
Using Normal Bases for Compact Hardware

Implementations of the AES S-Box

Svetla Nikova1, Vincent Rijmen1,2, and Martin Schläffer2

1 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

2 Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

martin.schlaeffer@iaik.tugraz.at

Abstract. The substitution box (S-box) of the Advanced Encryption
Standard (AES) is based on the multiplicative inversion s(x) = x−1 in
GF(256) and followed by an affine transformation in GF(2). The S-box
is the most expansive building block of any hardware implementation of
the AES, and the multiplicative inversion is the most costly step of the
S-box transformation. There exist many publications about hardware
implementations of the S-box and the smallest known implementations
are based on normal bases. In this paper, we introduce a new method
to implement the multiplicative inversion over GF(256) based on normal
bases that have not been considered before in the context of AES imple-
mentations.

Keywords: AES, S-box, hardware implementation, normal basis.

1 Introduction

The first efficient hardware implementation of the multiplicative inversion in
GF(256) has been proposed by Rijmen [9] and first imlemented by Rudra et al.
[10] and Wolkerstorfer et al. [13]. They decompose the elements of GF(256) into
polynomials of degree 2 over the subfield GF(16). In the next step, the elements
of GF(16) are further decomposed into polynomials of degree 4 over GF(2).
The resulting operations in GF(2) work on bit-level and can be implemented in
hardware using simple gates.

Satoh et al. [11] and further Mentens et al. [6] use the different tower field
decomposition in their implementation. They first start by decomposing the ele-
ments of GF(256) into polynomials over GF(16) as well. But then the elements
of the field GF(16) are further decomposed into polynomials over the subfield
GF(4) before implementing the final operations in GF(2). In all these approaches
the field elements are represented by using polynomial bases. In contrast, Can-
right has been able to further reduce the size of the S-box computation by using
normal bases at all levels of the tower field decomposition [3,2].

In this paper, we propose a new way to implement the inversion of the AES S-
box. We use normal bases as in the approach of Canright but do not decompose

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 236–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Using Normal Bases for Compact Hardware Implementations 237

the elements of GF(16) into elements of GF(4). Table 1 illustrates the relation
between the four mentioned approaches. We show that our implementation of the
AES S-box can be at least as compact as the one proposed by Canright when
counting the required number of gates. Which of the approaches is the best
depends not only on the used hardware technology, but also on the application
of the circuit and the resulting hardware criteria like size, timing, or power
consumption [12]. Therefore, we cannot make an unambiguous ranking of the
different implementations, but we are convinced that our alternative has its
merits, already simply because it increases the available options of a hardware
designer.

Table 1. Four approaches to decompose elements of GF(256) into elements of smaller
subfields

Decomposition of field elements
GF(256)→GF(16) → GF(2) GF(256)→GF(16) → GF(4) → GF(2)

Polynomial Rijmen [9], Rudra et al. [10], Satoh et al. [11],
bases Wolkerstorfer et al. [13] Mentens el al. [6]

Normal bases this paper Canright [3,2]

The paper is organized as follows. In Section 2 we briefly recall some properties
of normal bases which are relevant for the implementation of the AES S-box.
Subsequently, in Section 3 we study extensively the different normal bases of
GF(16) over GF(2) and discuss the impact of the choice of basis on the structure
and complexity of the multiplicative inversion over GF(16). Additional hardware
related considerations are made in Section 4 and we conclude in Section 5

2 Normal Bases

In this section we briefly summarize some properties of normal bases over finite
fields [5]. The finite field GF(2mp) is isomorphic to a p-dimensional vector space
over GF(2m). This implies that it is possible to construct a basis for GF(2mp).
A basis consists of p elements β0, β2, . . . , βp−1 ∈ GF(2mp) such that all elements
of GF(2mp) can be written as a linear combination of the elements βj , with
all coefficients elements of GF(2m). As in all vector spaces, there are many
different choices possible for the basis, and the choice of basis may influences the
complexity to describe transformations on the vector space.

2.1 Construction

A normal basis is constructed by choosing an element θ ∈ GF(2mp) and setting
βj = θ2mj

. Not all elements of GF(2mp) result in a basis, but there exist always
some suitable elements. Let now

x =
p−1∑

j=0

cjθ
2mj

, cj ∈ GF(2m).

238 S. Nikova, V. Rijmen, and M. Schläffer

We raise both sides to the power 2m. This operation is linear over GF(2mp) and
corresponds to the identity transformation for all elements in GF(2m). Then we
obtain

x2m

=
p−1∑

j=0

(cj)2
m

(θ2mj

)2
m

=
p−1∑

j=0

cjθ
2m(j+1)

=
p−1∑

j=0

cj−1θ
2mj

.

In words, this corresponds to the following property.

Property 1 ([5]). If the elements of the finite field GF(2mp) are represented by
p-dimensional vectors over GF(2m) using a normal basis, then raising an element
to the power 2m corresponds to rotating the coordinates of the element by one
position.

Let now m = 1 and consider the inversion map used in the AES S-box. We
denote this map by s. Then we have:

s(0) = 0,

s(x) = x−1, x �= 0.

Equivalently, we can write: s(x) = x254. Clearly, s(x2) = x508 = (s(x))2. Hence
we obtain the following property.

Property 2. If the elements of the finite field GF(2mp) are represented in a nor-
mal basis, then the inversion map s(x) is rotation invariant:

rot(s(x)) = s(rot(x)).

For the remainder of this section, we set p = 2 and let v be an element of
GF(22m) such that v + v� = 1 with � = 2m. Then {v, v�} is a normal basis
of GF(22m) and the coordinate vectors consist of two elements of GF(2m). We
denote by g the trace of v over GF(2m):

g = v2 + v, (1)

and g ∈ GF(2m). We show now that the use of a normal basis leads to simple
formulas for products and inverses of elements.

2.2 Multiplication

Let (a, b) and (c, d) be the coordinates of two elements of GF(22m). The coordi-
nates of the product are given by the following formula:

(e, f) = (a, b) × (c, d) ⇔ ev + fv� = acv2 + (ad + bc)v�+1 + bdv2�

⇔
{

e = (a + b)(c + d)g + ac
f = (a + b)(c + d)g + bd

Here the element g is defined by (1).

Using Normal Bases for Compact Hardware Implementations 239

2.3 Inversion

Let (a, b) be the coordinates of an element of GF(22m). The coordinates of the
inverse element are given by the following formula:

(c, d) = (a, b)−1 ⇔ 1 = (av + bv�)(cv + dv�)
⇔ 1 = acv2 + (ad + bc)(v2 + v) + bd(v2 + 1)

⇔
{

c = ((a + b)2g + ab)−1b
d = ((a + b)2g + ab)−1a

(2)

Again the element g is defined by (1).

3 Implementing the AES Inverse Using Normal Bases

Canright has investigated all 432 possible tower field decompositions using poly-
nomial and normal bases in his work [3,2]. He has obtained the smallest hardware
implementation of the S-box by using normal bases at all three levels. However,
he did not consider the decomposition of the field GF(16) into the subfield GF(2)
using normal bases. In this section we derive this decomposition and present for-
mulas for the inversion in GF(16) using the additional normal bases.

3.1 Inversion in GF(256)

Assume a normal basis {v, v16}. Equation (2) suggests the following 3-stage
approach to implement the inverse [2,3].

Step 1: Compute the product ab and add the result to (a + b)2g. Computing
the product is a nonlinear operation and the remaining operations are linear.

Step 2: Compute the multiplicative inverse over GF(16) of the result of Step 1.
Step 3: Multiply the result of Step 2 once with a, and once with b.

Note that Step 3 uses twice the same hardware. Hence, hardware can be saved by
splitting Step 3 up into two steps using the same circuit. The computation of the
multiplicative inverse over GF(16) can be computed by applying recursion, i.e.
describing GF(16) as an extension field of GF(4) using the tower field approach.
We have opted for a direct computation of the inverse over GF(16), as explained
in the next section.

3.2 Normal Bases in GF(16)

The field GF(16) can be described directly as an extension field of GF(2). This
approach gives a 4-dimensional basis with coordinate elements from GF(2), i.e.
m = 1 and p = 4. The field GF(16) counts exactly 8 solutions to the following
equation:

θ + θ2 + θ4 + θ8 = 1. (3)

240 S. Nikova, V. Rijmen, and M. Schläffer

These 8 elements define 8 possible normal bases: {θ, θ2, θ4, θ8}. Note that if θ1

satisfies (3), then so do θ2
1, θ4

1 and θ8
1, i.e. they define rotated versions of the

same 4 base vectors. Thus the number of the normal bases reduces to two, as
noted in [7].

It is called an optimal normal base (ONB) [7], because the complexity of
the multiplication formula in this basis is minimal, i.e. equal to 2n − 1 = 7
[4]. In the non-optimal normal basis (NB), the complexity of the multiplication
formula equals 9 [8]. In those two cases multiplying x = (x0, x1, x2, x3) with
y = (y0, y1, y2, y3) results in z = (z0, z1, z2, z3), where

NB: z3 = x2y3 + x3y2 + x1y3 + x3y1 + x3y0 + x0y3 + x2y2 + x0y1 + x1y0.
ONB: z3 = x3y1 + x0y1 + x0y2 + x1y3 + x1y0 + x2y0 + x2y2.

(4)
As noted by Paar [8] the multiplication in any normal basis is rotation symmetric,
so the rest of the output bits z0, z1 and z2 can be computed by rotating the input
bits. Note that the multiplicative group of GF (16) has order 15 and we know
from group theory that this group is the direct product of two cyclic groups of
order 3 and order 5. Remember that the intersection of these two subgroups is
trivial.

3.3 Inversion in GF(16)

We now study in detail how the choice of θ influences the complexity of the map
s(x).

1. Equation (3) can be rewritten as

(θ + θ4)2 + (θ + θ4) = 1.

It follows that for all θ satisfying (3), the elements θ + θ4 and θ2 + θ8 are the
roots of the polynomial x2 + x + 1. The roots of this polynomial are exactly
the two elements of order 3 in GF(16).

2. In a normal base, the zero element of GF(16) always has coordinates 0000,
while the unit element always has 1111. Hence we always have s(0000) =
(0000) and s(1111) = (1111).

3. It follows from Property 2 that x and s(x) must have coordinates with the
same rotational symmetry. Hence, the inverse map must map elements with
rotational symmetry to elements with the same symmetry. Hence we have
the following commutative diagram:

This implies that s({0101, 1010}) = {0101, 1010}. The inversion map has
only two fixed points: the zero element and the unit element and it follows

Using Normal Bases for Compact Hardware Implementations 241

that s(0101) = 1010 and s(1010) = 0101: We can conclude that 0101 and
1010 are the two elements of order 2. Together with the unit element, they
form the cyclic subgroup of order 3 of the multiplicative group of GF (16).

4. The remaining 12 elements of GF(16) can be partitioned into 3 sets with 4
elements each. The index of Si denotes the number of ones in each represen-
tation:

S1 = {0001, 0010, 0100, 1000}
S2 = {0011, 0110, 1100, 1001}
S3 = {0111, 1110, 1101, 1011}

Due to the rotational symmetry of s, this partitioning is consistent with s.
If one element of Si is mapped to an element of Sj , then all elements of Si

are mapped to elements of Sj , and since s is an involution, this also implies
that all elements of Sj are mapped to elements of Si.

5. Assume now that s(Si) = Si. Then the rotational symmetry of s implies:

∃r, ∀v ∈ Si : s(v) = rotr(v).

Since s is an involution we have

rotr(rotr(v)) = rot2r(v) ≡ v.

This implies that 2r = 0 (mod 4). Since we cannot have new fixed points
for s, r �= 0 we get r = 2. We require that s(S2) �= S2 because otherwise, we
would get s(0011) = (1100), and the corresponding element satisfies x−1 +
x = 1. Since this would mean that it is a root of the polynomial x2 + x + 1
we get a contradiction because the roots of this polynomial have coordinates
(0101) and (1010). Hence, there are only two possibilities left: either s(S1) =
S1 and s(S2) = S3, or s(S1) = S2 and s(S3) = S3. Further analysis shows
that

s(S1) = S1 ⇔ s(0001) = (0100),
s(S3) = S3 ⇔ s(0111) = (1101),

because other choices lead to violations of Property 2. For each of these
possibilities, there are 4 possibilities left for s(0, 0, 1, 1) and this choice de-
termines completely the action of s on the coordinate vectors. Table 2 lists
the 8 remaining candidates for the inversion map in GF(16). The cases A-D
correspond to the 4 choices for S1 = s(S2) and the cases E-H to the 4 choices
for S3 = s(S2).

242 S. Nikova, V. Rijmen, and M. Schläffer

Table 2. 8 candidates for the inversion map in GF(16). The first 4 cases have s(S2) =
S1, the last 4 have s(S2) = S3.

x s(x)
A B C D E F G H

0000 0000 0000 0000 0000 0000 0000 0000 0000
1111 1111 1111 1111 1111 1111 1111 1111 1111
0101 1010 1010 1010 1010 1010 1010 1010 1010
1010 0101 0101 0101 0101 0101 0101 0101 0101

0001 0011 0110 1100 1001 0100 0100 0100 0100
0010 0110 1100 1001 0011 1000 1000 1000 1000
0100 1100 1001 0011 0110 0001 0001 0001 0001
1000 1001 0011 0110 1100 0010 0010 0010 0010

0011 0001 1000 0100 0010 0111 1011 1101 1110
0110 0010 0001 1000 0100 1110 0111 1011 1101
1100 0100 0010 0001 1000 1101 1110 0111 1011
1001 1000 0100 0010 0001 1011 1101 1110 0111

0111 1101 1101 1101 1101 0011 0110 1100 1001
1011 1110 1110 1110 1110 1001 0011 0110 1100
1101 0111 0111 0111 0111 1100 1001 0011 0110
1110 1011 1011 1011 1011 0110 1100 1001 0011

The two choices S1 = s(S2) and S3 = s(S2) can be restated as S3 = s(S3)
and S1 = s(S1). Hence, the choice is which elements will have order 5 and
will form together with the unit element the cyclic subgroup of order 5 of
the multiplicative group of GF (16).

Recall that the two cyclic groups of order 3 and order 5 build up the
multiplicative group of GF (16). Thus the fact that the cyclic group of order
3 is fixed and for the cyclic group of order 5 we have 2 choices implies that
we have two choices for the multiplicative group of GF (16) this naturally
corresponds to the fact that we have only two normal bases in GF (16).

6. Finally, we use the fact that s must satisfy

s(xy) = s(x)s(y), ∀x, y

to eliminate all but two of the candidate maps. We obtain that only case A
and case H are inversion maps, corresponding to the optimal, respectively
the normal base, mentioned before.

Table 3 gives the truth tables for the Boolean functions that computes the
rightmost bit f0 of s(x) in the two cases:

(f3, f2, f1, f0) = s(x3, x2, x1, x0)

Due to the rotational symmetry of s, the other output bits f3, f2 and f1 can
be computed by rotating the input bits. The Algebraic Normal Form (ANF) of
each output bit f0 is given by:

NB: f0 = x0 + x3 + x0x1 + x1x3 + x0x1x2 + x0x1x3 + x1x2x3

ONB: f0 = x1 + x0x3 + x0x2 + x1x3 + x0x1x2 + x0x1x3 + x1x2x3
(5)

Using Normal Bases for Compact Hardware Implementations 243

Table 3. The truth tables for the Boolean functions computing the rightmost bit of
s(x) in the two cases

x A (NB) H (ONB)

0000 0 0
0001 1 0
0010 0 0
0011 1 0
0100 0 1
0101 0 0
0110 0 1
0111 1 1
1000 1 0
1001 0 1
1010 1 1
1011 0 0
1100 0 1
1101 1 0
1110 1 1
1111 1 1

In the next section we show how the ANF can be simplified to reduce the number
of operations and the resulting hardware size.

4 Hardware Considerations

In this section we optimize the hardware implementation of the different normal
bases regarding their size. We present the size of the inversion in GF(16) using
the two normal bases and compare our results with the results of Canright.

4.1 Optimizing the Implementation

In order to achieve minimal hardware implementations, the 4 formulae for the 4
output bits of the inversion in GF(16) need to be further optimized. We compute
the four output bits in parallel and share intermediate terms between different
functions. Hence, formulae which allow to share many terms, have an advantage.

Secondly, ‘+’ operations (XOR) are usually very expensive in hardware im-
plementations. For instance using the AMS 0.35μm technology [1], an XOR
gate costs 2.33 times more than a NAND gate. Hence, the final implementation
formulae should contain as little ‘+’ operations as possible. For instance, the
inversion formulae using the optimal normal basis (5) can be rewritten as:

f0 = NAND(NOR(NOR(NAND(x0, x2)), NAND(x3, x1),
NOR(NOR(NOR(x0, x3), x1), x2)), NAND(x1, x3))

f1 = NAND(NOR(NOR(NAND(x3, x1), NAND(x2, x0)),
NOR(NOR(NOR(x3, x2), x0), x1)), NAND(x0, x2))

f2 = NAND(NOR(NOR(NAND(x2, x0)), NAND(x1, x3),
NOR(NOR(NOR(x2, x1), x3), x0)), NAND(x3, x1))

f3 = NAND(NOR(NOR(NAND(x1, x3)), NAND(x0, x2),
NOR(NOR(NOR(x1, x0), x2), x3)), NAND(x2, x0))

(6)

244 S. Nikova, V. Rijmen, and M. Schläffer

These formulae use 16 NAND gates, 20 NOR gates, 20 NOT gates. When im-
plementing the 4 output bits in parallel, the inverters xi and the common terms
NAND(xi, xi+2) can be shared between different output bits. Therefore, these 4
functions can finally be implemented using 20 NOR gates, 8 NAND gates and 4
NOT gates.

4.2 Counting Gate Equivalents

We refer to the size of the NAND gate by one gate equivalent (GE). In the
AMS 0.35μm standard cell library [1] an XNOR gate corresponds to 2GE, an
XOR gate to 2.33GE, an inverter (INV) to 0.65GE and a NOR gate to 1GE.
These values give a total of 30.7GE for our best GF(16) inversion. This compares
favorably to the best GF(16) inversion circuit reported by Canright, which uses
9 XOR and 10 NAND gates, corresponding to 31.0GE [2]. Referring to personal
communication with Satoh, Canright equates XOR and XNOR gates to 1.75GE,
and inverters to 0.75GE. Using these values, our best GF(16) inversion costs
31.0GE, but the cost of the best Canright implementation is reduced to 25.8GE.

However, standard cell libraries provide additional operations other than the
basic Boolean operations INV, NAND, NOR, XNOR and XOR. For example,
there are extended operations with more than one input which can be used to
improve the 3-input NOR terms of (6). Additionally, the AMS 0.35μm library
provides specialized standard cells like AND-OR-INVERT (AOI) which compute
Q = A.B+C+1, or OR-AND-INVERT (OAI) which compute Q = (A+B).C+1.
Both can be implemented using only 1.33GE [1] and have far less size than
the XOR or XNOR gates. Using these additional cells, we have been able to
improve the GF(16) inversion of Canright to 26.7GE and the inversion based on
the optimal normal base formulae to 22.7GE. Table 4 gives an overview of these
results.

Table 4. Equivalent gate costs for the implementation of several GF(16) inversions

Design Canright’s GE [3] basic standard cells [1] all standard cells [1]

Canright 25.8 31.0 26.7
NB 34.3 34.0 24.7

ONB 31.0 30.7 22.7

5 Conclusion

In this paper, we discussed alternative constructions for the AES S-box using
normal bases for GF(16) over GF(2). We worked out example implementations
showing that our normal bases can compete with the results of Canright. Of
course, the final size of the S-box depends on the size of the multiplication in
GF(16) and on the complexity of the basis transformations as well. As shown in
Section 4.2, also the target technology influences the final count on the imple-
mentation cost. Therefore, our normal bases should at least be considered when
designing small AES S-box implementations.

Using Normal Bases for Compact Hardware Implementations 245

We did not check all possible cases, since the result can only be a specialized
implementation for a single target technology. Further, the best basis does not
only depend on the hardware size but on other optimization constraints such
as low power, timing and throughput as well. However, using our normal bases
new promising alternatives for hardware designers of compact AES S-boxes are
available.

References

1. Austria Microsystems. Standard Cell Library 0.35µm CMOS (C35),
http://asic.austriamicrosystems.com/databooks/c35/databook c35 33

2. Canright, D.: A very compact Rijndael S-box (May 2005),
http://web.nps.navy.mil/∼dcanrig/pub.

3. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

4. Certicom. F24 with Optimal Normal Basis Representation,
http://www.certicom.com/index.php?action=ecc tutorial,math9 1

5. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications.
Cambridge University Press, New York (1986)

6. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A Systematic Evaluation of
Compact Hardware Implementations for the Rijndael S-Box. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 323–333. Springer, Heidelberg (2005)

7. Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A., Wilson, R.M.: Optimal Normal
Bases in GF (pn). Discrete Appl. Math. 22, 149–161 (1989)

8. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen
(1994)

9. Rijmen, V.: Efficient Implementation of the Rijndael S-box (2000),
www.iaik.tugraz.at/RESEARCH/krypto/AES/old/∼rijmen/rijndael/sbox.pdf

10. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient
rijndael encryption implementation with composite field arithmetic. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184. Springer,
Heidelberg (2001)

11. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

12. Tillich, S., Feldhofer, M., Großschädl, J., Popp, T.: Area, Delay, and Power Char-
acteristics of Standard-Cell Implementations of the AES S-Box. Journal of Signal
Processing Systems 50(2), 251–261 (2008)

13. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC Implementation of the AES
SBoxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78. Springer,
Heidelberg (2002)

http://asic.austriamicrosystems.com/databooks/c35/databook_c35_33
http://web.nps.navy.mil/~dcanrig/pub
http://www.certicom.com/index.php?action=ecc_tutorial,math9_1
www.iaik.tugraz.at/RESEARCH/krypto/AES/old/~rijmen/rijndael/sbox.pdf

	Using Normal Bases for Compact Hardware Implementations of the AES S-Box
	Introduction
	Normal Bases
	Construction
	Multiplication
	Inversion

	Implementing the AES Inverse Using Normal Bases
	Inversion in GF(256)
	Normal Bases in GF(16)
	Inversion in GF(16)

	Hardware Considerations
	Optimizing the Implementation
	Counting Gate Equivalents

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

