 

platooning study, except for the differences related to the tablet PC. Using a mounted tablet PC 

instead of holding the device in the hands largely reduced the hand movement response time 

and its variation between drivers, and therefore largely reduced the total response time. Drivers 

should not be allowed to use handheld device if the take-over situation can be urgent. The results 

of this study also suggested that using a handheld tablet may impair lane-keeping performance 

after taking over control. Further research is needed to draw generic statements and conclusions 

for a larger truck driver population. This study also pointed to the potential risk of resuming 
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manual driving after sleeping or relaxing with eyes closed. Extra efforts should be made to 

either prevent truck drivers from sleeping, or to allow this only in case that safe platooning over 

longer periods of time could be guaranteed. However, it should be carefully taken into account 

that more research would need to be done to assist these drivers with a smooth transition and a 

rapid resumption of situation awareness and cognitive performance after having rested with 

their eyes closed.  

Acknowledgement 

This study was funded by the TNO Early Research Program (ERP) Human Enhancement: 

Adaptive Automation. We would like to thank Ingmar Stel and Rob van de Pijpekamp for their 

technical assistance in this study. 

References 

Ayres, T. J., Li, L., Schleuning, D., & Young, D. (2001). Preferred time-headway of highway 

drivers. Paper presented at the 4th International IEEE Conference on Intelligent Transportation 

Systems (pp. 826-829), Oakland, CA. doi:10.1109/ITSC.2001.948767 

Befelein, D., Naujoks, F., & Neukum, A. (2016). How do naturalistic non-driving-related tasks 

influence take-over time and quality during highly automated driving. Poster session presented 

at human factors and ergonomics society Europe chapter 2016 annual conference. Prague, 

Czech Republic.  

Engström, J., Johansson, E., & Östlund, J. (2005). Effects of visual and cognitive load in real 

and simulated motorway driving. Transportation Research Part F: Psychology and Behaviour, 

8, 97–120. doi:10.1016/j.trf.2005.04.012 

Eriksson, A., & Stanton, N. A. (2017). Takeover time in highly automated vehicles: Noncritical 

transitions to and from manual control. Human Factors, 59, 689–705. 

doi:10.1177/0018720816685832 

Miller, D., Sun, A., Johns, M., Ive, H., Sirkin, D., Aich, S., & Ju, W. (2015). Distraction 

becomes engagement in automated driving. Proceedings of the Human Factors and Ergonomics 

Society Annual Meeting, 59, 1676–1680. doi:10.1177/1541931215591362 

Shinar, D., Tractinsky, N., & Compton, R. (2005). Effects of practice, age, and task demands 

on interference from a phone task while driving. Accident Analysis & Prevention, 37, 315–326. 

doi:10.1016/j.aap.2004.09.007 

Skottke, E. M., Debus, G., Wang, L., & Huestegge, L. (2014). Carryover effects of highly 

automated convoy driving on subsequent manual driving performance. Human factors, 56, 

1272-1283. doi:10.1177/0018720814524594 

Zeeb, K., Buchner, A., & Schrauf, M. (2015). What determines the take-over time? An 

integrated model approach of driver take-over after automated driving. Accident Analysis & 

Prevention, 78, 212–221. doi:10.1016/j.aap.2015.02.023 



Chapter 4 – ToMC from HAD in non-critical truck platooning scenarios (with mounted NDT) 99 

 

Zeeb, K., Härtel, M., Buchner, A., & Schrauf, M. (2017). Why is steering not the same as 

braking? The impact of non-driving related tasks on lateral and longitudinal driver interventions 

during conditionally automated driving. Transportation Research Part F: Traffic Psychology 

and Behaviour, 50, 65–79. doi:10.1016/j.trf.2017.07 

  



100 Taking back the wheel: Transition of control from automated cars and trucks to manual driving 

 

 

  



 

101 

5. Taking back manual control after automated 

platooning: A comparison between car and truck 

driver’s behaviour 

This chapter is based on Zhang, B., Hogema, J. H., Willemsen, D. M. C., Wilschut, E. S., & Martens, 

M. H. (2020). Taking back manual control after automated platooning: A comparison between car 

and truck driver’s behaviour. Under review. 
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5.1 Introduction 

Thanks to the rapid advancement of technology, intelligent transport systems and advanced 

driver assistance systems are undergoing an intense development. Cars with automated 

functions that predominantly rely on on-board sensory systems are already available on the 

consumer market. Meanwhile, connected and automated vehicles (CAV) with advanced 

communication technologies are drawing more and more attention for their potential to improve 

road safety, traffic flow, and energy efficiency (Coppola & Silvestri, 2019; Rios-Torres & 

Malikopoulos; 2017, Talebpour & Mahmassani, 2016; Shladover, 2018). Combining Vehicle 

to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication with on-board control 

units, CAVs are able to exchange real-time traffic information and make immediate adjustment 

to the dynamics of other connected vehicles, and travel smoothly with a much shorter following 

distance compared to regular manually driven vehicles and stand-alone automated vehicles 

(Coppola & Silvestri, 2019; Shladover, 2018; Talebpour & Mahmassani, 2016).  

In recent decades, technical research and development on CAVs mainly focused on platooning 

of heavy-duty trucks, largely driven by the increasing demand for fuel efficient freight 

transportation (Bhoopalam, Agatz, & Zuidwijk, 2018; Janssen, Zwijnenberg, Blankers, & De 

Kruijff, 2015; Turri, Besselink, & Johansson, 2016; Tsugawa, 2013). Simulations and field 

experiments have demonstrated that platooning with a gap between 4 – 10 m could save up to 

10% - 20% fuel consumption for the following trucks achieved by reduced aerodynamic drag 

(Browand, McArthur, & Radovich, 2004; Tsugawa, Jeschke, & Shladover, 2016), and bring 

immediate profit to freight carriers once adopted (Janssen et al., 2015). During the European 

Truck Platooning Challenge in April 2016, truck platoons with automated longitudinal control 

were brought onto public roads for the first time while crossing international borders, showing 

the technical and commercial feasibility of platooning technology. Besides truck platoons, 

passenger car platoons and heterogeneous platoons consisting of heavy vehicles and passenger 

cars are also realistic use cases when operating platoons in general traffic (Bergenhem, Huang, 

Benmimoun, & Robinson, 2010; Bergenhem, Shladover, Coelingh, Englund, & Tsugawa, 

2012), which receive less attention due to a slower return on investment (Tsugawa et al., 2016; 

Janssen et al., 2015).  

5.1.1 Human driver’s role in platooning 

Various platooning concepts have been discussed and developed that operate at different levels 

of driving automation. The role and responsibility of the driver also vary. A widely adopted 

platooning concept is to manually drive the lead vehicle by a professional truck driver, while 

other vehicles follow automatically with a professional driver at the driving seat, connected and 

coordinated through wireless communication and radar technology such as Cooperative 

Adaptive Cruise Control (CACC, Ploeg, Van de Wouw, & Nijmeijer, 2014). In order to come 

together and get in the right platooning conditions, all vehicles still need to be manually driven. 

Thus, platoons can be operated on existing road infrastructures without the need of dedicated 

lanes.  

In the early development phase and in many demonstrations on public roads, platooning systems 

only enabled longitudinal automation of the following vehicles, while steering was still 

executed by human drivers (Level 1 driving automation according to SAE taxonomy, 2018). At 

the current stage, partial automated platoons that execute both lateral and longitudinal vehicle 

control under constant supervision of the driver (SAE Level 2) have been realized on test tracks, 

and are expected to be commercialized as a next stage (Janssen et al., 2015). Experts have 

expressed concerns regarding this level (Kyriakidis et al., 2019; Norman, 2015; Onnasch, 
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Wickens, Li, & Manzey, 2014) because humans are naturally poor at prolonged monitoring 

tasks (Davies & Parasuraman, 1982; Mackworth, 1948; Parasuraman 1987; Scerbo, 2001) and 

it can be very risky for the driver in a platoon to respond to longitudinal critical events due to 

very short inter-vehicular distances (Nowakowski, Shladover, & Tan, 2015; Willemsen et al., 

2018). The long-term goal is to implement highly automated platoons that do not require 

constant monitoring nor require drivers as emergency backups within the operational design 

domain (i.e., SAE Level 4). It is generally believed that only at such level could drivers truly 

benefit from driving automation, because they could make use of the travel time to relax or 

undertake other non-driving tasks (Kyriakidis et al., 2019; Carsten & Martens, 2018). 

Transitions of control between the system and the driver would still be expected when forming 

and dissolving the platoon, and occasionally after the system encounters sensors limitations or 

an upcoming end of the operational design domain.  

5.1.2 Transitions of control and related research 

Similar to the introduction of cars with automated functions, the deployment of platooning 

technology on public roads is likely to go through several intermediate phases. As long as 

human involvement is still required, the human-system interaction involving various types of 

platoon drivers would need to be a major research focus. The transition of control from the 

automation function back to the driver, also known as driver take over, is widely recognized as 

a critical phase where adverse situations may occur (for an overview, see Lu, Happee, Cabrall, 

Kyriakidis, and De Winter, 2016). Compared to manual driving, taking back control from 

automated driving asks for additional information processing tasks, including perception of the 

stimulus that initiates the transition (usually a take-over request issued by the system, or an 

event in the environment), comprehending the driving situation and regaining situational 

awareness, making a decision on what to do, and actually perform the take-over action (braking, 

accelerating, or steering) after repositioning hands back on the steering wheel and feet back on 

the pedals (Gold & Bengler, 2014; Zeeb, Buchner, & Schrauf, 2015, 2016). The key to a 

successful control transition is to complete the take-over process with sufficient quality before 

the driver loses control of the situation, thereby avoiding collisions or endangerment (Naujoks, 

Wiedemann, Schömig, Jarosch, & Gold, 2018; Nilsson, Falcone, & Vinter, 2015). To 

understand how long it takes for a driver to adequately take over control provides important 

input for the development of safe driving automation systems.  

A large number of studies have investigated drivers’ take over performance under various 

conditions, mostly in stand-alone automated car scenarios. To address the essential question of 

take-over response times, Zhang, De Winter, Varotto, Happee, and Martens (2019) conducted 

an exhaustive meta-analysis of 129 studies that involved control transition from automated 

driving to manual (of which three were truck automation studies). Results showed that mean 

(average over different participants or groups) take-over times reported in the studies vary 

largely from less than 1 s to above 20 s under the interplay of diverse factors related to the 

driver, the type of automation, the human machine interface (HMI), and the driving 

environment. The most significant determinants of the take-over time are the urgency of the 

take-over situation, whether non-driving tasks are performed on a hand-held device, and 

familiarization and expectancy with the take-over scenarios. The authors, along with a number 

of researchers, also cautioned that a short take-over response time alone cannot guarantee safe 

take-over behaviour. In more urgent situations, drivers tend to respond faster but with lower 

quality, characterized by a higher accident rate (Mok, Johns, Lee, Miller, Sirkin, Ive, & Ju, 

2015), more abrupt manoeuvring of the vehicle (Gold, Damböck, Lorenz, & Bengler, 2013; Ito, 

Takata, & Oosawa, 2016; Clark & Feng, 2017), and poorer hazard perception (Vlakveld, Van 

Nes, De Bruin, Vissers, & Van der Kroft, 2018). A widely accepted assumption is that 7 – 10 s 
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is sufficient for distracted drivers to take over in response to a critical event without crashing 

(e.g., Ito et al., 2016; Melcher, Rauh, Diederichs, Widlroither, & Bauer, 2015; Petermann-

Stock, Hackenberg, Muhr, & Mergl, 2013; Walch, Mühl, Kraus, Stoll, Baumann & Weber, 

2017). However, Gold et al. (2013) found that given a 7 s time budget, drivers still exhibited 

more risky evasive manoeuvres with fewer mirror checks compared to the baseline manual 

driving condition. Eriksson and Stanton (2017) assert that take-over times measured in non-

critical scenarios could better reflect the time the driver actually needs to resume control, and 

applied no time restrictions in their driving simulator study with passenger car drivers. 

Participants displayed a large variation in take-over times even without performing non-driving 

tasks, ranging from 1.9 s to 25.7 s. Lu, Coster, and De Winter (2017) explored time required to 

regain situation awareness when taking over control, and found that up to 20 s may be needed 

for the participants to sufficiently comprehend the traffic situation presented in the video clips. 

Research on driver take-over performance in platooning scenarios has received less attention. 

A series of driving simulator studies rooted in the German project KONVOI investigated 

drivers’ manual driving performance immediately after decoupling from a highly automated 

passenger car platoon (Eick & Debus, 2005; Wille, Röwenstrunk, & Debus, 2008; Brandenburg 

& Skottke, 2014; Skottke, Debus, Wang, & Huestegge, 2014). The results generally pointed to 

a decrease in time headway (THW) after leaving the automation mode compared to drivers’ 

preferred THW in normal manual driving, which may have been a result of behavioral 

adaptation to the short gaps as suggested by Martens and Jenssen (2012). In particular, Skottke 

et al., (2014) looked into the change of THW as a function of time, and found that such carry-

over effects lasted for 10 km (approximately 6 minutes). Impaired lane keeping performance 

(in terms of increased standard deviation of lateral position, SDLP) after leaving the platoon 

was also observed in these studies. However, Skottke et al., (2014) argued that this might be 

due to the long time spent in the experiment (time-on-task effect) rather than the effect of 

automation, since SDLP increased with similar magnitude in the manual driving condition as 

the same amount of time passed by. In a recent study, Castritius et al. (2020) compared 

professional truck drivers’ pre- and post-platoon manual driving performance under real traffic 

conditions on public roads (with the THW of 0.6 s or 0.9 s at the speed of 80 km/h). Drivers in 

the following truck displayed significantly higher SDLP in the post-platooning section, but no 

significantly differences in THW between the two sections. The authors cautioned that 

confounding variables induced by the real road setting, such as the behaviour of surrounding 

road users and traffic volume, might lead to the inconsistency with the previous findings.  

Truck platoon drivers’ take-over response in critical system failure scenarios was first tackled 

in the Japanese Energy ITS project (Zheng, Nakano, Yamabe, Aki, Nakahra, & Suda, 2014; 

Yamabe, Zheng, Nakano, Suda, Takagi, & Kawahara, 2012). In their experiments, participants 

were instructed to apply emergency braking as soon as the braking light of the preceding truck 

was activated (with a THW of 0.45 s at a speed of 80 km/h). Results showed an average take-

over response time around 0.6 s, and that in this case (the brake response time being larger than 

the THW during platoon driving) rear-end collisions could only be avoided when the mean 

maximum deceleration of the following truck was higher than the preceding truck. Response 

times here were low since drivers needed to stay alert and knew that they would encounter 

critical events. 

In recent years, several studies conducted by TNO systematically researched drivers’ take-over 

performance from highly automated platooning, aiming to provide input for an adaptive control 

transition approach. Zhang, Wilschut, Willemsen, and Martens (2019) and Wilschut, 

Willemsen, Hogema, and Martens (2016) reported truck driving simulator findings, in which 

professional truck drivers performed eight non-critical control transitions to manual driving 
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without time restrictions under three task conditions. Results showed that drivers used 

significantly more time to take over control when interacting with a hand-held tablet or relaxing 

with their eyes closed compared to monitoring the road without non-driving tasks. A large 

variation in drivers’ response to reposition hands on the steering wheel was also observed, 

which in turn led to a large variation in the total take-over times.  

5.1.3 Difference between passenger car drivers and professional truck drivers 

As platooning technology can be applied to both trucks and cars, it is of interest to explore 

whether professional truck drivers and non-professional passenger car drivers behave 

differently in a take-over situation after a platooning drive. Heavy trucks and passenger cars 

foremost differ in physical and operational characteristics such as size, weight, turning radii, 

power-to-mass ratio, and acceleration/deceleration capability (Mehdizadeh, Shariat-

Mohaymany, & Nordfjaern, 2018; Peeta, Zhang, & Zhou, 2005; Ramsay, 1998). To compensate 

for the vehicle’s relatively poor manoeuvrability, heavy-truck drivers normally drive at a lower 

speed, exhibit a smoother car-following behaviour with a larger distance to the preceding 

vehicle, and execute lane-changing manoeuvres more slowly with a lower acceleration or 

deceleration compared to passenger car drivers (Aghabayk, Moridpour, Young, Sarvi, & Wang, 

2011; Durrani, Lee, & Zhao, 2016; Moridpour, Rose, & Sarvi, 2010). When driving behind a 

heavy truck, both car drivers and truck drivers increase following distances compared to 

following a passenger car (Aghabayk, Sarvi, & Young, 2012; McDonald, Brackstone, Sultan, 

& Roach, 1999).  

Differences between professional truck drivers and non-professional passenger car drivers also 

exist in their demographics, skill base, and attitude towards safe driving. Compared to average 

car drivers, truck drivers are predominantly male, have a higher mean age and higher mean 

annual mileage, spend more hours in traffic working purposes, and experience more practice 

and training (Rosenbloom, 2011; Rosenbloom, Eldrorb, & Shahara, 2009). Previous research 

generally points to a more cautious, less risky driving behaviour among truck drivers compared 

to car drivers, indicated from self-reporting and analysis of naturalistic driving data 

(Mehdizadeh et al., 2018; Rosenbloom et al., 2009; Walton, 1999). Truck drivers are less likely 

to commit errors and violations, and are generally well-trained to avoid dangerous situations 

(Rosenbloom, 2011). Despite the fact that heavy trucks are disproportionally involved in fatal 

accidents, the large majority of these fatal accidents were caused by cars (Blower, 1998; 

Rosenbloom, 2011; Thiriez, Radja, & Toth, 2002).  

In the context of automated driving, Zhang, Wilschut et al., (2019) and Lotz,  Russwinkel, and 

Wohlfarth (2019) investigated professional truck drivers’ take-over performance and compared 

this to take over performance reported in published passenger car take-over studies (Eriksson 

& Stanton, 2017; Damböck et al., 2012; Zeeb et al., 2015; Radlmayr, Gold, Lorenz, Farid & 

Bengler, 2014; Gold, Lorenz & Bengler, 2014). Both studies suggested a shorter take-over 

response time among professional truck drivers, possibly explained by their higher level of 

expertise. Nevertheless, the validity of these findings needs further investigation due to the 

heterogeneity between the studies for comparison (i.e., differences in factors such as 

experimental design, instruction, the type of simulator that is driven). For example, truck 

drivers’ faster response observed in Zhang, Wilschut et al., (2019) could be due to the effects 

of practice and familiarization induced by within-subject design, as compared to Eriksson and 

Stanton (2017) in which between-subject design was used. To date, we are not able to identify 

studies that directly compare truck drivers’ and passenger car drivers’ take-over performance 

controlling for other experimental variables.  
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5.1.4 Research objectives 

The literature research pointed to the importance of ensuring a safe control transition to manual 

in the development of driving automation, and the fact that we are still at an early stage of 

understanding drive behaviour when decoupling from car and truck platoons. To fill in the 

research gaps and to enrich the literature on human factors research concerning control 

transitions in platooning scenarios, this study compares professional truck drivers’ take-over 

performance when leaving a highly automated platoon (as reported in Zhang, Wilschut et al., 

2019) to that of car drivers measured in the same TNO driving simulator (with a different 

vehicle mock-up) using the identical experimental design. The main aim of the study was to 

investigate behavioural similarities and differences between the two driver groups during the 

decoupling of platoons and in the subsequent manual driving. The results could be a basis for 

developing efficient manners to support car and truck platoon drivers to resume manual control 

safely and smoothly. In addition, research shows that changes in vehicle dynamics during 

control transitions substantially affect traffic flow efficiency (Varotto, Hoogendoorn, Van 

Arem, & Hoogendoorn, 2015; Varotto, Farah, Bogenberger, Van Arem & Hoogendoorn, 2020). 

The results of this study could also provide input for modelling the effects of platooning on 

traffic flow considering the impact of driver behaviours when dissolving the platoon. 

5.2 Methods 

This paper is based on two separate driving simulator studies conducted in the TNO driving 

simulator, using an identical experimental design but different simulator configurations (truck 

and car, with different mock-ups and different vehicle models) and participant groups (truck 

drivers and car drivers). In the car platooning study, a moving-base car driving simulator 

experiment was conducted with experienced car drivers. The truck platooning study was a 

repetition of the car platooning study, with a driving simulator in truck configuration and with 

professional truck drivers as participants to enable comparisons between the two driver groups. 

In the following sections, the experimental setup for both experiments are introduced in turn, 

followed by descriptions of experimental design and dependent measures. 

5.2.1  Participants 

Eighteen participants were involved in the car platooning study. All participants held a driver’s 

license for at least 2 years and drove at least 10.000 km per year. Their average age was 39.5 

years old (SD = 9.6). The group consisted of 11 male and 7 female drivers. None of them had 

experience in driving a truck. 

Twenty-two professional truck drivers participated in the truck platooning study. They all held 

a truck driver’s license for at least 8 years (on average 29 years) and drove in a truck at least 

10.000 km per year (on average 35218.7 km/year). The average age of the participants was 47.4 

years old (SD = 11.5). The group consisted of 20 male and 2 female drivers. Both experiments 

were approved by the Ethical Committee for participant studies of TNO. 

5.2.2 Apparatus 

Both experiments were conducted in the high fidelity moving-base driving simulator with six 

degrees of freedom, located at TNO, the Netherlands. In the car platooning experiment, a BMW 

car mock-up (Figure 5.1 Left), and in the truck platooning experiment a DAF truck mock-up 

(Figure 5.1 Right), was mounted on the moving base. The two experiments used different 

mathematical vehicle models to represent the dynamics of a passenger car and a truck, 
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respectively. Eye heights in the visualisations were also modified to incorporate the differences 

between the vehicle categories in this respect. In both experiments, the road and traffic 

environment were projected on cylindrical screens around the vehicle. Three projectors 

provided the front view with a horizontal viewing angle of 180 degrees and a vertical viewing 

angle of 41 degrees (22 degrees above and 19 degrees below the neutral viewing direction). The 

rear view was realised by two screens placed behind the vehicle for exterior mirrors, and one 

32-inch LCD screen placed in the back of the car for the interior rear-view mirror (the interior 

rear-view mirror was not available in the truck cabin). In the car platooning experiment, the 

human-machine interface (HMI) presenting the status of the automated platooning system was 

integrated in the dashboard below the speedometer. In the truck platooning experiment, this 

interface was displayed on an additional tablet PC mounted close to the centre console. Vehicle 

related data in both experiments were recorded by the driving simulator software at a sampling 

rate of 50 Hz, including the driver input from the steering wheel and the pedals, and the status 

change of the automation system. Three cameras from different angles were installed in both 

cabins to record the participants’ facial expressions, full body movement, and feet movement, 

respectively. 

  

Figure 5.1: Configurations of the TNO moving-base driving simulator and cylindrical 

projection screen in two experiments. Left: The car platooning experiment with a BMW 

passenger car mock-up; Right: The same set-up with a DAF truck mock-up. 

5.2.3 Automated platooning system 

In the study, an automated platooning system was simulated that allowed a vehicle to follow its 

predecessor at a relatively short following distance, controlling both the longitudinal and lateral 

motion. The system was designed to operate on public motorways (i.e. without using dedicated 

lanes), initially limited to platoons of two vehicles. The first vehicle was intended to be driven 

by a human operator (but was controlled by the simulator scripts in our studies), and the second 

vehicle was controlled by the automated system once engaged. The automated platooning 

system was modelled as a combination of Cooperative Adaptive Cruise Control (CACC) and a 

Lane Keeping System (LKS). The driver could push a button (normally used for cruise control) 

on the left side of the steering wheel to switch the system on and off. To be able to switch the 

system on, the driver had to drive in an activation zone behind the lead vehicle. Once activated, 

the driver did not need to monitor or supervise the system, thus simulating SAE L3/4 automated 

driving. 

Upon approaching the end of the automation zone, the system would issue a take-over request 

(TOR) by displaying a text message (in Dutch: “Neem de controle over”, in English: “Take over 

control”) on an orange background on the visual interface presenting the automation status, 
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accompanied with an alert sound. The driver then had to push the button again to deactivate the 

automated system and take over both longitudinal and lateral control. 

5.2.4 Experimental design and test procedures 

The experimental design and procedures were identical for both experiments. Prior to driving, 

the participants read an introduction to the experiment and the automated platooning system, 

and filled in a questionnaire on their demographics and driving experience. Subsequently, a 

training session was conducted to familiarize the participants with the driving simulator and 

with the platooning system. The participants performed the coupling and decoupling procedures 

at least three times, until they felt familiar and comfortable with the system. After the training, 

each participant performed one manual driving trial and seven platooning trials. In each trial, 

the participants were instructed to drive on the right-hand lane of a two-lane motorway, behind 

a lead vehicle that was driving with an average speed of 100 km/h in the car platoon and 80 

km/h in the truck platoon. The participants were instructed to follow this lead vehicle and not 

to change lanes. There were no entries or exits on the route the participants drove. Slight curves 

and moderate surrounding traffic were simulated throughout the scenario. 

The manual driving trial was always performed first and served as the baseline condition, in 

which the participants followed the lead vehicle without assistance from automation systems. 

In the platooning trials, the participants were instructed to drive into the activation zone and 

switch on the platooning system shortly after the scenario began (approximately 10 – 20 s). In 

each trial a different experimental condition was implemented by manipulating three 

independent variables, namely non-driving tasks, the time gap to the lead vehicle in the platoon 

(0.8 s vs. 0.3 s), and whether a braking event occurred after the participant took over control. 

The order of the conditions was counterbalanced. This paper only discusses the five trials in 

which the time gap was set to 0.8 s during automated driving (i.e., the minimum allowed time 

gap defined in ISO 15622, which is considered to be the accepted distance for testing the first 

truck platooning concepts).  

In each platooning trial, one of three non-driving task conditions was implemented during the 

automated driving phase. In the Monitoring condition, the participants were instructed to 

constantly monitor the surroundings, so hands-off, feet-off, and eyes on the road; in  the Tablet 

condition, the participants were provided with a tablet PC and were asked to use this, so hands-

off, feet-off, and eyes off the road, but they were allowed to scan the outside world if they 

wanted; in Eyes-closed condition, the participants were not allowed to open their eyes, so hands-

off, feet-off, and eyes off the road. These conditions manipulated participants’ visual attention 

and represented three activities likely to be performed by the driver in future automated 

vehicles. After four minutes in the Monitoring condition, or eight minutes in the Tablet and 

Eyes-closed conditions, a TOR was issued and the participants were instructed to take over 

control by pressing the button whenever they felt ready to do so without time restrictions. The 

automation duration was shorter for the Monitoring condition to increase the possibility that 

drivers were still paying attention and were alert, and longer for the other two conditions 

increase the chance of the driver being out-of-the loop. After the transition, the participants 

continued with manual driving for approximately 90 s until the end of the scenario.  

In three trials, no critical events were implemented after the transition to investigate the driver’s 

performance to stabilize the vehicle and regulate the following distance in normal, uneventful 

situations. In the other two trials (in Monitoring and Tablet conditions, respectively), a lead 

vehicle brake event was implemented shortly after the control transition to explore whether the 

participants possessed sufficient readiness to cope with more complex situations. Three seconds 
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after the participant pressed the button to deactivate the system, the lead vehicle started braking 

at a deceleration rate of 5 m/s2 for two seconds. No forward collision warnings or brake assist 

systems were available, and participants had to respond in time to avoid a potential collision. 

An overview of all experimental conditions is provided in Table 5.1. 

Table 5.1: Overview of experimental conditions analysed in this study 

Condition Task during AD Post-transition brake event Duration 

0 (MD) - - 6.5 min MD 

1 (AD) Monitoring N 4 min AD + 1.5 min MD 

2 (AD) Tablet N 8 min AD + 1.5 min MD 

3 (AD) Eyes-closed N 8 min AD + 1.5 min MD 

4 (AD) Monitoring Y 4 min AD + 1.5 min MD 

5 (AD) Tablet Y 8 min AD + 1.5 min MD 

Note. AD = Automated Driving; MD = Manual Driving. 

5.2.5 Dependent measures 

In this study, measures regarding take-over response times and take-over quality were assessed 

and compared between the two experiments, which are introduced in details below. 

5.2.5.1 Response times to a take-over request 

The total take-over response time was measured from the onset of the TOR until the participant 

pressed the button to deactivate the platooning system. As in Zhang, Wilschut et al., (2019), the 

total response time was further divided into perception response time and hand movement 

response time to analyse the take-over process at a fine-grained level. Perception response time 

was the response time measured from the onset of the TOR until the participant started to move 

his/her hands towards the steering wheel, which indicated the time elapsed between perceiving 

the TOR and understanding the necessity to take over control and starting to take action. 

Movement response time was the remaining response time measured until the participant 

pressed the button, indicating the time it took to complete the physical response and to establish 

motor readiness. The start of the participants’ hand movement, the participants’ body postures 

at the moment of the TOR onset, and the activities performed during the take-over process were 

manually annotated from video recordings to explore underlying factors influencing their take-

over response times. In addition, we analysed the gas pedal response time measured from the 

moment when the participant pressed the button to disengage the automation until the moment 

when the first input on the gas pedal was made to inspect how the driver regulated speed after 

overruling the system. All response time measures described in this section were only analysed 

for experimental trials without brake events. 

5.2.5.2 Take-over quality 

5.2.5.2.1 Post-transition manual driving performance 

For the experimental trials without brake events, we analysed the standard deviation of lateral 

position (SDLP), the mean and standard deviation of longitudinal speed, and the mean time 
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headway (THW) to assess drivers’ performance to stabilize the vehicle in its lane and to 

maintain a safe following distance after taking over manual control. The SDLP was calculated 

based on the high-pass filtered (at 0.1 Hz) lateral position signal (to remove effects caused by 

the driver’s low-frequent shifting of lane position, in line with Engström and Markkula, 2007). 

Merat, Jamson, Lai, Daly, and Carsten (2014) suggested that drivers may need 40-50 s to 

stabilize the vehicle after the control transition. In our study, the performance measures were 

analysed in time windows of 10 s for 60 s after the control transition. In addition, we explored 

carry-over effects of platooning by comparing drivers’ mean THW and SDLP after the control 

transition to their performance in the baseline manual driving condition. To enable a fair 

comparison, we chose a one-minute timeslot in the baseline condition, starting at five minutes 

after the start of the scenario, divided in six time windows of 10 s. 

5.2.5.2.2 Post-transition brake response 

For the experimental trials with brake events after the control transition, participants’ responses 

to the braking lead vehicle were analysed. Relevant measures were brake response time, the 

maximum longitudinal deceleration, and the minimum time-to-collision (TTC) with the lead 

vehicle. The brake response time was defined as the time interval between the onset of the 

braking light of the lead vehicle and the moment at which the participant started pressing the 

brake pedal.  

5.2.6 Data analysis 

Several experimental trials were not available for analysis due to missing or incomplete video 

recordings or driving performance data. An overview of data availability is provided in Table 

5.2. Mixed factorial analysis of variance (ANOVA) was conducted to examine the effects of 

driver group (between-subject factor) and task (within-subject factor) on each dependent 

variable related to take-over responses and brake responses. To assess post-transition manual 

driving performance as a function of time, time was included as an additional within-subject 

factor in the mixed factorial ANOVA. If Mauchly's tests indicated that the assumption of 

sphericity had been violated, degrees of freedom were corrected using Greenhouse-Geisser 

estimates. Post-hoc pairwise comparisons were performed using the Bonferroni correction.  

Table 5.2: Overview of data availability for analysis. BE = Brake Event. 
 Test conditions Trials with 

available video 

recordings 

Trials with available  

driving performance 

data 

Total number 

of trials 

Car Monitoring (w/o BE) 17 17 18 

 Tablet (w/o BE) 16 15 18 

 Eyes-closed (w/o BE) 17 15 18 

 Monitoring (BE) - 13 18 

 Tablet (BE) - 13 18 

 Manual driving - 17 18 

Truck Monitoring (w/o BE) 18 19 22 

 Tablet (w/o BE) 17 19 22 

 Eyes-closed (w/o BE) 18 20 22 

 Monitoring (BE) - 20 22 

 Tablet (BE) - 17 22 

 Manual driving - 22 22 
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Because subjects with any missing value would be excluded from repeated measures ANOVA, 

we first imputed missing values using the expectation maximization (EM) method (Dempster, 

Laird, & Rubin, 1977) to make sure we were able to at least use all available data. All statistical 

analyses were performed using IBM SPSS 24; with a significance level of 0.05. Descriptive 

results were reported based on the original datasets without imputation. 

5.3 Results 

5.3.1 Take-over response times  

Combining all task conditions, car drivers took over control on average 3.78 s (SD = 1.79 s) 

after the TOR onset, ranging from 1.6 s to 9.56 s. For truck drivers, the average take-over 

response time was 4.45 s (SD = 2.18 s), ranging from 1.75 s to 11.77 s. In both groups, 95 % of 

the drivers could take over within 8.5 s. Descriptive statistics of car and truck drivers’ 

perception-movement times during the take-over process (total response time, perception 

response time, and movement response time), and the response time to press the acceleration 

pedal after automation deactivation (acceleration response time) were measured in three task 

conditions, as listed in Table 5.3, and visualised in Figure 5.2 and Figure 5.3. Results of 2 (driver 

group) ×3 (task) two-way mixed factorial ANOVAs are presented in Table 5.4. 

There was a significant main effect of task on the total response time, while the main effect of 

driver group was not significant. Total response times were significantly shorter in the 

Monitoring condition compared to the Tablet condition and the Eyes-closed condition (both at 

p <.001). Interaction between the effects of task and driver group was only marginally 

significant, with car drivers having the tendency to respond faster than the truck drivers in the 

Tablet condition. 

A significant main effect of task was found on the perception response time, while the main 

effect of driver group, and the interaction effect were not significant. Post-hoc tests revealed 

significantly longer perception response times in the Eyes-closed condition compared to the 

Monitoring condition (p <.001) and Tablet condition (p =.001). With respect to the movement 

response time, significant main effects of task and driver group, and a significant interaction 

were found. Post-hoc tests showed significantly higher movement response times of truck 

drivers than car drivers in the Eyes-closed condition (p =.008), and a similar trend in the Tablet 

condition (p =.057). When comparing between task conditions, both driver groups showed 

significantly higher movement response times in the Tablet condition compared to the 

Monitoring condition (p <.001 for both driver groups) and the Eyes-closed condition (p <.001 

for car drivers, p =.006 for truck drivers). Higher movement response times in the Eyes-closed 

condition compared to Monitoring condition was only significant for truck drivers (p =.018). In 

addition, we performed pairwise comparisons to compare the perception response time and the 

movement response time in all conditions, and found that for both driver groups, the movement 

response time was significantly larger than the perception response time in the Monitoring and 

Tablet conditions (all at p <.001). The difference between the perception response time and the 

movement response time was not statistically significant in Eyes-closed condition. 

Both driver group and task showed significant main effects on the gas pedal response time. The 

interaction between the main effects was not significant. After the control transition, truck 

drivers pressed the gas pedal significantly later than the car drivers. Pairwise comparisons 

further revealed a significantly lower gas response time in the Monitoring condition than the 

Tablet condition (p = .014). No significant differences in gas response time were found between 

other task conditions. 
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Figure 5.2: Take-over response times of car drivers and truck drivers measured in three 

non-driving task conditions. The bars show the means of perception response times and 

movement response times; they add up to the total take-over response times. 

 

Figure 5.3: Car drivers’ and truck drivers’ mean response times to press the acceleration 

pedal after automation deactivation in three non-driving task conditions. The error bars 

represent the standard deviations.  

Table 5.3: Descriptive statistics of the four take-over response time measures. 
Measure Task  Car  Truck 

Mean (SD) Min. Max.  Mean (SD) Min. Max. 

  

Total response time (s) Monitoring 2.66 (0.96) 1.60 4.55  2.45 (0.53) 1.75 3.80 

Tablet 4.43 (1.49) 2.15 8.32  5.53 (1.39) 3.62 8.54 

Eyes-Closed 4.26 (2.13) 1.96 9.56  5.42 (2.44) 2.19 11.31 

Perception response 

time (s) 

Monitoring 0.84 (0.35)3 0.55 1.96  0.78 (0.14) 0.43 1.10 

Tablet 0.84 (0.28) 0.43 1.53  0.91 (0.35) 0.17 1.77 

Eyes-Closed 2.14 (2.08) 0.58 8.39  1.89 (1.66) 0.80 7.73 

Movement response 

time (s) 

Monitoring 1.82 (0.84) 0.82 3.87  1.67 (0.49) 0.95 2.97 

Tablet 3.60 (1.43) 1.17 7.07  4.61 (1.40) 2.75 7.74 

Eyes-Closed 2.11 (0.81) 1.05 3.99  3.53 (1.90) 1.19 8.31 

Gas pedal response 

time (s) 

Monitoring 0.99 (0.89) 0.05 3.45  4.80 (3.47) 0.05 11.90 

Tablet 1.42 (1.91) 0.04 3.89  8.06 (5.05) 0.50 21.70 

Eyes-Closed 1.28 (1.25) 0.05 5.18  7.92 (4.09) 0.05 14.33 
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Table 5.4: Results of mixed ANOVAs for the four take-over response time measures. 
Measure  Factor F df p Partial η2 

Total response 

time 

driver group 2.51 1, 38 .122 .06 

task 46.28 1.65, 62.66 <.001 .55 

driver group * task  3.16 1.65, 62.66 .059 .08 

Perception 

response time 
driver group .05 1, 38 .822 .00 

task 16.32 1.06, 40.25 <.001 .30 

driver group * task .12 1.06, 40.25 .744 .00 

Movement 

response time 

driver group 5.60 1, 38 .023 .13 

task 51.65 2, 76 <.001 .58 

driver group * task  5.05 2, 76 .009 .12 

Gas pedal 

response times 

driver group 46.29 1, 38 <.001 .55 

task 3.80 2, 76 .027 .09 

driver group * task  1.61 2, 76 .206 .04 

p <.05 is indicated in boldface 

5.3.2 Post-transition manual driving performance 

Car and truck drivers’ post-transition manual driving performance in terms of SDLP, mean and 

standard deviation of longitudinal speed, and mean THW in three task conditions were depicted 

in Figure 5.4, Figure 5.5, Figure 5.6, and Figure 5.7. Table 5.5 showed the results of the 2 (driver 

group) × 3 (task) × 6 (time) three-way mixed factorial ANOVAs conducted for each 

performance measure. 

First, we examined the effects of the three factors on drivers’ lateral vehicle motion control 

performance (SDLP). Results indicated a significant main effect of time, and significant two-

way interactions between each of the two factors. The effect of time was only significant for 

truck drivers in the Tablet condition (p <.001), in which truck drivers’ SDLP significantly 

decreased within 10-20 s after the transition, and remained relatively stable in the remaining 

timeslots. When comparing between task conditions, truck drivers’ SDLP in the Tablet 

condition was significantly higher than the Monitoring condition, but only for the first 10 s after 

the transition (p = .010). Significant differences between driver groups (p = .003) were only 

found in the Tablet condition, in which car drivers in general drove with lower SDLP compared 

to truck drivers. The post-transition SDLP was then compared to that measured in the baseline 

manual driving condition. For truck drivers, post-transition SDLP in the Tablet condition was 

marginally significantly higher than the baseline SDLP, but only for the first 10 s after transition 

(p = .06). No significant differences were found in the other two conditions. For car drivers, no 

significant differences were not observed in any task condition, for any timeslot.  

Next, we assessed car and truck drivers’ performance with respect to longitudinal speed. There 

were significant main effects of driver group and time on mean speed, and a significant two-

way interaction between these two factors. In addition to car drivers’ higher mean speed than 

truck drivers (which was a direct result of the experimental condition), we found that truck 

drivers’ speed significantly decreased in the first 20 s after the transition, and then gradually 

increased in the successive timeslots, while car drivers’ speed increased in the first 20 s after 

the transition, then remained relatively stable in the remaining timeslots. When examining the 

effects of the three factors on variation in longitudinal speed (SD SPD), we found significant 

main effects of driver group and time, and a statistically significant three-way interaction 

between driver group, task, and time. When comparing between driver groups, car drivers 

showed a significantly larger variation in speed than truck drivers in all task conditions, in all 



114 Taking back the wheel: Transition of control from automated cars and trucks to manual driving 

 

timeslots (all at p <.001). The effect of task was significant for truck drivers only in the first 10 

s after the transition, in which the SD SPD was lower in the Monitoring condition compared to 

the other two task conditions (p < .010). Systematic effects of task were not observed for car 

drivers. The effect of time was only significant for truck drivers (p <.001). In each task 

condition, truck drivers’ variation in speed significantly reduced in the first 20 s after the 

transition, and remained stable in the remaining timeslots.  

Another mixed ANOVA was conducted to examine the effects of the three factors on the mean 

THW after the control transition. There were significant main effects of driver group and time, 

and a significant three-way interaction between driver group, task, and time. In all task 

conditions, car drivers’ mean THW significantly increased only in the first 20 s after the 

transition. Truck drivers’ mean THW continuously increased within the observation window in 

the Tablet and Eyes-closed conditions. In the Monitoring condition, truck drivers’ mean THW 

only increased in the first 50 s after the transition. When comparing between driver groups, 

truck drivers’ mean THW was significantly lower than car drivers in the first 10 s then 

overpassed that of car drivers from 20-30 s after the transition, in all task conditions. An 

exception was that 50 - 60 s after the transition in the Monitoring condition, the two driver 

groups did not show significant differences in THW. The effect of task was only significant for 

truck drivers (p = .004): from 10 s after the transition, truck drivers’ THW was significantly 

lower in the Monitoring condition compared to the other two task conditions. 

In addition, we assessed car and truck drivers’ THW in the baseline (manual) driving condition. 

Truck drivers’ post-transition THW was significantly lower compared to their baseline THW 

in all timeslots, in all conditions. For car drivers, a significantly lower post-transition THW than 

the baseline THW was only found in the first 30 s after the transition in the Monitoring 

condition. In the other two task conditions, a significantly lower post-transition THW compared 

to the baseline THW was found in the first 10 s after the transition, and at the end of the 

observation window (50 – 60 s).  

 

Figure 5.4: Car drivers’ and truck drivers’ mean standard deviation of lateral position 

(SDLP) for the first 6×10 = 60 s after the control transition measured in three task 

conditions, and between 5 min and 6 min after the scenario start in the baseline manual 

driving condition (MD, dashed lines). The error bars represent the standard deviations. 
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Figure 5.5: Car drivers’ and truck drivers’ mean longitudinal speed for the first 6×10 = 

60 s after the control transition measured in three task conditions. The error bars 

represent the standard deviations. 

 

Figure 5.6: Car drivers’ and truck drivers’ mean standard deviation of longitudinal speed 

for the first 6×10 = 60 s after the control transition measured in three task conditions. The 

error bars represent the standard deviations. 

 
Figure 5.7: Car drivers’ and truck drivers’ mean time headway (THW) for the first 6×10 

= 60 s after the control transition measured in three task conditions (solid lines), and 

between 5 min and 6 min after the scenario start in the baseline manual driving condition 

(MD, dashed lines). The error bars represent the standard deviations. 
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Table 5.5: Results of mixed ANOVAs for the post-transition manual driving performance 

measures. 
Measure  Factor F df p Partial η2 

SDLP driver group 3.82 1, 38 .058 .09 

 task  2.86 2, 76 .063 .07 

 time 4.62 2.99, 113.53 .001 .11 

 driver group * task  4.85 2, 76 .010 .11 

 driver group * time 3.63 2.99, 113.53 .015 .09 

 task * time 3.18 6.43, 244.48 .004 .08 

 driver group * task * time 1.03 6.43, 244.48 .409 .03 

Speed driver group 1000.31 1, 38 <.001 .96 

 task  .04 1.37, 51.85 .912 .00 

 time 11.08 3.41, 129.52 <.001 .23 

 driver group * task  .30 1.37, 51.85 .654 .01 

 driver group * time 10.20 3.41, 129.52 <.001 .21 

 task * time 1.94 5.81, 220.62 .077 .05 

 driver group * task * time 1.06 5.81, 220.62 .387 .03 

      

SD SPD driver group 327.90 1, 38 <.001 .90 

 task  1.85 2, 76 .165 .05 

 time 4.16 3.47, 131.87 .005 .10 

 driver group * task  3.47 2, 76 .036 .08 

 driver group * time 1.21 3.47, 131.87 .309 .03 

 task * time 4.38 6.59, 250.27 <.001 .10 

 driver group * task * time 3.24 6.59, 250.27 .003 .08 

THW driver group  13.41 1, 38 .001 .26 

 task  1.39 2, 76 .254 .04 

 time  91.35 1.42, 54.29 <.001 .71 

 driver group * task  2.40 2, 76 .098 .60 

 driver group * time  20.94 1.42, 54.29 <.001 .36 

 task * time 1.48 3.89, 147.84 .214 .04 

 driver group * task * time 5.32 3.89, 147.84 .001 .12 

p <.05 is indicated in boldface. 

5.3.3 Response in post-transition brake events 

Car drivers’ and truck drivers’ brake response times, maximum deceleration rate, and minimum 

TTC in the post-transition brake event were depicted in Figure 5.8. The descriptive statistics are 

presented in Table 5.6. In both experiments, all participants successfully avoided a collision 

with the decelerating front vehicle by braking. Three 2 × 2 mixed ANOVAs were performed to 

test the effects of driver group and task (Monitoring vs. Tablet) on each performance measure. 

The results are presented in Table 5.7.  

There were significant main effects of both driver group and task on brake response times 

(BRT), but no significant interaction between the main effects. In both task conditions, truck 

drivers responded significantly faster than car drivers (both at p <.001). A significantly shorter 

BRT in the Monitoring condition compared to the Tablet condition was only found for car 

drivers (p = .023). When examining maximum deceleration during the brake response, we only 

found a significant main effect of driver group. Truck drivers braked less aggressively 

compared to car drivers in both Monitoring (p <.001) and Tablet conditions (p = .003). In terms 

of minimum TTC, both driver groups displayed similar performance in the two task conditions. 
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The results indicated no significant main effects of driver group or task, nor significant 

interaction between the two factors.  

 
Figure 5.8: Brake response measures compared between truck drives and car drivers in 

three task conditions. Left: means brake response times (BRT); middle: mean maximum 

deceleration during the brake response; right: mean minimum time to collision (TTC) 

during the brake response. The error bars represent the standard deviations. 

Table 5.6: Means, standard deviations and confidence intervals of the brake response 

times, maximum deceleration rate, and minimum TTC in the post-transition brake 

event.  

Measure Task  Car  Truck 

Mean (SD) Min. Max.  Mean (SD) Min. Max. 

BRT Monitoring 1.15 (0.36) 0.75 2.40  0.95 (0.20) 0.60 4.15 

 Tablet 1.86 (0.44) 1.04 2.41  1.03 (0.38) 0.05 1.60 

max. Dec.  Monitoring 7.09 (0.63) 6.33 8.25  6.10 (0.35) 4.72 6.22 

 Tablet 6.84 (0.83) 5.42 8.28  6.13 (0.20) 5.42 6.22 

min. TTC  Monitoring 2.52 (0.79) 1.26 3.99  2.56 (0.81) 1.53 4.15 

 Tablet 2.55 (0.83) 1.42 3.89  2.07 (0.78) 1.13 3.80 

Table 5.7: Results of mixed ANOVAs for the post-transition brake response performance 

measures. 

Measure Factor F df p Partial η2 

BRT driver group 51.50 1, 38 <.001 .58 

 task condition 8.64 1, 38 .006 .19 

 driver group * task condition 1.77 1, 38 .192 .04 

max. Dec. driver group 33.85 1, 38 <.001 .47 

 task condition 1.09 1, 38 .302 .03 

 driver group * task condition 1.55 1, 38 .220 .04 

min. TTC driver group .81 1, 38 .374 .02 

 task condition 2.34 1, 38 .134 .06 

 driver group * task condition 2.61 1, 38 .114 .06 

p <.05 is indicated in boldface. 
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5.4 Discussion 

In this study, we took the initiative to compare professional truck drivers’ and passenger car 

drivers’ take-over performance when leaving a highly automated platoon measured in two 

comparable driving simulator experiments. The results outlined similarities and differences 

between two driver groups regarding take-over response times, post-transition manual driving 

performance, and post-transition brake. Note that all results should be seen in the light of the 

fact that truck drivers drove at a lower speed (80 km/h) than car drivers (100 km/h). The gap 

distance in the truck platoon was also 4.5 m shorter than in the truck platoon. These may cause 

differences in driver’s risk perception, and additionally contribute to the behavioural differences 

between driver groups. Also to be noted is that the findings were based on comparisons of two 

independent experiments, which may be another source of differences between driver groups. 

The main findings are discussed in turn below. 

5.4.1  Take-over response times  

First of all, task conditions showed similar effects for professional truck drivers’ and passenger 

car drivers’ on take-over response times. For both truck and passenger car drivers, monitoring 

the road lead to lower take-over time compared to using a handheld tablet or relaxing with eyes 

closed. For both driver groups, the movement response time was the dominant response time 

component in the Monitoring and the Tablet conditions, while in the Eyes-closed condition, the 

perception time increased, leading to similar perception times and movement times.  

When comparing between the driver groups, professional truck drivers and passenger car 

drivers did not depict distinct differences in total take-over response times, except for the Tablet 

condition in which car drivers took over control significantly faster than truck drivers. The 

analysis of perception-movement response times revealed the main cause to be truck drivers’ 

slower hand movement response. When examining the video recordings for underlying reasons, 

we discovered that several truck drivers, but none of the car drivers, had to put on or off their 

glasses in order to change focus from the tablet PC back to the road, and took longer time than 

others to pause the undergoing task and shut down the tablet screen before putting it aside. 

These findings may be the result of truck drivers’ higher mean age and age-related eye 

conditions such as presbyopia (for relation between ageing and presbyopia, see Heys, Cram, & 

Truscott, 2004), and potentially less experience with mobile technological devices (Vaportzis, 

Giatsi Clausen, & Gow 2017). In our study we did not check for experience with tablet use. 

Another possible explanation for truck drivers’ longer movement time could be a longer spatial 

distance to put away the tablet PC associated with heavy trucks’ larger cabin size. The 

difference in the cabin layout may also account for truck drivers’ higher movement response in 

the Eyes-closed condition. Video recordings revealed that a number of truck drivers deliberately 

adjusted the seat while taking over control from the resting posture, which was not observed 

among car drivers (only one slightly adjusted the seat). Notably, our findings are not consistent 

with the speculation by Lotz et al., (2019) that professional truck drivers take over faster than 

passenger car drivers. In their study, that also involved a tablet task, the tablet PC was mounted 

on the central console rather than holding it in the hands, which did not allow to capture the 

large effect of movement response on truck drivers (having to put away the tablet). In addition, 

compared to critical transitions in Lotz et al., (2019), take-over times measured in self-regulated 

transitions reflect drivers’ motivation more than their capability or biological limitations 

(Zhang, De Winter et al., 2019). Truck drivers in the current study could behave differently in 

emergency situations and take over before being physically comfortable.  
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In addition to the regular take-over response times, we examined the response times to press 

the gas pedal after the control transition, and found quite some differences between driver 

groups. While car drivers pressed the gas pedal on average 1 – 1.5 s after disengaging the 

system, professional truck drivers pressed the pedal approximately 4 – 7 s later. We additionally 

examined the corresponding THWs at the moment of the acceleration initiation, but did not 

found significant differences (on average 0.91 s for car drivers and 1.04 s for truck drivers). It 

might be that both driver groups share a similar THW threshold to initiate car-following 

manoeuvres after platooning. Truck drivers appeared to be aware of the lower coasting 

deceleration rate of their vehicles and deliberately delayed the initial input on the gas pedal to 

increase the THW to this threshold. Another finding worth noticing is that drivers of both groups 

pressed the gas pedal significantly later in the Tablet condition compared to the Monitoring 

condition. This could be that drivers’ sensory adaptation to the small gap during platooning was 

stronger while monitoring the driving environment due to sustained visual stimulation (Skottke 

et al., 2014; Wark, Lundstrom, & Fairhall, 2007). That is, after keeping the eye on the preceding 

vehicle for a prolonged time during platooning, the driver might not feel the gap as small as just 

switching the gaze back to the road, and felt it less risky to start manual car-following at a 

smaller distance.  

5.4.2  Post-transition manual driving performance 

Differences between car and truck drivers’ post-transition manual driving performance are 

mainly exhibited in longitudinal vehicle control. Within our observation, truck drivers drove at 

a more steady speed and in general with a larger THW compared to car drivers. This is in line 

with previous research (e.g., Aghabayk et al., 2011; Aghabayk et al., 2012; Rosenbloom, 2011) 

that reported a significant larger THW in the truck-following-truck case than the car-following-

car cases, and truck drivers’ smoother and more cautious car-following behavior. When 

examining the change of speed as a function of time, both driver groups showed the pattern of 

first decreasing and then increasing the mean speed after the transition in order to increase 

THW. A similar phenomenon was found in a recently study by Varotto et al., (2020) that 

investigated passenger car drivers’ behavioral adaptation after using a full-range ACC. In this 

study,  car drivers’ mean speed reduced very shortly after the transition (and therefore was not 

depicted in Figure 5.5 due to the large observation window), then rapidly increased to 

approximately 27 m/s in the following 10-20 s. Truck drivers’ mean speed reduced by 

approximately 1m/s between the first two timeslots, then gradually increased to the previous 

speed level 40 – 60 s after the transition. This difference in speed regulation corresponds to our 

finding that truck drivers started pressing the gas pedal at a much later stage than car drivers, 

and explains the difference in the THW regulation. Car drivers’ THW only increased within the 

first 20 – 30 s after the transition, while truck drivers’ THW continuously increased within the 

observation window and overpassed that of car drivers from 20 s after the transition.  

When examining the carry-over effects of platooning in longitudinal control, we found that 

truck drivers’ post-transition THW continued to approach the baseline manual driving THW, 

but still didn’t reach a comparable level at the end of the observation. Truck drivers’ THW in 

the Monitoring condition increased more slowly after take-over, and was in general shorter 

compared to the other two conditions. This supports our speculation that monitoring the 

preceding vehicle during platooning may increase the carry-over effects, particularly for truck 

drivers. For car drivers, significant differences between the post-transition THW and the 

baseline manual driving THW started to diminish 20 – 30 s after the transition. However, we 

speculate that the carry-over effects may last longer for car drivers, seen from the smaller mean 

THW compared to the baseline and several drivers’ very small THW (< 0.8 s) in the following 

timeslots. Empirical evidence by Skottke et al., (2014) suggested that carry-over effects on 
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THW could last for 6 min after the control transition. Unfortunately, the short observation 

window in our study did not allow to investigate the development of the carry-over effect in 

further manual driving periods. It also has to be noted that we compared the THW after a take-

over with the preferred headway from the manual drive that participants made. However, these 

mean headways (3.18 s for truck drivers and 1.86 s for car drivers) were the headways chosen 

in low-volume traffic conditions, which can be considerably larger than that observed under 

high-volume traffic conditions (typically 1 – 2 s, Ayres, Li, Schleuning, & Young, 2001). 

Cautions should be exercised when generalizing the outcomes to more complex driving 

environments. 

With respect to lateral control performance, only truck drivers depicted increased SDLP 

immediately (the first 10 s) after the transition in the Tablet condition. This finding suggested a 

larger impact of platooning on truck drivers’ lateral control performance compared to that or 

car drivers, especially after being engaged in visually and motorically demanded non-driving 

tasks.  

In addition, we suggest that compared to car drivers, truck drivers may require more time to 

stabilize their control of the vehicle after the transition to manual, as the effect of time was 

significant for truck drivers in all performance measures. In particular, the variations in truck 

drivers’ lateral and longitudinal vehicle control systematically reduced and came to a stable 

status approximately 30 - 50 s after the transition. For car drivers such patterns were not clearly 

observed. This could be a result of the difference in simulated vehicle dynamics.  

5.4.3  Post-transition brake response  

In both experiments, all drivers braked in time in response to the decelerating preceding vehicle 

immediately after the transition, and no collision occurred. This indicated that both car drivers 

and truck drivers were indeed ready for moderately critical driving situation when taking over 

control at a comfortable pace. Significant differences between driver groups were found 

regarding brake response time and maximum deceleration. Car and truck drivers’ minimum 

TTC did not differ, possibly due to the interplay of truck drivers’ faster brake response but less 

aggressive deceleration compared to car drivers. Differences among task conditions were only 

found for car drivers, who braked more slowly after using the tablet PC compared to monitoring 

the driving situation. Truck drivers’ more robust and significantly better braking response 

corresponds to their higher level of training and expertise than average car drivers. In addition, 

given the similar THW when the brake event occurred (mean THW was 0.90 s for car drivers 

and 0.86 s for truck drivers), truck drivers may perceive the situation to be more risky than car 

drivers, knowing heavy vehicle's lower braking capability. 

5.5 Conclusion 

This paper investigated differences in take-over performance between professional truck drivers 

and car drivers when leaving an automated platoon. During the take-over process, differences 

between two driver groups mainly lay in car drivers’ shorter movement time to resume motor 

readiness for manual driving, possibly associated with their lower mean age and a smaller cabin 

size. After disengaging the system, truck drivers showed a smoother and more cautious driving 

style, suggested by their later input on the gas pedal (to reduce speed and increase THW), slower 

and more steadily increase in speed, larger THW, and faster but less aggressive response in the 

brake event. Furthermore, carry-over effects of platooning were suggested for both driver 

groups in car-following performance, which appeared more pronounced for truck drivers after 

monitoring the preceding vehicle due to sensory adaptation to the small gaps. Truck drivers also 
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showed impaired lane keeping performance after using a handheld tablet PC, which was 

recovered rapidly after the control transition. A transition zone between a dedicated automation 

zone and public roads, or an HMI that reminds drivers of their following distances after platoon 

driving would be potential measures to ensure safe manual driving immediately after the 

transition.  

In the end, we provide implications for future research. As mentioned above, the driving 

environment in the current study was relatively simple with low traffic volumes, and drivers 

may behave differently under heavy-volume traffic conditions. Varotto et al., (2020) reported a 

larger acceleration and a larger increase in speed when the driver overruled the ACC system at 

higher traffic densities, which could also be the case after taking over control from CACC 

systems for platooning. In future research, a more complex driving situation could be simulated 

to investigate the influence of traffic density and the behaviours of non-platoon road users on 

platoon drivers’ take-over performance. In addition, the platooning durations of our experiment 

trials were less than 10 min, and only three task conditions were implemented. Future studies 

could incorporate longer platooning drives without critical events, and a large variation of task 

conditions to emulate natural platooning environment. 
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6. The effect of see-through truck on driver 

monitoring patterns and responses to critical 

events in truck platooning 
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6.1 Introduction 

The technological progress in intelligent transportation systems (ITS) and communication 

technologies enables rapid development of automated vehicles. Some vehicles already have 

systems such as Traffic Jam Assist that work at low speeds, which can keep a distance to the 

vehicle in front (e.g., based on Adaptive Cruise Control) and take control of the lateral position 

of a car within its lane based on road markings (Lane Keeping Assist System). Drivers are thus 

relieved from dynamic control tasks in specific situations. There are systems available or under 

development that work on motorways at higher speeds as well. One example is cooperative 

platooning, which can be defined as a group of automated vehicles travel closely together for 

the benefits of energy saving, traffic flow efficiency and safety (Bergenhem, Shladover, 

Coelingh, Englund, & Tsugawa, 2012; Alam, Besselink, Turri, Mårtensson, & Johansson, 

2015). In 2016, the Netherlands initiated a European Truck Platooning Challenge where 

partially automated trucks of various brands travelled in a platoon to the Netherlands from 

different European cities (e.g., DAF Trucks participated under the name of the ‘EcoTwin’ 

project), showing the possibility and readiness of trucking platooning to be implemented on 

public roads in the near future.  

Despite the promising perspective, considerable efforts still have to be made to realize these 

high levels of automation where human intervention and supervision are rarely needed. The 

current commercially available systems are not yet able to cooperate with human 

drivers/supervisors at an optimal level (Martens & Van den Beukel, 2013), and the drivers are 

still required to be prepared to take over immediate manual control in case of system boundaries 

and failures. Maintaining sufficient situation awareness about the surrounding driving 

environment and system status therefore becomes safety critical. However, this can be 

challenging even for drivers who are constantly monitoring because this monotonous task can 

easily cause boredom and vigilance decrement, which can cause slow and inadequate responses 

(Körber, Schneider, Zimmermann, 2015). The situation is especially disadvantageous for the 

drivers in a truck platoon when the time headways to the lead truck have to be extremely low 

(between 0.2 and 0.3 s) in order to effectively save up fuel consumption by reducing air 

resistance (Bergenhem et al., 2012; Willemsen, Stuiver, & Hogema, 2015). On the one hand, 

the blocked and monotonous front view may increase difficulties for the platoon drivers to stay 

“in the loop”, and anticipate upcoming traffic situations. Consequently, platoon drivers may not 

be able to anticipate critical situations until being notified by the system. In extreme cases where 

timely warning cannot be guaranteed, the drivers are forced to respond immediately and an 

unsafe situation is most likely to occur due to a lack of preparation. Although it is a highly 

exceptional situation and should in principle not occur, it is interesting to study how critical this 

will be and if additional measures may be helpful.  

One additional measure may be to capture real-time video streams by a camera installed in the 

front of the vehicle, and broadcast the image to the following vehicle either through an in-

vehicle device (Belyaev, Vinel, Egiazarian, Koucheryavy, 2013; Gomes, Vieira, & Ferreira, 

2012; Olaverri-Monreal, Gomes, Fernandes, Vieira, & Ferreira, 2010; Patra, Arnanz, Calafate, 

Cano, & Manzoni, 2015) or on a large screen attached to the back of the lead vehicle such as 

implemented in Samsung Safety Truck (Samsung Newsroom, 2015). These see-through 

systems (STS) provide drivers with very intuitive traffic information and facilitate safety 

assessment during overtaking manoeuvres.  

Seeing the potential benefits of implementing STS in truck platooning systems, we aimed to 

investigate whether providing platoon drivers with additional visual information of the forward 

traffic scene can influence their monitoring pattern and increase awareness of the upcoming 
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situation. A driving simulator experiment was conducted in the present study to analyze driver 

gaze behaviour and responses to a sudden and time-critical event when following a see-through 

lead truck (i.e., with a screen at the rear part, inspired by the Samsung Safety Truck). A normal 

lead truck served as the control condition. Accordingly, the hypotheses were formulated as 

follows: 

1. When driving behind a see-through truck, the forward scene becomes less monotonous and 

drivers will allocate more time monitoring the road, especially the see-through screen area. 

2. More information about the situation by means of a see-through truck helps a driver to 

respond more quickly and less severely in case of an emergency situation. 

6.2 Method 

6.2.1 Participants 

Twenty-two participants took part in the experiment. They all held a truck driver’s license for 

at least 8 years and drove at least 10,000 km per year. On average participants were 47.4 years 

old, with a standard deviation of 11.5. Minimum age was 27 and maximum 64 years old. The 

group consisted of 20 male and 2 female drivers. The experiment was approved by the Ethical 

Committee for participant studies of TNO. 

6.2.2 Apparatus 

The experiment was carried out in a high fidelity moving base driving simulator consisting of 

a DAF truck mock-up mounted on a 6 DOF moving base. The road and traffic environment 

were projected on cylindrical screens around the vehicle with a horizontal viewing angle of 

180° and two external rear view mirrors. Vehicle and situational parameters such as pedal 

positions, speed, steering wheel angle and button reaction time were recorded at a sampling rate 

of 50 Hz. Synchronously, driver eye movements were recorded using a SmartEye nonobtrusive 

remote eye tracker (SmartEye AB, Gothenburg, Sweden) at a sampling rate of 60 Hz. 

6.2.3 Two-truck Platooning System 

In this experiment, an automated two-truck platooning system was simulated that allows a truck 

to follow a lead vehicle at a relatively short following distance, controlling both the longitudinal 

and lateral motion of the vehicle. The first truck is intended to be driven by a human operator 

(but is controlled by the simulator in the experiment). Once engaged, the second truck is 

controlled by the automated system. The automated system was modelled as a combination of 

a Cooperative Adaptive Cruise Controller (CACC) and a Lane Keeping Assist System (LKA). 

The driver could push a button normally used for cruise control on the right side of the steering 

wheel to switch the automated system on/off. To be able to switch the system on, the driver had 

to drive in an ‘activation zone’ behind the lead truck at a distance close enough to hook on. 

After activating the system by pushing the ‘on/off’ button the system would take over both 

longitudinal and lateral control. To deactivate the automated system, the driver had to push the 

‘on/off’ button again. The automated system would then transfer both longitudinal and lateral 

control back to the driver. A tablet display located at the right side of the dashboard indicated 

status change of the automated systems. 
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6.2.4 Experimental Design and Test Procedure 

Participants drove in the right-hand lane (the slower lane) of a two-lane motorway behind a lead 

truck that was driving with an average speed of 80 km/h. The participants were instructed to 

follow this lead truck and not to change lanes. There were no entries or exits on the route the 

participants drove. Slight curves and surrounding traffic were included in the drive. All 

participants started with a training session to get familiar with the driving simulator and the 

automated driving system. During training they were asked to perform the coupling and 

decoupling procedures at least three times, until they felt comfortable with it. After training, all 

participants started with a baseline run, that is, without the automated system, hence normal 

manual truck driving (MD). This was a normal drive on the same road as they would drive on 

in the conditions with the system. After the baseline trial, the experimental session testing 

automated driving conditions (AD) began. In total, each participant conducted eight AD trials 

under different conditions. In this paper, we only report results about the last trial where the 

see-through truck condition and a critical event were included. 

In the critical event trials, 10 participants drove behind a normal lead truck and 12 drove behind 

a lead truck which had a simulated screen attached to the rear of the truck showing the images 

of the road before the lead truck, thus giving the impression of a see-through truck (see Figure 

6.1). Shortly after the beginning of the trial, the participants pressed the button to activate the 

automation system and follow the lead truck at a short distance of 0.3 s time headway. In order 

to have the largest chance of a proper driver response, the participants were instructed to be 

attentive of the traffic during this scenario. After 6500 m (approx. 5 min after the activation of 

the system) a visual/auditory warning was issued that the control was switched back to manual 

control. Immediately afterwards, the lead truck made an emergency manoeuvre either to the left 

lane (50% of the cases) or to the emergency lane (50%). A stationary vehicle was positioned 

200 m from the onset of the warning (approx. 6.5 s to collision if no reaction was taken). After 

pressing the button to reclaim manual control, the drivers could either brake, or steer to the 

adjacent lane to avoid an accident. An overview of the experimental conditions is presented in 

Table 6.1. 

 

Figure 6.1: Screenshot of a normal lead truck (left) and a see-through lead truck (right) 

in the simulation 
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Table 6.1: Overview of the experimental conditions 
 Evading to the right Evading to the left  N (participants) 

Normal truck AD x  5 

Normal truck AD  x 5 

See-through truck AD x  6 

See-through truck AD  x 6 

Baseline MD   22 

6.2.5 Dependent variables 

6.2.5.1 Gaze behaviour 

The analysis of visual behaviour was conducted comparing three conditions: following a see-

through truck (AD), following a normal truck (AD) and baseline drive (MD). For both AD 

conditions, the time interval for analysis was the period when the automation system was 

activated. An equivalent time interval was chosen for the manual driving condition to allow the 

comparison with the AD conditions. Four relevant Areas of Interest (AOIs) were defined: 

windshield, left mirror, dashboard and secondary screen (where system status and warning were 

displayed). Glances outside the defined AOIs are labelled “Others”. Three basic metrics 

according to ISO 15007 were utilized to gain an overview about drivers’ information 

acquisition: percent time on AOI, mean glance duration and glance rate. These measures 

facilitate the understanding of driver monitoring pattern and enable quantitative comparison 

between the conditions. Since the windshield is the largest and most important AOI representing 

a driver’s forward view, and one glance onto this area may contain multiple fixations, a further 

analysis was conducted for the fixations located within this area for a deeper insight. A three-

dimensional figure was plotted for each condition combining the positions of the fixations and 

the corresponding fixation durations, aiming to show an intuitive picture of drivers’ gaze 

patterns when monitoring the traffic environment. 

6.2.5.2 Response to Critical Event 

Analyses for the takeover performance was only conducted for two AD conditions. Regarding 

timing aspects, driver response time (RT) was measured, defined as the time interval from the 

warning onset until the first conscious intervention was taken, either by pressing the brake pedal 

for more than 10% or changing the steering angle more than 2°, whichever happened first 

counted. Quality were evaluated by the maximum brake accelerations, maximum steering angle 

and the minimum occurring time to collision (min TTC) within each condition. It was assumed 

that less harsh braking and smaller steering angles are equivalent to a less dynamic manoeuvre. 

Min TTC is an objective measure to assess the criticality to the situations. Larger min TTC 

indicates longer time left to avoid a collision with the obstacle, and therefore a safer handling. 

In summary, early intervention, less severe manoeuvres and larger minimum TTC indicate 

better performance.  

6.3 Results and Discussion 

6.3.1 Gaze behaviour 

Two participants in the see-through truck condition and five participants in the baseline 

condition were omitted from the analysis due to missing data in eye-tracking recordings. To 

gain an overview about drivers’ attention allocation, the percent time on AOI was first presented 

in Figure 6.2, based on total glance times for all participants within each condition. Results 
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showed when driving manually, the drivers devoted the largest percentage of their attention on 

the road (85% within all conditions). When following the normal lead truck, the participants 

showed the lowest percentage of time of eyes on the road (62%), and spent around one third of 

the total time looking at undefined areas. By checking video recordings, we concluded that they 

were predominantly looking outside the left window, which was out of the recording range of 

the eye-tracking system. When following the see-through truck, 73% of their time was spent 

monitoring the road, which is 11.3% more compared to driving behind a normal truck. In both 

AD conditions, the participants spent slightly more time checking the mirror, but less time 

monitoring the dashboard. 

Figure 6.3 and Figure 6.4 show mean glance durations and glance rates regarding different 

AOIs. Due to the fact that not all participants looked at the left mirror, dashboard or secondary 

screen throughout the experiment, statistical tests were only intended for glances onto the 

windshield for the three conditions. Two one-way ANOVA tests were conducted, showing 

significant differences between groups in terms of mean glance duration (F (2,33) = 3.36, p = 

.047), while no significant differences were found. A Bonferroni post hoc test revealed that 

when driving behind a see-through truck, the mean glance duration onto the windshield was 

significantly longer than following a normal truck (p = 0.043). Differences between other 

conditions were not significant. 

Figure 6.5 shows how the drivers distributed their attention within the windshield area. The 

position of each fixation point was illustrated on an x/y plane according to their world 

coordination in the eye-tracking system. The blue rectangle on this plane represented the 

configuration of the windshield. The duration of each fixation was also visualized on the z-axis. 

As can be seen from the 3D figure, when driving manually and following a see-through truck, 

the participants concentrated more on the road centre area (the left part of the rectangle) with 

longer fixation durations. Some extreme values were even above 6 s. When following a normal 

truck, drivers showed the similar tendency to focus more on the road centre, but the fixations 

were shorter and more dispersed. 

 
Figure 6.2: Percent time on AOIs compared across groups 
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Figure 6.3: Mean glance duration on AOIs compared across groups 

 
Figure 6.4: Glance rate on AOIs compared across groups 

 

Figure 6.5: Fixations on the windshield. The positions of each fixation point are illustrated 

on an x/y plane according to their world coordination. The values on the z-axis indicate 

the corresponding fixation durations. 
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Combining the results above, the implementation of the see-through truck significantly 

increased the amount of attention allocated on the road, especially the centre area where the 

screen was located. These differences are mainly caused by longer single forward glances rather 

than more frequent fixations of the eyes. Furthermore, it can be inferred that when following a 

see-through truck, a driver’s gaze behaviour is more similar to that during manual driving. Since 

the drivers were not instructed to do any secondary tasks, the behaviour of shifting attention 

away from the road implied a vigilance decrement when conducting the monitoring task. The 

shorter eyes-off-road time of the drivers in the see-through truck group indicated a higher level 

of attentiveness and more active monitoring. The first hypothesis is therefore supported and the 

results suggest a positive effect of the see-through truck on driver monitoring behaviour. 

6.3.2 Response to the Critical Event 

We measured driver performance metrics within 10 s after the warning onset. All participants 

successfully avoided a collision with the stationary truck. Table 6.2 gives a descriptive 

overview of driver reaction types in response to the critical event. Seven out of ten drivers 

stayed in the right lane and braked in order to avoid the stationary truck when following a 

normal truck (70%). One of the three drivers who did a lane change braked to full stop in the 

adjacent lane and didn’t pass the obstacle. For the see-through truck, four out of 12 drivers 

changed lanes (33%). 

Table 6.2: Numbers of participants who conducted three reaction types in each 

condition 

 Brake  Lane change without 

deceleration 

Lane change with 

deceleration 

Normal Truck 7/10 2/10 1/10 

See-through truck 8/12 2/12 2/12 

Table 6.3 contains the means and standard deviations for the takeover quality measures, and 

the results of the independent t-test for the comparison between groups. For the three vehicle 

related measures, results are reported only for the participants who did not conduct evasion 

manoeuvres in order to avoid biases, because the operations on the brake pedal and steering 

wheel during lane changing are not comparable to those during braking in the ego lane. The 

only exception is to include the participant that conducted a harsh brake after a lane change in 

the analysis of max. braking acceleration. 

Table 6.3: Means and standard deviations for response times, minimum TTC, maximal 

brake acceleration and maximum steering wheel angle (SWA), and t-test results for the 

comparison between groups 

 Normal Truck See-through Truck t-test results 

Response time (s) M = 2.70 

SD = 0.55 

M = 2.89 

SD = 0.64 

t(20) = -0.728, 

p = 0.475 

min TTC (s) M = 4.42 

SD = 0.79 

M = 4.13 

SD = 0.66 

t(13) = 1.059, 

p = 0.309 

max. abreak (m/s2) M = 6.14 

SD = 0.27 

M = 5.28 

SD = 0.96 

t(14) = 2.280,  

p = 0.039* 

max. SWA (deg.) M=14.65 

SD = 3.58 

M = 12.62 

SD = 8.03 

t(13) = 2.439, 

p = 0.030* 

Contrary to our expectation, the drivers in the see-through truck condition did not intervene 

faster in response to the takeover event. Similarly, no significant differences were found 

regarding min TTC. Significant effects of the see-through truck were found when comparing 
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maximum brake acceleration and maximum SWA, with smaller values for both measures in the 

see-through group. Therefore, a mixed answer was obtained when testing our second 

hypothesis. It seems that the implementation of see-through lead truck could be associated with 

less dynamic response manoeuvres, but did not evoke earlier intervention responses. Seen from 

the min TTC and the fact that no collision occurred, the situation never became really critical 

for the participants so a faster response might not be necessary. Another explanation can be that 

the participants in the see-through truck group already detected the obstacle before the warning, 

so they could better prepare themselves for a moderate response manoeuvre. Previous work of 

Gold, Damböck, Lorenz, & Bengler (2013) suggested a faster reaction within a short time 

budget could be accompanied with worse quality. The extra time budget gained from 

monitoring the see-through screen might have encouraged the participants to take slower, but 

less severe responses. These assumptions need further elaboration to be tested. 

6.4 Conclusion and Outlook 

In summary, despite the limited number of participants, a positive effect of the see-through 

truck can be suggested, with the participants allocating more time monitoring the traffic and 

responding less severely when encountering a critical event within comparable safety 

boundaries. This study also provided insight in possible safety issues in case of unforeseen 

scenarios. Even though drivers showed to be capable of responding appropriately when actively 

monitoring the environment, there are large individual differences in response times and type 

of response. Further research will need to focus on the individual differences between truck 

drivers, on other types of critical situations and on responses when a driver has been out of the 

loop when distracted by secondary tasks which will be a normal situation in future truck 

platooning concepts. In addition, the see-through truck tested in the current study has its 

drawbacks such as high cost and vulnerability to damage. It would be of interest to investigate 

the effects of in-vehicle see-through displays implemented in truck platooning in future studies. 
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Beyond mere take-over requests: The effects of monitoring requests on driver attention, take-

over performance, and acceptance. Transportation Research Part F: Traffic Psychology and 

Behaviour, 63, 22 -37. (*joint first authors).  

2) Zhang, B., Lu, Z., Happee, R., De Winter, J. F. C., Martens, M. H. (2019). Compliance with 

Monitoring Requests, Biomechanical Readiness, and Take-Over Performance: Video 

Analysis from a Simulator Study. Paper presented at the 13th ITS European Congress, 

Brainport Eindhoven, The Netherlands. 
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7.1 Introduction 

7.1.1 Level 2 and 3 automated driving 

Automated driving is gradually being introduced to the market and may bring benefits to traffic 

safety, travel comfort, traffic flow, and energy consumption (Fagnant & Kockelman, 2015; 

Kühn & Hannawald, 2014; Kyriakidis, Happee, & De Winter, 2015; Meyer & Deix, 2014; 

Watzenig & Horn, 2017). A number of car manufacturers have released partially automated 

driving technology (Level 2 automation as defined by SAE International, 2016), combining 

adaptive cruise control with a lane keeping system. Partially automated driving still requires the 

driver to monitor the road and be able to take immediate control at all times. Manufacturers and 

scientists are now working towards a higher level of automation (i.e., SAE Level 3 ‘conditional 

automation’) in which the system is capable of driving in certain conditions and the driver does 

not have to monitor the road anymore. In case the system reaches its operational limits, the 

driver has to take control in response to a take-over request (TOR). 

7.1.2 The demanding time budgets of take-over requests 

When taking over control, drivers need time to acquire situation awareness (Lu, Coster, & De 

Winter, 2017; Samuel, Borowsky, Zilberstein, & Fisher, 2016) and physically prepare for taking 

over control (Large, Burnett, Morris, Muthumani, & Matthias, 2017; Zeeb, Härtel, Buchner, & 

Schrauf, 2017; Zhang, Wilschut, Willemsen, & Martens, 2019). A large body of research has 

confirmed the importance of the time budget, defined as the available time between the TOR 

and colliding with an obstacle or crossing a safety boundary (see Eriksson & Stanton, 2017; 

Zhang, De Winter, Varotto, Happee, & Martens, 2019, for reviews). While time budgets 

between 5 and 7 s are often used (Zhang, De Winter et al., 2019), how much time drivers need 

for taking over control may depend on the driving task and context. Mok, Johns, Miller, and Ju 

(2017) showed that almost all drivers crashed when the time budget was only 2 s, whereas Lu 

et al. (2017) showed improvements in situation awareness up to 20 s of time budget. 

In on-road settings, a TOR with a long time budget cannot always be provided. If the automation 

relies on radars or cameras to detect a collision with other road users, the achievable time budget 

of the TOR depends on the predictability of the unfolding situation and the capabilities of the 

sensors, which implies that the time budget between the TOR and the collision is usually short. 

In a review about human-machine interfaces in automated driving, Carsten and Martens (2018) 

explained that it is often unfeasible for the automated driving system to indicate in sufficient 

time that human intervention will be needed, which ‘‘necessitates constant monitoring by the 

human, so that a system that is supposed to be relaxing may actually be quite demanding”. 

7.1.3 Monitoring requests and uncertainty presentation 

In a review on transitions in automated driving from a human factors perspective (Lu, Happee, 

Cabrall, Kyriakidis, & De Winter, 2016), transitions in automated driving were classified into 

two types: control transitions and monitoring transitions. Lu et al. (2016) argued that much of 

the human factors literature has focused on control transitions (e.g., studies of take-over time), 

and pointed out that the two transition types can occur independently. For example, the driver 

may decide to monitor the road and achieve situation awareness, without necessarily taking 

over control. 

Gold, Lorenz, Damböck, and Bengler (2013) previously implemented the concept of monitoring 

requests (MRs) in a driving simulator with the aim to achieve a monitoring transition that 

prepares drivers for a possible TOR. In their study, a TOR was provided if an uncertain situation 
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became critical (i.e., a pedestrian or object entering the lane of the ego vehicle). The participants 

were instructed to monitor with their eyes only or keep their hands on the steering wheel in 

addition. Results showed shorter take-over times and fewer cases of no intervention when the 

participants were monitoring ‘hands on’ as compared to visual-only monitoring. By comparing 

to one of their previous studies (Gold, Damböck, Lorenz, & Bengler, 2013), the authors 

suggested that the MR concept is effective in terms of safety. Louw, Markkula et al. (2017) and 

Louw, Madigan, Carsten, and Merat (2017) applied a concept in which an uncertainty alert was 

implemented upon the detection of a lead vehicle. The lead vehicle could decelerate, accelerate, 

or change lanes, and participants had to decide themselves whether to take over, as no TOR was 

provided. The two studies by Louw et al. examined relationships between drivers’ eye 

movement patterns and crashes outcomes. However, an evaluation of the uncertainty alarm was 

not within their research scope. Summarizing, based on the above studies, it seems that the 

provision of MRs is viable in automated driving. However, the above studies did not directly 

compare the effects of the MR concept with a system that provides only a TOR. It would be 

relevant to make such a comparison and examine whether MRs prepare drivers to take over 

control safely in response to a subsequent TOR. 

Herein, we evaluated a concept where, in addition to issuing a TOR, we provided an MR when 

approaching a critical location. Such an MR concept would rely not on camera/radar/lidar, but 

on basic localization (e.g., differential GPS, HD maps). That is, the MR could be applied when 

approaching a segment of the road where TORs are likely to occur (e.g., an intersection, zebra 

crossing, or construction works). The automation system thus degrades itself from Level 3 to 

Level 2 by promoting a temporary monitoring transition when it is uncertain of the (upcoming) 

environment, instead of changing from Level 3 to manual driving directly. The idea of an MR 

is that a driver is primed to take-over control but does not necessarily have to take over control. 

In the literature, several concepts exist that are similar to MRs. Outside of the domain of driving, 

likelihood alarm systems (LAS) have been devised, which issue different types of notifications 

depending on the likelihood that a critical event occurs (e.g., Balaud, 2015; Wiczorek, Balaud, 

& Manzey, 2015). Also in driving research, concepts have been designed that intermittently or 

continuously inform the driver and accordingly ensure that drivers are prepared to reclaim 

manual control. For example, in a driving simulator study, Beller, Heesen, and Vollrath (2013) 

presented an uncertainty symbol in unclear situations (when the front vehicle was driving in the 

middle of the two lanes). No TOR was available and the participants had to decide themselves 

whether to intervene or not. Compared to without such an uncertainty symbol, the participants 

intervened with a longer time to collision (TTC) in case of automation failure. Other examples 

are a LED bar on the instrument cluster indicating the momentary abilities of the automation 

(Helldin, Falkman, Riveiro, & Davidsson, 2013; Large et al., 2017), an ambient LED strip 

changing colour or blinking pattern based on hazard uncertainty information (Dziennus, Kelsch, 

& Schieben, 2016; Yang et al., 2017), a continuous verbal notification informing the driver 

about the state of the ego car and the behaviour of other road users (Cohen-Lazry, Borowsky, 

& Oron-Gilad, 2017), and a lane-line tracking confidence notification (Tijerina, Blommer, 

Curry, Swaminathan, Kochhar, & Talamonti, 2017). The results of these studies showed that 

participants who were provided with the uncertainty indication were better prepared in critical 

situations (Dziennus et al., 2016; Helldin et al., 2013; Yang et al., 2017). However, there are 

also a number of potential shortcomings of uncertainty presentations. In particular, continuous 

displays require driver attention and may hinder engagement in non-driving tasks. Conversely, 

drivers may neglect such displays when they wish to perform a non-driving task (Cohen-Lazry 

et al., 2017; Yang et al., 2017). 
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Finally, it is noted that a number of studies have used the concept of ‘‘soft-TOR” or ‘‘two-step 

TOR” to acquire the driver’s attention before taking over control (Lapoehn et al., 2016; 

Naujoks, Purucker, Neukum, Wolter, & Steiger, 2015; Van den Beukel, Van der Voort, & Eger, 

2016; Willemsen, Stuiver, & Hogema, 2015; and see Brandenburg & Epple, 2018 for a 

questionnaire study). Two-step TORs differ from MRs because with a two-step TOR, the driver 

always has to take over after receiving the notification, whereas this is not necessarily the case 

with the MR concept. 

7.1.4 Compliance 

For a warning system to be effective, it is essential to “provide the opportunity for protective 

behaviour to occur before a threat materializes” (Breznitz, 1984). Compliance plays a central 

role because it reflects the operator’s willingness to perform protective/preparatory behaviour 

in response to a warning signal (Meyer, 2004; Lees & Lee, 2007). When a warning is issued for 

something that does not actually occur, a decrease in compliance in the following warning 

phases might take place, a phenomenon also known as the false alarm effect or cry-wolf effect 

(Breznitz, 1984; Sorkin, 1988; Dixon, Wickens, & McCarley, 2007; Wickens, Dixon, Goh, & 

Hammer, 2005; Zabyshny & Ragland, 2003). In Breznitz’ experiments that extensively 

explored the cry-wolf effect, an electric shock threat was announced by a three-minute warning, 

then cancelled out by the experimenter (i.e., the experimenter announced that the shock would 

not occur). During the warning phase, the participants could reduce the intensity of the 

impending electric shock by pressing a pedal at some monetary cost, which represented 

protective behaviour against the pain. The session was repeated three times. Using three indices 

to quantify protective behaviour, Breznitz found reductions in the probability and amplitude of 

protective behaviour (i.e., whether the participants pressed the pedal; if so, how many times the 

pedal was pressed), as well as an increase in latency between the alarm onset and the initiation 

of the protective action. Besides being one of the first demonstrations that false alarms reduce 

compliance, Breznitz further pointed to dynamic patterns of the compliance level: compliance 

may decrease with consecutive false alarms, and increase significantly after a true alarm. 

In the automotive domain, studies have mainly investigated drivers’ compliance with imperfect 

collision warning systems (e.g., Bliss & Acton, 2000, 2003; Cotté, Meyer, & Coughlin 2001; 

Lees & Lee, 2007; Naujoks, Kiesel, & Neukum, 2016). In line with Breznitz (1984), results 

suggest that false alarms substantially decrease driver compliance (e.g., lower response 

frequency, slower braking response, and smaller reductions of speed). A few researchers have 

distinguished between true false alarms and unnecessary alarms based on the context in which 

the alarm occurs. While true false alarms are caused by detection errors, unnecessary alarms are 

issued as intended (e.g., associated with the driving context) but the threat resolves before 

intervention is needed (e.g., a pedestrian stood on the roadside but later decided not to cross the 

road). According to Breznitz (1984), both alarm types will cause cry-wolf effects because either 

the warning or the threat loses credibility. The magnitude of the cry-wolf effect, however, may 

differ between the two alarm types. In a comparison of false alarms and unnecessary alarms, 

Lees and Lee (2007) reported more frequent brake responses and larger speed reductions with 

unnecessary collision alarms and concluded that unnecessary alarms do not diminish 

compliance because they are comprehensible to the driver. Naujoks et al. (2016) documented a 

similar differential influence of the two alarm types.  

In this study, questions related to driver compliance need to be raised, because only a small 

portion out of all MRs require an actual driver take-over. The MR implemented in this study 

notified drivers while entering locations where a take-over was likely to be requested; therefore 

the MRs that are not followed by TORs are likely to be perceived as unnecessary alarms rather 
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than false alarms. MRs are also different from the aforementioned collision warnings in that 

MRs request attention and preparation, rather than driver intervention. It needs to be 

investigated whether drivers exhibit “cry-wolf” effects when using uncertainty notifications, 

and how drivers’ compliance with a MR affects their take-over performance if a critical event 

indeed occurs. 

7.1.5 Reliance effects 

In the cry-wolf effect, Type I errors (false alarms) cause a reduction in reliance. The opposite 

effect is also possible: if warnings unfailingly require a response, the operator may develop 

(over)reliance on those warnings, which can be manifested by so-called errors of omission (i.e., 

not responding when there is no warning) or errors of commission (i.e., complacently 

responding to a warning that is inappropriate in the given context) (Skitka, Mosier, & Burdick, 

1999). Accordingly, it can be argued that any study on in-vehicle warnings ought to include an 

evaluation of drivers’ reliance and trust. An on-road study by Victor et al. (2018) suggests that 

drivers may fail to act despite being alerted and having their eyes on the road. Thus, there is a 

certain risk that drivers may not act in a critical situation when the system fails to provide a 

TOR, despite the fact that an MR is presented beforehand. In the present study, we also 

examined whether drivers over-relied on the TOR, despite the fact that they were being 

forewarned by means of an MR.  

7.1.6 Aim of the study 

In summary, the concepts of uncertainty presentation and MRs are promising, as they can 

increase situation awareness and cognitively and physically prepare drivers to intervene when 

needed. However, the literature also points to potential risks in terms of distraction. At present, 

it is unknown whether an MR works as intended by priming drivers to take-over control if 

needed. A successful MR system should ensure that drivers respond quickly to a subsequent 

TOR, and ensure that drivers do not take over if no critical event occurs. Furthermore, it is 

unknown whether drivers would accept a concept that intermittently requests them to monitor 

the road. 

In this study, a system was implemented that intends to direct the driver’s attention to the road 

by means of an MR when the automation enters a location where a take-over is likely to occur 

(i.e., a zebra crossing, where pedestrians could sometimes cross the road). The driver’s 

monitoring state (i.e., whether the driver responded by attending to the road and touching the 

steering wheel), driving performance (braking and steering behaviour in response to a TOR 

presented after the MR), as well as subjective experience (a variety of human constructs such 

as workload and trust, Parasuraman, Sheridan, & Wickens, 2008) using such an MR + TOR 

system were compared with a baseline system which presented only a TOR. Accordingly, the 

aim of this study was to investigate whether drivers are responsive to the MR by looking at the 

road when requested, whether drivers do not unnecessarily take over control when no action is 

needed (when no pedestrians cross the road), and whether drivers have a shorter take-over time 

when being forewarned by the MR as compared to when receiving only a TOR. 

Additionally, we examined if the participants’ compliance with MRs changed with previously 

experienced scenarios, and if they exhibited over-reliance on the TORs. To examine drivers’ 

compliance with MRs, we first looked into how drivers prepared themselves for a potential 

take-over event in response to the MR. Second, we examined whether drivers’ preparatory 

behaviour decreased after unnecessary MRs (i.e., no take-over required) and increased after 

experiencing a take-over event. Third, we examined whether drivers’ preparatory behaviour 

was associated with take-over performance. 
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To examine whether drivers’ exhibited over-reliance on the TORs, we included a final trial 

where an MR was presented, but no TOR followed. This scenario is realistic: As explained 

above, in some cases, the sensors of the automated driving system may not detect the hazard, 

and no TOR can be provided. Accordingly, we examined whether drivers failed to respond to a 

hazard (i.e., an error of omission) in an MR-only scenario in comparison to an MR + TOR 

scenario. 

7.2 Methods 

7.2.1 Participants 

Forty-one participants (35 males, 6 females) were recruited through Facebook and university 

whiteboard advertisements of the Technical University of Munich. Their mean age was 29.6 

years (SD = 7.0, ranging from 20 to 57 years). All participants had valid driving licenses (which 

were held for 11.2 years on average, SD = 7.2). Participants were compensated with 10 euros.  

Of the 41 participants, 4 participants had experience with driving in a simulator prior to this 

study. Furthermore, 18, 12, and 6 participants reported prior experience with adaptive cruise 

control, a lane keeping system, and partially automated driving, respectively. All participants 

provided written informed consent, and the research was approved by the Human Research 

Ethics Committee (HREC) of the Delft University of Technology. 

7.2.2 Apparatus 

The study was conducted in a static driving simulator located at the Technical University of 

Munich, Germany. The simulator consists of a BMW 6-Series vehicle mock-up, and provides 

an approximately 180 degrees field of view. Three projectors provided views for the rear-view 

mirrors. The software for simulating the driving scenarios was SILAB from WIVW GmbH, 

which recorded the vehicle data at a frequency of 120 Hz. The automated driving system 

controlled longitudinal and lateral motion, and could be activated and deactivated by pressing 

a button on the steering wheel. The sound effects of the engine, passing vehicles, as well as 

warnings, were provided via speakers of the vehicle cabin. A dashboard mounted eye tracking 

system (Smart Eye) was used to record participants’ eye movement at a frequency of 60 Hz. 

The driver’s glance locations were classified into the following areas of interest (AOI): 

windshield (road in front of the driver), central console, left and right exterior mirror, rear-

mirror, and instrument cluster. A 9.5 by 7.31-in. handheld tablet (iPad 2) was provided to the 

participants for performing a non-driving task. The vehicle and the cabin are shown in Figure 

7.1. 

    

Figure 7.1: The TU Munich Driving Simulator. Left: full-vehicle mock-up; Right: cabin. 
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7.2.3 Automation system and human-machine interface 

In the basis of the experiment, two automation systems were tested: (1) MR + TOR: automation 

with take-over requests (TOR) being preceded by monitoring requests (MR) and (2) TOR-only: 

automation with TOR but without MR. The third condition (MR-only) was presented last to 

investigate whether the participants had developed over-reliance on the TOR signal. 

The MR + TOR system consisted of five automation states, with corresponding status icons 

shown on the dashboard (Figure 7.2 and Figure 7.3). When the automation was unavailable, a 

white car on a light blue road was shown in the top centre (Figure 7.2a) and the driver needed 

to drive manually. When the requirements for automated driving were fulfilled, a verbal 

notification ‘‘Automation available” was issued, and a green steering wheel icon was shown 

(Figure 7.2b). The driver could press a button on the steering wheel to activate the automation 

(the icon then changed to Figure 7.2c with an acoustic state changing sound, i.e., a gong). When 

the automation was active, the participant could take the hands off the wheel and feet off the 

pedals. 

When entering an area in which a critical situation might occur, the system issued an MR. The 

MR consisted of a gong sound followed by a verbal notification ‘‘Please monitor”, and a yellow 

eye-shaped icon (Figure 7.2d). The automation remained fully functional after the MR onset. If 

no critical event occurred, the MR was dismissed after passing the zebra crossing, and the icon 

changed back to the ‘automation activated’ state (Figure 7.2c) accompanied by a gong sound. 

If the system detected a situation that it could not handle, a TOR was provided, and the 

automation was deactivated at the same time, leading to a slight deceleration. The acoustic TOR 

warning was a sharp double beep (75 dB, 2800 Hz) followed by a verbal take-over request 

‘‘Please take-over”. Figure 7.2e. Figure 7.3 (right) show the visual display for the TOR: an 

orange hands-on-the-wheel icon in the lower center of the dashboard, and the automation state 

icon back to ‘‘automation unavailable” (Figure 7.2a). Upon receiving the TOR, the driver had 

to take over by braking and/or steering in response to the situation. After taking over control, 

the driver had to drive manually until the automation became available again; they could then 

reactivate the automation. The TOR-only system was identical to the MR + TOR system, except 

that there was no MR. In addition, the participants drove a third condition (MR-only), in which 

an MR but no TOR was provided before a critical event. 

 

Figure 7.2: Screenshots of the visual interface for the five system states. a) automation 

unavailable; b) automation available but not yet activated; c) automation activated; d) 

monitoring request; e) take-over request. 
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Figure 7.3: Photos of the instrument cluster with automation status. Left: automation 

available, corresponding to Figure 7.2 b; Right: take-over request, corresponding to 

Figure 7.2 e. 

7.2.4 Experimental design and test scenarios 

A within-subject design was used, meaning that each participant completed all three conditions 

(MR + TOR, TOR-only, and MR-only) in three separate sessions. The order of the MR + TOR 

and TOR-only conditions was counterbalanced, whereas the MR-only condition was always 

presented in the last (i.e., third) session. 

The simulated experimental track consisted of rural and city road segments with one lane in 

each direction. There was moderate traffic in the opposite direction and no traffic in the ego 

lane. The speed limit was 80 km/h on the rural road and 50 km/h in the city, as indicated by 

speed limit signs along the road. The automation drove at a constant speed of 80 and 50 km/h 

in the corresponding segments (except for the deceleration and acceleration between the city 

and rural roads). The critical events that required driver intervention were pedestrians who were 

crossing at a zebra crossing in the city road segments. Due to the layout and kinematics of the 

situation, braking was the required and expected action to avoid a collision, although some 

optional steering could be applied as well. The participants were not informed about the specific 

situation, and were told to respond by either steering or braking depending on their judgement. 

In the MR + TOR condition as well as the TOR-only condition, five zebra crossings were 

included. At two out of five crossings, two pedestrians stood behind an obstacle (either a bus 

stop or a truck) on the pavement, 1.5 m from being visible to the participant in the walking 

direction. The first crossing pedestrian started walking at a speed of 1.5 m/s when the 

participant’s car was 83.33 m away from the zebra crossings (TTC = 6 s at 50 km/h). The other 

pedestrian crossed the road with a speed of 1 m/s, following the first pedestrian (Figure 7.4 

Left). It took around 5 s for the first pedestrian and 9 s for the second pedestrian to cross the 

road. No pedestrians were present at the other three crossings, and the participants were not 

supposed to take over (Figure 7.4 Right). 

The MR-only condition contained three zebra crossings. There were no pedestrians at the first 

two crossings. At the last crossing, two pedestrians started crossing the road 7 s after the MR 

was announced, but no TOR was given. This session ended after the critical event. The session 

of the MR-only condition lasted approximately 10 min. Figure 7.5 provides an illustration of 

the order of sessions and events for one participant. 
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Figure 7.4: Left: Zebra crossing with two pedestrians crossing the road (a take-over 

scenario). Right: Zebra crossing without pedestrians (here, it was not necessary to 

intervene). Note that these screenshots were taken from an observer’s perspective in the 

simulator software, not from the driver’s perspective. 

a. MR+TOR 

condition 

 

b. TOR-only 

condition 

 

c. MR-only 

condition 

 

Figure 7.5: Illustration of the order the sessions and events for one participant. The 

MR+TOR and TOR-only conditions were counterbalanced, and the MR-only condition 

was always driven after the first two conditions. The sequences of the five scenarios in 

MR+TOR and TOR-only conditions were randomized for each participant. The sequence 

of the three scenarios in the MR-only condition was fixed as shown in c). 

7.2.5 Non-driving tasks 

The participants were instructed to play Angry Birds or Candy Crush (visual-motor tasks 

without sound) during automated driving on a handheld tablet PC (iPad 2) provided by the 

instructor. These games are self-paced and interruptible (Naujoks, Befelein, Wiedemann, & 

Neukum, 2017), meaning that participants could pause the game whenever they felt necessary 

to look up to the road. 
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7.2.6 Procedures 

Upon arrival at the institute, the participants were welcomed and asked to read a consent form. 

The first part of the form contained an introduction to the experiment and the two automation 

systems. The form mentioned that participants would experience two systems: one with and one 

without the MR in the first two sessions, and that they would again experience the system with 

the MR in the third session. Moreover, they were informed that, in all three sessions, the TOR 

would be available if the critical events are detected successfully. The participants were 

instructed to keep their hands off the steering wheel and feet off the pedals during highly 

automated driving. Furthermore, they were asked to play the game during the experiment, and 

stop playing when the automation requests them to take control. They were also informed to 

stop playing the game and monitor the surroundings whenever they feel insecure, even when 

the automation provides no request. Participants were not informed about the specific type of 

event that would occur (pedestrians crossing the road), nor about the fact that the system would 

fail to provide a TOR. 

After signing the consent form, the participants completed a questionnaire regarding their age, 

gender, and driving experience. Next, a handout with pictures for each of the automation-status 

icons was provided, and the non-driving tasks were introduced on the tablet. The participants 

were then led to the driving simulator. The positions of the seat, mirrors, and the steering wheel 

were adjusted to each participant’s preference, and the eye-tracking system was calibrated.   

At the beginning of the experiment, each participant drove a training session of approximately 

4 minutes, during which they received verbal explanations from the experimenter. The 

participants started this training on a rural road and drove manually for around 2 minutes. Upon 

approaching an urban area, the participants received a notification from the system and pressed 

the button to activate the automation. In the urban area, the participant experienced an MR when 

approaching a zebra crossing without a critical event. Shortly afterwards, the participants 

received another MR and subsequently a TOR because of road construction ahead. The 

participant had to take over control by braking or steering to avoid a collision with the traffic 

cones in the ego lane. The training session ended after the participant drove past the construction 

area.  

Next, the participants drove the three experimental sessions described in section 2.4. Before the 

session, they were informed which of the two systems (TOR-only or MR+TOR) they were 

about to experience. After each session, the participants took a break and completed a 

questionnaire about their workload (NASA-TLX) when performing the experiment, and rated 

the automated driving system they just experienced. The entire experiment lasted approximately 

90 min per participant. 

7.2.7 Dependent variables 

The drivers’ behaviour during this study was assessed using the data recorded by the eye tracker, 

simulator software and self-report questionnaires. 

7.2.7.1 Eye movements 

Two gaze-based measures were used in this study. 

• Eyes-on-road response time: defined as the time interval from the MR onset until the 

first detected glance on the road. In the TOR-only condition, the eyes-on-road response time is 

the interval from the TOR onset until the first detected glance on the road.  
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• The percentage time eyes-on-road: the percentage of time that glances were within the 

area of the windshield when the automation was active (i.e., periods when the vehicle was 

within 166.67 m before the zebra crossings were excluded). This measure describes whether 

participants showed different monitoring behaviour (i.e., voluntarily looking at the road) when 

using the two automation systems.  

Glances shorter than 0.125 s were eliminated from the raw tracking data, in approximate 

agreement with the minimum possible fixation duration (ISO, 2014). 

7.2.7.2 Take-over performance measures 

The following measures were used to evaluate how quickly the participants responded to the 

MR and TOR. 

• Hands-on-wheel time: the time interval measured from the moment a pedestrian became 

visible (i.e., the TOR onset if available) until the participant put at least one hand on the 

steering wheel, as measured with detection sensors in the steering wheel. 

• Brake initiation time: the time interval measured from the moment a pedestrian became 

visible (i.e., the TOR onset if available) until the first detectable braking movement (first 

non-zero brake signal).  

• Steer initiation time: The time interval measured from the moment a pedestrian became 

visible (i.e., the TOR onset if available) until the first detectable steering movement 

before the zebra crossing (exceeding 0.02 radians). 

• Minimum TTC: The minimum time to collision (TTC) in scenarios where pedestrians 

were crossing the road. This measure was calculated after the first moment the driver 

pressed the brake. The minimum TTC was zero if a collision occurred. 

• Maximum longitudinal deceleration:  The maximum deceleration in scenarios where 

pedestrians crossed the road. This measure was calculated for moments the driver 

pressed the brake. 

7.2.7.3 Subjective measures 

After each session, participants completed questionnaires concerning workload, acceptance, 

usability, and trust. All the scores were linearly scaled to percentages. 

• Mental workload: the workload was measured using the NASA Task Load Index 

(NASA-TLX; Hart & Staveland, 1988), which consists of six dimensions: mental 

demand, physical demand, temporal demand, performance, effort, and frustration. Each 

of the six items had 20 markers, and ranged from “low” to “high”. In the analysis, the 

score for the performance item was reversed from “low” to “high” to “high” to “low”.  

• Acceptance: the acceptance scale developed by Van der Laan, Heino, and De Waard 

(1997) consists of nine questions with items scored -2 to +2 on a 5-point semantic 

differential scale. Scores were calculated for two dimensions: Usefulness (1. useful–

useless, 3. bad–good, 5. effective–superfluous, 7.assisting–worthless, and 9. raising 

alertness–sleep-inducing) and Satisfaction (2. pleasant–unpleasant, 4. nice–annoying, 6. 

irritating–likeable, 8. undesirable–desirable). In the calculation of the usefulness and 

satisfaction scores, the scores for items 1, 2, 4, 5, 7 and 9 were reversed. 

• Usability: Usability of the human-machine interface was assessed based on Nielsen’s 

Attributes of Usability (Nielsen, 1994). The participants expressed their degree of 
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agreement with five statements regarding learnability (learning to operate the system 

was easy for me), efficiency (my interaction with the system was clear and 

understandable), memorability (it was easy to remember how to use the system), 

accuracy (it was easy to use the system quickly without making errors) and subjective 

satisfaction (the system was easy and comfortable to use) on a seven-tick Likert scale 

from disagree to agree.  

• Trust: Trust in automation system was assessed using five items selected from a 

questionnaire by Jian, Bisantz, & Drury (2000). The participants expressed their degree 

of agreement on a seven-tick Likert scale regarding mistrust (the system behaves in an 

underhanded manner), harm (the system’s actions will have a harmful or injurious 

outcome), suspicion (I am suspicious of the system’s intent action, or outputs), 

confidence (I am confident in the system) and security (The system provides security). 

Differences between the MR+TOR and TOR-only conditions were compared using 

paired t-tests, with a significance level of 0.05. 

7.2.8 Driver compliance with MRs 

The evaluation of driver compliance with MRs only concerns the MR + TOR session. To 

explore variability in driver compliance, the first three of five MR blocks were analysed. The 

participants were divided into four groups based on four possible combinations in their first two 

trials: 

a) 1. MR-only,  2. MR-only  

b) 1. MR-only,  2. MR+TOR 

c) 1. MR+TOR,  2. MR-only 

d) 1. MR+TOR,  2. MR+TOR 

Accordingly, their prior experience when receiving an MR in the first three trials was as follows: 

a) 1. First MR, 2. After one MR-only, 3. After two MR-only (see Figure 7.6 for illustration) 

b) 1. First MR, 2. After one MR-only, 3. After TO 

c) 1. First MR, 2. After TO, 3. After one-MR-only 

d) 1. First MR, 2. After TO, 3. After TO.  

 

Figure 7.6: Example of the coding of blocks. 
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Because the MR aims to prepare the driver for a critical event, we measured the compliance 

with MR based on drivers’ preparatory behaviours, which involved eye, hand, and foot 

movements. Breznitz’s three indices of protective behaviour (see Introduction) were adopted to 

quantify drivers’ preparatory behaviour, namely probability, latency, and amplitude. Detailed 

descriptions are listed in Table 7.1. The data were retrieved from manual video annotations. All 

observations started from the onset of the MR, with a duration of 7 s. Two independent raters 

(the first and second authors) rated the level of preparatory behaviour. The raters came to a 

consensus on all disagreements. 

To determine associations between the level of preparatory behaviour and subsequent take-over 

performance, three performance measures were compared between preparation levels: 1) take-

over time, measured from the onset of the TOR until the moment the driver started to press the 

brake pedal 2) minimum time to collision, calculated after the moment the driver pressed the 

brake pedal; 3) maximum deceleration calculated during the braking process. 

Table 7.1: Measures of preparatory behaviour 

Measures Description 

Eyes Hands Feet 

Probability The percentage of 

participants who 

looked up (any 

glance counts, 

regardless of the 

duration). 

The percentage of participants 

whose hands were in a more 

convenient position for taking 

the steering wheel compared to 

when no preparation was made 

at all (i.e., Level of preparation 

> 0, as described below). 

The percentage of participants 

whose feet were in a more 

convenient position for taking the 

steering wheel compared to when 

no preparation was made at all 

(i.e., Level of preparation > 0, as 

described below). 

Latency How long after 

the MR onset the 

participant started 

looking up. 

How long after the MR onset 

the participant started moving 

their hands to be in a more 

convenient position for taking 

the steering wheel. 

How long after the MR onset the 

participant started moving their 

foot to be in a more convenient 

position for pressing the braking 

pedal. 

Amplitude - Level 0: Both hands were 

holding/interacting with the 

iPad/phone at the MR onset, 

with no obvious movement to 

put the iPad/phone away. 

Level 1: The iPad was already 

placed on the lap at the MR 

onset, or the participant 

lowered the iPad on the lap 

after receiving the MR. Both 

hands were still 

holding/touching the edge of 

the iPad/phone, with no 

obvious movement to free the 

Level 0: The feet were placed far 

from the pedals at the MR onset, 

with no obvious indication to 

move one foot closer to the 

pedals. 

 

Level 1: One foot was already 

placed close to the pedals at the 

MR onset, or the participant 

moved one foot closer to the 

pedals after receiving the MR, but 

not hovering above the brake 

pedal. 
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hand(s) to be prepared to take 

the wheel. 

Level 2: There was an obvious 

attempt to free at least one 

hand to be prepared to grab the 

steering wheel (e.g., putting 

the iPad on the passenger seat, 

or having one hand in the air). 

Level 3: At least one hand was 

touching the steering wheel at 

the MR onset, or the 

participant put at least one 

hand on the steering wheel 

after receiving the MR. 

 

 

 

Level 2: The foot was hovering 

above the brake pedal at the MR 

onset, or the participant put one 

foot on the braking pedal after 

receiving the MR. 

7.3 Results 

7.3.1 Missing values and excluded data 

Of the 41 participants, two participants experienced severe simulator sickness, and one 

participant had difficulties understanding the operation of the automation system. These three 

participants were excluded from all analyses. Furthermore, one participant’s eye-tracking data 

was lost due to an experimenter’s error, and the gaze calibration for three participants was not 

performed properly. Their eye tracking data were excluded from the eye-tracking analysis. 

Summarising, the data analysis is based on the driving performance data and the self-report data 

from 38 participants, and the eye tracking data from 34 participants. 

One event from one participant in the TOR-only condition was excluded from all analyses, 

because the automation was deactivated before the event. Furthermore, in the TOR-only 

condition, one collision with a pedestrian occurred. This collision occurred because the driver 

intentionally did not brake to determine whether the car could brake automatically, as was 

discovered during the interview after the experiment. Only the eye tracking data from this event 

were included in the analysis. In addition, the eyes-on-road response time of one event in the 

MR+TOR condition was excluded due to missing data.  Table 7.2 provides an overview of the 

number of events and responses for the main part of the experiment, that is, the MR+TOR and 

the TOR-only conditions. It can be seen that the MR system generally worked as intended, as 

participants had their eyes on the road at the moment of the TOR in 61 out of 68 cases. In the 

remaining 7 cases, participants monitored the road but had their attention allocated back to the 

secondary task when the TOR was provided. Furthermore, in situations without pedestrians, 

braking occurred in only 1 out of 114 trials, and in situations with pedestrians, participants 

braked in all cases. 

For the assessment of driver compliance with MRs, several video recordings were unavailable 

due to technical problems or poor visibility. The number of participants with complete 

probability/amplitude data for the first three blocks was 26 for hand preparation and 27 for foot 

preparation. 
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Table 7.2: Number of events and responses in the MR+TOR and TOR-only conditions. 

7.3.2 Gaze behaviour 

We analysed the allocation of the participants’ eyes on the road and instrument cluster while 

they were approaching the zebra crossings. Response times were calculated starting with the 

onset of the TOR and MR. The visualizations were performed using the position of the 

participant’s car on the x-axis, since the TOR/MR was triggered based on the position of the 

car, which is consistent with how sensors work in real systems. Furthermore, by using distance 

instead of time on the x-axis, spatial relationships can be assessed intuitively; this would be 

impossible when using time on the x-axis, as different participants take different amounts of 

time to complete the scenario, depending on how they brake and use the throttle to accelerate 

again.  

Figure 7.6 shows how the participants shifted their attention back to the road after receiving an 

MR or TOR as a function of travelled distance, for three scenarios: MR without pedestrians 

crossing the road, MR followed by a TOR (i.e., pedestrians crossing the road), and TOR in 

TOR-only conditions (i.e., without an MR). 

 

Figure 7.7: Participants’ visual attention allocation on the windshield (upper plot) and 

instrument cluster (lower plot) for the MR+TOR and TOR-only conditions. Three vertical 

lines from left to right are the locations of the MR (0 m; time to zebra crossing = 12 s), 

TOR (97.3 m; time to zebra crossing = 5 s), and zebra crossing (166.7 m). 

Condition 

Pedestrian-

crossing 

scenarios 

Total 

Braking 

action  

Full 

stop  
Crash 

Eyes on the 

road at the 

moment  of 

the MR 

Eyes on the 

road at the 

moment  of 

the TOR 
Driving 

data 

included 

Eye gaze 

data 

included 

MR+TOR 

MR (i.e., no 

pedestrians) 
114 102 1 0 — 14 — 

MR+TOR (i.e., 

with 

pedestrians) 

76 68 76 50 0 9 61 

TOR-only 
TOR (with 

pedestrians) 
74 67 74 50 1 — 15 
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From Figure 7.7, it can be seen that participants, on the aggregate, showed an eye-movement 

response towards the road and instrument cluster between 20 m to 40 m after the onset of an 

MR (in the MR+TOR condition) or a TOR (in the TOR-only condition). After passing the zebra 

crossing, some participants shifted their attention from the road to the instrument cluster. This 

attention shift to the instrument cluster may be because participants attempted to assess their 

speed or the automation status when accelerating again, after having braked for the pedestrians 

(see Figure 7.8 for a figure with the mean speed).  

The mean eyes-on-road response time to MRs in the MR+TOR condition was 1.85 s (SD = 0.51 

s), whereas the eyes-on-road response time to the TOR in the TOR-only condition was 1.76 s 

(SD = 0.73 s) (after removing 23 from 170 events in the MR+TOR condition and 15 from 67 

events in the TOR-only condition in which participants already had their eyes on road). 

According to a paired t-test, this difference in eyes-on-road-time was not statistically significant 

(see Table 7.3 and Figure 7.9). The maximum eyes-on-road time in the MR+TOR condition 

was 3.84 s, which means that all participants responded to the MR before the TOR, which was 

presented 7 s after the MR.  

Concerning the eye-gaze behaviour during automated driving in between the zebra crossings, 

the average percentage of time with eyes on road across the participants for the MR+TOR and 

TOR-only conditions were 17.71% and 16.43% (SD = 13.98%, 14.05%), respectively, a 

difference that was not statistically significant between the two conditions (see Table 7.3 and 

Figure 7.10a). This finding indicates that participants were equivalently distracted in both 

conditions, as could be expected. 

7.3.3 Take-over performance 

Figure 7.8 shows drivers’ braking actions in the situations where pedestrians were crossing the 

road and TORs were provided. It can be seen that, on average, participants applied slightly 

earlier braking, and reduced their speed earlier in the MR+TOR condition than in the TOR 

condition. Table 7.3 shows the corresponding descriptive statistics for the five take-over 

measures in the MR+TOR and TOR-only conditions, as well as pairwise comparisons between 

these conditions. The hands-on-wheel was 3.02 s faster and braking was 0.44 s faster in the 

MR+TOR condition than in the TOR-only condition. Thus, the results in Figure 7.7 and Table 

7.2 indicate that the MRs effectively raised drivers’ readiness to make the transition back to 

manual control of their vehicle. In the MR+TOR condition, the participants even put their hands 

on the steering wheel on average before the onset of the TOR. In Figure 7.9, the sequence of 

participants’ responses is illustrated for eyes-on-road, hands-on-wheel, braking, and steering. 

The observed minimum TTC in the MR+TOR condition was 0.27 s longer than in TOR-only 

condition (consistent with the fact that participants braked earlier), indicating a safer response. 

However, the maximum deceleration was not significantly different between these two 

conditions (see Table 7.3, Figure 7.10b and Figure 7.10c). 
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Figure 7.8: Means and standard deviations across events of the brake position and driving 

speed in the take-over scenarios in the MR+TOR and TOR-only conditions as a function 

of travelled distance. The vertical lines mark the start of the TOR (0 m) and the position 

of the zebra crossing (69.4 m). Note that these are averages, which means that these graphs 

cannot be used to make inferences about the behaviour of individual participants. For 

example, the minimum averaged speed in this graph is about 5 m/s, while the majority of 

the participants came to a full stop. 

Table 7.3: Means and standard deviations of participants for gaze behaviour and take-

over response times measures in the MR+TOR and TOR-only conditions, and pairwise 

comparisons between the two conditions. 

  Eyes-on-

road 

response 

time (s) 

Eyes-on-road 

percentage 

(%) 

Hands-on-

wheel time 

(s) 

Brake 

initiation 

time (s) 

Steer 

initiation 

time (s) 

Maximum 

deceleratio

n (m/s2) 

Minim

um 

TTC 

(s) 

MR+TOR M 

(SD) 

1.85 

(0.51) 

17.71 

(13.98) 

-0.38 

(3.26) 

1.86 

(0.59) 

7.91 

(5.49) 

-8.42 

(0.97) 

2.83 

(0.54) 

TOR-only M 

(SD) 

1.76 

(0.73) 

16.43 

(14.05) 

2.64 

(1.88) 

2.30 

(0.61) 

8.72 

(4.32) 

-8.72 

(1.00) 

2.56 

(0.72) 

Paired  

t-test 

t 1.45 0.75 -5.94 -4.53 -0.54 1.46 3.24 

df 28 33 37 37 29 37 37 

p 0.159 0.462 <0.001 <0.001 0.594 0.152 0.003 

r 0.44 0.75 0.35 0.50 0.086 0.16 0.70 
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Figure 7.9: Box plots at the level of participants for eyes-on-road, hands-on-wheel, 

braking, and steering. The figure is created so that the temporal sequence of events is 

illustrated. The TOR is provided at 0 s, while the MR is provided at -7 s. The eyes-on-road 

time in the MR+TOR condition is the response to the MR; the other measures are all with 

respect to the TOR. Negative values indicate that the corresponding behaviour occurred 

before the TOR onset. 

 

Figure 7.10: Boxplots at the level of participants for the  a) percentage time eyes-on-road, 

b) minimum TTC, and c) maximum deceleration. Three participants who crashed (i.e., 

minimum TTC = 0 s) were not included in this figure. 

7.3.4 Subjective evaluation 

7.3.4.1 NASA-TLX 

The overall workload is the average score of the six questions in NASA-TLX. There was a 

statistically significant difference in the scores of the MR+TOR (M = 20.6, SD = 13.4) and 

TOR-only (M = 26.5, SD = 13.0) conditions, t(37)= -3.39, p = 0.002, r = 0.67. The temporal 

demand, frustration, and effort items yielded significantly lower scores in the MR+TOR as 

compared to the TOR-only condition (Table 7.4). 
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Table 7.4: Means and standard deviations of the self-reported workload per condition. 

  

Overall 

workload 

(%) 

Mental 

demand 

(%) 

Physical 

demand 

(%) 

Temporal 

demand (%) 

Performance 

(%) 

Frustration 

(%) 

Effort 

(%) 

MR+TOR  M (SD) 20.6 (13.4) 21.5 (20.5) 15.0 (14.2) 25.3 (22.3) 14.4 (17.7) 13.7 (19.3) 13.6 (13.7) 

TOR-only M (SD) 26.5 (13.0) 26.0 (21.2) 16.9 (16.1) 36.7 (28.0) 17.0 (19.3) 21.6 (25.7) 22.6 (19.6) 

Paired  

t-test 

t(37) -3.39 -1.73 -0.90 -2.82 -0.89 -2.14 -3.16 

p 0.002 0.092 0.375 0.008 0.378 0.039 0.003 

r 0.67 0.70 0.62 0.54 0.52 0.52 0.49 

Note. The scores on the items are from low (0%) to high (100%), except for the performance 

item, which is expressed from high (0%) to low (100%). 

7.3.4.2 Usefulness and Satisfaction Scales 

The mean usefulness score for the MR+TOR condition (M = 85.0, SD = 10.6) was significantly 

higher than for TOR-only condition (M= 79.1, SD= 11.3), t(37) = 3.02, p = 0.005, r = 0.39. 

Similarly, participants were more satisfied with the system in the MR+TOR condition (M = 

88.5, SD = 12.3) compared to the TOR-only condition (M = 80.6, SD = 17.1), t(37)= 3.42, p = 

0.002, r = 0.57. 

7.3.4.3 Usability 

The usability score (average of the five usability items) was not significantly different between 

the MR+TOR condition (M = 97.0, SD = 5.4) and the TOR-only condition (M = 96.1, SD = 

5.8), t(37) = 1.25, p = 0.220, r = 0.64. 

7.3.4.4 Trust 

All trust-related scores for the MR+TOR and TOR-only conditions are shown in Table 7.5. All 

items showed higher trust in the MR+TOR condition, especially for harm, confidence and 
security. Additionally, when asked about their preference between the two systems, 31 out of 

38 participants preferred the MR+TOR to the TOR-only system. 

Table 7.5: Means and standard deviations of participants for the responses to the trust 

questionnaire, and results of paired t-tests between conditions 

  Mistrust Harm Suspicion Confidence Security 

MR+TOR  M (SD) 30.6 (34.6) 18.4 (23.2) 20.2 (27.2) 84.2 (18.2) 84.2 (15.0) 

TOR-only M (SD) 35.5 (34.5) 28.5 (25.7) 25.9 (27.3) 75.0 (23.8) 73.7 (21.4) 

Paired 

t-test 

t -0.82 -3.38 -1.68 3.39 4.26 

df 36 37 37 37 37 

p 0.419 0.002 0.102 0.002 <0.001 

r 0.54 0.72 0.70 0.71 0.71 

7.3.5 Monitoring request without take-over request 

The third condition ‘MR-only’, of which the results were not provided above, was included at 

the end of the experiment. Because this condition had a different design, the results are 

discussed separately in the present section. The MR-only condition was included to study 

whether participants relied on the TOR to follow the MR and to see if participants would still 

respond to a critical situation if no TOR was provided. 
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From the 38 participants, three crashed into the pedestrians in the last scenario. Participants’ 

eyes were on the road and hands on the wheel during all three crashes, but participants did not 

intervene (see also Victor et al., 2018). In a post-experiment interview, all three participants 

reported their expectation and reliance on the TOR. An overview of the eye movement and 

braking actions in the pedestrians crossing scenarios in MR+TOR and TOR-only conditions is  

provided in Figure 7.11. It shows that, on average, participants applied later and harder braking 

in the MR-only condition than in the MR+TOR condition. Moreover, it is clear that people in 

the MR-only condition focused on the road rather than on the instrument cluster, presumably 

because no TOR was shown on the instrument cluster. 

 

Figure 7.11: Participants’ mean visual attention allocation across events on the windshield 

(upper plot) and instrument cluster (middle plot) and means and standard deviations 

across events of the brake position (lower plot) in the pedestrians crossing scenarios in the 

MR+TOR and MR-only conditions as a function of travelled distance. Three vertical lines 

from left to right are the locations of the MR (triggered position = 0 m), TOR (triggered 

position = 97.3 m), and zebra crossing (166.7 m). 

We also compared three performance measures (maximum deceleration, brake initiation time, 

minimum TTC) in the pedestrian crossing scenarios between the MR+TOR and MR-only 

conditions (Table 7.6). The three collisions were not included in the comparison because the 

brakes were not applied. We assessed learning effects by comparing the two scenarios with 

pedestrians within the MR+TOR condition. Next, we tested whether the learning trend was 

counteracted by the lack of a TOR, by comparing the MR-only event (‘no TOR’) with the 

second MR+TOR event.  

As shown in Table 7.6 and Table 7.7, participants braked significantly earlier and with less 

deceleration after the second TOR compared to the first TOR in the MR+TOR condition. 

However, this learning effect did not continue into the MR-only condition: In the MR-only 

condition, participants braked significantly later and harder compared to the second TOR of the 

MR+TOR condition. No statistically significant difference of minimum TTC was observed in 

the two pedestrian-crossing events of the MR+TOR condition. However, in the MR-only 

condition, the minimum TTC was significantly shorter compared to the first and second TOR 

of the MR+TOR condition. Summarizing, participants braked later in the MR-only condition 

(TOR only) as compared to MR+TOR condition, despite an expected learning effect in the 

opposite direction. 
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Table 7.6: Means and standard deviations of participants for the braking measures in 

the MR+TOR and MR-only conditions 

 Maximum deceleration (m/s2) Brake initiation time (s) Minimum TTC (s) 

First TOR  

(MR+TOR condition) 
-8.84 (0.93) 2.06 (0.71) 2.75 (0.66) 

Second TOR 

(MR+TOR condition) 
-8.00 (1.45) 1.82 (0.63) 2.91 (0.60) 

No TOR  

(MR-only condition)  
-9.10 (0.64) 2.37 (0.55) 1.98 (0.82) 

Table 7.7: Results of paired t-tests between performance measures regarding the first 

TOR in the MR+TOR condition, the second TOR in the MR+TOR condition, and no TOR 

in the MR-only condition. 

 Maximum deceleration (m/s2) Brake initiation time (m) Minimum TTC (s) 

 Second TOR 

(MR+TOR 

condition) 

No TOR 

(MR-only 

condition) 

Second TOR 

(MR+TOR 

condition) 

No TOR 

(MR-only 

condition) 

Second TOR 

(MR+TOR 

condition) 

No TOR 

(MR-only 

condition) 

 t(37) p t(34) p t(37) p t(34) p t(37) p t(34) p 

First TOR 

(MR+TOR 

condition) 

-3.52 0.001 1.33 0.192 2.36 0.023 -2.96 0.006 -1.44 0.159 6.28 <0.001 

Second TOR 

(MR+TOR 

condition) 

 4.94 <0.001  -6.91 <0.001  8.33 <0.001 

7.3.6 Compliance with MRs  

7.3.6.1 Probability of preparatory behaviour 

All participants responded to the MR by looking to the road. Hence, the ‘eyes’ probability was 

1 for each MR block. Figure 7.12 shows the percentages of participants per block in which a 

hand (left) or foot (right) preparatory behaviour occurred. Results indicate an increase in hand 

and foot preparation in After TO blocks as compared to the previous block. If the participant 

had experienced no TOR at all, the probability of preparation was overall low and/or showed a 

decreasing trend (red circular markers).  

Regarding hand preparations in the third block: From the three participants who had 

experienced two take-overs before, all three were prepared (black diamond marker), and from 

the six participants who had experienced no take-overs before, only three were prepared (red 

circular marker). Similarly, regarding foot preparations in the third block: From the four 

participants who had experienced two take-overs before, all four were prepared (black diamond 

marker), and from the four participants who had experienced no take-overs before, none were 

prepared (red circular marker). 
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Figure 7.12: Probability of hand (left) and foot (right) preparatory behaviour for the first 

three blocks. 

7.3.6.2 Latency of Preparatory Behaviour 

Averaged over all five MR blocks, participants started looking to the road on average 0.70 s 

(SD = 0.38) after the MR. The start of hand and feet movement (if available) occurred on 

average 2.13 s (SD = 1.09) and 3.17 s (SD = 1.55) after the MR, respectively. These effects are 

illustrated in Figure 7.13. Note that all response time data in the analysis of driver compliance 

were obtained from manual video annotations. Therefore, the mean eyes-on-road times reported 

in this section were different from those reported in Section 7.3.3 based on SmartEye eye-

tracking data. 

 

Figure 7.13: Latency of participants’ preparations for Eyes (29 participants based on 115 

observations), Hand (26 participants based on 87 observations), Foot (19 participants 

based on 46 observations) 
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7.3.6.3 Amplitude of Preparatory Behaviour 

Figure 7.14 shows the means of hand and foot preparation levels. Results support the above 

observations that the mean level of preparation showed an increasing trend in the case of After 

TO blocks. 

 

Figure 7.14: Mean level of hand (left) and foot (right) preparation for the four MR block 

categories. 

7.3.6.4 Level of Preparation and Subsequent Take-Over Performance 

Table 7.8 shows the means and standard deviations of the take-over performance measures per 

level of hand and foot preparation. A tendency can be observed that take-over performance 

improved with higher levels of preparation, where better take-over performance is characterized 

by a shorter take-over time, a longer minimum TTC, and a lower maximum deceleration. Also, 

learning effects were observed from the first take-over event to the second, in line with Lu et 

al. (2019). It is worth noting that a larger number of participants showed the highest level of 

preparation before the second take-over event as compared to the first event. The trends of 

preparation level and take-over attempt are illustrated in Figure 7.15. 

Table 7.8: Means with standard deviations in parentheses of take-over response time, 

minimum TTC, and maximum deceleration for each level of hand and foot preparation. 

Hand preparation Level 0 Level 1  Level 2 Level 3 

First take-over n = 6 n = 7 n = 7 n = 4 

Take-over time (s) 2.49 (0.78) 1.94 (0.79) 2.10 (0.64) 1.89 (0.30) 

minTTC (s) 2.45 (0.75) 2.53 (0.52) 2.64 (0.60) 2.76 (0.51) 

maxDEC (m/s2) 9.49 (0.57) 9.36 (0.27) 8.47 (1.05) 8.79 (0.86) 

Second take-over n = 4 n = 7 n = 8 n = 7 

Take-over time (s) 1.90 (0.60) 1.97 (0.80) 2.07 (0.68) 1.53 (0.41) 
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minTTC (s) 2.98 (0.57) 2.81 (0.70) 2.55 (0.70) 2.93 (0.45) 

maxDEC (m/s2) 7.93 (1.33) 8.64 (1.00) 8.38 (1.66) 7.42 (1.81) 

Foot preparation Level 0  Level 1  Level 2   

First take-over n = 16 n = 6 n = 4   

Take-over time (s) 2.03 (0.82) 2.01 (0.45) 1.64 (0.39)  

minTTC (s) 2.73 (0.79) 2.72 (0.37) 2.94 (0.39)  

maxDEC (m/s2) 9.14 (0.51) 8.94 (0.56) 9.26 (0.01)  

Second take-over n = 12 n = 7 n = 9  

Take-over time (s) 2.00 (0.59) 1.66 (0.42) 1.20 (0.37)  

minTTC (s) 2.83 (0.60) 2.95 (0.47) 3.16 (0.51)  

maxDEC (m/s2) 8.27 (0.96) 7.55 (1.88) 7.56 (1.62)  

 

Figure 7.15: Association between hand and foot preparation levels and take-over time. 

Standard deviations are shown in Table 7.8. 

7.4 Discussion 

7.4.1 Main findings 

The main aim of this study was to investigate 1) whether drivers are responsive to MRs by 

redirecting their attention to the road, 2) whether drivers unnecessarily take over control when 

no action is needed, and 3) whether drivers have a shorter takeover time when being forewarned 

by the MR as compared to when receiving only a TOR. Accordingly, a systematic comparison 

of participants’ behaviours was made between an MR + TOR system and a traditional TOR-

only system. The results indicate that participants showed strong compliance with the MRs: 

Participants were responsive to the MR by looking at the road, and several participants placed 

their hands on the steering wheel without specifically being asked to do so. These behaviours 

indicate that drivers were preparing themselves for a possible take-over. With their eyes on the 
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road and their hands already on the wheel, the drivers responded faster to TORs in the MR + 

TOR condition in comparison to the TOR-only condition. The longer minimum TTC values 

measured in the MR + TOR condition as compared to the TOR-only condition indicate that the 

MRs helped improve safety. Although the observed improvements (e.g., 0.44 s faster brake 

response time) may seem modest on an absolute scale, we argue that they can translate into 

large safety benefits. For example, if decelerating with 8 m/s2, 0.44 s longer braking implies an 

additional speed reduction of 13 km/h. This speed difference can be expected to yield substantial 

improvements in the probability of surviving a crash (Joksch, 1993). 

Additionally, we found only one unnecessary braking action when no pedestrians were crossing 

the road, which means the MRs hardly caused unnecessary take-overs when no action was 

needed. We also found that drivers experienced lower subjective workload, higher acceptance 

(usefulness and satisfaction), and higher trust for the MR + TOR condition as compared to the 

TOR-only condition, whereas there were no statistically significant differences in experienced 

usability. In other words, MRs not only yielded positive effects on behaviour but were generally 

also experienced as positive. Finally, the presentation of MRs did not change drivers’ attention 

allocation during the automated driving periods, indicating that drivers still felt comfortable to 

perform the non-driving task in between MRs. 

Summarising, the MR concept worked as intended: It permitted drivers to be engaged in a non-

driving task (as in a highly automated driving system), and still ensured that participants were 

attentive and prepared for an upcoming event (as in a partially automated driving system). Thus, 

our findings show that MRs promote a gradual transition between being disengaged from the 

driving task and actually taking over control. Put differently, the MRs effectively exploit the 

idea that automated driving can independently involve driver monitoring transitions and control 

transitions (Lu et al., 2016). Our results align with previous studies (Cohen-Lazry et al., 2017; 

Dziennus et al., 2016; Gold et al., 2013; Helldin et al., 2013; Yang et al., 2017), which have 

shown that MRs and other types of uncertainty indicators stimulate driver to allocate attention 

to the road when encountering an unpredictable driving environment, in turn yielding improved 

responses in critical situations. 

7.4.2 Driver Compliance with MRs 

In addition, we investigated how drivers complied with MRs, how the level of compliance 

changed with experience within one test session, and how the level of compliance associated 

with subsequent take-over performance. Compliance was measured by the three indices adapted 

from Breznitz (1984): probability, latency, and amplitude of eye, hand, and foot preparatory 

behaviour, retrieved from manual video observation.  

The results indicated high overall compliance with MR. Participants looked up onto the road 

within a short time in all cases, and moved their hands to be better prepared for a possible take-

over (e.g., putting down the iPad) in the majority of the cases. In several cases, participants also 

moved their feet closer to the pedal, but the probability of feet movements was smaller, and the 

associated latency was higher, than hand preparatory behaviour.  

We found a higher preparation probability in response to MRs after a take-over event as 

compared to MRs after two consecutive MRs without take-over event, in line with the 

statements of Breznitz (1984) that threat cancellation reduces protective behaviour, whereas hit 

alarms increase compliance. We observed that after experiencing one or two MRs without 

critical event, a few participants did not look up as soon as possible, but continued with the non-

driving task for a short time. Some participants monitored the road only shortly, and continued 

with the non-driving task even before the MR was dismissed. Such potentially risky behaviour 
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may increase as more consecutive MRs without event are experienced in a prolonged drive. 

Also, drivers may develop alarm fatigue (Cvach, 2012) by excessive ‘unnecessary’ MRs, and 

turn off the notification system.  

Furthermore, our findings suggest a substantial influence of preparation behaviour on take-over 

times: when monitoring with a hand on the wheel or with a foot hovering above the pedal, 

drivers responded faster to the TOR as compared to without any hand or foot preparation action. 

This is possibly due to a reduction of hand/foot travelling distance (Zhang, Wilschut, 

Willemsen, & Martens, 2019).  

7.4.3 Reliance on the TOR 

In the final trial of our experiment, we examined whether people over-rely on the TOR, despite 

the fact that they have received an MR prompting them to monitor the driving environment. 

When drivers who were previously exposed to perfectly reliable TORs were provided with only 

an MR, they showed worse takeover performance as compared to the MR + TOR condition. 

Three out of 38 participants collided with the pedestrians, whereas the other participants showed 

higher mean response times, more severe braking, and a smaller minimum TTC as compared to 

the MR + TOR condition. These effects occurred despite the fact that they were looking at the 

driving environment and were told that the TOR would be available only if a critical event was 

detected successfully. This over-reliance may have been caused by the fact that participants 

were conditioned to respond to the TORs, not to the hazards (i.e., pedestrians) themselves. It is 

also possible that participants had built inappropriately high trust in the TORs because all 

preceding pedestrian crossing events came with a TOR. Lee and See (2004) argued that human 

trust needs to be calibrated according to the context and characteristics of automation. Further 

research could investigate how to prevent over-reliance on TORs. One idea is to examine 

whether a variable ratio of the number of TORs over the number of MRs could affect driver 

trust levels and their responses to the MR. 

7.4.4 Limitations 

This study has several limitations. First, we presented pedestrian crossing scenarios only, which 

may have contributed to reduced response times due to familiarity. In future research, a larger 

variety of scenarios could be tested, including time critical situations and voluntary transitions 

such as merging or exiting the highway. Future research might also use a between-subjects 

rather than within-subject design to prevent carry-over effects. However, it is cautioned that 

between-subjects designs require a substantially larger sample size in order to maintain 

adequate statistical power. Second, this study used fixed time budgets for monitoring (i.e., 12 s 

before the collision) and taking over (i.e., 5 s before the collision), which may have led to 

specific expectations about the timing of taking back control. The time budget between an MR 

and a TOR could be further investigated. If an MR is provided early, drivers may lose attention 

again, whereas if an MR is provided late, there may be insufficient time to prepare for taking 

over. Third, drivers’ behaviour was only observed within short experimental sessions. For the 

assessment of driver compliance, the maximum number of successive cancellations was two. It 

is likely that a more severe reduction in preparatory behaviour would occur if more MR blocks 

were implemented. Moreover, as pointed out in a review by Green (2000), expectancy is an 

important determinant of brake response times. In our experiment, there were no true surprises. 

That is, the participants were probably expecting at least one take-over event in the entire 

session. If no event has occurred yet, each transition from one MR to another implies that the 

take-over event is approaching: Successive MRs without TOR implied greater proximity of 

danger, which may counteract the decrease in compliance (cf. Chapter 5 in Breznitz, 1984). 
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Finally, simulator fidelity may be an issue. The absence of physical motion cues may have an 

effect on how drivers brake (Boer, Yamamura, Kuge, & Girshick, 2000; Siegler, Reymond, 

Kemeny, & Berthoz, 2001) and may have reduced drivers’ awareness of the automation mode 

(Cramer, Siedersberger, & Bengler, 2017). It is also possible that the presentation of virtual 

hazards, rather than real hazards, has reinforced the ‘‘wait and see” behaviour in the MR-only 

condition. In addition, participants in an experimental setting tend to ‘behave well’; preparatory 

behaviour may be less in real life settings. In future studies, various reliabilities of TOR and 

MR should be investigated to reach conclusions that are more credible. 

7.5 Conclusion 

The observed effects of MRs are promising. The MRs directed the drivers’ attention to the road 

and improved their response to a subsequent TOR. Furthermore, the MR + TOR was positively 

evaluated for workload, usefulness, and satisfaction. We argue that automated driving systems 

that provide only TORs are not exploiting the richness of sensory information, both of the 

human and the automation sensor suite. The concept of MR makes use of the fact that automated 

driving systems have variable certainty about the situation. In our case, we demonstrated the 

MR concept when the car approaches a zebra crossing, a part of the road entailing a high 

likelihood that the driver has to take over control. 

The simulated MR is realistic in terms of automated driving technology. Differential GPS, HD 

maps, and traffic data could be used as inputs to the automated driving system to provide an 

MR when approaching a potentially critical road section, unlike camera and lidar, which are 

constrained by their detection ranges. However, we caution that the provision of MRs does not 

guarantee safety. We observed a situation-dependent change in the compliance level, which was 

associated with driving performance during a subsequent take-over event. That is, the cry-wolf 

effects may be a concern in the use of MR. We also showed that when the automated driving 

system fails to detect a hazard and accordingly fails to provide a TOR, a proportion of drivers 

still crashed. Future research should be focused on measures to counteract the cry-wolf effect 

such as training and education (Breznitz, 1984; Zabyshny & Ragland, 2003), and conducted on 

the topic of over-reliance on take-over requests and individual differences in the use of 

automated vehicles. 
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8. Conclusions, discussion and implication for 

practice 

 

The aim of this thesis was to investigate car and truck drivers’ behaviour and performance when 

resuming manual control back from automated driving, in order to provide input for designing 

safe and smooth take-over control strategies. The literature and empirical studies addressed the 

research questions defined in this thesis.  

RQ1: What factors influence driver response times in taking back control from automated 

to manual driving  

To answer this research question, a comprehensive meta-analysis was conducted to 

systematically synthesize the findings of 129 studies that measured take-over response times in 

a wide range of experimental conditions related to the driver, the vehicle, the take-over 

situation, and the experimental set-up. Results clearly showed some systematic effects on driver 

take-over time. Most prominent factors were: 

1) Urgency of the take-over situation: 

The mean take-over time was substantially lower when the take-over situation was more 

urgent (with a shorter time budget available). 

2) Non-driving task performed during driving automation 

Mean take-over times were substantially higher when the driver was holding an object 

in the hands or resting with the eyes closed. Performing a visually demanding non-

driving task moderately increased the mean take-over response time. 

3) Modality used for the take-over request:  

The mean take-over time was substantially lower when an auditory and/or vibrotactile 

take-over request was provided compared to a visual-only or no take-over request. 

4) Experience and familiarization:  

The mean take-over time was substantially lower when the driver had prior experience 

with the take-over situation. 
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5) Anticipation:  

Being able to anticipate the take-over request from task-related or environmental cues 

reduced mean take-over response times. 

6) Traffic situation:  

The mean take-over time was higher when other road users needed to be taken into 

consideration during the take-over process (e.g., participants had to take over control 

while driving in the middle lane, while the right/left lane contained traffic.) 

Other examined factors, including drivers’ mean age, whether the non-driving task demand is 

auditory or cognitive, whether the take-over request was directional or with peripheral visual 

stimuli, duration of the driving automation task, the complexity of take-over response, and the 

fidelity of the driving simulator, only showed minor or inconsistent influence on mean take-

over times.  

Besides findings of the meta-analysis, the empirical studies in this thesis provided additional 

insight into driver take-over times and its influencing factors. In the platooning studies, the total 

take-over time was broken down into two stages:  

- Perception response time (to perceive and understand the take-over request) and  

- Hand movement response time (to replace hands back on the steering wheel).  

It was found that in most cases the hand-movement response time was significantly higher than 

the perception response time, suggesting movement response time as a dominant component of 

the total take-over time. Therefore, factors influencing driver motoric take-over process, such 

as non-driving posture and activities performed when resuming an optimal manual driving 

position, would substantially influence take-over response times. It was also found that car 

drivers took over significantly faster than professional truck drivers after using a hand-held 

tablet, which suggested that either driver type or vehicle type potentially is an influencing factor 

of take-over times. 

This thesis also explored effects of two innovative driver assistant systems on take-over 

response times. Chapter 6 explored the possibility to overcome the restricted visual anticipation 

of short-distance platooning in trucks by implementing a see-through lead truck. Despite 

increasing eyes-on-road time during platooning, providing truck drivers with front view 

projection did not affect their take-over times in a critical situation compared to not using such 

technology. Chapter 7 investigated the effect of a monitoring request on driver take-over 

performance. Provided with both monitoring requests and take-over requests, drivers already 

regained certain level of mental and motor readiness before an actual take-over was required, 

and took over significantly faster compared to using a system that only provided take-over 

requests. This study further suggested that reliance with take-over requests and compliance with 

MRs could influence drive take-over times.  

An overview of factors influencing take-over response times is depicted in Figure 8.1. These 

factors are mainly based on the meta-analysis that drew relatively more credible conclusions 

based on at least four studies. Other potentially influencing factors that were not included in the 

meta-analysis (i.e., too few studies investigated these factors by far) were also suggested based 

on findings of the empirical studies and previous literature.  
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Figure 8.1: Overview of factors influencing driver take-over response times (TOT) 

clustered in four categories: driver related, vehicle relate, situation related, and 

experiment related. Factors in the three inner layers were examined in the meta-analysis 

based on at least four studies, so with multiple replicated results. Factors in the innermost 

layer and the second inner layer have strong effects (marked with two signs) and moderate 

effects (marked with one sign) on take-over times, respectively. The red bar and the plus 

sign indicate that the presence of the corresponding factor increases take-over times, while 

the green bar and the minus sign indicate the opposite effect direction. The factors marked 

with a circle (in the third inner layer) have minor or inconsistent effects on take-over 

times. Factors in the outermost layer (in grey) were examples of other potentially 

influencing factors suggested in the empirical studies and previous literature, which were 

not included in the meta-analysis because there were no 4 studies available. 

• RQ2: How do professional truck drivers and car drivers perform when decoupling 

from highly automated platoons in normal, non-critical situations under the 

influence of various task conditions? 

The meta-review showed that hardly any studies were performed in a platooning context but 

rather with stand-alone automation. This thesis filled in this gap and specifically studied 

professional truck drivers’ and car drivers’ take-over performance when decoupling from an 

automated platoon, and how this can be influenced by four representative task conditions, 

namely monitoring (without non-driving tasks), using a handheld tablet, using a mounted tablet, 

and resting with eyes closed. The performance metrices concerned take-over response times, 

response to a brake event (immediately after the transition), and manual driving performance 

subsequent to the transition.  
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When required to take over control without time restrictions while platooning, drivers depicted 

large variation in response times ranging from 1.6 s to 13.3 s (combining all trials performed in 

the three empirical studies). Drivers took substantially more time to take over control after using 

a hand-held tablet or resting with eyes closed compared to monitoring the road. Performing a 

standardized visual-motoric task on a mounted tablet while platooning also generated a higher 

take-over time compared to the monitoring condition, but of smaller magnitude than holding 

the tablet in the hands. It was also found that car drivers in platoons took over faster than truck 

drivers in platoons due to a lower hand movement response time. Video recordings revealed 

that a number of truck drivers encountered additional barriers in the motoric take-over process 

such as having to switch reading glasses or taking extra time to shut down the tablet screen. 

In response to the decelerating lead truck immediately after the control transition, all drivers 

could brake in time and avoid a collision after monitoring the road or using a tablet, while one 

crash occurred to a truck driver in the Eyes-closed condition due to delayed response. These 

findings suggest that in most cases drivers were ready for moderately complex driving 

situations after resuming control in non-critical scenarios after platooning with relatively low 

time headways. Impairing effects of using a tablet on post-transition brake response were only 

found for car drivers, while truck drivers did not depict differences in performance between 

task conditions. Significant differences between driver groups were suggested, in that 

professional truck drivers responded faster and braked more smoothly compared to car drivers. 

Truck drivers showed overall more robust and better brake responses, possibly due to their 

higher level of training and expertise than average car drivers.  

In the trials without brake events, drivers’ longitudinal and lateral manual driving performance 

were assessed after the transition to gain insight into carry-over effects of automated platooning 

involving small inter-vehicular gaps. Both car and truck drivers reduced the speed immediately 

after the control transition to increase following distances (time headways), but still drove with 

reduced time headways one minute after decoupling compared to their baseline time headway 

in the manual driving conditions. This implied that carry-over effects of platooning may last for 

several minutes after the control transition. Such effects appeared to be more profound after 

monitoring the lead vehicle while platooning, especially for truck drivers.  

Impact of platooning on drivers’ lateral control performance was only marginally present for 

truck drivers for the first 10 s after the control transition, in specific conditions. The first truck 

platooning study showed increased mean SDLP after having used a handheld tablet during 

platooning. In the second truck platooning study such effect was only found in the monitoring 

condition, but not in the mounted tablet condition or the eyes-closed condition. The inconsistent 

findings call for more studies for valid conclusions. 

• RQ3: Could a monitoring request help driver respond more adequately with take-

over performance in critical take-over situations? 

In Chapter 7, a design solution was proposed and evaluated that aims to bridge the gap between 

automated with a driver out of the loop and completely manual driving. The proposed 

‘monitoring request’ is designed to stimulate a dynamic allocation of monitoring tasks to the 

human driver and the automation system according to the uncertainty of the road segment. 

Drivers could take their eyes off the road and engage in non-driving tasks in relatively 

predictable and safe driving situations, and would be requested to monitor the road upon 

approaching an uncertain road segment for which the vehicle could not reliably predict whether 

critical take-over events are likely to occur. The system also provides a take-over request upon 

detection of an actual critical event.  
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Results of the study in general showed positive effects of the monitoring request. After 

receiving a monitoring request, all drivers paused the undergoing non-driving tasks on a hand-

held tablet and looked up on the road. Several drivers also resumed motor readiness by replacing 

hands on the wheel and hovering the feet above the pedal. These preparatory behaviours led to 

better take-over performance when a critical event actually occurred compared to the condition 

that only provided take-over requests, in terms of a shorter response time to the take-over 

request and a higher minimum time to collision. Drivers also expressed more positive subjective 

ratings regarding workload, trust, and acceptance after experiencing the innovative system 

compared to the system that only issued take-over requests. Furthermore, the presence of 

monitoring request did not affect drivers’ eye-gaze behaviour during automated driving (i.e., in 

between the uncertain areas without system issued requests). In both conditions, drivers were 

equivalently distracted by the non-driving task and spent approximately 17% time looking on 

the road. 

This study also suggested that the system providing both monitoring requests and take-over 

requests may induce potential risks. After experiencing the perfectly functioning system, 

drivers showed significantly worse take-over performance when the system only issued a 

monitoring request but failed to issue a take-over request upon a critical event, compare to the 

conditions in which they did receive a take-over request. Drivers appeared to over-rely on the 

TORs and seemed to have developed a “wait and see” attitude. In addition, because only a small 

portion out of all monitoring requests required an actual driver take-over, drivers tend to reduce 

motoric preparatory behaviours after experiencing successive monitoring requests that did not 

require an actual takeover, and took over more slowly if an actual take-over event occurred 

under such circumstances. These findings suggest that overreliance on the take-over request 

and the cry-wolf effect could be concerns in the use of such system, and measures should be 

applied to stimulate proper trust calibration. 

• RQ4: What explains variability in take-over times? Is an adaptive approach (tuned 

to a specific driver) a feasible solution to increasing safe and smooth transitions to 

manual driving? 

Besides focusing on mean take-over times, this thesis made efforts to understand within-group 

variability. The meta-analysis showed a strong positive correlation between mean take-over 

times and their standard deviations. This means that factors generate high mean take-over times 

would also generate large variability between drivers. The empirical studies especially 

addressed that the variation in the motoric take-over process was a main source for the variation 

in total take-over times. Very slow take-over responses were often associated with complex and 

random motoric activities when resuming motor readiness, such as looking for reading glasses, 

having difficulties adjusting seat position, double-checking if iPad was shut properly, putting 

on shoes that were taken off during automated driving, and stretching arms and necks. Large 

variation in drivers’ perception time was also observed in the Eyes-closed condition. While 

some drivers could immediately respond to the take-over request, a few drivers seemed to have 

fallen asleep when the TOR was issued and only responded several seconds later. This situation 

generated the highest take-over response times measured in the empirical studies (>8.6 s, 

outside the 95th percentile). 

The discussions above infer that dynamically changing driver states (e.g., task condition, 

posture, and mental states) and driving situation predominantly determine the driver’s 

capability to take over control safely at a specific moment, while the driver’s inherent 

characteristics, such as age, gender, and personality, only play a minor role. Therefore, a driving 

automation system that can adapt to individual drivers’ states has potential to increase driving 
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safety at intermediate development phases, where the driver would be allowed to perform 

various non-driving tasks, but is still expected to resume control when requested. For example, 

upon detection of insufficient driver states, the system could provide pre-warnings to advise the 

driver away from undesired NDTs, take precautions such as increasing headways to the front 

vehicle, and allow a longer time budget if a take-over is actually required. However, designers 

should foresee the limit in providing precise estimations of a specific drivers’ take-over 

readiness, and exercise caution when designing and implementing adaptive automation 

systems.  

One of the first issues would be that by far only a limited number of determinants of take-over 

times have been identified, merely based on empirical studies in strictly controlled environment. 

More factors are to be studied in naturalistic driving conditions for a holistic picture, which may 

require enormous efforts. Furthermore, several substantial determinants of take-over times are 

not observable and extremely difficult to predict (if not impossible), such as familiarization and 

expectation with a specific take-over situation, and very importantly, what the driver would 

actually do during the take-over process. One example is that a participant forgot where he had 

put his spectacles and searched for several seconds before taking over control. It has to be kept 

in mind that drivers are most vulnerable in these unpredictable outlier cases, which would occur 

more often when drivers are less restrained during automated driving. In addition, as the driver 

learns safe usage of the automation system and calibrates trust predominantly from long-term 

on-road experiences (Lin, Ma, & Zhang, 2017; Walker, Boelhouwer, Alkim, Verwey, & 

Martens, 2018), adaptive systems may be unpredictable and confusing for the driver if the set 

of criteria triggering changes is not transparent and comprehensive (e. g., no specific take-over 

time budgets). This may hinder the process of establishing a correct mental model and induces 

potential risks (cf. Billings & Woods, 1994). 

The discussion above indicated that to precisely tune to each individual driver would be a rather 

unrealistic goal. To compensate for the potential limit of adaptive driving automation systems, 

designers could work on accurate estimations of the system’s capabilities and the complexity 

of the driving environment, and adjust the available functionalities and HMI. If effectively 

informed about the system status, the drivers would regulate their states (e.g., adjusting non-

driving task conditions and non-driving postures) before an actual takeover event occurs. This 

approach is related to the idea illustrated in Chapter 7, in which drivers established higher levels 

of mental and motor readiness after receiving a monitoring request (MR) that communicated 

the situation uncertainty, and exhibited good take-over performance when critical events 

actually occurred. Also, what the driver is allowed to do could be restricted based on the 

capability of the car to handle the specific circumstances it drives in. This could also be 

monitored, as is currently also discussed within international committees such as EuroNCAP, 

UN-ECE and ISO (SC39 WG8). Interesting aspect here is that the entire system is not aimed at 

automating as much as possible, but at offering automation when it is reliable, and taking 

precautions of this is not the case, using the human capabilities without providing a task that 

does not fit (e.g. continuous monitoring). It seems that driver monitoring systems are expected 

to be more capable of identifying if a driver’s state is in line with minimum requirements. This 

means that even if a driver is estimated to be in a sufficient functional state (e.g., monitoring 

with hands on the wheel), (s)he might also fail in takeover due to unobservable and 

unpredictable factors, so a fallback option or emergency procedure should be available 

regardless of a driver’s estimated state. 



Chapter 8 – Conclusions, discussion and implication for practice 177 

 

8.1 Implications for practice 

Based on the findings of this thesis, several recommendations can be provided for researchers, 

industry and policy-makers towards safer transitions of control from automated driving to 

manual control. They are listed and explained below. 

Regaining motor readiness plays a substantial role in the take-over process 

This thesis pointed to the substantial influence of driver motoric take-over process on total take-

over response times. If a fast take-over response may be requested (e.g., with a time budget 

shorter than 7 s), the driver should not engage in non-driving tasks involving severe 

biomechanical distractions, such as holding an object in the hand(s) or out of the driving 

position. Performing tasks on a mounted device close to the steering wheel would be more 

recommendable. In addition, the driver’s non-driving postures and seating positions should be 

regulated to avoid undesired delay in takeover. The cabin interior elements could also be 

designed to regulate driver behaviours according to different automation modes and driver’s 

use scenarios. For example, when driving in a complex area that requires driver monitoring, the 

vehicle does not allow the driver to transform the interior elements into working or relaxation 

mode (e.g., recline the seat backwards), and thus providing physical restraints to avoid 

undesired biomechanical distractions. When a take-over is requested, the interior elements 

could automatically transform to the manual driving mode, for instance through re-

configuration of the seat and the steering wheel to assist the driver with rapidly establishment 

of motor readiness.  

Sleeping at the wheel may pose a large safety threat as long as drivers ought to take over within 

certain time budgets 

Studies presented in Chapter 3, 4 and 5 belong to the few existing ones that investigated driver 

take-over performance after having eyes closed for some period of time. The eyes-closed 
condition generated the few high take-over times among all trials performed within this thesis, 

by participants appearing to have fallen asleep before the TOR onset, even though closing their 

eyes was just for 8 minutes. The only post-transition crash also occurred in this condition 

although the participant claimed his readiness by pressing the button. These results suggest that 

sleeping at the wheel may have the largest impact on the drivers’ take-over performance among 

all task conditions. Sleeping drivers would completely lose situation awareness, and need 

considerable amount of time to be awakened and to restore cognitive and sensory-motor 

functions (Kaduk, Roberts, & Stanton, 2020; Wörle, Metza, Othersenb, Baumann, 2020; see 

Tassi & Muzet, 2000 for sleep inertia). The biomechanical distractions that may come along, 

such as sitting with the seatback in the most reclined position, would add to the difficulties to 

rapidly resume manual control after sleeping. Strict measures must be taken to prevent driver 

from sleeping during automated driving as long as critical takeovers may occur. For example, 

upon detection of extreme sleepiness and sleep onset, the system would issue warnings and 

require the driver to stop the vehicle and take a rest or only allow this in conditions for which 

the system knows it can drive reliably for a longer period of time. 

Drivers should be supported for a period of time after the control transition to manual 

Findings from this thesis suggested impact of platoon driving on subsequent manual driving 

performance. After decoupling from a platoon, drivers may drive with reduced TWH for a 

couple of minutes. Several previous studies also pointed to carryover effects of driving 

automation on drivers’ attention allocation (e.g., Miller & Boyle, 2019; Vogelpohl, Kühn, 
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Hummel, Gehlert, &Vollrath, 2018), such as reduced focus on road centre, longer eyes-off-road 

glances, and inadequate mirror checks. These findings suggest that drivers should be supported 

through this vulnerable period of performance recovery. Possible means can be HMIs that 

remind the driver to maintain a safe THW, guide the driver to perform safety checks 

immediately after resuming control, and direct drivers’ attention towards critical areas on the 

road. However, cautions should be exercised that these HMI interfaces may induce additional 

distractions, increase driver workload and have their own reliability issues. When decoupling 

from a platoon, the system could also automatically increase the THW to a safe threshold before 

asking the driver to take over control. If dedicated lanes were to be implemented, a transition 

area following the end of the automation zone would allow the driver to recover manual driving 

performance in a safe environment before entering public roads. 

 Multiple approaches should be combined to ensure road safety of automated driving  

The discussions above suggest that multiple approaches need to be combined to manage 

variability within and between drivers and ensure driving safety at different levels of 

automation. Driver state monitoring systems could assess if discrepancies between the driver’s 

current state and the desired state exist. If so, the system can issue advisory notifications or 

warnings, or adjust driving modes to dissolve the discrepancies. Upon detection of extremely 

risky states according to clearly defined criteria or rules, such as sleeping onset or not having 

hands on the wheel where imminent takeovers could occur, the system should stop drivers from 

using driving automation functions until they resume minimum required states. This thesis also 

cautions that driver state monitoring and prediction has its limits, and additional measures 

should be taken to ensure road safety. For example, the system should actively and effectively 

communicate with the driver the current status of the vehicle and uncertainties in the driving 

environment, and thus prompt the driver to adjust their state accordingly. Besides 

implementation of digital HMI, the layout of cabin elements can be designed to regulate drivers’ 

non-driving posture and engagement in non-driving activities according to the current task 

demand, and assist drivers with a fast resumption of motoric readiness if needed. In the end, 

fallback options should be available whenever possible in case the driver cannot respond 

adequately in takeover.  

8.2 Recommendations for future research 

In the end of this thesis, some boundaries of the studies performed within the scope of this thesis 

are discussed, based on which recommendations for future research are proposed.  

First, all empirical studies in this thesis, and the large majority of the take-over studies included 

in the meta-analysis, were conducted in driving simulators. Virtual and simplified driving 

environments in a simulator generally raise issues of ecological validity, such as reduced risk 

perception and workload. Also worth mentioning is that participants may tend to respond in 

favour of the hypothesis of the study and behave well under observation (see Nichols & Maner, 

2008 for “the good-subject effect”). To what extend can the findings be generalized to real-life 

scenarios needs further investigation, even though various studies have showed at least relative 

validity (Kaptein, Theeuwes, & Van der Horst, 1996; Riener, 2010; Risto & Martens, 2014; 

Walker, Hauslbauer, Preciado, Martens, & Verwey, 2019).   

In addition, only a small variety of experiment conditions could be examined in the empirical 

studies, and the periods of automated driving were short (4 – 15 min). Limited insight was 

gained on drivers’ behaviour in naturalistic settings, and the effects of prolonged driving 

automation on driver states and take-over performance. In the platooning studies, only four task 
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conditions were implemented under well controlled environment, each lasting for less than 10 

minutes. The traffic volume was low throughout the platoon driving simulation, while driver’s 

takeover performance, subsequence car following behaviour, and preferred THW could be 

substantially different in high traffic volume conditions. In the car driving simulator study 

investigating effects of monitoring requests, a pedestrian crossing the road was the only 

scenario presented, and fixed time budgets for the monitoring request (12 s) and the take-over 

request (5 s) were used, which might have led to participants’ familiarization and expectation 

with the critical situations and reduced take-over response times. In each drive, only five MRs 

and two TORs were issued over the span of 15 min, and it still remains a question how drivers’ 

compliance with MR change in long term use.  

Research in this thesis made a unique contribution to the literature by exploring driver 

behaviour during and right after decoupling from a highly automated platoon and the effects of 

monitoring requests that adapt to the uncertainty of the driving environment. Future research 

could expand the analysis to more realistic situations and test a larger variety of scenarios. 

Particularly, efforts can be made to investigate driver behaviours in prolonged, naturalistic use 

of automation, to explore impact of sleeping at wheel on driver take-over performance, and to 

understand how drivers interact and comply with adaptive automation systems. These will 

provide valuable input for the development of an effective human-in-the-loop adaptive 

automation system. 
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Summary 

 

Driving automation holds great promise for safer and more efficient road transportation, and is 

becoming a reality thanks to the rapid advancement of technology. However, before full driving 

automation arrives, the driver would have to take over control of the vehicle when the system 

fails or reaches its operational limits, which poses new road safety risks at different stages of 

development. When the system is less capable and reliable, the driver has to closely monitor 

the system and take over imminent control when necessary. This challenges humans’ inherent 

weak point of staying vigilant over a prolonged period of time. When the technology becomes 

more mature, the driver would be allowed to engage in a wide range of non-driving tasks, but 

occasional human interventions still cannot be avoided. How to ensure drivers in various mental 

and physical states to take over control safely become a major challenge at this stage. A large 

number of studies have tackled human factors issues related to control transitions, and 

suggested that no single take-over time budget applies to all drivers in all situations. While an 

adaptive approach is called for to support individual drivers in taking over control, a better 

understanding of driver take-over process and the variability between and within drivers is still 

needed to achieve this goal.  

This PhD thesis addresses the challenges stated above and contributes to designing safe and 

comfortable control transitions to manual. A particular focus was on control transitions in truck 

platooning scenarios, which have received only limited attention despite of the significance of 

platooning technology. The first objective is to explore factors influencing the take-over 

response time and its variability, and to gain a deeper insight in the actual take-over process. 

The second objective is to systematically study professional drivers’ take-over performance in 

truck platooning scenarios, in order to deliver input for the development of platooning systems 

and the corresponding infrastructures. The third objective is to design and evaluate potential 

approaches that prime drivers for a safe and smooth take-over, and to discuss the feasibility of 

an adaptive and personalized control transition approach. 
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The first part the thesis (Chapter 2) presents an exhaustive meta-review of 129 studies that 

reported mean take-over response times, aiming to provide the state of the art on driver take-

over research, and to explore determinants of take-over times on an aggregated level. Three 

complementary approaches were employed: (1) a within-study analysis, in which differences 

in mean take-over time were assessed for pairs of experimental conditions, (2) a between-study 

analysis, in which correlations between experimental conditions and mean take-over times were 

assessed, and (3) a linear mixed-effects model combining between study and within-study 

effects. The three methods showed that a shorter mean take-over time is associated with a higher 

urgency of the situation, not using a handheld device, not performing a visual non-driving task, 

having experienced another take-over scenario before in the experiment, and receiving an 

auditory or vibrotactile take-over request as compared to a visual-only or no take-over request. 

It is also found the mean and standard deviation of the take-over time were highly correlated, 

indicating that the mean is predictive of variability. These findings point to directions for new 

research, in particular concerning the distinction between drivers’ ability and motivation to take 

over, and the roles of urgency, biomechanical distraction, and prior experience. 

The meta-review showed that hardly any take-over studies were performed in platooning 

context. To fill in the research gap, the second part of the thesis (Chapter 3-6) presents four 

empirical driving simulator studies investigating driver take-over performance when leaving 

highly automated truck and car platoons.  

• Chapter 3 and Chapter 4 describe two truck platooning studies investigating 

professional truck drivers’ take-over performance in non-critical scenarios. In both 

studies, three task conditions were implemented during platoon driving, namely 

monitoring without non-driving task, interacting with a tablet PC, and relaxing with 

eyes closed. The difference between the two studies lies in whether the tablet PC was 

holding in the hands or mounted on the centre console. Results showed substantially 

longer take-over times with high variability when the driver was using a hand-held tablet 

or relaxing with eyes closed, compared to monitoring the road or using a mounted tablet 

PC. By measuring perception-response times instead of merely total take-over times, 

hand movement response time was found to be the dominant component of the total 

take-over time, being influenced by the motoric manoeuvres to resume physical 

readiness before taking over control (e.g., putting away the hand-held tablet, putting 

on/off reading glasses, adjusting seating position). Analyses of post-transition manual 

driving performance showed that truck drivers could stabilize the truck within 10-20 s 

after the transition in all task conditions, and suggested potential carry-over effects 

involving small gaps during platooning. In response to a brake event immediately after 

the control transition, all drivers successfully avoided colliding with the decelerating 

front truck, except for one driver in the eyes-closed condition. These findings suggest 

the importance to focus on both cognitive and motoric preparation phases before 

resuming manual control, and pointed to the potential risk of resuming manual driving 

after sleeping or relaxing with eyes closed. 

 

• As platooning technology can be applied to both heavy and light vehicles, Chapter 5 

explores behavioural similarities and differences between car drivers and professional 

truck drivers. This study compares professional truck drivers’ take-over performance 

when leaving a highly automated platoon (as reported in Chapter 4) to that of car drivers 

measured in the same driving simulator (with a different vehicle model and mock-up) 



Summary 183 

 

using the identical experimental design. Compared to car drivers, truck drivers took over 

control more slowly when using a hand-held tablet due to a slower hand movement 

response; drove more steadily with a larger time gap after the transition; and braked 

more quickly and less aggressively in response to the decelerating lead vehicle. These 

findings in general suggest a more cautious manual driving style in professional truck 

drivers after decoupling from the platoon. In addition, both driver groups showed 

reduced time headways after the transition, suggesting again carry-over effects of 

platoon driving involving small gaps.  

 

• For drivers in the truck platoon, monitoring surrounding traffic environment and 

foreseeing upcoming hazardous situations is very difficult due to very short inter-

vehicular distances and consequently a heavily blocked front view. Chapter 6 explores 

whether providing drivers in a truck platoon with additional visual information of the 

traffic environment can influence their monitoring pattern and increase awareness of 

upcoming critical situations. Twenty-two professional truck drivers were divided into 

two groups, either following a see-through lead truck (i.e., with projection of forward 

scene attached to the rear of the lead truck), or a normal lead truck until the automation 

system failed unexpectedly in a critical situation. Results showed that when provided 

with front view projection, the drivers spent 10% more time monitoring the road, and 

responded less severely to a critical situation, suggesting positive effects of the “see-

through” technology. Nevertheless, such technology did not affect their take-over times 

in a critical situation. 

In on-road settings, it is not feasible to always allow sufficient time budgets for drivers in 

various states to take over safely, neither is it realistic to require prolonged effective driver 

monitoring. In the third part of the thesis (Chapter 7), a design solution was proposed and 

evaluated that may bridge the gap between automated with a driver out of the loop and 

completely manual driving. An HMI concept was designed that provides a monitoring request 

(MR) when approaching a location where driver take-over is likely to be requested. The MR 

asked the driver to pause the non-driving task, monitor the traffic environment, and be prepared 

for a potential take-over. If a critical event was detected, the system provided a take-over request 

(TOR) as well. The aim is to stimulate a dynamic allocation of monitoring tasks to human and 

automation that adapts to the system capability and the situation complexity, and to better 

prepare drivers to take over safely and efficiently. In the simulator-based experiment with 41 

participants, the effects of the MR+TOR system were assessed by comparing to a conventional 

system that only issued TORs. Results showed that the MR+TOR system improved 

participants’ take-over performance in terms of shorter take-over response time and longer 

minimum time collision, and yielded more positive subjective ratings regarding workload, trust, 

and acceptance. Because only a small portion out of all MRs require an actual driver take-over, 

an additional analysis was conducted to investigate how drivers’ compliance with MRs was 

associated with previously experienced scenarios. Although drivers showed good overall 

compliance by looking up to the road in response to MRs in all cases, hand and foot preparatory 

behaviour appeared to deteriorate after experiencing an MR without a critical event, and 

increased after a take-over event. These findings suggest that the cry-wolf effects may be a 

concern in the use of MR, and measures should be applied to stimulate proper trust calibration. 

My PhD thesis provided a comprehensive research on factors influencing driver take-over 

response times, made an initial contribution to the understanding of driver behaviour during 

and right after decoupling from a highly automated platoon, and proposed an innovative HMI 
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design to better prepare drivers for potential critical take-overs. The findings suggested that 

dynamically changing driver states and driving situation predominantly determine the driver’s 

capability to take over control safely at a specific moment. While a driving automation system 

that can adapt to individual drivers’ states has potential to increase driving safety during 

transitions, one should also foresee the limit in providing precise estimations of a specific 

drivers’ take-over readiness. Multiple approaches need to be combined to manage variability 

within and between drivers and ensure driving safety at different levels of automation, such as 

actively communicating with the driver the current status of the vehicle and uncertainties in the 

driving environment, designing cabin layout to regulate drivers’ non-driving posture and 

engagement in non-driving activities according to the current task demand, and providing 

fallback options whenever possible in case the driver cannot respond adequately in takeover.
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Samenvatting in het Nederlands 

Volledig automatisch rijden kan in potentie voor veiligere en efficiëntere mobiliteit zorgen. 

Dankzij technologische vooruitgang wordt volledig automatisch rijden realiteit in de nabije 

toekomst. Echter, voordat de volledige rij-automatisering er aankomt zal er een fase zijn waarbij 

de bestuurder de controle over het voertuig incidenteel overneemt, bijvoorbeeld wanneer het 

systeem uitvalt of de limieten van het systeem worden bereikt. Deze tussenfase van de 

ontwikkeling van automatisering zullen leiden tot nieuwe veiligheidsrisico’s. Wanneer het 

systeem nog niet volledig automatisch en betrouwbaar is, zal de bestuurder het systeem en het 

verkeer moeten blijven monitoren om direct de controle over te nemen wanneer dat 

noodzakelijk is. Hiermee wordt een inherent zwak punt van de mens aangesproken namelijk 

om gedurende een langere periode waakzaam te blijven (vigilantie) en de status van het systeem 

en het verkeer te volgen. Wanneer de technologie volwassener wordt, zou de bestuurder een 

breed scala aan niet-rijdende taken oftewel secundaire taken mogen uitvoeren. Echter 

incidentele menselijke tussenkomst kan dan nog noodzakelijk zijn. Het wordt een uitdaging om 

ervoor te zorgen dat in deze fase van de technologieontwikkeling bestuurders in verschillende 

mentale en fysieke toestanden de controle van het voertuig veilig kunnen overnemen. Een aantal 

studies hebben de factoren die verband houden met de wisseling van de controle tussen mens 

en voertuigautomatisering onderzocht, en komen daarbij tot de conclusie dat er geen standaard 

overnametijd kan worden gebruikt voor een veilige overname van de controle van het voortuig 

door de bestuurder. Hoewel een adaptieve aanpak wordt gesuggereerd om individuele 

bestuurders te ondersteunen bij het overnemen van de controle, is een beter begrip van het 

overnameproces van bestuurders en de variabiliteit tussen en binnen bestuurders nodig om dit 

doel te bereiken. 

Dit proefschrift gaat in op de hierboven genoemde uitdagingen en draagt bij aan het ontwerpen 

van veilige en comfortabele overgang van automatische naar handmatige voertuigbediening. 

Bijzondere aandacht ging uit naar controle-overgangen in scenario's voor het platoonen van 

vrachtwagens, die ondanks het onderschreven belang van platooning slechts beperkte aandacht 

hebben gekregen. Het eerste doel is om te onderzoeken welke factoren de overnametijd en de 

variabiliteit daarvan beïnvloeden, om inzicht te krijgen in het daadwerkelijke overnameproces. 

Het tweede doel is om systematisch de overnameprestaties van professionele chauffeurs te 
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onderzoeken in scenario's voor vrachtwagenplatooning, om zo input te leveren voor de 

ontwikkeling van platooningsystemen en de bijbehorende infrastructuren. De derde doelstelling 

is het ontwerpen en evalueren van mogelijke benaderingen om de bestuurder te attenderen en 

voor te bereiden op een veilige en soepele overname. En tenslotte wordt de haalbaarheid van 

een adaptieve en gepersonaliseerde overgang van de controle behandeld. 

Het eerste deel van het proefschrift (Hoofdstuk 2) presenteert een uitputtende meta-review 

van 129 onderzoeken die gemiddelde overnameresponstijden rapporteerden, met als doel de 

stand van de techniek te verschaffen op het gebied van onderzoek naar het overnemen van de 

controle door bestuurders en om factoren die de overname beïnvloeden te onderzoeken op een 

geaggregeerd niveau. Er werden drie complementaire benaderingen gebruikt: (1) een analyse, 

waarbij verschillen in gemiddelde overnametijd werden beoordeeld van experimentele 

condities binnen dezelfde studie (2) een analyse tussen studies, waarin correlaties tussen 

experimentele condities en gemiddelde overname tijden werden beoordeeld, en (3) een linear 

mixed-effects model die deze twee analyses combineert.  

De drie analyses toonden aan dat een kortere gemiddelde overnametijd gepaard gaat met: een 

hogere urgentie van de situatie, dat er geen technologie gebruikt wordt, dat er geen secundaire 

visuele taak wordt uitgevoerd, dat men eerder in het experiment een ander overnamescenario 

heeft meegemaakt, en het ontvangen van een multimodaal (auditief en/of tactiel) 

overnameverzoek, dit in vergelijking met een visueel of geen overnameverzoek. Ook blijkt dat 

het gemiddelde en de standaarddeviatie van de overnametijd sterk gecorreleerd waren, wat 

aangeeft dat het gemiddelde voorspellend is voor variabiliteit. Deze bevindingen geven 

aanwijzingen voor nieuw onderzoek, in het bijzonder met betrekking tot het onderscheid tussen 

het vermogen en de motivatie van bestuurders om de controle over te nemen, en de rol van 

urgentie, biomechanische afleiding en eerdere ervaring van de bestuurder. 

Uit de meta-review bleek dat er nauwelijks overnamestudies werden uitgevoerd in de context 

van platooning. Om de lacune in het onderzoek te dichten, bestaat het tweede deel van het 

proefschrift (Hoofdstuk 3-6) uit vier empirische rijsimulatorstudies die de overnameprestaties 

van bestuurders onderzoeken bij het verlaten van geautomatiseerde auto- en 

vrachtwagenplatoons. 

• Hoofdstuk 3 en Hoofdstuk 4 beschrijven twee platooning studies die de 

overnameprestaties van professionele vrachtwagenchauffeurs onderzochten in niet-

kritieke scenario’s. In beide onderzoeken waren er drie condities tijdens het besturen 

van een platoon, namelijk monitoren zonder extra secundaire taak, interactie met een 

tablet, en ontspannen met gesloten ogen zitten. Het verschil tussen de twee studies was 

de tablet conditie. Waarbij in de ene studie de tablet in de handen werd gehouden, werd 

in de andere studie de tablet op de middensconsole gemonteerd. De resultaten lieten 

aanzienlijk langere overnametijden zien met grotere variabiliteit wanneer de bestuurder 

een draagbare tablet gebruikte of ontspande met gesloten ogen, vergeleken met het 

monitoren van de weg of het gebruik van een tablet in de console. Door perceptie-

reactietijden te meten in plaats van louter de totale overnametijden, bleek dat 

bewegingsreactietijd de dominante component was bij de totale overnametijd. Deze 

bewegingsreactietijd werden beïnvloed door de motorische handelingen die nodige 

waren ter voorbereiding om de controle van het voertuig over te nemen (bijv. de 

draagbare tablet opbergen, een leesbril opzetten/ afzetten, de zitpositie aanpassen). 

Analyses van het rijgedrag na de overgang naar handmatig rijden toonden aan dat 

vrachtwagenchauffeurs de truck binnen 10-20 seconden na de overgang in alle condities 

konden stabiliseren, en suggereerden een mogelijk overdrachtseffect van het rijden in 
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een platoon waarbij iets minder ruimte werd gelaten tot de voorganger na de handmatige 

overname. Als reactie op een plotselinge remactie onmiddellijk na de overgang van de 

controle, konden alle chauffeurs met succes een botsing met de vertragende voorste 

truck vermijden, behalve één chauffeur in de conditie waarbij de ogen gesloten waren. 

Deze bevindingen suggereren het belang om te focussen op zowel cognitieve als 

motorische voorbereidingsfasen voordat handmatige controle wordt hervat, en wezen 

op het potentiële risico van het hervatten van handmatig autorijden na het slapen of 

ontspannen met gesloten ogen. 

 

• Platooning technologie kan zowel bij vrachtwagens als bij auto’s worden toegepast, 

Hoofdstuk 5 behandelt overeenkomsten en verschillen in gedrag van automobilisten en 

professionele vrachtwagenchauffeurs. Dit onderzoek vergelijkt de overnameprestaties 

van professionele vrachtwagenchauffeurs bij het verlaten van een sterk geautomatiseerd 

platoon (zoals gerapporteerd in Hoofdstuk 4) met die van automobilisten gemeten in 

dezelfde rijsimulator (met een ander voertuigmodel en mock-up) met behulp van 

hetzelfde experimentele ontwerp. In vergelijking met automobilisten waren 

vrachtwagenchauffeurs langzamer bij de overname van de controle wanneer zij een 

tablet vasthielden vanwege een tragere handbeweging; zij reden gelijkmatiger met een 

grotere afstand tot de voorligger na de overgang; en remde sneller en minder hard in 

reactie op de afremmende voorligger, het voorste voertuig van de platoon. Deze 

bevindingen suggereren over het algemeen een behoedzame handmatige rijstijl bij 

professionele vrachtwagenchauffeurs na ontkoppeling van het platoon in vergelijking 

tot de automobilisten. Daarnaast vertoonden beide bestuurdersgroepen een kortere 

volgtijd tot de voorligger na de overgang naar handmatig rijden, wat duidt op wederom 

overdrachtseffecten van het rijden in een volledig geautomatiseerd platoon met korte 

volgafstanden. 

 

• Voor vrachtwagenchauffeurs die rijden in een platoon is het waarnemen van het 

omringend verkeer en het anticiperen van een mogelijke gevaarlijke situaties lastig. Dit 

vanwege de zeer korte volgafstanden tussen de voertuigen, waardoor het zicht naar 

voren sterk belemmerd wordt. In Hoofdstuk 6 wordt het effect van extra visuele 

informatie vastgesteld: het monitoren van de verkeerssituatie en het anticiperen op 

mogelijke kritieke verkeerssituaties. Tweeëntwintig vrachtwagenchauffeurs werden 

verdeeld in twee groepen, de eerste groep reed achter een doorzichtige voorste 

vrachtwagen, d.w.z. met een projectie van de verkeerssituatie aan de achterkant van de 

voorste vrachtwagen. De tweede groep reed achter een normale voorste vrachtwagen. 

Beide groepen reden in een automatisch rijdend platoon, totdat het 

automatiseringssysteem onverwachts uitviel. De resultaten toonden aan dat wanneer de 

chauffeurs zicht hadden op de verkeerssituatie door projectie op de achterkant van de 

vrachtwagen, de chauffeurs 10% meer tijd besteedden aan het monitoren van de weg en 

minder abrupt reageerden op een kritieke situatie. Dit wijst op positieve effecten van de 

projectietechnologie, toch had deze projectietechnologie geen invloed op hun 

overnametijden in de kritieke situatie. 

Op de weg is het niet haalbaar om bestuurders in verschillende staat van alertheid altijd 

voldoende tijd te geven om de controle over het voertuig veilig over te nemen. En het is evenmin 

realistisch om van de bestuurder te eisen langdurig alert te blijven en het systeem te monitoren. 

In het derde deel van het proefschrift (Hoofdstuk 7) wordt een ontwerpoplossing voorgesteld 

en geëvalueerd die de kloof kan overbruggen tussen automatisch rijden en volledig handmatig 

rijden. Er is een HMI-concept ontworpen dat zorgt voor een monitoringverzoek (Monitoring 



188  Taking back the wheel: Transition of control from automated cars and trucks to manual driving 

 

Request; MR) bij het naderen van een locatie waar de bestuurder waarschijnlijk wordt gevraagd 

om de controle over te nemen. De MR vroeg de bestuurder om de secundaire taak te 

onderbreken, de verkeerssituatie te inspecteren en voorbereid te zijn op een mogelijke 

overname. Als er een kritieke verkeerssituatie werd gedetecteerd, stelde het systeem ook een 

overnameverzoek voor (Take-Over Request; TOR). Het doel is om een dynamische toewijzing 

van controletaken aan mens en automatisering te stimuleren die zich aanpast aan de 

systeemcapaciteit en de complexiteit van de situatie, en om bestuurders beter voor te bereiden 

om het rijden veilig en efficiënt handmatig over te nemen. In dit simulator experiment met 41 

bestuurders, waarbij de effecten van het MR+TOR-systeem werden beoordeeld door 

vergelijking met een conventioneel systeem dat alleen TOR gebruikte. De resultaten toonden 

aan dat het MR + TOR-systeem de overnameprestaties van de bestuurders verbeterde in termen 

van een kortere reactietijd bij de overname en een langere minimal time-to-collission, en meer 

positieve subjectieve beoordelingen opleverde met betrekking tot mentale werklast, vertrouwen 

en acceptatie. Omdat slechts een klein deel van alle MR's een daadwerkelijke overname van de 

chauffeur vereistte, is een aanvullende analyse uitgevoerd om te onderzoeken hoe de naleving 

van MR's door bestuurders beinvloed werd door eerder ervaren scenario's. Hoewel bestuurders 

over het algemeen een goede naleving lieten zien door in alle gevallen naar de weg te kijken 

als reactie op MR's, leek het voorbereidende gedrag van handen en voeten te verslechteren na 

het ervaren van een MR zonder een kritieke gebeurtenis, en het voorbereidend gedrag nam toe 

na een voorgaand secnario met een overname. Deze bevindingen suggereren dat de 

foutpositieven een punt van zorg kunnen zijn bij het gebruik van MR, en dat er rekening 

gehouden moet worden met het stimuleren van een adequate mate van vertrouwen in het 

systeem. 

Mijn proefschrift bevat een uitgebreid onderzoek naar de factoren die van invloed zijn op 

overname reactietijden tijden van bestuurders. Het levert een bijdrage aan het begrip van het 

rijgedrag tijdens en direct na het ontkoppelen van een automatisch rijdend platoon en stelt een 

innovatief HMI-ontwerp voor om bestuurders beter voor te bereiden op mogelijke kritieke 

overnames. De bevindingen suggereerden dat dynamisch veranderende mentale en fysieke 

toestanden van bestuurders en verkeerssituaties voornamelijk bepalend zijn voor het vermogen 

van de bestuurder om op een bepaald moment de controle veilig over te nemen. Hoewel een 

adaptief systeem voor automatisch rijden zich kan aanpassen aan de toestand van individuele 

bestuurders, en daarmee de rijveiligheid tijdens overgangen kan verhogen, is dit vooralsnog 

ook gelimiteerd door het vermogen nauwkeurige accurate schattingen te geven van overname 

responsetijden van specifieke bestuurders. Meerdere benaderingen moeten worden 

gecombineerd om variantie binnen en tussen bestuurders mee te nemen tijdens verschillende 

niveaus van rijautomatisering om de verkeersveiligheid te kunnen garanderen. Zoals actief 

communiceren met de bestuurder over de huidige status van het voertuig en verkeerssituaties, 

het ontwerpen van de cabine om de niet-rijdende houding van chauffeurs en betrokkenheid bij 

secundaire activiteiten in overeenstemming te brengen met de huidige taakvereiste en het 

bieden van back-up mogelijkheden waar mogelijk, voor het geval de chauffeur niet adequaat 

kan reageren bij de overname van de controle van het voertuig.
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