Model checking for performability

C. BAIER†, E. M. HAHN‡, B. R. HAVerkort§, H. HERMANNS‡
and J.-P. KATOEN¶

†Technische Universität Dresden, Dresden, Germany
Email: baier@tcs.inf.tu-dresden.de
‡Saarland University, Saarbrücken, Germany
Email: {hermanns;emh}@cs.uni-saarland.de
§Embedded Systems Institute, Eindhoven, The Netherlands
and
University of Twente, Enschede, The Netherlands
Email: brh@cs.utwente.nl
¶University of Twente, Enschede, The Netherlands
and
RWTH Aachen University, Aachen, Germany
Email: katoen@cs.rwth-aachen.de

Received 18 July 2011; revised 14 October 2011

This paper gives a bird’s-eye view of the various ingredients that make up a modern,
model-checking-based approach to performability evaluation: Markov reward models,
temporal logics and continuous stochastic logic, model-checking algorithms, bisimulation
and the handling of non-determinism. A short historical account as well as a large case
study complete this picture. In this way, we show convincingly that the smart combination
of performability evaluation with stochastic model-checking techniques, developed over the
last decade, provides a powerful and unified method of performability evaluation, thereby
combining the advantages of earlier approaches.

1. Introduction

Since the mid-1970’s the notion of performability has been developed and applied (see
Section 2) successfully in the joint assessment of the performance and reliability of
computer and communication systems. A crucial element in doing this has been the
construction and analysis of so-called Markov reward models (see Section 3).

In this paper we demonstrate that modern-day temporal logics, like CSL and CSRL,
allow a very flexible way of presenting all kinds of performability measures of in-
"
and lower bounds for performability measures when parts of the model are underspecified – see Section 7. We present a case study in Section 8 addressing a survivability assessment of an abstract model of the Google file system demonstrating the power of our approach. A concise overview of the symbols used throughout this paper is given in an appendix.

To summarise, this paper provides background details on the various ingredients that make up a modern, model-checking-based approach to performability evaluation. It shows that the combination of performability evaluation with stochastic model checking provides us with a powerful and unified evaluation tool exploiting the advantages of earlier approaches.

2. A short history of performability

2.1. Before it all started (up to 1975)

Up until the mid 1970's, the notion of performability as we know it now did not exist. Although the term ‘performability’ can be found in pre-1975 publications (for example, using Google Scholar), it was just used then to mean ‘perform-ability’: for example, in the context of biological and chemical reactions, the ability to make a step or to take place.

Before the mid-1970’s, the desirable properties of performance (throughput, delays) and reliability (mean-time to failure, availability, reliability) for computer systems were typically treated independently, effectively assuming that the system could not fail when assessing performance, or, when addressing reliability or availability, that the performance, as such, did not matter, and that only the sheer operation was of interest.

In the 1960’s, the field of performance evaluation in itself started to develop, but focussed on relatively simple queueing models and queueing networks (cf. the well-known books Kleinrock (1975) and Kleinrock (1976)), with applications in the (classical) telecommunications sector and multiprogrammed computer systems (mainframes).

The field of reliability engineering was already flourishing, largely in the context of mechanical and electrical engineering, thereby focussed on small, and often simplified, models of system components, and using simple reliability block diagrams and fault-trees. Dealing with complex component dependencies, repair units and larger system models was not done in practice.

The use of simple Markovian models (continuous-time Markov chains), both in the context of reliability and performance evaluation, started to grow, though practical application was hampered by the limited numerical means (algorithms and readily available computers) of that time. An example of this is provided by the work in Arnold (1973) on a number of simple Markovian models, which showed the importance of the notion of system coverage, that is, the probability of proper reconfiguration after a system fault has taken place. His model, and most other Markov chain related studies, focussed on relatively simple and structured models, for which closed-form solutions for the measures of interest could be obtained.

Throughout the 1970’s, the idea started to develop that for many applications (or systems), a separate treatment of performance and reliability was not always useful. Example cases that emerged were large telecommunication switches in which individual modules could fail, thereby affecting the delivered system performance, but not directly causing the system as a whole to fail. Other fields where such fault-tolerant systems started to emerge include the aerospace and aircraft industries, and in large-scale computing facilities in which multiple fairly autonomous systems were interconnected through new networking technology, such as Ethernet or IBM token ring. It is interesting to note that the first annual IEEE Conference on Fault-Tolerant Computing Systems (FTCS) took place in 1971: it still runs annually, though following a merger with the IFIP conference series on Dependable Computing for Critical Applications (DCCA) and the IEEE Performance and Dependability Symposium (PDS), since 2000 it has been held under the name Dependable Systems and Networks (DSN)†.

The first contributions on performability, that is, the integrated analysis of system performance and reliability, were published in the IEEE FTCS series in the 1970’s. Notable amongst this work is Beaudry (1978) which developed the notion of ‘the mean computation before failure’ in a Markovian model as a generalisation of the classical mean time to failure, thereby taking into account the different computational capacity in various degraded systems states, giving them a different value (or reward), before reaching an overall system failure state. Another important paper was Gay and Ketelsen (1979), which studied the performance of gracefully degradable systems.

The true seminal papers on performability are due to John F. Meyer, now Professor Emeritus of the University of Michigan. In a series of papers (Meyer 1976; Meyer 1980; Meyer 1982), he carefully defined the notion of performability as a precise probabilistic measure of levels of performance that can be attained in systems that change their structure over time, for example, due to the occurrence of faults and repair actions. Although the framework and definitions he introduced are very general, they are most often ‘implemented’ in a Markovian context, and this is often taken to be the performability framework (as we will do in the rest of the paper). Meyer and his students also focussed on the Markovian case (see, for example, Movaghar and Meyer (1984), Sanders and Meyer (1987) and Sanders and Meyer (1991)), and also developed a number of algorithms to evaluate simpler models, for example, models with an acyclic structure (Furchtgott and Meyer 1984).

In the early 1980’s, a number of developments took place that influenced the growth of the performability field:

— Small computer systems (VAX, PDP 11 and later PCs) became available that brought the numerical evaluation of Markovian models within the reach of many researchers. Towards 1985, software tools also started to emerge, allowing Markovian models with several thousands of states to be constructed and analysed efficiently.

† See http://www.dsn.org/.
— Clearly, such large Markovian models could not be input manually, but were the result of 'high-level models' with an underlying Markov chain semantics. Instrumental in this has been the work reported in Molloy (1982) on stochastic Petri nets (extending Petri nets with stochastic timing), and later Ajmone Marsan et al. (1984) in developing generalised stochastic Petri nets (GSPNs) and Movaghar and Meyer (1984) on stochastic activity networks (SANs). The Petri net approaches were initially developed purely with a view to the application of performance evaluation, while SANs were developed with the performability application in mind from the outset.

— In 1983, Gross and Miller introduced an efficient method for analysing the time-dependent behaviour of continuous-time Markov chains (CTMCs) (Gross and Miller 1984). This method, now known as uniformisation, played an enormously important role in the development of efficient performability algorithms in the years to come. However, it took some years (at least 5) for it to be taken up. In fact, it turned out that the method was a specialised case of a method that had been proposed earlier in Jensen (1953).

A characteristic of the adolescent phase is an enormous sudden growth. The (re)invention of uniformisation in the early 1980's resulted in a huge growth in the application potential for performability evaluation since it allowed the evaluation of the transient state-probabilities in larger Markov chains in an efficient and stable way, without the need to solve differential equations numerically. This new technique, combined with the quickly growing computational and memory capabilities of commodity computers, made performability evaluation applicable in practice. The number of publications in the field on new uniformisation-based techniques, supporting tools and applications grew sharply. More attention was paid to high-level tool mechanisms, thus also making the specification of large models much easier. During this period, there was also a growth in research capacity around the theme of ‘performability’, and new software tools were developed, along with the publication of new algorithms for both general and special cases.

In 1991, the first performability workshop took place at the University of Twente†. This brought together some forty researchers in the field (the number being limited in part by travel bans due to the outbreak of the Gulf war a few days before the workshop). The combined evaluation of performance and reliability (or dependability, as it was now often called more generically – see Avizienis et al. (2004)) had become more mainstream.

To conclude this section, the work of many others could be mentioned, for example:

— for tools, see Donatiello and Iyer (1987a), Donatiello and Iyer (1987b), Geist and Trivedi (1990), Goyal et al. (1987) and Haverkort and Niemegeers (1996);

— for specialised recursive algorithms to evaluate performability distributions for specially structured, typically acyclic, Markovian models, see Goyal and Tantawi (1987), Goyal and Tantawi (1988) and Grassi et al. (1988);

† See http://www.pmccs.net/ and the special issue van Dijk et al. (1992).

More on all these can be found in several surveys, such as Meyer (1992), Meyer (1995) and Haverkort et al. (2001).

Throughout the 1990’s and the early 21st century, performability evaluation grew more mature in terms of the refinement of algorithms and the incorporation of the algorithms in more tools. Markov reward models (Howard 1971a; Howard 1971b), that is, the combination of CTMCs with state and impulse reward structures remained the most prominent model. Model enrichment towards semi-Markovian models (Markov models with more generally distributed state residence times) were addressed, but were not taken up widely.

The use of symbolic state space representation methods, such as multi-terminal decision diagrams (Hermanns et al. 2003) and matrix diagrams (Ciardo et al. 2007), adapted from the field of formal verification and the use of binary decision diagrams, made even larger state spaces possible (Markov chains with hundreds of millions of states). The bottleneck in practical use of such large models now lay in the representation of the non-sparse real probability vectors.

A second important development was the connection made to the field of model checking (Baier and Katoen 2008) through the development of temporal logics, now enhanced with (stochastic) information on timing and reward, and leading to model-checking procedures for CSL (continuous stochastic logic) (Aziz et al. 2000; Baier et al. 2003) and CSRL (continuous stochastic reward logic) (Baier et al. 2000; Baier et al. 2010b). This connection also led to the incorporation of performability-like evaluation techniques into model-checking tools like MRMC (Katoen et al. 2011), PRISM (Kwiatkowska et al. 2009), and (extended) stochastic Petri net tools like GreatSPN (Chiola 1985) and SMART (Ciardo et al. 2003).

2.5. Performability: maturity and offspring (2005 onwards)

Some 30 years after its invention, the notion of performability evaluation, specialised to Markov reward models, is now fully developed. Although refinements in techniques and tools still take place, no new breakthroughs in the performability field per se can be reported (nor are they expected in the future). However, the combination of performability with state-of-the-art model-checking techniques, as presented in this paper, does form a major technical development, as will become clear in the rest of this paper.

As with most well-developed techniques and technology, the novelty often lies in new application fields. The notion of survivability, that is, the ability of a system to recover to agreed-upon levels of quality of service after the occurrence of disasters of some form, can be cast in the performability framework. The case study in this paper, which is based on the earlier work Cloth and Haverkort (2005), is an example of this. Also, some more
recent approaches to assessing system security in a quantitative way have built on the notion of performability evaluation (Haverkort 2006; Sanders 2010).

Another application lies in the field of energy consumption for electronic devices, especially when these are battery-powered. Instead of looking at reward as something one gains from a system, reward can also be seen as a system’s cost, for example, in terms of energy usage. System performance models can then be combined with battery models, leading to integrated analyses (and trade-offs) between system performance and system lifetime. However, this leads to the use of Markov reward models that are time-inhomogeneous with respect to their transition rates and rewards, thus making numerical analysis much more difficult and challenging in practice, as shown in Cloth et al. (2007).

Finally, the general notion of performability evaluation as originally defined by Meyer can also be used in combination with other underlying mathematical structures, that is, models other than Markov reward models. For instance, the base model could be a timed automaton, with or without probabilities or stochastic timing, and with or without nondeterminism. The underlying mathematical structure is then no longer a plain Markov reward model, but a discrete-continuous hybrid system describing systems of coupled non-linear partial differential equations, which leads to new challenges for numerical solution – see, for instance, Abate et al. (2008), Abate et al. (2011), Berendsen et al. (2006) and Larsen and Rasmussen (2008).

3. Markov reward models

This section introduces some basics concerning Markov reward models (MRMs). We consider continuous-time models, which means that the core behaviour of an MRM is given as a continuous-time Markov chain (CTMC). Basically, a CTMC is a finite-state automaton where transitions are labelled by (the rates of) negative exponential distributions. Recall that a non-negative continuous random variable \(X \) is exponentially distributed with rate \(\lambda \in \mathbb{R}_{>0} \) if the probability of \(X \) being at most \(t \) (where \(t \) is a time parameter) is given by

\[
F_X(t) = \Pr(X \leq t) = 1 - e^{-\lambda t}
\]

for \(t \geq 0 \), and has mean \(1/\lambda \).

Definition 3.1 (CTMC). A labelled continuous-time Markov chain (CTMC) \(\mathcal{C} \) is a tuple \((S, R, L)\) where:

- \(S \) is a finite set of states,
- \(R : S \times S \to \mathbb{R}_{>0} \) is the rate matrix; and
- \(L : S \to 2^{AP} \) is the labelling function, which assigns to each state \(s \in S \) the set \(L(s) \) of atomic propositions \(a \in AP \) that are valid in \(s \).

A state \(s \) is said to be absorbing if and only if \(R(s, s') = 0 \) for all states \(s' \).

The state residence time of a state \(s \) in a CTMC is determined by its outgoing rates \(R(s, \cdot) \). More precisely, the residence time of \(s \) is exponentially distributed with rate

\[
E(s) = \sum_{s' \in S} R(s, s').
\]
Accordingly, the probability to exit state s within t time units is given by

$$\int_0^t E(s) e^{-E(s)t} dt.$$

On leaving state s, the probability that the next state is s' equals

$$R(s, s') \frac{E(s)}{E(s)},$$

or $P(s, s')$ for short. Combining these two ingredients, we get that the probability of making the transition $s \rightarrow s'$ within t time units is

$$P(s, s') \int_0^t E(s) e^{-E(s)t} dt.$$

As a running example, we will model the failure behaviour of the Hubble space telescope (HST), which is a well-known orbiting astronomical observatory. In particular, we focus on the steering unit, which contains six gyroscopes. They report any small movements of the spacecraft to the HST pointing and control system. The computers then command the spinning reaction wheels to keep the spacecraft stable or moving at the desired rate in order to avoid the telescope pointing device from staggering. This is of particular importance in preventing pictures taken by the telescope from being blurred. The system works by comparing the HST motion relative to the axes of the spinning masses inside the gyroscopes. Due to the possibility of failure, the gyroscopes are arranged in such a way that any group of three gyroscopes can keep the telescope operating with full accuracy. With fewer than three gyroscopes, the telescope turns into sleep mode and a Space Shuttle mission must be undertaken to repair it. Without operational gyroscopes, the telescope runs the risk of crashing. Hubble is the only telescope designed to be serviced in space by astronauts. Four servicing missions were performed between 1993 to 2002. Servicing Mission 3A (1999) was initiated after three of the six on-board gyroscopes had failed (a fourth failed a few weeks before the mission, rendering the telescope incapable of performing observations).

Example 3.2. We model the HST and the failing behaviour of its gyroscopes as a CTMC. We make the following (not necessarily realistic) assumptions about the timing behaviour of the telescope: each gyroscope has an average lifetime of 10 years, the average preparation time of a repair mission is two months, and to turn the telescope into sleep mode takes $1/100$ years (about 3.5 days) on average. Assuming a base time scale of a single year, the real-time probabilistic behaviour of the failure and repair of the gyroscopes is now modelled by the CTMC of Figure 1. This model can be understood as follows. The mean residence time of a state is the reciprocal of the sum of its outgoing transition rates. In state 6, for instance, one out of 6 gyroscopes may fail. As these failures are stochastically independent and as each gyroscope fails with rate $1/10$, this state has outgoing rate $6/10$. If fewer operational gyroscopes are available, these rates decrease proportionally, and state residence times become larger. In state 2, there are two possibilities: either one of the remaining two gyroscopes fails (with probability 1000/1002), or the telescope is turned into sleep mode (with probability 2/1002). The mean residence time of state 2 is 10/1002.
Fig. 1. A simplified CTMC model of the Hubble space telescope.

In practice, we can assume that during a repair, all failed gyroscopes will be replaced, and the system restarts as new; since the dominant delay is the mission preparation time, the rates of going from any of the sleep states to the initial state are equal.

An MRM is now given as a CTMC enriched with the notion of a cost, or, dually, a gain. This is done in two ways. The costs associated with transitions, which are called *impulse rewards*, are constant non-negative real values that are incurred on performing a transition. Thus, on making a transition between state \(s \) and \(s' \) with impulse reward \(\iota(s, s') \), a reward of \(\iota(s, s') \) is earned. Similarly, a cost rate is associated with states, and is called a *state reward*. The intuition is that residing \(t \) time units in a state with cost rate \(\rho(s) \) leads to a reward of \(\rho(s) \cdot t \) being earned.

Definition 3.3 (Markov reward model). A labelled Markov reward model (MRM) \(\mathcal{M} \) is a triple \((C, \iota, \rho) \) where \(C \) is a labelled CTMC, \(\iota : S \times S \to \mathbb{R}_{\geq 0} \) assigns *impulse rewards* to pairs of states and \(\rho : S \to \mathbb{R}_{\geq 0} \) assigns a *reward rate* to each state \(s \in S \).

At this point we should explain why MRMs are considered as the central model in this paper, and indeed in performability analysis in general. The incorporation of stochastic timing is motivated by the fact that failures and repairs, which are the key events of interest in performability, do indeed occur in a stochastic manner since their occurrence is random. Given that, the negative exponential distribution is a specific, though rather reasonable, choice, especially for failures. It is well known that the exponential distribution maximises the entropy (if only the mean failure rate is known, the most appropriate stochastic approximation is by means of an exponential distribution with that mean). For repairs, one might also consider other distributions, such as a uniform distribution or combinations of uniform and deterministic distributions. However, these distributions can be matched arbitrarily closely by phase-type distributions (at the cost of state-space increase), which are defined as the time until absorption in a CTMC. Finally, MRMs turn out to provide a good balance between expressivity on the one hand and the analysis possibilities on the other – with other stochastic assumptions, the analysis would become much more involved.

Example 3.4. One of the main tasks of the HST is to take bright pictures of astronomical targets. A key instrument is the High Speed Photometer (HSP), which was designed to
measure the brightness and polarity of rapidly varying celestial objects. It can observe in the ultraviolet, visible and near infra-red regions of the spectrum at a rate of one measurement per 10 μsec (which amounts to about 32·10^{10} measurements per year). Observations are still possible with fewer gyroscopes (up to two), but the area that can be viewed is then more restricted, and observations requiring very accurate pointing are more difficult. We can model this effect using state rewards by assuming that with 6 gyroscopes, a 100% coverage is possible, which gradually decays to 20% for two gyroscopes. Accordingly:

\[\rho(6) = 32 \cdot 10^{10} \]
\[\rho(5) = \frac{4}{5} \cdot \rho(6) \]
\[\rho(4) = \frac{3}{5} \cdot \rho(6) \]
\[\rho(3) = \frac{2}{5} \cdot \rho(6) \]
\[\rho(2) = \frac{1}{5} \cdot \rho(6). \]

All other states have state reward zero: in particular, we assume that no observations are possible in sleep mode.

Alternatively, one can consider the angular measurement of one of the other key instruments of the HST, the Wide Field Camera (WFC3). It is the HST’s most recent and technologically advanced instrument (installed in 2009) for taking images in the visible spectrum. Its optical channel covers 164 by 164 arcsec (arcsec is the unit of angular measurement and amounts to 1/60 of one degree), which is about 8.5% of the diameter of the full moon as seen from the earth. In a similar way to the above, we assume that with 6 gyroscopes, 100% coverage is possible, and this gradually decays to 20% for two gyroscopes. Using \(\hat{\rho}(6) = 164^2 \), we define \(\hat{\rho}(\cdot) \) as above. However, as the WFC3 can still make measurements when the gyroscopes are in sleep mode, we have

\[\hat{\rho}(\text{sleep2}) = \hat{\rho}(2) = 0.2 \cdot \hat{\rho}(6), \]

and let

\[\hat{\rho}(\text{sleep1}) = \hat{\rho}(1) = 0. \]

Finally,

\[\hat{\rho}(\text{crash}) = 0. \]

As an example of impulse rewards, we consider the switching and repair costs between the different operational modes of the HST. For instance, switching from an operational mode to a sleep mode requires physical changes of the HST, and repair costs are typically huge since a space mission will need to be prepared and undertaken. A hypothetical
reward structure is
\[
\begin{align*}
i(2, \text{sleep2}) &= i(1, \text{sleep1}) = 1 \\
i(\text{sleep1}, 6) &= i(\text{sleep2}, 6) = 10^8 \\
i(\text{sleep1}, \text{crash}) &= i(1, \text{crash}) = 10^{12}.
\end{align*}
\]

Here, we assume for simplicity that a crash is 10,000 times more expensive than a repair. All other transitions have impulse reward zero.

Runs of MRMs are formalised as maximal paths, that is, paths that are not extensible: an infinite path \(\sigma\) through an MRM is a sequence \(s_0, t_0, s_1, t_1, s_2, t_2, \ldots\) where for \(i \in \mathbb{N}\), we have \(s_i \in S\), \(t_i \in \mathbb{R}_{>0}\), and \(R(s_i, s_{i+1}) > 0\). A finite path is a sequence \(s_0, t_0, s_1, t_1, s_2, t_2, \ldots, s_n, t_n\) where for \(0 \leq i \leq n - 1\), the requirements are the same as for an infinite path, but in addition we also have \(E(s_n) = 0\) and \(t_n = \infty\). Intuitively, states \(s_i\) are visited along the path \(\sigma\), and the residence time in state \(s_i\) equals \(t_i\). For \(i \in \mathbb{N}\), we let \(\sigma[i] = s_i\) be the \((i+1)\)th state of \(\sigma\) if it is defined. For \(t \in \mathbb{R}_{>0}\) and \(i\) the smallest index with \(t < \sum_{j=0}^{i} t_j\), let \(\sigma[t] = \sigma[i]\), which is the state occupied in path \(\sigma\) at time \(t\). The set of all maximal paths starting in state \(s\), that is, \(s_0 = s\), is denoted by \(\text{Path}(s)\). The next definition formalises the reward that is accumulated along a path \(\sigma\) up to some time instant \(t\).

Definition 3.5 (cumulative reward). Let \(\sigma = s_0, t_0, s_1, t_1, s_2, t_2, \ldots\) be a path of the MRM \(\mathcal{M}\) and \(t = \sum_{j=0}^{k-1} t_j + t'\) with \(t' < t_k\). The cumulative reward of \(\sigma\) up to time \(t\) is defined by
\[
y(\sigma, t) = \sum_{j=0}^{k-1} t_j \cdot \rho(s_j) + t' \cdot \rho(s_k) + \sum_{j=0}^{k-1} i(s_j, s_{j+1}).
\]

Example 3.6. Consider the following behaviour of our Hubble telescope model:
\[
\sigma = 6, 3, 5, 3, 4, 1, 3, \frac{1}{2}, 2, \frac{1}{1000}, \text{sleep2}, 3, \text{sleep1}, \frac{1}{2}, 6, \ldots
\]
where the boldface elements denote states and the other numbers denote the state residence times. So, for example, \(\sigma[3] = 3\), \(\sigma[9] = \text{sleep2}\). Consider the reward function \(\rho\) defined earlier, that is, the number of measurements by the HSP per unit of time. In particular, all impulse rewards in this case are zero. Hence we get
\[
y(\sigma, 9) = 3 \cdot \rho(6) + 3 \cdot \frac{4}{5} \rho(6) + 1 \cdot 3 \rho(6) + \frac{1}{2} \cdot \frac{2}{5} \rho(6) + \frac{1}{1000} \cdot \frac{1}{5} \rho(6) + \frac{449}{1000} \rho(6),
\]
which means that in total about \(193 \cdot 10^{10}\) observations have been made in the first 9 operational years of the telescope.

We can now define a probability space on measurable sets of maximal paths of an MRM using cylinder sets. We will not dwell here on the technical details of this definition (see Baier et al. (2003) for more information), but just use \(\text{Pr}\) to denote the probability measure on the induced sigma-algebra. Let the transient probability
\[
\pi(s, s', t) = \text{Pr}_s\{\sigma \in \text{Path}(s) \mid \sigma[t] = s'\}
\]
denote the probability of being in state s' at time t given initial state s. Here, we use Pr_s to denote the probability measure on measurable sets of maximal paths with state s as starting state. The steady-state probability of being in state s', given that the MRM starts in state s, is given by

$$\pi(s, s') = \lim_{t \to \infty} \pi(s, s', t).$$

This limit always exists for finite MRMs. If the steady-state distribution does not depend on the starting state s, we simply write $\pi(s')$ instead of $\pi(s, s')$. For $S' \subseteq S$, we use

$$\pi(s, S') = \sum_{s' \in S'} \pi(s, s')$$

to denote the steady-state probability for set S'. In a similar way, $\pi(s, S', t)$ is defined for time t.

Definition 3.7 (expected state rewards). The expected long-run reward rate while residing in state s' having started in s is defined by

$$\rho(s, s') = \left(\rho(s') + \sum_{u \in S} P(u, s') \cdot \iota(u, s') \right) \cdot \pi(s, s'). \quad (1)$$

The expected instantaneous reward rate at time t while residing in s' having started in s is given by

$$\rho(s, s', t) = \left(\rho(s') + \sum_{u \in S} P(u, s') \cdot \iota(u, s') \right) \cdot \pi(s, s', t). \quad (2)$$

The expected accumulated reward at time t while residing in state s' having started in s is defined by

$$EY(s, s', t) = \int_0^t \rho(s, s', x) \, dx. \quad (3)$$

To explain the definition of the expected long-run reward rate for state s', intuitively, the term $\rho(s') \cdot \pi(s, s')$ gives the expected state reward rate at s' for an infinite time horizon. In order to take the impulse rewards into account, we consider the average reward to reach s' from its predecessors and scale this with $\pi(s, s')$, the frequency of visiting s' in the long run. The expected instantaneous reward rate at time t is defined analogously by replacing the steady-state probability $\pi(s, s')$ by the transient-state probability $\pi(s, s', t)$.

The above notions can be generalised to sets of states in the following straightforward manner. For $S' \subseteq S$, let

$$\rho(s, S') = \sum_{s' \in S'} \rho(s, s'),$$

and, similarly,

$$\rho(s, S', t) = \sum_{s' \in S'} \rho(s, s', t)$$
and

\[\text{EY}(s, S', t) = \sum_{s \in S'} \text{EY}(s, s', t). \]

In addition, for time interval \(I \), let

\[\text{EY}(s, S', I) = \int_I \rho(s, S', x) \, dx. \]

Example 3.8. We consider some expected reward measures for the Hubble telescope. For this example, it does not make sense to combine any of the impulse and state reward structures, so we will just focus on one of them.

First, we consider the expected long-run average angular measurement (the measure of Equation (1)) of the telescope using reward function \(\hat{\rho} \). This number turns out to be zero for all states. This is because we will always finally enter the state ‘crash’ and never leave it again. Thus, in the long run, the MRM will almost surely be in this state. Because in this state no measurements are possible, the final value is indeed zero.

Next we consider the average rate of measurements at time \(t \) (the measure of Equation (2)), using reward structure \(\rho \). We obtain

\[
\begin{align*}
\rho(6, 1, 2) & \approx 0.0 \cdot 0.0000004 \approx 0 \\
\rho(6, 2, 2) & \approx 6.4 \cdot 0.0001938 \approx 0.00124032 \\
\rho(6, 3, 2) & \approx 12.8 \cdot 0.0654052 \approx 0.83718656 \\
\rho(6, 4, 2) & \approx 19.2 \cdot 0.2217154 \approx 4.25693568 \\
\rho(6, 5, 2) & \approx 25.6 \cdot 0.4016865 \approx 10.2831744 \\
\rho(6, 6, 2) & \approx 32.0 \cdot 0.3082933 \approx 9.8653856 \\
\rho(6, \text{sleep2}, 2) & \approx 0.0 \cdot 0.0026254 \approx 0 \\
\rho(6, \text{sleep1}, 2) & \approx 0.0 \cdot 0.0000761 \approx 0 \\
\rho(6, \text{crash}, 2) & \approx 0.0 \cdot 0.0000039 \approx 0
\end{align*}
\]

If we sum up all these values to \(\rho(6, S, 2) = \sum_{s \in S} \rho(6, s, 2) \), we find that the average rate of measurement at time 2 having started in state 6 is about 25.24392256.

Similarly, we can consider the expected total operation cost until time 2 (measure of Equation (3)) when using the instantaneous reward \(\iota \). It turns out that

\[\text{EY}(s, S, 2) \approx 4812316.14144378. \]

This arguably high cost is due to the high cost of a crash. Figure 2 plots the average number of measurements (using the reward structure \(\rho \) and the measure of Equation (2)) and the expected cost (using the reward structure \(\iota \) and the measure of Equation (3)) for time bounds 0 through 7.

4. Specifying performability

4.1. A logic for performability guarantees

The first step in our approach is to enable the specification of measures of interest, in particular, a broad range of performability measures, on Markov reward models. In order
to do this, we adopt temporal logic, in particular, branching temporal logics. As a basis, we use CTL (Computation Tree Logic (Clarke et al. 1986)), which is an extension of propositional logic that allows us to express properties that refer to the relative order of events. Statements can be made about either states or paths, that is, the sequences of states that model the system evolution. While CTL allows us to state properties such as ‘all paths only visit legal states and eventually end up in a goal state’, CSRL (Continuous Stochastic Reward Logic) additionally allows us to specify:

1. the likelihood with which certain behaviours occur;
2. the time frame in which certain events should happen;
3. the costs (or rewards) that are allowed to be made.

State formulae (ranged over by capital Greek letters) are formulae in standard propositional logic with tt (true) and atomic propositions being the base cases. Recall that atomic propositions are used as state labels in our MRMs. This corresponds to the first three clauses in Definition 4.1. Each state formula Φ induces a set of states

\[\text{Sat}_s(\Phi) = \{ s \in S \mid s \models \Phi \} \]

satisfying the formula. In order to address long-run probabilities, expected reward rates and expected accumulated reward, we use \(L, E \) and \(C \) as operators in our logic. They take as basis a set of states characterised by the formula \(\Phi \), and an interval. For instance, \(L_K(\Phi) \) holds if the probability in the long run of being in a state in \(\text{Sat}_s(\Phi) \) lies in the interval \(K \subseteq [0, 1] \), and \(E_j(\Phi) \) holds if the expected reward rate in \(\text{Sat}_s(\Phi) \) at time \(t \) lies in \(J \). Finally, the standard next and until operators are used as building blocks for our path formulae, except that both are enriched with two intervals: one constraining the elapsed time along a path and the other constraining its accumulated reward. The state formula \(P_K(\varphi) \) then holds in state \(s \) whenever the probability of all paths starting in state \(s \) that fulfil path formula \(\varphi \) lies in \(K \). Pulling this all together, we get the following syntax.

Fig. 2. Plots for the expected reward at or until time \(t \) for the Hubble telescope.
Definition 4.1 (CSRL syntax). Let $I, J, K \subseteq \mathbb{R}_{\geq 0}$ be non-empty intervals (with rational bounds allowing intervals of the form $[c, \infty)$) with $K \subseteq [0, 1]$ and $t \in \mathbb{R}_{\geq 0}$. The syntax of CSRL-formulae over the set of atomic propositions AP is defined inductively as follows:

— tt is a state formula.
— Each atomic proposition $a \in AP$ is a state formula.
— If Φ and Ψ are state formulae, then so is $\Phi \land \Psi$.
— If Φ is a state formula, then so are $\neg \Phi, L_{K}(\Phi), E_{I}(\Phi), E_{J}(\Phi)$ and $C_{J}^{s}(\Phi)$.
— If ϕ is a path formula, then $P_{K}(\phi)$ is a state formula.
— If Φ and Ψ are state formulae, then $X_{J}^{s} \Phi$ and $\Phi \circ_{J}^{s} \Psi$ are path formulae.

We refer to the sublogic of CSRL that does not contain E and C as CSRL$^{-}$.

Definition 4.2 (CSRL semantics). The relation \models for CSRL state formulae is defined by

$$s \models tt$$

$$s \models a \iff a \in L(s)$$

$$s \models \neg \Phi \iff s \not\models \Phi$$

$$s \models \Phi \land \Psi \iff s \models \Phi \land s \models \Psi$$

$$s \models L_{K}(\Phi) \iff \pi(s, \text{Sat}^{\Phi}(s)) \in K$$

$$s \models E_{I}(\Phi) \iff \rho(s, \text{Sat}^{\Phi}(s)) \in I$$

$$s \models E_{J}(\Phi) \iff \rho(s, \text{Sat}^{\Phi}(s), t) \in J$$

$$s \models C_{J}^{s}(\Phi) \iff \text{EY}(s, \text{Sat}^{\Phi}(s), I) \in J$$

$$s \models P_{K}(\phi) \iff \text{Pr}(s \models \phi) \in K \text{ where } \text{Pr}(s \models \phi) = \text{Pr}_{s}\{\sigma \in \text{Path}(s) | \sigma \models \phi\}.$$

For path formulae and path $\sigma = s_{0}, t_{0}, s_{1}, t_{1}, s_{2}, t_{2}, ...$, the relation \models is defined by

$$\sigma \models X_{J}^{s} \Phi \iff \sigma[1] \text{ is defined and } \sigma[1] \models \Phi \text{ and } t_{0} \in I \text{ and } y(\sigma, t_{0}) \in J$$

$$\sigma \models \Phi \circ_{J}^{s} \Psi \iff \exists t \in I. (\sigma \circ t \models \Psi \land (\forall t' \in [0, t). \sigma \circ t' \models \Phi) \land y(\sigma, t) \in J).$$

Here, Pr_{s} denotes the probability measures of the sigma-algebra on the set of maximal paths in an MRM starting in state s – the definition is fairly standard and can be found in Baier et al. (2003). Stated in words, the path $\sigma = s_{0}, t_{0}, s_{1}, t_{1}, ...$ satisfies the formula $X_{J}^{s} \Phi$ whenever s_{1} satisfies Φ, t_{0} lies in I, and the earned reward $\rho(s_{0})t_{0} + t(s_{0}, s_{1})$ lies in J. Path σ fulfils $\Phi \circ_{J}^{s} \Psi$ whenever after t time units (with $t \in I$), a Ψ-state is reached, and prior to that, only Φ-states are visited. Recall that $\sigma \circ t$ denotes the current state in σ at time instant t, and that $y(\sigma, t)$ denotes the accumulated reward along the prefix of σ up to time t.

We will use two convenient abbreviations as follows. Let $\diamond_{J}^{s} \Phi$ denote $tt \circ_{J}^{s} \Phi$. Given that tt holds in any state, this formula requires a state satisfying Φ that is eventually reached at some time point $t \in I$ such that the accumulated reward up to t lies in the interval J. The logical dual of \diamond, denoted \Box, is defined by

$$P_{\geq p}(\Box_{J}^{s} \Phi) \equiv P_{\leq p}(\diamond_{J}^{s} \neg \Phi).$$

We adopt the notational convention that intervals of the form $[0, \infty)$ are omitted from the modalities next, until, \diamond and \Box. Also, as above, we abbreviate probability intervals, for example, $[0, p]$ is written as $\leq p$ and $[0, p)$ as $< p$. For conciseness, we write $'= t'$ for point
intervals of the form $[t, t]$ and `t' for intervals of the form $[0, t]$. Similar conventions are adopted for reward intervals.

Example 4.3. We can specify some measures of interest for our Hubble telescope, where we concentrate on the reward function $\hat{\rho}$ denoting the number of observations per time unit. For instance,

$$\mathbb{P}_{\geq 0.99999}(\diamondsuit^{\leq 32} \neg \text{crash})$$

requires with at least ‘five nines’ likelihood that the telescope does not crash within the next 32 years. Alternatively,

$$\mathbb{P}_{\geq 0.9}(\diamondsuit^{=32} \neg (\text{crash} \lor \text{sleep1} \lor \text{sleep2} \lor 1))$$

holds when after 32 years (a transient probability), the telescope has at least two operational gyroscopes (and thus can make observations) in at least 9 out of 10 cases. The fact that in such an observational mode, the average coverage of the WFC3 exceeds 130\times130 arcsec is expressed by the formula

$$\mathbb{E}_{=130^2}^{\leq 32} (\neg (\text{crash} \lor \text{sleep1} \lor \text{sleep2} \lor 1))$$

This should not be confused with the formula

$$\mathbb{G}_{=130^2}^{\leq 32} (\neg (\text{crash} \lor \text{sleep1} \lor \text{sleep2} \lor 1))$$

which expresses the fact that the total coverage of the WFC3 in the first 32 years exceeds 130\times130 arcsec. Finally, we consider the impulse reward function ι, which denotes the repair and switching costs of the telescope. The formula

$$\mathbb{P}_{\leq 0.000001}(\diamondsuit^{\leq 50} \neg (\text{crash} \lor \text{sleep1} \lor \text{sleep2} \lor 1))$$

asserts that with likelihood at most 10^{-6} within the first 50 years, observations can be made such that the total costs exceed $2\cdot 10^8$. This effectively means that with extremely low probability, two repair missions are needed within the first 50 years.

4.2. Specifying performability measures

Given the logical framework of CSRL, we are led to ask which performability measures can be expressed. First, however, it is important to note that we use the logic to express *constraints* on the measures-of-interest rather than the measures themselves. This is because the boolean interpretation of the logic – a formula either holds or it does not. For instance, we can express the fact that the likelihood that the accumulated reward in a time interval is below or above a threshold, but cannot state the value of the cumulative reward. That is to say, CSRL provides ample means for expressing *performability guarantees* for MRMs. Indeed, CSRL allows us to express guarantees over almost all commonly known performability measures, our point of reference being the list of performability measures given in the seminal papers Smith *et al.* (1988) and Meyer and Sanders (2001), which have been widely adopted within the dependability community.

Table 1 lists the performability measures of Smith *et al.* (1988), together with a specification in CSRL that asserts a guarantee on this measure. For simplicity, we
assume a system that can either be operational or failed, like in the Hubble telescope. Here, it is assumed that failed states are indicated by F (like the proposition crash for the HST) and operational states by $¬F$. For measures (i) and (l) to be specified in CSL, we have to require states of F to be absorbing. Although failed and operational states are usually modelled by binary rewards (for example, zero and one for the modes failed and operational, respectively (Smith et al. 1988)), we use the proposition F since it provides us with more specification flexibility. The second column of Table 1 describes the constraint on performability measures while referring to the random variables $X(t)$ and $Y(t)$ that describes the state of the MRM at time t and the accumulated reward at time t, respectively. The random variable $W(t)$ describes the time-averaged accumulated reward and is defined as $Y(t)/t$. The random variable $A(t)$ indicates the availability of the system and is equal to one if the system is operational at time t, and zero otherwise. In this case, reward one is assigned to the operational states by the state-reward structure ρ, while the non-operational states are assigned reward zero. The third column provides the formal characterisations of the performability measures, and is identical (modulo adaptations to our notation) to those in Smith et al. (1988).

For state s, the atomic proposition at_s uniquely characterises state s, that is, it only holds in state s and not in any other state. Formulae (a) and (b) are guarantees on transient-state and steady-state probabilities. The transient availability at a certain time instant t (measure (c)) expresses (a bound on) the probability of not being in a failed state at time t. Using the \mathbf{IL}-operator, this can also be generalised to infinite time horizons – see measure (d). The reliability measure (e) expresses a probability that the system is up, that is, $\rho(X(t)) \geq 1$ from a certain time instant t on. This time constraint is represented by the time bound of the always (that is, \square) operator, while being reliable is (as before) indicated by $¬F$. Note that the measures (a) through (e) can also be expressed in CSL (Baier et al. 2003).

<table>
<thead>
<tr>
<th>Performability base cases</th>
<th>CSRL formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $\pi(s,t) \in K$</td>
<td>$\mathbf{P}_K(\diamond^{at_s} t)$</td>
</tr>
<tr>
<td>(b) $\pi(s) \in K$</td>
<td>$\mathbf{L}_K(at_s)$</td>
</tr>
<tr>
<td>(c) $A(t) \in K$</td>
<td>$\mathbf{P}_K(\diamond^{\sim t} F)$</td>
</tr>
<tr>
<td>(d) $\lim_{t \to \infty} A(t) \in K$</td>
<td>$\mathbf{L}_K(¬F)$</td>
</tr>
<tr>
<td>(e) $\Pr{ \rho(X(t)) \geq 1, \forall t \geq t' } \in K$</td>
<td>$\mathbf{P}_K(\square^{\geq t} F)$</td>
</tr>
<tr>
<td>(f) $E[r(X(t))] \leq r$</td>
<td>$\mathbf{E}_{\leq r}(tt)$</td>
</tr>
<tr>
<td>(g) $E[Y(t)] \leq r$</td>
<td>$\mathbf{C}_{\leq r}(tt)$</td>
</tr>
<tr>
<td>(h) $\Pr{ Y(t) \leq r } \in K$</td>
<td>$\mathbf{P}_K(\square^{\leq r} tt)$</td>
</tr>
<tr>
<td>(i) $\Pr{ Y(\infty) \leq r } \in K$</td>
<td>distribution of cumulative reward until time t (see case (m))</td>
</tr>
<tr>
<td>(j) $\Pr{ A(t) \leq r } \in K$</td>
<td>$\mathbf{C}_{\leq r}(tt)$</td>
</tr>
<tr>
<td>(k) $E[W(t)] \leq r$</td>
<td>$\mathbf{E}_{\leq r}(tt)$</td>
</tr>
<tr>
<td>(l) $E[W(\infty)] \leq r$</td>
<td>$\mathbf{P}_K(\diamond^{\leq r} tt)$</td>
</tr>
<tr>
<td>(m) $\Pr{ W(t) \leq r } \in K$</td>
<td>distribution of time-average cum. reward up to t</td>
</tr>
<tr>
<td>(n) $\Pr{ W(\infty) \leq r } \in K$</td>
<td>distribution of time-average cum. reward</td>
</tr>
</tbody>
</table>

Table 1. Important performability base cases and their specification in CSRL.
Measures (f) and (g) are straightforward applications of the \(E \) and \(C \) operators, respectively. As there is no need to select a certain set of states, the state subformula simply equals true. Measure (h) expresses the simultaneous distribution of the accumulated reward against time, that is, it expresses the probability for the reward accumulated at time \(t \) to be at most \(r \). This measure is also known as Meyer’s performability distribution (Meyer 1980). As there is no restriction imposed on the type of state reached at time \(t \), the subformula true is used. For an infinite time horizon, the accumulated reward until failure is typically considered. This is expressed by measure (i).

Measure (j) is a special case of measure (m) in which only failed and operational states are distinguished (typically by binary rewards). The CSRL-formula for measure (m) can thus also be applied to (j) without modification. The CSRL-formula for guarantees on the measures (k) and (m) follow directly from the fact that \(W(t) = Y(t)/t \) (for finite \(t \)). Note that the reward bound is \(r \cdot t \) since an accumulated reward \(r \cdot t \) over the interval \([0, t]\) yields a time-averaged accumulated reward \(r \). Measure (n) cannot be specified in CSRL since it is only possible to refer to the expected time-averaged cumulative reward (which is identical to the expected steady-state reward), and not to the probability that the time-averaged cumulative reward is below a given value.

To conclude, we emphasise that CSRL allows us to specify much more complex performability measures than those listed in Table 1. For instance, for cases (f), (g) and (h), we may select a subset of states, for example, those in which the system is guaranteed to offer a certain quality-of-service, that are of interest at time instant \(t \) (rather than considering any state). Moreover, the general syntax of the logic means that nesting of measures is supported naturally. This allows us to specify non-trivial properties such as the transient probability at time \(t \) to be in a state \(s \), say, that guarantees that almost surely the accumulated reward (when starting in \(s \)) within a given deadline \(d \) is at most \(r \) exceeds 0.99 can be expressed by

\[
P_{>0.99}(\Diamond = t \quad P_{=1}(\Diamond < d \quad tt))
\]

4.3. Duality

Inspired by an observation in Beaudry (1978), time and reward constraints are dual in the sense that they can be swapped, provided the MRM is ‘rescaled’ at the same time. To discuss this effect in more detail, we will ignore impulse rewards, that is, we consider MRMs for which \(\iota(s, s') = 0 \) for every pair of states \(s, s' \). For simplicity, we will also omit the component \(\iota \) from an MRM in this section. Given an MRM \(\mathcal{M} = (S, \mathcal{R}, L, \rho) \) with \(\rho(s) > 0 \) for all states \(s \), we consider the dual MRM \(\mathcal{M}^* \) that results from \(\mathcal{M} \) by adapting the exit rates and reward function such that the reward units in state \(s \) in \(\mathcal{M} \) correspond to the time units in state \(s \) in \(\mathcal{M}^* \), and vice versa.

Definition 4.4 (dual MRM). Let MRM \(\mathcal{M} = (S, \mathcal{R}, L, \rho) \) with \(\rho(s) > 0 \) for all states \(s \in S \). The dual MRM is

\[
\mathcal{M}^* = (S, \mathcal{R}^*, L, \rho^*)
\]
where

\[
R^\ast(s, s') = \frac{R(s, s')}{\rho(s)} \quad \rho^\ast(s) = \frac{1}{\rho(s)}.
\]

Intuitively, the transformation of \(M\) into \(M^\ast\) stretches the residence time in state \(s\) by a factor that is proportional to the reciprocal of its reward \(\rho(s)\) if \(0 < \rho(s) < 1\). The reward function is changed similarly. Thus, all states \(s\) for which \(\rho(s) < 1\) are accelerated, while all states \(s\) with \(\rho(s) > 1\) are slowed down. The residence of \(t\) time units in MRM \(M^\ast\) might be interpreted as the earning of \(t\) reward in state \(s\) in \(M\), or (conversely) an earning of a reward \(r\) in state \(s\) in MRM \(M\) corresponds to a residence of \(r\) time units in \(M^\ast\).

The proof of the following theorem can be found in Baier et al. (2010a).

Theorem 4.5 (duality theorem). For MRM \(M = (S, R, L, \rho)\) with \(\rho(s) > 0\) for all \(s \in S\) and CSRL\(^-\) state formula \(\Phi\),

\[
\text{Sat}^{\#}(\Phi) = \text{Sat}^{\#^\ast}(\Phi^\ast),
\]

where \(\Phi^\ast\) is obtained from \(\Phi\) by swapping \(I\) and \(J\) in every subformula in \(\Phi\) of the form \(X^I_J\) or \(\mathcal{U}^I_J\).

This duality result turns out to be of practical importance for checking formulae of the form \(P_K(\Phi_1 \mathcal{U}^I_J \Phi_2)\) where \(I = [0, \infty)\). In such formulae, there is no time constraint, just a constraint on the accumulated (state) reward. Thanks to the duality theorem, the ‘dual’ formula \(P_K(\Phi_1 \mathcal{U}^{I'}_{J'} \Phi_2)\) can be checked on the dual MRM, and efficient procedures exist for such time-bounded formulae. A major restriction, however, is that all state rewards must be strictly positive: this duality result does not hold if \(M\) contains states equipped with a zero reward since the reverse of earning a zero reward in \(M\) when considering \(\Phi\) should correspond to a residence of 0 time units in \(M^\ast\) for \(\Phi^\ast\), which, since the advance of time in a state cannot be halted, is in general impossible. However, the result of Theorem 4.5 applies to some other practical cases: for example, when for each subformula of the form \(\Phi_1 \mathcal{U}^I_J \Phi_2\), we have

\(J = [0, \infty)\)

or

\[
\text{Sat}^{\#}(\Phi_1) \subseteq \{ s \in S \mid \rho(s) > 0 \},
\]

that is, all \(\Phi_1\)-states are positively rewarded. The intuition is that either the reward constraint (that is, time constraint) is trivial in \(\Phi\) (in \(\Phi^\ast\)) or zero-rewarded states are not involved in checking the reward constraint. We define \(M^\ast\) here by setting

\[
R^\ast(s, s') = R(s, s') \quad \rho^\ast(s) = 0
\]

when \(\rho(s) = 0\), otherwise it is defined as above.
Suppose now that the given MRM \(M \) is strongly connected. Then so is \(M^* \), and the steady-state probabilities in \(M \) and \(M^* \) do not depend on the starting state. Hence, the CSRL formula \(L_f(\Phi) \) either holds for all states in \(M \) or for none of them. The same holds for \(M^* \) and CSRL formulae of the form \(E_f(\Phi) \).

Let \(\pi(s) \) and \(\pi^*(s) \) denote the steady-state probability for state \(s \) in \(M \) and \(M^* \), respectively. Then \((\pi(s))_{s \in S} \) is the unique vector such that

\[
\sum_{s \in S} \pi(s) = 1
\]

\[
\sum_{u \in S} \pi(u) \cdot R(u, s) = \pi(s) \cdot E(s).
\]

Recall that

\[
E(s) = \sum_{u \in S} R(s, u)
\]

is the exit rate of state \(s \).

Similarly, \((\pi^*(s))_{s \in S} \) is the unique vector such that

\[
\sum_{s \in S} \pi^*(s) = 1
\]

\[
\sum_{u \in S} \pi^*(u) \cdot R^*(u, s) = \pi^*(s) \cdot E^*(s)
\]

where

\[
E^*(s) = \sum_{v \in S} R^*(s, v).
\]

Since

\[
R(s, v) = \rho(s) \cdot R^*(s, v),
\]

we get

\[
E(s) = \rho(s) \cdot E^*(s).
\]

We now define

\[
q = \sum_{u \in S} \pi(u) \cdot \rho(u)
\]

\[
\chi(u) = \frac{1}{q} \cdot \pi(u) \cdot \rho(u) \quad \text{for all states } u \in S.
\]

So,

\[
\sum_{u \in S} \chi(u) = \frac{1}{q} \cdot \sum_{u \in S} \pi(u) \cdot \rho(u) = 1,
\]

and

\[
\chi(u) \cdot R^*(u, s) = \frac{1}{q} \cdot \pi(u) \cdot \rho(u) \cdot \frac{R(u, s)}{\rho(u)}
\]

\[
= \frac{1}{q} \cdot \pi(u) \cdot R(u, s).
\]
Hence:

\[
\sum_{u \in S} \chi(u) \cdot R^*(u, s) = \frac{1}{q} \cdot \sum_{u \in S} \pi(u) \cdot R(u, s) = \frac{1}{q} \cdot \pi(s) \cdot E(s) = \frac{1}{q} \cdot \pi(s) \cdot \rho(s) \cdot E^*(s) = \chi(s) \cdot E^*(s).
\]

We therefore conclude that \(\chi(s) = \pi^*(s) \) for all states \(s \). As a consequence, we get the duality of the long-run average operator \(\mathbb{L}_K(\cdot) \) and the expected long-run reward operator \(\mathbb{E}_J(\cdot) \) in the following sense.

Theorem 4.6 (duality of long-run average and expected long-run reward). If MRM \(\mathcal{M} \) is strongly connected, we have

\[
\text{Sat}^d(\mathbb{L}_K(\Phi)) = \text{Sat}^{d^*}(\mathbb{E}_K^*(\Phi^*)),
\]

where \(K^* = \{ x \mid x \cdot q \in K \} \) and \(q \) is defined as above.

Proof. The calculation above shows that

\[
\pi^*(u) = \chi(u) = \frac{1}{q} \cdot \rho(u) \cdot \pi(u)
\]

for all states \(u \in S \). This yields

\[
s \in \text{Sat}^d(\mathbb{L}_K(\Phi)) \text{ iff } \sum_{u \in \text{Sat}^d(\Phi)} \pi(u) \in K
\]

\[
\text{iff } \sum_{u \in \text{Sat}^d(\Phi)} \frac{1}{q} \cdot \pi(u) \in K^*
\]

\[
\text{iff } \sum_{u \in \text{Sat}^d(\Phi^*)} \pi^*(u) \cdot \frac{1}{\rho(u)} \in K^*
\]

\[
\text{iff } \sum_{u \in \text{Sat}^d(\Phi^*)} \pi^*(u) \cdot \rho^*(u) \in K^*
\]

\[
\text{iff } s \in \text{Sat}^{d^*}(\mathbb{E}_K^*(\Phi^*)).
\]

The practical relevance of this theorem is as follows. Efficient algorithms exist to check whether \(s \models \mathbb{L}_K(\Phi) \). In fact, for strongly connected MRMs, this boils down to computing steady-state probabilities, which can be done by solving a system of linear equations in the size of the state space. The above theorem shows that in order to check whether \(s \models \mathbb{L}_K(\Phi) \), the same procedure can be followed on the dual MRM.

5. Model checking

Suppose we are confronted with a (finite) Markov reward model originating from some high-level formalism such as a stochastic reward net, a stochastic activity network or
Model checking for performability

771

a Markovian queueing network, and a performability guarantee formulated in the logic described above. So how do we compute the set of states satisfying this guarantee? The basic computational procedure is a simple recursive descent over the logical formula. This means, basically, that the formula is broken down into its subformulae, that the computation starts with the simplest subformulae, and once this step is completed, then considers the formulae that combine subformulae using a single operator, and so on, until the entire formula is captured. Considering the parse tree of the formula, this computation is just a bottom-up traversal over the parse tree, where at each node (representing a subformula) a single algorithm is invoked. In this way, formulae of arbitrary complexity can be treated in a uniform manner. This recursive descent mechanism is adopted from model-checking algorithms (Baier and Katoen 2008; Clarke et al. 1986). The main difference compared with traditional model-checking algorithms, where all computations involve graph algorithms, fixed-point computations and the like, is that in our setting, numerical algorithms are needed to reason about the probabilities and reward aspects. To achieve this, well-known techniques for solving systems of linear equations, determining long-run probabilities, and transient probabilities (such as uniformisation (Gross and Miller 1984)) are embedded in the tree traversal as subroutines.

We will explain the computational procedure in a bit more detail by means of an example. Consider the formula

\[\mathbf{P}_{\geq 0.99999} \left(\Box_{\leq 500} \mathbf{E}_{[90,100]} (\text{operational} \land \neg \text{idle}) \right). \]

We are thus interested in computing the states in an MRM from which, with at least ‘five-nine’ dependability (that is, probability at least 0.99999), the computation will only visit certain states in the next 500 time units while consuming in total at most 10 units of reward. The states in which the system has to reside for the next 500 time units should guarantee that starting from there, the expected costs to keep the system, when in equilibrium, functioning in operational mode (that is, non-idling) are between 90 and 100 reward units. Note that we assume that operational and idle are propositions of the MRM under study. Before continuing with the explanation of our computational procedure, it is worth spending a few moments thinking about how to determine the required states – it is not easy.

We will start by explaining the model-checking algorithm. We begin by determining the subformulae of the guarantee at hand. The above formula has the following subformulae:

- operational
- idle
- \(\neg \text{idle} \)
- \(\text{operational} \land \neg \text{idle} \)
- \(\mathbf{E}_{[90,100]} (\text{operational} \land \neg \text{idle}) \)
- and the entire formula.

The computation starts with the simplest subformulae, that is, operational and idle. Since these are the most elementary formulae of our logical framework, we will assume that their validity in any state of the model can be determined directly. In the case of a stochastic reward net, for instance, the operational and idle states could be states with a
certain number of tokens in a certain place, whereas in a Markovian queueing network, they could refer to states with a certain queue occupancy. The computation of the set of states satisfying \textit{idle}, denoted by \texttt{Sat}(idle), is therefore straightforward. The same applies to computing \texttt{Sat}(\textit{operational}).

The parse tree traversal proceeds by considering the next-to-simplest subformulae, that is, \textit{\neg idle}. This set is simply obtained by complementing \texttt{Sat}(idle), that is,

\[
\texttt{Sat}'(\textit{\neg idle}) = S - \texttt{Sat}'(\textit{idle}),
\]

where \(S\) is the entire set of states in the MRM under consideration. We thus see that the logical operator negation is interpreted using its set-theoretical analogue: complementation. The same holds for conjunction (and the other propositional logical operators). Accordingly,

\[
\texttt{Sat}'(\textit{operational} \land \textit{\neg idle}) = \texttt{Sat}'(\textit{operational}) \cap \texttt{Sat}'(\textit{\neg idle}).
\]

For brevity, we will let \(U = \texttt{Sat}'(\textit{operational} \land \textit{\neg idle})\). The next step in the procedure is to compute the states satisfying \(E_{[90,100]}(U)\), where \(1_U\) is the characteristic function of the set \(U\), that is, \(1_U(s) = 1\) if and only if \(s \in U\). That is to say, we have to determine the set of states from which the system can be started and that guarantee an expected long-run reward in states in \(U\) to be in the interval \([90, 100]\). Since we are following a recursive descent procedure, the set \(1_U\) has already been computed. Following Definition 3.7, we proceed by determining

\[
\rho(s, s') = \left(\rho(s') + \sum_{u \in S} P(u, s') \cdot 1(u, s') \right) \cdot \pi(s, s')
\]

where \(\pi(s, s')\) denotes the steady-state probability of state \(s'\) when starting in state \(s\). We then have

\[
s \in \texttt{Sat}' \left(E_{[90,100]}(\textit{operational} \land \textit{\neg idle}) \right) \iff \sum_{u \in U} \rho(s, u) \in [90, 100].
\]

In the general case, the steady-state probabilities depend on the initial state – certain states may not even be reachable, depending on where we start. Using a graph analysis, which is basically a depth-first traversal through the graph underlying the MRM, we then determine the strongly connected components (SCCs) that are \textit{terminal}. A terminal SCC is a subgraph in which each state can reach any other state within the subgraph, but no other states. Hence, once we reach such a terminal SCC, we cannot leave it again; we can only cycle through that component, and can never escape it. Furthermore, the steady-state probabilities of each state in a terminal SCC are independent of which state in the terminal SCC we start from. For each such component, the steady-state probabilities are determined by solving a system of linear equations, which can be done using standard means. For terminal SCC \(T\), we let \(\pi_T(s')\) be the steady-state probability for being in state \(s'\) in \(T\) in equilibrium under the condition that we start in some state of \(T\). In order to determine \(\pi(s, s')\), we will now determine the probability

\[
\chi_{s,T} = \Pr\{s \models \Diamond T\}
\]

of reaching the terminal SCC T from state s. This is done for all terminal SCCs, and can be computed by solving the following system of linear equations for all states $s \in S$ from which T is reachable:

$$x_{s,T} = \begin{cases} 1 & \text{if } s \in T \\ \sum_{s' \in S} P(s, s') \cdot x_{s',T} & \text{otherwise.} \end{cases}$$

If T is not reachable from s, the $x_{s,T}$ is set to zero. The above equation can be solved using standard means (for example, Gauss–Seidel).

As a final step in the verification process, we will now determine the set of states satisfying the formula $G = \text{Sat}^0(\log \land \neg \text{idle})$ where G is as computed before. Note first that this formula is equivalent to $G = S \setminus G$, that is, the complement of G with respect to the total set of states S. We now consider a path $s_0 s_1 s_2 \ldots$ through the MRM. (For simplicity, we will omit the state residence times.) Once a state in G has been reached, knowing which states will be visited afterwards is completely irrelevant. That is, when $s_k \in G$, the fact of whether later states s_j (for $j > k$) are in G or not has no effect on whether the path satisfies $\diamondsuit I_G$. This means we can treat $s_k \in G$ as an absorbing state. This applies to all states in G. So, prior to doing any computational step, the MRM \mathcal{M} is changed into \mathcal{M}' by making all states in G absorbing and turning their reward into zero. The number of reachable states in \mathcal{M}' is never larger than that in \mathcal{M}. It is not difficult to see that it now suffices to check the formula

$$\mathbb{P}_{\leq 500}^0(\log_{\leq 10} 1_G)$$

in the newly obtained MRM \mathcal{M}'. This formula should be compared with the formula for the distribution of the cumulative reward – see performability measure (h) in Table 1. The shapes are very similar, and, indeed, we have transformed the verification of our original formula into a (standard) performability measure calculation on another MRM. Thus we are left to determine the transient reward probability to be in a state in G at time 500 when starting from an arbitrary state in the (transformed) MRM. Using Meyer’s original terminology, where $X(t)$ denotes the state of the MRM at time t and $Y(t)$ denotes the random variable for the accumulated reward until time t, we get

$$s \models \mathbb{P}_{\leq 500}^0(\log_{\leq 10} 1_G) \iff \Pr\{Y(500) \leq 10 \land X(500) \in G \mid X(0) = s\} \leq 0.0001.$$

A discussion of the numerical techniques required to obtain this transient reward measure is beyond the scope of this paper – see Baier et al. (2010a) for a detailed discussion of appropriate numerical procedures; here we will just mention that the techniques described in Qureshi and Sanders (1994b), Sericola (2000) and Tijms and Veldman (2000) are all potential candidates.
6. Bisimulation

Bisimulation and simulation relations play a central role in the design of hierarchical and compositional systems, but are also used for abstraction purposes. Bisimulation and simulation relations provide formal criteria of when two systems (or two states of a system) have the same observable branching behaviour (bisimulation), or when the observable branching behaviour of one system is covered by the observable branching behaviour of another one (simulation). The underlying notion of ‘observability’ can refer to action names for transitions and a classification of the actions into visible and invisible ones, or it can refer to atomic propositions that serve as observables of the states. In addition, several quantitative parameters (for example, timing constraints or reward functions) can be taken into account to ensure that the values of the relevant performance measures are the same for bisimilar systems.

Inspired by Milner’s seminal work (Milner 1971; Milner 1980) on (bi)simulation relations for non-probabilistic systems, Larsen and Skou (1991) introduced probabilistic bisimulation for discrete-time probabilistic systems. Roughly speaking, their notion of bisimulation equivalence rephrased for (discrete-time) Markov chains with state labels requires that bisimilar states satisfy the same atomic propositions, and that the probabilities of moving within one step to each of the bisimulation equivalence classes agree. An analogous definition of bisimulation equivalence for CTMCs (rephrased for the state-labelled approach) is that bisimilar states cannot be distinguished by the state labels and move with the same total rates to each of the bisimulation equivalence classes. This notion of bisimulation equivalence for CTMCs fits in nicely with the notion of lumpability (Howard 1971a), and can be seen as a conservative extension of bisimulation equivalence of the embedded discrete-time Markov chain in the following sense. Two states of a CTMC are bisimilar if and only if they are bisimilar in the embedded discrete-time Markov chain (DTMC) and have the same total exit rate.

In the literature, several variants of bisimulation equivalence have been proposed for discrete- and continuous-time Markov chains and extensions to these that include non-determinism (Hermanns 2002) or rewards (Bernardo and Bravetti 2001; Aldini and Bernardo 2007). These variants include abstracting from internal (invisible) steps (Segala and Lynch 1995; Baier and Hermanns 1997) and the dropping of symmetry requirements, leading to formal notions of simulation and refinement relations (Jonsson and Larsen 1991; Baier et al. 2005b; Caillaud et al. 2010).

We will focus here on the basic concept of bisimulation equivalence for the model of MRMs, that is, a state-labelled CTMC with state and impulse rewards. The formal definition of bisimulation equivalence follows the standard principle of coinduction, where conditions are first provided to define the notion of a bisimulation relation, and bisimulation equivalence is then defined as the coarsest bisimulation relation.

For state \(s \) and a set of states \(U \), we use \(R(s, U) \) to denote the total rate for moving from state \(s \) to some state in \(U \), that is,

\[
R(s, U) = \sum_{u \in U} R(s, u).
\]
Thus,
\[R(s, S) = E(s) \]
is the total rate for state \(s \). Similarly, \(P(s, U) \) stands for the probability to move from \(s \) within one step to \(U \), that is,
\[P(s, U) = \frac{R(s, U)}{E(s)}. \]

Definition 6.1 (bisimulation relation and bisimulation equivalence). Let \(\mathcal{M} = (\mathcal{C}, \iota, \rho) \) be an MRM where \(\mathcal{C} = (S, R, L) \). A *bisimulation relation* on \(\mathcal{M} \) is an equivalence relation \(R \) on the state space \(S \) of \(\mathcal{M} \) such that for all pairs \((s_1, s_2) \in R \) and all equivalence classes \(U \) of \(R \) the following conditions hold:

1. \(L(s_1) = L(s_2) \)
2. \(R(s_1, U) = R(s_2, U) \)
3. \(\rho(s_1) = \rho(s_2) \)
4. \[\sum_{u \in U} P(s_1, u) \cdot \iota(s_1, u) = \sum_{u \in U} P(s_2, u) \cdot \iota(s_2, u). \]

The states \(s_1 \) and \(s_2 \) of \(\mathcal{M} \) are said to be bisimulation equivalent (or just *bisimilar* for short), denoted \(s_1 \sim s_2 \), if there exists a bisimulation relation \(R \) with \((s_1, s_2) \in R \).

It can be shown that the relation \(\sim \) is an equivalence relation that satisfies conditions (1)–(4). Hence, \(\sim \) is the *coarsest* bisimulation relation.

The intuitive meaning of conditions (1)–(4) is as follows:

1. This is a standard condition for (bi)simulation relations for state-labelled models where the ‘observability’ of a state \(s \) is considered to be given by the atomic propositions that hold for \(s \). So (1) simply requires that bisimilar states are equally observable.
2. This is a formalisation of the above-stated condition that bisimilar states of a CTMC have the same cumulative rate for moving within one step to some bisimulation equivalence class \(U \). It is equivalent to stating that
\[P(s_1, U) = P(s_2, U) \]
and
\[E(s_1) = E(s_2). \]
3. This requires that bisimilar states have the same state reward.
4. This condition requires that the expected impulse reward earned by taking a transition to some bisimulation equivalence class \(U \) coincides for bisimilar states.

The following theorem asserts that bisimilar states yield the same performance measures when they are expressible in CSRL.

Theorem 6.2 (preservation of performance measures). If \(s_1, s_2 \) are bisimilar states of an MRM \(\mathcal{M} \), then for all CSRL-formulae \(\Phi \),
\[s_1 \models \Phi \text{ iff } s_2 \models \Phi. \]
The proof of Theorem 6.2 is by structural induction and follows the proof techniques provided in, for example, Baier et al. (2005b) for the preservation of CSL-definable properties under bisimulation equivalence for CTMCs.

An important application of Theorem 6.2 is that it allows us to use bisimulation equivalence as a reduction technique. In order to verify a CSRL property Φ for a given MRM \mathcal{M}, we build the quotient \mathcal{M}/\sim, where the states are the bisimulation equivalence classes of the states in \mathcal{M}. The rate matrix R_\sim of \mathcal{M}/\sim is given by

$$R_\sim([s], U) = R(s, U)$$

for each state s and bisimulation equivalence class U where $[s] = \{s' \in S : s \sim s'\}$ denotes the bisimulation equivalence class of state s. For each state s of \mathcal{M}, we have the labelling of $[s]$ is $L(s)$, the reward rate of $[s]$ is $\rho(s)$ and the impulse reward for the pair $([s], U)$ is given by

$$\sum_{u \in U} P(s, u) \cdot I(s, u).$$

Obviously, conditions (1)–(4) in Definition 6.1 ensure that \mathcal{M}/\sim is well defined. Furthermore, each state s of \mathcal{M} is bisimilar to its bisimulation equivalence class $[s]$ in the combined MRM that results from taking the disjoint union of \mathcal{M} and \mathcal{M}/\sim. By Theorem 6.2, s and $[s]$ satisfy the same CSRL formulae. This observation allows us to switch from \mathcal{M} to its quotient \mathcal{M}/\sim and to apply the model-checking techniques sketched in the previous section to \mathcal{M}/\sim rather than \mathcal{M}. Building the quotient is often called lumping.

We expect that the proof techniques presented in Desharnais and Panangaden (2003) for CSL are also applicable here to show that bisimulation equivalence for MRMs is the coarsest equivalence that preserves the truth values of all CSRL formulae. This means that whenever two states satisfy the same CSRL formulae, they are bisimilar. Together with Theorem 6.2, this means that the bisimulation quotient \mathcal{M}/\sim is the smallest MRM that satisfies precisely the same CSRL formulae.

Example 6.3. Consider the model of Figure 3. It is a variant of the Hubble telescope model already given previously in Figure 1. However, in contrast to the previous model, here we distinguish between the six individual gyroscopes, which may be working or not working – in the previous model, we just counted the number of gyroscopes working. However, if we are in fact only interested in properties that depend on the number of working gyroscopes, and are never interested in whether a particular gyroscope is functional, we could choose a labelling that assigns the same label to all the states of Figure 3 that have the same number of working gyroscopes, the same sleep mode and the same rewards. Consequently, the bisimulation quotient of the model in Figure 3 is the same as that for Figure 1.

Notice that the model of Figure 1 only has 9 states, whereas the model of Figure 3 has

$$\binom{6}{6} + \binom{6}{5} + \binom{6}{4} + \binom{6}{3} + 2 \cdot \binom{6}{2} + 2 \cdot \binom{6}{1} + \binom{6}{0} = 85$$
Fig. 3. Unlumped version of the Hubble telescope from Figure 1. In each state, the six gyroscopes are denoted by circles. A black circle denotes a working gyroscope, whereas a white one means that it is defective. Sleep mode is marked by ‘S’. Thin lines between states correspond to a rate of 0.1 (failure of a gyroscope), medium ones to 6 (servicing mission), and thick ones to 100 (go to sleep). Boxes containing several states and a labelling denote which state of Figure 1 the included states are lumped into.
states. For this model, bisimulation thus yields a reduction in the number of states by a factor of \(\approx 9 \). If we generalise the model so that it has \(n \) telescopes, the size of the state space would be \(O(2^n) \) for the unlumped version and \(O(n) \) for the lumped one.

7. Non-determinism

7.1. Continuous-time Markov reward decision processes

A continuous-time Markov decision process (CTMDP) extends CTMCs by adding non-deterministic choices. As with CTMCs, the model consists of states, and the timed behaviour is governed by exponential distributions. But unlike the case for CTMCs, each state may have a number of non-deterministic decisions of next-step distributions. The class of CTMDPs is of interest because it can be viewed as a common semantic model for various performance and dependability modelling formalisms, including generalised stochastic Petri nets (Ajmone Marsan et al. 1984), Markovian stochastic activity networks (Sanders and Meyer 1987) and interactive Markov chains (Hermanns and Katoen 2009).

Non-deterministic decisions are decisions that we cannot actually associate a particular probability distribution with, since it is unknown or inapplicable. Such decisions may result from the interleaved execution of concurrent systems, from underspecification of the model or from leaving out probabilities we do not have enough information about, such as user actions or certain environmental influences. Labels are usually used to distinguish the non-deterministic alternatives. Here instead, we support models where there is internal non-determinism between equally labelled next steps. In summary, a CTMDP specification consists of state transitions, corresponding distributions and a labelling function that maps transitions to labels.

Definition 7.1 (CTMDP). A continuous-time Markov decision process (CTMDP) \(C \) is a tuple \((S, \text{Act}, R, L) \) with:

- \(S \) a countable set of states;
- \(\text{Act} \) a set of actions;
- \(R : S \times \text{Act} \times S \to \mathbb{R}_{\geq 0} \) the rate function; and
- \(L : S \to 2^{AP} \) a labelling function.

The set of actions that are enabled in state \(s \) is denoted by

\[
\text{Act}(s) = \{ \alpha \in \text{Act} \mid \exists s'. R(s, \alpha, s') > 0 \}.
\]

A CTMC is a CTMDP in which for each state \(s \), \(\text{Act}(s) \) is a singleton or empty. The operational behaviour of a CTMDP is similar to that of a CTMC, except that on entering state \(s \), an action \(\alpha \), say, in \(\text{Act}(s) \) is selected non-deterministically (unless the state is absorbing).

As we have non-deterministic decisions, we cannot talk about the probability of a model satisfying a property. Instead, probabilistic behaviour results after applying an entity that resolves the non-deterministic decisions. This entity is called a scheduler, policy or adversary. Intuitively, a scheduler acts as follows: whenever it is given a current state, it picks an enabled transition. It may do this using (or not using) probabilities, and it may
base the decision on the history of the process since its initialisation. This history can be considered in more or less detail, and may, for instance, consist of the sequence of states (path) visited thus far, with or without time stamps of the state changes. The scheduler may also use the information about the time it has spent in the current state in order to reconsider the decision.

The potential of such schedulers forms a natural hierarchy, with memoryless schedulers (which do not use any history or time information) being the smallest class, and arbitrary schedulers (using all the above-mentioned concepts) being the largest class. An interesting intermediate class of schedulers are time-abstract schedulers, which use arbitrary history information, apart from time, and arise naturally when dealing with CTMDPs resulting from abstractions of CTMCs (Katoen et al. 2007).

Given a CTMDP and a particular class of schedulers, the basic approach in associating a semantics with a logical state formula Φ from a logic like CSL is to demand that the formula Φ be satisfied regardless of the choice of scheduler used to turn the decision process into a stochastic process. This is closely related to the question of which scheduler maximises or minimises a given CSL path formula.

These questions have induced a considerable amount of recent work in the context of CTMDPs. The base problem considered is that of computing maximal time-bounded reachability ($\Diamond_{\leq t} \mathcal{G}$) probabilities. The existence of optimal schedulers has been shown for both, the arbitrary (Rabe and Schewe 2011) and the time-abstract (Brázdil et al. 2009) scheduler setting, the latter coming with a decision algorithm.

Of practical relevance are approximative model-checking procedures, which are related to those discussed in Section 5. An efficient approach for time-abstract schedulers has been devised that is tailored to uniform CTMDPs. In this model class, there is a unique rate E such that for each state and each non-deterministic alternative, the total outgoing rate of this alternative is E (Baier et al. 2005a). The overhead over the CTMC algorithm is linear in the maximal non-deterministic fanout. This algorithm has been generalised to locally uniform CTMCs, which are models where there is a uniform exit rate per state (Neuhäusser and Zhang 2010). This, in turn, is the basis for a model-checking algorithm for IMCs, viz. interactive Markov chains (Zhang and Neuhäusser 2010). If we relinquish the uniformity restriction entirely, but stay in the time-abstract setting, the only known algorithm has exponential complexity (Brázdil et al. 2009).

Approximate model checking with respect to the most general class, viz. arbitrary schedulers, has been a challenge until recently. A first step was a discretisation procedure for time-bounded reachability (Neuhäusser and Zhang 2010). It is only recently that an efficient algorithm has been proposed†. To handle properties depending on time (instantaneous rewards, time-bounded until, and so on), it uses an initial gain vector, the exact value of which depends on the property to be checked. Starting at the time bound (or time point) t, this value is propagated back in time along the model states, until time 0 is reached. While doing this, the time interval $[0, t]$ is divided into smaller intervals, for which the (almost) optimal decision for each state is constant. The correctness follows from a

† In fact, it is in a setting with state rewards and for a full CSL- (and CSRL-) like logic (Buchholz et al. 2011)
result in Miller (1968) implying that an optimal policy exists, and only a finite number of switches of the actions is needed to describe it. The algorithm returns a scheduler that maximises or minimises a reward measure over a finite or infinite time horizon.

If reward values are zero, and we have the appropriate initial value for the gain vector g_t, the problem can be exploited to arrive at a uniformisation-based approach to the computation of time bounded reachability probabilities within time t. It is easy to generalise this to the maximal reachability for a finite interval $[t', t]$, which is the key element in checking the probabilistic operator in CSL. Moreover, by computing the gain vector between $[t', t]$ with $t' > 0$, followed by a probabilistic reachability analysis for the interval $[0, t']$, we are able to compute the minimum/maximum gain vector for $[t', t]$: this then gives us a complete model-checking algorithm for CTMDPs. Experimental evidence shows that the efficiency of the new numerical approach provides a dramatic improvement over the state-of-the-art. The situation here resembles the milestones in approximate CTMC model-checking research, which initially resorted to discretisation (Baier et al. 1999), but only got effective and mainstream technology through the use of uniformisation (Baier et al. 2003).

It is not yet clear whether the CSRL-specific time-and-reward bounded operator can also be checked in this way. However, the duality result presented in Theorem 4.5 extends to (state-rewarded) CTMDPs (Baier et al. 2008). This means we can also check the reward-bounded but time-unbounded formulae. A lot of work is currently going on in this area, which also covers continuous-time Markov games, thereby extending the CTMDP setting to a second type of non-determinism. In the discrete-time setting, such games have been shown to be useful for obtaining under- and over-approximations of concrete models using abstraction (Kattenbelt et al. 2009; Wachter et al. 2007). We anticipate similar applications in the continuous-time setting in the near future.

8. Case study: the Google file system

In this section, we demonstrate the application of performability in practice on a case study developed in an earlier publication (Cloth and Haverkort 2005). The model we consider addresses a replicated file system as used as part of the Google search engine (Ghemawat et al. 2003).

The high-level description is given as a generalised stochastic Petri net (GSPN) (Ajmone Marsan et al. 1984). GSPNs are Petri nets in which transitions are either immediate or stochastic, the latter being decorated with rates. A GSPN can be transformed into an underlying CTMC. The states of this CTMC consist of an assignment of the number of tokens to (a subset of) the places.

In the file system model we consider, files are divided into chunks of equal size. Several copies of each chunk reside at several chunk servers. There is a single master server, which knows the location of the chunk copies. If a user of the file system wants to access a certain chunk of a file, it asks the master for the location. Data transfer then takes place directly between a chunk server and the user.

The GSPN describing the model is shown in Figure 4, and is identical to the one given in the original paper (Cloth and Haverkort 2005). Timed transitions are given as white...
rectangles and immediate transitions as black ones. Conditions and effects are specified as usual for Petri nets by arcs connecting transitions and places. Additional conditions, together with rates and probabilities, are displayed in the right-hand side of the figure.

The GSPN describes the life cycle of a single chunk, but takes into account the load caused by the other chunks. The upper part describes the master. It may be: up and running (token at \texttt{M_up}); failed, but the type of failure not yet decided (\texttt{M_1}); failed because of a software failure (\texttt{M_soft_d}); or failed because of a hardware failure (\texttt{M_hard_d}). The middle part describes the number of copies of available (\texttt{R_present}), as well as the number of lost (\texttt{R_lost}) copies of the chunk under consideration. The lower part of the GSPN describes the behaviour of the chunk servers. It contains places denoting the numbers of running servers (\texttt{C_up}) and servers with software (\texttt{C_soft_d}) and hardware (\texttt{C_hard_d}) failures. If a server crashes, it either stores the chunk under consideration, and thus a copy of it is lost (\texttt{destroy}), or it only stores chunks that we do not consider explicitly (\texttt{keep}), so no copies are lost.

We transformed the GSPN into an equivalent model in which there are no immediate transitions, as shown in Figure 5. GSPNs without immediate transitions can be easily transformed into the PRISM (Kwiatkowska et al. 2009) modelling language, which is a stochastic variant of Dijkstra's guarded command language. We used PRISM, partially as a model checker and partially to transform the models (CTMCs in this case) to the (sparse matrix) format of our model checker MRMC (Katoen et al. 2011). All experiments were conducted on an Intel Core 2 Duo P9600 with 2.66 GHz clock frequency and 4 GB of main memory running Linux.
Fig. 5. Transformed GSPN of the Google file system without intermediate transitions. The model is equivalent to the one of Cloth and Haverkort (2005).

Table 2. Number of states and transitions in the underlying CTMC of the GSPN of Figure 5, depending on the number of chunk servers.

<table>
<thead>
<tr>
<th>M</th>
<th>#states $= 6(M^2 + 1)$</th>
<th>#transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2406</td>
<td>15323</td>
</tr>
<tr>
<td>40</td>
<td>9606</td>
<td>63614</td>
</tr>
<tr>
<td>60</td>
<td>21606</td>
<td>145335</td>
</tr>
<tr>
<td>80</td>
<td>38406</td>
<td>260885</td>
</tr>
<tr>
<td>100</td>
<td>60006</td>
<td>410435</td>
</tr>
<tr>
<td>120</td>
<td>86406</td>
<td>593985</td>
</tr>
</tbody>
</table>

The model has three parameters:
— M is the number of chunk servers;
— S is the number of chunks a chunk server may store;
— N is the total number of chunks.

We fix $S = 5000$ and $N = 100000$. Table 2 shows the number of states and transitions for different values of M.

We first consider a survivability property expressed in CSL (as described in Section 2.5):

$$\Phi = \text{severe_hardware_disaster} = \mathbb{P}_{\geq t} (\diamond \leq T \text{ service_level _3}),$$

where

$$\text{severe_hardware_disaster} = (M_{\text{hard_d}} = 1) \land (C_{\text{hard_d}} > 0.75 \cdot M) \land (C_{\text{soft_d}} = 0),$$
Table 3. Performance figures for bounded until property Φ in the underlying CTMC of the GSPN under consideration. The table shows the minimal probability (‘Prob.’) over all states in which severe hardware disaster is fulfilled to reach a state in which service_level_3 holds within t time units. In addition, we give the time needed for the computations (‘Time’) in minutes (‘m’) and seconds (‘s’).

<table>
<thead>
<tr>
<th>M</th>
<th>$T = 20$</th>
<th>$T = 40$</th>
<th>$T = 60$</th>
<th>$T = 80$</th>
<th>$T = 100$</th>
<th>$T = 120$</th>
<th>$T = 140$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td>0s</td>
<td></td>
<td>0.000000</td>
<td></td>
<td>0.000000</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>0s</td>
<td></td>
<td>0.000000</td>
<td></td>
<td>0.000000</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>0s</td>
<td></td>
<td>0.000000</td>
<td></td>
<td>0.000000</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>0s</td>
<td></td>
<td>0.000000</td>
<td></td>
<td>0.000000</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>0s</td>
<td></td>
<td>0.000000</td>
<td></td>
<td>0.000000</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>0s</td>
<td></td>
<td>0.000000</td>
<td></td>
<td>0.000000</td>
<td></td>
</tr>
</tbody>
</table>

and

$$
\text{service_level_3} = (\text{H_up} = 1) \land (\text{R_present} \geq 3)
$$

The formula Φ states that in all states in which severe hardware problems have occurred (master server is down and more than three quarters of the chunk servers are down), a state in which a guaranteed quality-of-service level (all three chunk copies are present and the master server is available) holds will be reached within time t with a probability of at least x. We give the performance figures in Table 3 for different time bounds t and different numbers of chunk servers M. We used MRMC for this analysis; we could have used PRISM as well, but we chose MRMC so that we would be able to compare performance measures in a reasonable way with the results of the next set of experiments. We set the algorithms to use a precision of 10^{-6}.

The analyses were performed using a standard algorithm for the time-bounded until operator in CTMCs (Baier et al. 2003). Instead of giving the truth value of Φ for the individual states, we give the minimal probability that service_level_3 is reached within time t from state s, over all s in which $\text{severe_hardware_disaster}$ holds. Cloth and Haverkort (2005) described a number of similar properties, and the time complexity for all these is the same.

It can be seen that the time needed for the analyses grows approximately linearly with the time bound. The same holds with respect to the model size. For instance, for $M = 100$, the state space is about three times larger than for $M = 60$ (see Table 2), and so is the

† Some results reported in Table 3 differ slightly from those reported in Cloth and Haverkort (2005) – this appears to be rooted in numerical instabilities of the prototype implementation used then.
time needed for the analysis. These observations are in accordance with the complexity results for the algorithm used (Baier et al. 2003). As expected, the more time we allow for recovery to the required quality of service, the more likely it is that we recover before the bound is reached.

As seen in the table, for values of M below 60, the reachability probability is always zero. This seemingly strange result is in accordance with the theory. Consider the enabling condition for replicate: $\left(\#C_{\text{up}} \cdot S \geq (\#R_{\text{present}} + 1) \cdot N\right)$. Given that we have $M = 60$, $S = 5000$ and $N = 100000$, if all chunk servers are up, it is $\#C_{\text{up}} \cdot S = 300000$. If there are two existing replicas, it is $(\#R_{\text{present}} + 1) \cdot N = 300000$. For service level three, we need to obtain three replicas in the end. For $M = 59$ or below, this will never be possible, because then $\#C_{\text{up}} \cdot S < 300000$ and the condition to generate the third replica can never be fulfilled since we can never have enough chunk servers up and running. Because of this, service level three will never be reached.

In the previous analyses, we assumed that we know the probabilities and rates appearing in the model exactly. We now consider a model variant in which we assume that we do not know the probabilities of whether a hardware or a software failure occurs in the chunk server part, but that the other probabilities and rates are known – this case was not addressed in Cloth and Haverkort (2005). We thus have a non-deterministic choice between c_{soft} and c_{hard} (of Figure 4). Accordingly, the underlying model is no longer a Markov chain, but a Markov decision process. Using an algorithm integrated into an experimental version of MRMC (Buchholz et al. 2011), we can handle time-bounded until formulae for this model class. We give performance measures in Table 4. The non-determinism can be resolved in different ways, leading to different underlying stochastic models. The probabilities given in the table correspond to the resolution of the non-determinism such that reachability probabilities are either minimal or maximal (over the general class of schedulers). Because the non-deterministic choice abstracts from the concrete probabilities in the purely stochastic model, the probabilities of Table 3 lie between the minimal and maximal probabilities of those computed for Table 4. In Figure 6, we fix $M = 60$ and plot the probabilities in the CTMC (following Table 3), as well as the lower and upper bounds obtained from the CTMDP as a function of the time bound (following Table 4). The probabilities obtained from the CTMC model are close to the upper bound for the CTMDP model. This is because in the CTMC we have a probability of 0.95 for a software failure, which can be repaired much more quickly than a hardware failure. The algorithm for analysing models involving non-determinism is more complex because we have to consider the worst-case probabilities over all possible choices. Because of this, the analyses took much longer, but we were still able to complete all of the analyses we completed for the original model.

We now consider the variant of the model without non-determinism again, and assign a reward of 1 to all transitions corresponding to the failure of a component ($m_{\text{soft_fa}}$, $m_{\text{hard_fa}}$, $c_{\text{soft_de}}$, $c_{\text{soft_ke}}$, $c_{\text{hard_de}}$, $c_{\text{hard_ke}}$). This means that we need to add a transition reward structure to the underlying CTMC. The property

$$\Psi_1 = E_{<\gamma}(tt)$$
Table 4. Performance figures for bounded until property Φ in the CTMDP variant of the GSPN under consideration. The table shows the minimal probability (‘Prob.’) over all states in which severe_hardware_disaster is fulfilled to reach a state in which service_level_3 holds within t time bounds. In addition, we give the time needed for the computations (‘Time’), in minutes (‘m’) and seconds (‘s’). In lines marked by ‘min’ we minimise over the non-deterministic choice whereas for lines marked with ‘max’ we maximise.

<table>
<thead>
<tr>
<th>M</th>
<th>$T = 20$</th>
<th>$T = 40$</th>
<th>$T = 60$</th>
<th>$T = 80$</th>
<th>$T = 100$</th>
<th>$T = 120$</th>
<th>$T = 140$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>4s</td>
<td>0.000000</td>
<td>8s</td>
<td>0.000000</td>
<td>14s</td>
<td>0.000000</td>
<td>18s</td>
</tr>
<tr>
<td>max</td>
<td>5s</td>
<td>0.000000</td>
<td>11s</td>
<td>0.000000</td>
<td>17s</td>
<td>0.000000</td>
<td>23s</td>
</tr>
<tr>
<td></td>
<td>20s</td>
<td>0.000000</td>
<td>29s</td>
<td>0.000000</td>
<td>34s</td>
<td>0.000000</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>22s</td>
<td>0.000000</td>
<td>45s</td>
<td>0.000000</td>
<td>1m 9s</td>
<td>0.000000</td>
<td>1m 35s</td>
</tr>
<tr>
<td>max</td>
<td>31s</td>
<td>0.000000</td>
<td>1m 4s</td>
<td>0.000000</td>
<td>1m 37s</td>
<td>0.000000</td>
<td>2m 12s</td>
</tr>
<tr>
<td></td>
<td>2m 2s</td>
<td>0.000000</td>
<td>2m 46s</td>
<td>0.000000</td>
<td>3m 22s</td>
<td>0.000000</td>
<td>4m 0s</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>1m 39s</td>
<td>0.000000</td>
<td>3m 15s</td>
<td>0.000000</td>
<td>4m 55s</td>
<td>0.000000</td>
<td>6m 34s</td>
</tr>
<tr>
<td>max</td>
<td>1m 39s</td>
<td>0.000000</td>
<td>3m 18s</td>
<td>0.000000</td>
<td>4m 59s</td>
<td>0.000000</td>
<td>6m 38s</td>
</tr>
<tr>
<td></td>
<td>8m 8s</td>
<td>0.000000</td>
<td>9m 37s</td>
<td>0.000000</td>
<td>11m 10s</td>
<td>0.000000</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>4m 10s</td>
<td>0.000000</td>
<td>8m 6s</td>
<td>0.000000</td>
<td>12m 14s</td>
<td>0.000000</td>
<td>16m 30s</td>
</tr>
<tr>
<td>max</td>
<td>4m 21s</td>
<td>0.000000</td>
<td>8m 23s</td>
<td>0.000000</td>
<td>12m 42s</td>
<td>0.000000</td>
<td>16m 46s</td>
</tr>
<tr>
<td></td>
<td>19m 52s</td>
<td>0.000000</td>
<td>23m 29s</td>
<td>0.000000</td>
<td>25m 26s</td>
<td>0.000000</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>8m 4s</td>
<td>0.000000</td>
<td>16m 2s</td>
<td>0.000000</td>
<td>24m 3s</td>
<td>0.000000</td>
<td>32m 7s</td>
</tr>
<tr>
<td>max</td>
<td>8m 18s</td>
<td>0.000000</td>
<td>16m 22s</td>
<td>0.000000</td>
<td>24m 26s</td>
<td>0.000000</td>
<td>32m 12s</td>
</tr>
<tr>
<td></td>
<td>37m 56s</td>
<td>0.000000</td>
<td>45m 15s</td>
<td>0.000000</td>
<td>50m 48s</td>
<td>0.000000</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>15m 15s</td>
<td>0.000000</td>
<td>29m 44s</td>
<td>0.000000</td>
<td>43m 40s</td>
<td>0.000000</td>
<td>59m 18s</td>
</tr>
<tr>
<td>max</td>
<td>15m 15s</td>
<td>0.000000</td>
<td>30m 20s</td>
<td>0.000000</td>
<td>43m 39s</td>
<td>0.000000</td>
<td>58m 54s</td>
</tr>
<tr>
<td></td>
<td>66m 42s</td>
<td>0.000000</td>
<td>76m 22s</td>
<td>0.000000</td>
<td>83m 25s</td>
<td>0.000000</td>
<td></td>
</tr>
</tbody>
</table>

The average number of failures per time unit, while

$$\Psi_2 = \mathbb{E}_{<x,T}^{[0,T]}(tt)$$

describes the total number of failures until time t.

As MRMC does not yet support properties of the form of Ψ_1 and Ψ_2 (but instead focuses on the reward-bounded until), we used PRISM to carry out these analyses. We
used the PRISM engine based on sparse matrices and a precision of 10^{-6}. In Table 5, we give results for Ψ_1, and in Table 6 we provide those for Ψ_2. Instead of the truth values, we provide the rewards obtained when starting in the initial state of the model. There is no visible influence of M on the average number of failures per time unit. In theory, the choice of M should, however, affect this number: a failure can only occur if the place C_up is not empty, and this is more likely for large M. However, for the analyses we
Table 6. Performance figures for reward-based property Ψ_2. The table shows the average number of failures that have occurred up until time t ('Reward'), as well as the time needed for the analysis ('Time') in minutes ('m') and seconds ('s').

<table>
<thead>
<tr>
<th>M</th>
<th>$T = 20$</th>
<th>$T = 40$</th>
<th>$T = 60$</th>
<th>$T = 80$</th>
<th>$T = 100$</th>
<th>$T = 120$</th>
<th>$T = 140$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0s</td>
<td>0s</td>
<td>0s</td>
<td>0s</td>
<td>0s</td>
<td>0s</td>
<td>0s</td>
</tr>
<tr>
<td>Time</td>
<td>1.010000</td>
<td>2.019999</td>
<td>3.029999</td>
<td>4.039998</td>
<td>5.049998</td>
<td>6.059997</td>
<td>7.069997</td>
</tr>
<tr>
<td>Reward</td>
<td>1.010000</td>
<td>2.019999</td>
<td>3.029999</td>
<td>4.039998</td>
<td>5.049998</td>
<td>6.059997</td>
<td>7.069997</td>
</tr>
<tr>
<td>40</td>
<td>1s</td>
<td>1s</td>
<td>1s</td>
<td>1s</td>
<td>1s</td>
<td>1s</td>
<td>1s</td>
</tr>
<tr>
<td>Time</td>
<td>1.010000</td>
<td>2.019999</td>
<td>3.029999</td>
<td>4.039998</td>
<td>5.049998</td>
<td>6.059997</td>
<td>7.069997</td>
</tr>
<tr>
<td>Reward</td>
<td>1.010000</td>
<td>2.019999</td>
<td>3.029999</td>
<td>4.039998</td>
<td>5.049998</td>
<td>6.059997</td>
<td>7.069997</td>
</tr>
<tr>
<td>60</td>
<td>3s</td>
<td>3s</td>
<td>3s</td>
<td>3s</td>
<td>3s</td>
<td>3s</td>
<td>3s</td>
</tr>
<tr>
<td>Time</td>
<td>1.010000</td>
<td>2.019999</td>
<td>3.029999</td>
<td>4.039998</td>
<td>5.049998</td>
<td>6.059997</td>
<td>7.069997</td>
</tr>
<tr>
<td>Reward</td>
<td>1.010000</td>
<td>2.019999</td>
<td>3.029999</td>
<td>4.039998</td>
<td>5.049998</td>
<td>6.059997</td>
<td>7.069997</td>
</tr>
<tr>
<td>80</td>
<td>6s</td>
<td>6s</td>
<td>6s</td>
<td>6s</td>
<td>6s</td>
<td>6s</td>
<td>6s</td>
</tr>
<tr>
<td>Time</td>
<td>1.010000</td>
<td>2.019999</td>
<td>3.029999</td>
<td>4.039998</td>
<td>5.049998</td>
<td>6.059997</td>
<td>7.069997</td>
</tr>
<tr>
<td>Reward</td>
<td>1.010000</td>
<td>2.019999</td>
<td>3.029999</td>
<td>4.039998</td>
<td>5.049998</td>
<td>6.059997</td>
<td>7.069997</td>
</tr>
<tr>
<td>100</td>
<td>11s</td>
<td>11s</td>
<td>11s</td>
<td>18s</td>
<td>18s</td>
<td>18s</td>
<td>16s</td>
</tr>
<tr>
<td>Time</td>
<td>1.010000</td>
<td>2.019999</td>
<td>3.029999</td>
<td>4.039998</td>
<td>5.049998</td>
<td>6.059997</td>
<td>7.069997</td>
</tr>
<tr>
<td>Reward</td>
<td>1.010000</td>
<td>2.019999</td>
<td>3.029999</td>
<td>4.039998</td>
<td>5.049998</td>
<td>6.059997</td>
<td>7.069997</td>
</tr>
<tr>
<td>120</td>
<td>18s</td>
<td>18s</td>
<td>18s</td>
<td>19s</td>
<td>23s</td>
<td>31s</td>
<td>31s</td>
</tr>
<tr>
<td>Time</td>
<td>1.010000</td>
<td>2.019999</td>
<td>3.029999</td>
<td>4.039998</td>
<td>5.049998</td>
<td>6.059997</td>
<td>7.069997</td>
</tr>
<tr>
<td>Reward</td>
<td>1.010000</td>
<td>2.019999</td>
<td>3.029999</td>
<td>4.039998</td>
<td>5.049998</td>
<td>6.059997</td>
<td>7.069997</td>
</tr>
</tbody>
</table>

have carried out, the effect of the choice of M is below the analysis precision. This can be explained by the fact that repair rates are much higher than the failure rates, so it is already unlikely that C_{up} is empty for the smaller M considered.

The time needed for the analysis is again approximately linear in the number of states. However, it is much lower than for the time-bounded reachability analyses carried out for property Φ (we also checked this for PRISM). In addition, for Ψ_2, the dependence on the time bound t is much weaker than for the computations of the reachability probability. While in the worst case the algorithm used is still linear in the time bound, it features what is known as a ‘steady-state detection’ mechanism. For this model, this allows us to terminate the iterative algorithm at an early stage, while still guaranteeing the precision requested.

9. Epilogue

In this paper we have shown that model checking and performability analysis, combined with logics and performability specifications, form ‘dream teams’. We have illustrated this through a detailed treatment of various core performability measures on an important model in performability analysis – continuous-time Markov reward models. The flexibility provided by using stochastic temporal logics like CSRL as a specification vehicle means we can give succinct representations of many standard, and new, performability measures that have practical relevance. In addition, model checking provides a unified algorithmic approach for analysing a broad variety of performability measures. That is to say, a single algorithm suffices to treat all measures that can be expressed in the logical framework provided. There is no need to come up with a new algorithm for a new formula, that is, a new measure. It is our firm belief that this is one of the major strengths of the approach advocated in this paper.
Apart from giving an overview of the key ingredients in a model-checking-based performability evaluation, we have also provided a few new results. We extended an existing duality result for (constrained) reachability properties by showing the duality of long-run averages and expected long-run rewards. We have also defined notions of bisimulation for MRMs with impulse rewards, illustrated the potential impact of considering bisimulation quotients on our running example and considered the notion of expected reward measures in the presence of state and impulse rewards. Finally, a comprehensive case study (the Google file system) demonstrates the power of the currently available model-checking technology. In particular, we demonstrated the analysis in the presence of non-determinism, that is, we presented some experimental results on model checking continuous-time Markov reward decision processes.

As future work, it is important to improve the efficiency of some of the verification algorithms: in particular, for time- and reward-bounded reachability probabilities. Given the close intertwining of the elapse of time and reward, this is a challenge. Furthermore, it is fair to say that the analysis of continuous-time Markov reward decision processes is in its infancy, and much progress is required there. On the modelling side, reward extensions of stochastic hybrid systems seem to be of interest. Finally, we believe that in order to increase scalability, we will need aggressive abstraction techniques that go far beyond the state space reductions that can be obtained by bisimulation quotienting.

Appendix A. Table of symbols

The following table gives an overview of symbols used in the paper.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr(ev)</td>
<td>probability of event ev</td>
<td>756</td>
</tr>
<tr>
<td>Path(s)</td>
<td>set of maximal paths starting in state s</td>
<td>760</td>
</tr>
<tr>
<td>Pr</td>
<td>measure on paths</td>
<td>760</td>
</tr>
<tr>
<td>Pr_s</td>
<td>probability measure on paths starting in state s</td>
<td>761</td>
</tr>
<tr>
<td>t</td>
<td>used for time duration and time points</td>
<td>756</td>
</tr>
<tr>
<td>C</td>
<td>used for continuous-time Markov chains (CTMCs)</td>
<td>756</td>
</tr>
<tr>
<td>C</td>
<td>used for continuous-time Markov decision processes (CTMDPs)</td>
<td>778</td>
</tr>
<tr>
<td>M</td>
<td>used for Markov reward models (MRM)</td>
<td>758</td>
</tr>
<tr>
<td>λ</td>
<td>used for rates</td>
<td>756</td>
</tr>
<tr>
<td>X</td>
<td>random variable</td>
<td>756</td>
</tr>
<tr>
<td>X(t)</td>
<td>state of a Markov model at time t</td>
<td>766</td>
</tr>
<tr>
<td>Y(t)</td>
<td>accumulated reward</td>
<td>766</td>
</tr>
<tr>
<td>W(t)</td>
<td>time-averaged accumulated reward</td>
<td>766</td>
</tr>
<tr>
<td>A(t)</td>
<td>availability at time t</td>
<td>766</td>
</tr>
<tr>
<td>F_X(t)</td>
<td>cumulative probability distribution of X</td>
<td>756</td>
</tr>
<tr>
<td>S</td>
<td>state space of a stochastic model</td>
<td>756</td>
</tr>
<tr>
<td>Symbol</td>
<td>Meaning</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>s, u</td>
<td>used for states</td>
<td>756</td>
</tr>
<tr>
<td>R(s, s')</td>
<td>rate from state s to state s'</td>
<td>756</td>
</tr>
<tr>
<td>AP</td>
<td>set of atomic propositions</td>
<td>756</td>
</tr>
<tr>
<td>a</td>
<td>used for atomic propositions</td>
<td>756</td>
</tr>
<tr>
<td>L(s)</td>
<td>labelling of state s</td>
<td>756</td>
</tr>
<tr>
<td>E(s)</td>
<td>sum of outgoing rates of state s</td>
<td>756</td>
</tr>
<tr>
<td>P(s, s')</td>
<td>probability to finally jump from state s to state s'</td>
<td>757</td>
</tr>
<tr>
<td>P(s, S')</td>
<td>probability to finally jump from state s to set S' of states</td>
<td>757</td>
</tr>
<tr>
<td>s → s'</td>
<td>transition from state s to state s'</td>
<td>757</td>
</tr>
<tr>
<td>τ(s, s')</td>
<td>impulse reward from state s to state s'</td>
<td>758</td>
</tr>
<tr>
<td>ρ(s)</td>
<td>reward rate of state s</td>
<td>758</td>
</tr>
<tr>
<td>ρ, ˆρ, ¯ρ</td>
<td>reward structures</td>
<td>758</td>
</tr>
<tr>
<td>σ</td>
<td>used for paths</td>
<td>760</td>
</tr>
<tr>
<td>s_i</td>
<td>used for (i + 1)th state of a path</td>
<td>760</td>
</tr>
<tr>
<td>t_i</td>
<td>used for (i + 1)th time duration of a path</td>
<td>760</td>
</tr>
<tr>
<td>σ[i]</td>
<td>(i + 1)th state of path σ</td>
<td>760</td>
</tr>
<tr>
<td>σ@t</td>
<td>state occupied at time t on path σ</td>
<td>760</td>
</tr>
<tr>
<td>π(s, s', t)</td>
<td>probability of being in state s' at time t if started in state s</td>
<td>760</td>
</tr>
<tr>
<td>π(s, s')</td>
<td>steady-state probability of being in state s' if started in state s</td>
<td>761</td>
</tr>
<tr>
<td>π(s')</td>
<td>steady-state probability of being in state s' regardless of starting state</td>
<td>761</td>
</tr>
<tr>
<td>π(s, S', t)</td>
<td>probability of being in a set S' of states at time t if started in state s</td>
<td>761</td>
</tr>
<tr>
<td>π(s, S')</td>
<td>steady-state probability of being in a set S' of states if started in state s</td>
<td>761</td>
</tr>
<tr>
<td>y(σ, t)</td>
<td>cumulative reward on path σ up to time t</td>
<td>760</td>
</tr>
<tr>
<td>ρ(s, s')</td>
<td>expected long-run reward rate for state s' if started in state s</td>
<td>761</td>
</tr>
<tr>
<td>ρ(s, s', t)</td>
<td>expected instantaneous reward rate for state s' at time t if started in state s</td>
<td>761</td>
</tr>
<tr>
<td>ρ(s, S')</td>
<td>expected long-run reward rate for a set S' of states if started in state s</td>
<td>761</td>
</tr>
<tr>
<td>ρ(s, S', t)</td>
<td>expected instantaneous reward rate for a set S' of states at time t if started in state s</td>
<td>761</td>
</tr>
<tr>
<td>EY(s, s', t)</td>
<td>expected accumulated reward in state s' at time t if started in state s</td>
<td>761</td>
</tr>
<tr>
<td>EY(s, S', t)</td>
<td>expected accumulated reward at t in set S' of states if started in state s</td>
<td>762</td>
</tr>
<tr>
<td>Symbol</td>
<td>Meaning</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>EY(s, S', I)</td>
<td>expected reward accumulated in state s' in time interval I if started in state s</td>
<td>765</td>
</tr>
<tr>
<td>F</td>
<td>marks a failure state</td>
<td>766</td>
</tr>
<tr>
<td>Φ</td>
<td>used for CSRL state formulae</td>
<td>764</td>
</tr>
<tr>
<td>Ψ</td>
<td>used for CSRL state formulae</td>
<td>763</td>
</tr>
<tr>
<td>$s \models \Phi$</td>
<td>state s fulfills CSRL formula Φ</td>
<td>763</td>
</tr>
<tr>
<td>φ</td>
<td>used for CSRL path formulae</td>
<td>763</td>
</tr>
<tr>
<td>$\text{Sat}''(\Phi)$</td>
<td>states fulfilling Φ</td>
<td>762</td>
</tr>
<tr>
<td>I</td>
<td>used for time intervals</td>
<td>763</td>
</tr>
<tr>
<td>J</td>
<td>used for reward intervals</td>
<td>763</td>
</tr>
<tr>
<td>K</td>
<td>used for probability intervals</td>
<td>763</td>
</tr>
<tr>
<td>tt</td>
<td>state formula: the boolean value ‘true’</td>
<td>764</td>
</tr>
<tr>
<td>\land</td>
<td>state formula: logical ‘and’</td>
<td>764</td>
</tr>
<tr>
<td>\neg</td>
<td>state formula: negation</td>
<td>764</td>
</tr>
<tr>
<td>$\mathcal{L}_K(\Phi)$</td>
<td>state formula: long-run probability</td>
<td>764</td>
</tr>
<tr>
<td>$\mathcal{E}_J(\Phi)$</td>
<td>state formula: long-run average reward</td>
<td>764</td>
</tr>
<tr>
<td>$\mathcal{E}_J^r(\Phi)$</td>
<td>state formula: instantaneous reward</td>
<td>764</td>
</tr>
<tr>
<td>$\mathcal{C}_J^I(\Phi)$</td>
<td>state formula: accumulated reward</td>
<td>764</td>
</tr>
<tr>
<td>$\mathcal{P}_K(\varphi)$</td>
<td>state formula: probability measure</td>
<td>764</td>
</tr>
<tr>
<td>$X_J^I(\Phi)$</td>
<td>path formula: next</td>
<td>764</td>
</tr>
<tr>
<td>$\Phi \mathcal{M}_J^I(\Psi)$</td>
<td>path formula: until</td>
<td>764</td>
</tr>
<tr>
<td>\Diamond_J^I</td>
<td>state formula: finally</td>
<td>764</td>
</tr>
<tr>
<td>\Box_J^I</td>
<td>state formula: always</td>
<td>764</td>
</tr>
<tr>
<td>\ast</td>
<td>dual model, reward structure, and so on</td>
<td>767</td>
</tr>
<tr>
<td>q</td>
<td>defined in part about duality</td>
<td>769</td>
</tr>
<tr>
<td>$\chi(u)$</td>
<td>defined in part about duality</td>
<td>769</td>
</tr>
<tr>
<td>G</td>
<td>used for states fulfilling a certain formula</td>
<td>773</td>
</tr>
<tr>
<td>I_U</td>
<td>characteristic function of the set U of states</td>
<td>772</td>
</tr>
<tr>
<td>T</td>
<td>used for strongly connected components (SCCs)</td>
<td>772</td>
</tr>
<tr>
<td>g_t</td>
<td>initial gain vector</td>
<td>780</td>
</tr>
<tr>
<td>$\pi_{s,T}$</td>
<td>probability of reaching SCC T from state s</td>
<td>773</td>
</tr>
<tr>
<td>\overline{G}</td>
<td>complement set of states of G</td>
<td>773</td>
</tr>
<tr>
<td>$[s]$</td>
<td>equivalence class containing state s</td>
<td>776</td>
</tr>
<tr>
<td>R</td>
<td>a bisimulation relation</td>
<td>775</td>
</tr>
<tr>
<td>\sim</td>
<td>coarsest bisimulation relation</td>
<td>775</td>
</tr>
<tr>
<td>\mathcal{M}/\sim</td>
<td>bisimulation quotient of model \mathcal{M}</td>
<td>776</td>
</tr>
<tr>
<td>Act</td>
<td>actions of a CTMDP</td>
<td>778</td>
</tr>
<tr>
<td>$\text{Act}(s)$</td>
<td>actions enabled in state s</td>
<td>778</td>
</tr>
<tr>
<td>$R(s, a, s')$</td>
<td>rate to state s' from state s choosing action a</td>
<td>778</td>
</tr>
</tbody>
</table>
References

Miller, B. L. (1968) Finite state continuous time Markov decision processes with a finite planning horizon. *SIAM Journal on Control* 6 (2) 266–280.

