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• A population map for China at 100-m
spatial resolution was produced by ran-
dom forests.

• Remote sensing and POI data were
jointly used to disaggregate census pop-
ulation.

• The new population map showed
higher accuracy than the Worldop
dataset.

• The use of POI reduced under-allocation
in urban and over-allocation in rural
areas.

• POIs have more strengths than bright-
ness of nighttime lights for population
estimation.
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Remote sensing image products (e.g. brightness of nighttime lights and land cover/land use types) have been
widely used to disaggregate census data to produce gridded populationmaps for large geographic areas. The ad-
vent of the geospatial big data revolution has created additional opportunities to map population distributions at
fine resolutions with high accuracy. A considerable proportion of the geospatial data contains semantic informa-
tion that indicates different categories of human activities occurring at exact geographic locations. Such informa-
tion is often lacking in remote sensing data. In addition, the remarkable progress in machine learning provides
toolkits for demographers tomodel complex nonlinear correlations between population and heterogeneous geo-
graphic covariates. In this study, a typical type of geospatial big data, points-of-interest (POIs), was combined
with multi-source remote sensing data in a random forests model to disaggregate the 2010 county-level census
population data to 100 × 100 m grids. Compared with the WorldPop population dataset, our population map
showed higher accuracy. The root mean square error for population estimates in Beijing, Shanghai, Guangzhou,
and Chongqing for this method andWorldPop were 27,829 and 34,193, respectively. The large under-allocation
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of the population inurban areas and over-allocation in rural areas in theWorldPop datasetwas greatly reduced in
this new population map. Apart from revealing the effectiveness of POIs in improving population mapping, this
study promises the potential of geospatial big data for mapping other socioeconomic parameters in the future.

© 2018 Elsevier B.V. All rights reserved.
Table 1
Datasets used in this study.

Dataset Format Source

POIs Point features Baidu Map Services, China
DMSP-OLS nighttime
lights imagery

Grid The National Oceanic and
Atmospheric Administration's
National Geophysical Data Center, USA

SPOT NDVI Grid Vlaamse Instelling Voor Technologish
Onderzoek, Belgium

DEM Grid Land Processes Distributed Active
Archive Center, USA

Road network Line features Data Center for Resources and
Environmental Sciences, Chinese
Academy of Sciences, China

Census population
data (2010)

Table National Bureau of Statistics of China

Boundary maps Polygon features Administration of Surveying Mapping
and Geoinformation, China

WorldPop Mainland
China dataset

Grid WorldPop Mainland China dataset for
2010
1. Introduction

Accurate maps of human population distribution are of critical im-
portance in studies of disaster assessments, public health, and urban
planning (Ahola et al., 2007; Aubrecht et al., 2013; Dobson et al.,
2000; Hay et al., 2005; Jia et al., 2014). Official population figures de-
rived from census data are typically reported at administrative unit
levels (e.g., province/state and city/county). The practicality of such cen-
sus data is limited, as human populations are not uniformly distributed
within administrative units and the administrative boundaries are also
changing. Consequently, census data fail to elaborately reveal spatial
heterogeneity of population density (Bhaduri et al., 2007; Mao et al.,
2017). Due to the lack of explicit and detailed georeferences, combining
census population data with georeferenced environmental data is diffi-
cult, a problem that impedes interdisciplinary studies in coupled
human–environment systems (Zandbergen and Ignizio, 2010). Thus,
producing gridded population datasets that can be easily integrated
with gridded environmental data is an urgent task.

During the past three decades, various approaches have been devel-
oped to spatially disaggregate census population data to grid cells, such
as areal weighting (Tobler et al., 1997), pycnophylactic interpolation
(Tobler, 1979), dasymetric mapping (Briggs et al., 2007; Su et al., 2010),
and intelligent interpolation (Mennis and Hultgren, 2006). These
methods have produced many well-known gridded population datasets
covering large geographic areas, for example, the Gridded Population of
the World (Tobler et al., 1997), the Global Rural Urban Mapping Project
urban–rural population (Balk et al., 2006), the LandScan (Bhaduri et al.,
2007; Dobson et al., 2000), the WorldPop (Tatem et al., 2013), and the
Global Human Settlement Population Grid datasets (European Commis-
sion, 2015). During the production of these datasets, satellite image prod-
ucts, e.g., land cover/land use types and nighttime light (NTL) imagery,
have been widely adopted as ancillary data to ensure the accuracy
of disaggregated population data at relatively fine spatial resolutions
(e.g. 1 × 1 km) (Jia and Gaughan, 2016; Li and Zhou, 2018; Sutton,
1997; Wang et al., 2018a; Zandbergen and Ignizio, 2010). However,
such remotely-sensed ancillary data at medium spatial resolutions are
not directly indicative of land utilization or human presence. They also
have limited capabilities in extracting demographic and socioeconomic
features related to human activities, specifically in complex urban envi-
ronments (Liu et al., 2017; Liu et al., 2015; Wu et al., 2009).

The applications of geospatial big data have been greatly popularized
in recent years, thereby providing new opportunities to produce accu-
rate gridded population datasets at fine spatial resolutions (Yao et al.,
2017b). Points-of-interest (POIs) are a typical kind of geospatial big
data. Apart from exact location information (i.e., latitude and longitude),
each single POI contains a short textual description to define the category
that the POI belongs to (McKenzie et al., 2015; Yoshida et al., 2010). Dif-
ferent categories of POI (e.g., school, bus station, and factory) represent
different human activities within and surrounding them, and subse-
quently have different levels of correlation with population density
(Bakillah et al., 2014; Cai et al., 2017). Therefore, elaborate information
regarding urban or social systems can be extracted from POIs. Recently,
POIs have been utilized to define urban functional districts and land
use types (Gao et al., 2017; Hu et al., 2016; Jiang et al., 2015; Liu et al.,
2017; Wang et al., 2018b; Yao et al., 2017a; Zhang et al., 2017). Further-
more, each POI holds a point coordinate, thus converting POIs to raster
layers with different grid sizes and then combining them with remote
sensing data is convenient and flexible (Bakillah et al., 2014).
China has the largest population in the world and its census is con-
ducted every 10 years. The finest-resolution geographic census data
that the public can obtain are reported at the county level. Some algo-
rithms formapping China's population distribution at a 1-km spatial res-
olution have beendeveloped based onmultiple geographic and remotely
sensed variables (e.g., elevation, slope, net primary productivity, land
use/land cover type, distance to major roads, and brightness of NTL) as
distributing weights (Liu et al., 2003; Yue et al., 2003; Yue et al., 2005).
Gaughan et al. (2016) applied a random forests (RF) model to map
China's population density at 100-m spatial resolution. Complex nonlin-
ear relationships between population density and the multiple geo-
graphic and remote sensing variables have been modeled, producing
the WorldPop Mainland China dataset with high accuracy at the finest
spatial resolution to date (Bai et al., 2018; Gaughan et al., 2016).

The major objective of this study was to jointly use multi-source re-
mote sensing data and POIs to produce a more accurate population map
than the WorldPop dataset for China. A previous study suggested that a
population dataset with 100-m resolution has specific superiority over
other datasets at 1-km resolution (Azar et al., 2013). Moreover, the RF-
based methodology has been successfully applied at a 100-m resolution
for China (Gaughan et al., 2016). Therefore, we produced a new popula-
tion density map in 2010 at the 100-m resolution for this country. To ful-
fill the study objective, we first introduced a method to convert the
individual POI of different categories to a raster layer, thus POI data can
be jointly used with remote sensing images in an RF model to disaggre-
gate population by county to each gridded area. Next, the allocated popu-
lationwas evaluated using the census data reported at the township level
(i.e., Jiedao/Xiangzhen in Chinese). The accuracy of our population map
was compared with that of the WorldPop dataset. Then, we discussed
the importance of different variables in the RF model for population real-
location. Finally, we analyzed the reasons why the results of our popula-
tion map were more accurate than the WorldPop dataset.

2. Data and preprocessing

Table 1 lists nine types of data that were used to fit the RF model
and evaluate the accuracy of the new RF-based population map. The re-
trieval and preprocessing of these datasets in the current study are de-
scribed below.



Table 2
Categories of POIs and %IncMSEs used to calculate combining weights with a 5000-m
bandwidth of KDE.

Category Counts For producing
layers of POI
density

For producing
layers of DtN-POI

%IncMSE Weight %IncMSE Weight

Airport 670 2.94 0.01 3.24 0.01
Auto service 149,593 13.27 0.05 16.48 0.06
Bank 301,892 22.6 0.09 15.88 0.06
Commercial building 34,733 12.04 0.05 20.98 0.08
Company 572,129 10.89 0.04 9.26 0.04
Education facility 285,438 20.07 0.08 13.68 0.05
Factory 104,927 14.63 0.06 14.99 0.06
Gas station 86,844 29.68 0.11 20.61 0.08
Government agency 468,794 16.11 0.06 10.48 0.04
Hospital and clinic 175,572 16.63 0.06 29.43 0.11
Hotel 148,156 13.85 0.05 14.45 0.06
Motor passenger station 10,815 12.77 0.05 12.93 0.05
Park 13,041 12.05 0.05 16.98 0.07
Railway station 1864 1.9 0.01 4.75 0.02
Residential community 167,598 16.28 0.06 19.18 0.07
Restaurant and
entertainment

781,214 15.31 0.06 15.34 0.06

Retail 1,132,295 13.93 0.05 9.64 0.04
Service zone of Highway 21,873 2.21 0.01 2.61 0.01
Toll station 14,248 13.56 0.05 9.4 0.04
Others 534,357 −0.71 0 −0.15 0
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2.1. Census data

China's population data for 2010 were obtained from the Sixth Na-
tional Population Census of Mainland China. Hong Kong, Macao, and
Taiwan were excluded from this study because of their distinct political
and economic status from other Chinese provinces. The census data are
reported at the county level (equivalent to the level 3 of the Global Ad-
ministrativeUnit Layer definedby the Food andAgricultureOrganization)
with 2837 units. We also collected census data at the township level
(equivalent to the level 4 of the Global Administrative Unit Layer) with
3155 units from four metropolises (i.e., Beijing, Shanghai, Chongqing,
and Guangzhou) with high population densities and 4631 units from
four developing provinces (i.e., Jilin, Hubei, Yunnan, and Xinjiang). Fol-
lowing Gaughan et al. (2016), the census data at county level were used
to fit the RF model, whereas those at township level were employed to
evaluate the accuracy of the output population map.

2.2. Remote sensing datasets

TheDefenseMeteorological Satellite Program's Operational Linescan
System (DMSP-OLS) radiance-calibrated NTL products for 2010
was downloaded from the National Oceanic and Atmospheric
Administration's National Centers for Environmental Information
(available from https://ngdc.noaa.gov/eog/dmsp/download_radcal.html,
last accessed: August 3, 2018). Compared with another widely used
type of DMSP-OLS image product (i.e., stable light image composites),
radiance-calibrated NTL product comprises different fixed-gain images
to avoid the severe saturation problem from emerging in urban areas
while maintaining dim lights in suburban/rural areas (Hsu et al., 2015).
This image product has a spatial resolution of 1 × 1 km.

The normalized difference vegetation index (NDVI) image products
for 2010 were obtained from the Vlaamse Instelling Voor Technologish
Onderzoek (available from http://www.vito-eodata.be/, last accessed:
August 3, 2018) and collected by the Satellite Pour I'Observation de la
Terre (SPOT) Vegetation sensor. This set of SPOT NDVI image products
has a spatial resolution of 1 km × 1 km and a temporal granularity of
10 days. The maximum value composite method (Lu et al., 2008),
which can be generalized by Eq. (1), was used to generate an annual
maximum NDVI image to properly separate human settlements from
other land use/land cover types and diminish the influences of cloud
contamination:

NDVImax ¼ MAX NDVI1;NDVI2;…;NDVI36ð Þ ð1Þ

where NDVI1, NDVI2,…, NDVI36 are NDVI values of the same pixel in the
36 10-day SPOT image products for 2010.

Following Gaughan et al. (2016), the NTL and the NDVImax images
were resampled to 100 m using the nearest neighbor approach in ArcGIS
10.4.1 to avoid changing any pixel value during the resampling process.

The Advanced Spaceborne Thermal Emission and Reflection Radi-
ometer digital elevationmodel (DEM)dataset at 30-mspatial resolution
was obtained from the Land ProcessesDistributed Active Archive Center
(available from https://gdex.cr.usgs.gov/gdex/, last accessed: August 3,
2018). These 30-m DEM data were resampled to 100-m using the bilin-
ear interpolation method. Elevation and slope datasets were created
using the resampled DEM data.

2.3. POIs

POIs were retrieved from the Baidu Map (http://map.baidu.com),
which is the largest desktop and mobile map service provider in China
(Yao et al., 2017a, 2017b). We obtained 4,471,696 POI records for
2010 using Baidu Map's application programming interface. Baidu
Map classified these POIs into 20 categories on the basis of their Chinese
semantic phrase (Yao et al., 2017a, 2017b). Table 2 presents the 20
categories and the number of POI records for each category.
2.4. Boundary and road network data

The boundary map at county and Township levels were obtained
from the Administration of Surveying Mapping and Geoinformation,
China. Acquired from the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences, the Chinese road network data
were used to generate the Euclidean distance to the closest road (DtC-
road). Such data include China's national highways, city roads, provin-
cial, county, and township-level roads.

2.5. WorldPop mainland China dataset

The WorldPop Mainland China dataset is a relatively new gridded
population dataset and has the finest spatial resolution (i.e., 100-m)
for the Chinese territory (Bai et al., 2018; Gaughan et al., 2016). The ac-
curacy of our newly produced population mapwas compared with that
of theWorldPop dataset to highlight the effects of involved POIs in anRF
model to improve population mapping. TheWorldPop dataset for 2010
was obtained from the WorldPop project website (http://www.
worldpop.org.uk/, last accessed: August 3, 2018). To ensure the correct-
ness of area information, all mentioned raster data were re-projected to
the Albers Conical Equal Area projection.

3. Method

The workflow for processing POI data, fitting the RF model to pro-
duce the dasymetric population map, and assessing accuracy is exhib-
ited in the flowchart in Fig. 1.

3.1. Processing POI data

All POI records in this study were produced to two raster layers of
POI density and distance to the nearest POI (DtN-POI) to be jointly
used with remote sensing images in the RF model. The kernel density
estimation (KDE) (Peng et al., 2016), with a bandwidth initially set as
5000 m, was adopted to convert discrete individual POIs to continued
and smooth density surfaces for each of the 20 categories. The density
surfaces were output as raster layers at 100 × 100 m spatial resolution.
To reduce the computing burden of the final RF model, the 20 raster

https://ngdc.noaa.gov/eog/dmsp/download_radcal.html
http://www.vito-eodata.be/
https://gdex.cr.usgs.gov/gdex/
http://map.baidu.com
http://www.worldpop.org.uk/
http://www.worldpop.org.uk/


Fig. 1. Flowchart for producing and assessing accuracy of the dasymetric population map.
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layers for the 20 different POI categories were further combined into
one layer. Specifically, each density layer was aggregated by county.
Thus, any county held a census population and 20 summed POI
densities. These densities were used as the 20 predictor variables of a
regression RFmodel to estimate population at the county level. After de-
veloping the RF model, each predictor variable had an output value,
namely, %IncMSE, indicating the increase in the mean squared error
(MSE) of prediction (i.e., population in this study) after permuting this
variable. The higher the value of %IncMSE, the more important the var-
iable in the out-of-bag cross-validation process (Breiman, 2001). Thus,
we utilized %IncMSEs to calculate the weights of the 20 individual POI
density layers to combine them into one POI density layer, as follows:

Dc ¼ D1W1 þ D2W2 þ ∙∙∙þ D20W20 ð2Þ

Wi ¼
%IncMSEi

∑20
k¼1%IncMSEk

%IncMSEk ¼ 0; if%IncMSEkb0ð Þ ð3Þ

where Dc denotes the digital number (DN) value of a pixel in the com-
bined POI density layer, Di (i = 1, 2,…, 20) represents the DN value of
a pixel in an individual POI density layer for the ith category, and Wi is
the weight for the ith POI category.

The combined POI density and additional another five predictor
variables (i.e., elevation, slope, brightness of NTL, NDVI, and distance
to the closest road) were included in another RF regression model
(see Section 3.2 for details of this RF model). Moreover, %IncMSE was
obtained for the predictor variable of POI density. We repeated these
steps at 100-m increments in the bandwidth of KDE and found
that the out-of-bag error was minimized when the bandwidth was
5000 m. Further increasing the bandwidth led to an increase in out-of-
bag errors. Therefore, we selected the POI density layer produced by
the 5000-m bandwidth of KDE. Table 2 exhibits the specific %IncMSEs
of POI densities for the 20 individual categories.

A fishnet with empty attributes at the 100 × 100m cell size covering
the entire mainland China was created in ArcGIS 10.4.1. Each cell was
valued by the Euclidean distance from the center of the cell to the
nearest POI of a category. We produced a total of 20 raster layers as
DtN-POIs for the 20 POI categories. Using the same method of combin-
ing the individual POI density layers, the 20 DtN-POI layers were inte-
grated as one raster dataset by their %IncMSEs in an RF regression
model for estimating population at the county level. Table 2 displays
the specific %IncMSEs used to combine the DtN-POI layers.

3.2. Fitting the RF model and dasymetric population mapping

RF is a classic machine learning approach developed from decision
trees (Breiman, 2001). Different from traditional linear regression
models, RF is a non-parametricmethod that canmodel complex nonlin-
ear relationships between predictions and heterogeneous predictor
variables (Hastie et al., 2009). We skipped the formulated details on
RF in this research and instead referred to Breiman (2001) and Liaw
and Wiener (2002) for such details.

The seven 100× 100m raster layers of elevation, slope, brightness of
NTL, NDVI, DtC-road, POI density, and DtN POI were aggregated by
county and then linked with the natural logarithm of the census popu-
lation to fit the RF model. Next, the same raster layers were positioned
to the fitted RF model to calculate the distribution weight for each
1 ha (i.e., 0.01 km2) gridded area (see Fig. 2a). Finally, the weights
were used to disaggregate the census population at the county level
(Fig. 2b) to pixels. A dasymetric population density map (Fig. 3) for
mainland China was produced using Eq. 4, as follows:

POPgrid ¼ POPcounty �Wgrid

Wcounty
ð4Þ

where Wgrid is the population-distribution weight for a 1-hectare
gridded area, Wcounty denotes the summed population-distribution
weight of a county that contains the gridded area, POPcounty represents
the county's census population, and POPgrid is the predicted population
for the gridded area.



Fig. 2. (a) Distribution weights at 100-m spatial resolution and (b) China census population at the county level.
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3.3. Accuracy assessment

The WorldPop dataset was reported as an accurate gridded popula-
tion dataset with the finest spatial resolution (i.e., 100 m) for China in
the current literature (Bai et al., 2018). Beijing, Shanghai, Chongqing,
Fig. 3. Predicted people per grid cell (100
and Guangzhou are the most populated cities in China. Gaughan et al.
(2016) used the four cities' census data to evaluate the accuracy of the
WorldPop dataset for China. To highlight that our new dasymetric
population map (henceforth referred to as PoiPop to distinguish it
from theWorldPopmap) holds a competitive accuracy at 100-m spatial
-m) for 2010 across mainland China.
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resolution, we utilized the census data at the township level from the
same four cities with high population density (henceforth referred to
as Group1) for validation. Four other provinces with relatively low pop-
ulation density (i.e., Jilin, Hubei, Yunnan, and Xinjiang, henceforth re-
ferred to as Group2) were also used to elaborately compare accuracy
levels between the PoiPop and WorldPop datasets. Two measures,
namely, root mean square error (RMSE) and mean absolute deviation
(MAE), were selected to quantify and compare the errors of the two
gridded population datasets.

4. Results

4.1. Accuracy assessment

The RMSE of PoiPop for Group1 and Group2 was 27,829 and
20,805, respectively, whereas that of WorldPop was correspondingly
34,193 and 24,203. The MAE of PoiPop for Group1 and Group2 was
16,030 and 11,720, respectively, whereas that of WorldPop was
Fig. 4. Scatterplots of the predicted and the census population density at the township level. A lo
the townshipswith the largest 20% population densities, the blue points correspond to those wi
the green points. The black dash line is the global fitting line. (a) and (b) represent the four citie
four provinces (i.e., Jilin, Hubei, Yunnan, and Xinjiang) in Group2. pph: population per hectare
correspondingly 20,233 and 13,918. Therefore, PoiPop had a better
overall accuracy than WorldPop, as demonstrated by the small
RMSE and MAE values.

Fig. 4 illustrates the relationship between the predicted population
density and the census population density in which each data point
corresponds to a township. The WorldPop had an acceptable accuracy
(R2 = 0.73) in regions with medium population densities in Group1.
However, such accuracy severely reduced in the highly or lowly popu-
lated townships (R2 = 0.35 or R2 = 0.15) (Fig. 4b). The errors were
mainly derived from underestimations in townships with large popula-
tions (demonstrated by the fact that most red points fell under the
diagonal line), whereas overestimations were common in those with
small populations (demonstrated by the fact that most blue points fell
above the diagonal line) (Fig. 4). Compared with WorldPop, PoiPop
held higher accuracy (R2 = 0.80) in the medially populated regions
in Group1, and its accuracy in either highly or lowly populated areas
(R2=0.57 or R2=0.47)was increased. Relative toGroup1, overestima-
tions in low population regions were not evident in Group2 for PoiPop
g10-log10 transformationwas conducted for the population density. The red points indicate
th the smallest 20% population densities, and the remaining townships are represented by
s (i.e., Beijing, Shanghai, Chongqing, and Guangzhou) in Group1. (c) and (d) represent the
.



Fig. 5. Differences between PoiPop and WorldPop in eight cities by subtracting the WorldPop dataset from the PoiPop dataset.
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andWorldPop (Fig. 4c and d, respectively. The trend lines indicated that
the PoiPop productwas closer to the one-to-one line than theWorldPop
dataset in Group1 and Group2.

Fig. 5 exhibits the differences between the PoiPop and theWorldPop
datasets for the four cities in Group1 and four capital cities
(i.e., Changchun, Wuhan, Kunming, and Urumqi) of the provinces
in Group2. Compared with the WorldPop population map, our newly
produced PoiPop map showed larger populations in urban areas and
smaller populations in suburban areas, in line with the results in
Fig. 4. The PoiPop map benefited from the incorporation of POI-related
variables and agreed well with the actual population distribution.

4.2. Responses of population density to the variables

The partial dependency plots (Fig. 6) demonstrate the correlations
betweenpopulation density and geographic factors.Most human settle-
ments distribute in the eastern low-elevation areas of China. The popu-
lation density steadily decreases as elevation increases to 1300m. Areas
with elevation greater than 3000 m are mostly located in the Qinghai-
Tibet Plateau where the population density also decreases with the
rise in elevation until the elevation reaches 4000 m. Humans live in
flat areas, and population density decreases with increased slope until
approximately 20%.

NDVI reflects vegetation coverage on the earth's surface. Human be-
ings also live in areas with plenty of water resources and plants (Nieves
et al., 2017). Hence, as the NDVI value of a region rises, the population
density also steadily increases. However, when NDVI reaches 0.8, the
population density sharply decreases with any further increase in
NDVI. Regions with an NDVI value larger than 0.8 can be defined as
dense forest (Zhuo et al., 2009).

In this study, we selected radiance-calibrated NTL instead of the
widely used stable NTL image product. This selection ensures sufficient
variation in the brightness of NTL in urban areas by avoiding appear-
ances of saturated pixels (Hsu et al., 2015). As the partial dependency
plot demonstrates, the largest DN value in the 2010 radiance-
calibrated NTL image product was greater than 1000. However, most
(93%) of the lit pixels' DN values were lower than 100. Thus, population
density steadily increasedwith rising brightness of NTL. However, when
the brightness of NTL reached 100, population density remained nearly
unchanged with further increase in NTL brightness. Similarly, popula-
tion density steadily increased with the increments in the POI density
until it reached 3.5. Then, population density remained unchanged.

Population density logarithmically decreased with increasing
distance to the nearest road or POI (see Fig. 6). Moreover, 97% (91%)
of Chinese people live in areas with a distance to the nearest road
(POI) shorter than 25 km (12 km). Thus, population density was nearly
unvaried with the change after such a distance.

5. Discussion

5.1. POI versus brightness of NTL

The partial dependency plots (Fig. 6) show that the relationships
between population density and geographic variables were nonlinear
and/or piecewise. Thus, comparedwith the geographically weighted re-
gressionmodels, whichweremainly dependent on linear regressions in
previous population studies (Chen et al., 2007; Xu and Ouyang, 2018),
the machine learning method of RF can more accurately capture the
complex correlations between population density and geographic vari-
ables (Liu et al., 2018b). PoiPop and WorldPop were produced by the
same method (i.e., RF), census data (i.e., the Sixth National Population
Census of Mainland China), and geographic variables of elevation,
slope, and brightness of NTL. The major difference between PoiPop
and WorldPop was the use of additional POI-related variables
(i.e., density of POI and DtN-POI). Aside from slope, the two POI-
related variables had the largest contributions to modeling population
density (Fig. 7). Specifically, the %IncMSEs of the two variables were
larger than that of brightness of NTL, whichwas a goodmeasure of pop-
ulation density according to a number of previous studies (Lo, 2001;
Sutton et al., 2001; Sutton et al., 1997; Zhuo et al., 2009).

The basic logic of using brightness of NTL to map or distribute popu-
lation was that a region with bright lights at night typically has a large
population (Sutton et al., 2001). However, blooming is inherent to
NTL, demonstrating that urban peripheries are brightened by urban
lights (Imhoff et al., 1997). Liu et al. (2016) found that in China less
than 5% of lit areas were developed. Therefore, the lit area from the



Fig. 6. Partial dependency plots for the variables in the RFmodel predicting population density. The black ticks at the base of the plots are deciles of the input variable. Tickmarks at the x-
axis indicate the deciles (10% quantiles) of the observed distribution of continuous predictor variables.
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NTL imagewasmuch larger than the developed area extracted from the
Landsat image (Fig. 8). TheWest Lake and Qiantang River inside or close
to the urban area of Hangzhouwerewell-lit and held considerably large
DN values in the NTL image. Thus, when brightness of NTL was used as
the only or chief variable indicating the status of human systems, a
considerable amount of the population was allocated to undeveloped
regions, thereby leading to over-distributions in rural and suburban
areas (i.e., the lowly populated townships) and under-distributions in
urban areas (i.e., the highly populated townships) (see Fig. 4). In
addition, NTL within a small land area inside a city can brighten a
huge surrounding area (Esch et al., 2014). In an NTL image, a pixel's
brightness of NTL is usually a combined outcome of the brightness of
its adjacent pixels. Thus, variation in the brightness of NTL can be
small, as demonstrated by the relatively flat curve of DN values across
the urban area (Fig. 8). These reasons led to the failure of brightness of
NTL collected by satellite images to accurately reflect population densi-
ties at a relatively small geographic scale.

In modern societies, human existence inevitably generates demand
for different kinds of services, driving the appearance of different service
entities (e.g., gas stations, convenience stores, schools, and hospitals).
Moreover, the larger the population, the greater the demand for such
service entities. Hence, a region with more POIs or closer distance to
POIs has a larger population than its counterparts. For example, the
primary factor determining the construction of an additional school or
hospital is its surrounding population. The number of gas stations or
convenience stores in an area is determined by its purchasing power,
which is mainly affected by population. A region without POIs or is far
from POIs should be allocated with a low population although the re-
gion is lit in the NTL imagery. Moreover, POI-related variables can prop-
erly capture fabric and function inside of cities (Gao et al., 2017; Jiang
et al., 2015), indicated by the dramatic changes of the POI density across
urban areas (Fig. 8). Therefore, adding POI-related variables can greatly
enhance the variation of the distributed population and reduce the un-
derestimation of populations in urban areas, because a considerable
proportion of population was not allocated to suburban and rural
areas where pixels were lit but corresponded to small POI densities.

Furthermore, populations inside or surrounding different categories
of POIs are dramatically different. Certain categories of POI, such as



Fig. 7. Percentage-increased MSE indicates the variable importance for RF regression.
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hospitals and schools, are correlated with high population density
(Bakillah et al., 2014). Baidu's POI data contain semantic information
on categories of POIs that cannot be extracted from a satellite image
and consequently is a distinctive feature of POI data superior to remote
sensing imagery. In this study, POIs belonging to disparate categories
were allocated different weights, thereby allowing combined POI den-
sity or DtN-POI to more accurately represent population density than
NTL brightness.
Fig. 8. Latitudinal transects of NTL and the POI dens
5.2. Uncertainty of the POI data

At present, the most widely used POIs (e.g., OpenStreetMap's POIs)
are a typical type of volunteered geographic information (VGI) data
(Bakillah et al., 2014). Uncertainty over the data quality of such POI
datasets has adversely affected their uses in practical studies (Fonte
et al., 2017). These uncertainties are derived not only from positional
and thematic accuracies but also from spatial biases in the information.
Previous studies (e.g., Ma et al., 2015; Neis and Zielstra, 2014) indicated
that most POIs are collected in urban areas, whereas many POIs in rural
areas are unreported.Moreover, in VGI-based POI datasets, popular ser-
vice entities (e.g., restaurants and tourist attractions) attract more at-
tention. By contrast, POIs are considerably insufficient in unobtrusive
urban areas (e.g., residential areas) (Antoniou and Schlieder, 2014).
Thus, such spatial biases can generate severe errors in distributing cen-
sus populations.

To avoid such problems, we adopted the commercial POI data ac-
quired from Baidu. Collected by trained persons and after undergoing
strict inspections and corrections, positional and thematic accuracies
of these commercial POI data are found reliable. These POI data are
also used in Baidu's navigation software and consequently, spatial
biases have been greatly controlled although these spatial biases cannot
be thoroughly eradicated.

Aside from the geospatial big data of POIs, location-based social
media data such as those from Twitter (Patel et al., 2017) and WeChat
(Yao et al., 2017b) have also been used to improve populationmapping.
These social media data have considerable biases among subpopula-
tions of different age groups. For example, young people more likely
post social media data than seniors (Jiang et al., 2018). Therefore,
when the location-based social media data are used to disaggregated
census populations, rural areas may be under-allocated because many
young countrymenmigrate to urban areas for work or to receive higher
education, leaving elderly people. In addition, the volume of location-
based social media data is greatly influenced by the prevalence of com-
puters and smartphones. In the economically developed eastern areas of
ity raster layer for the city of Hangzhou, China.
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China, nearly every family or adult has a computer or smartphone, yet in
the economically repressedwestern areas, computers and smartphones
are still not prevalent. Therefore, large spatial biases likely exist within
the Chinese social media data and generate considerable adverse effects
on the accuracy of population distribution.

To sumup, commercial POI data (e.g. Baidu's POIs used in this study)
have relatively fewer uncertainties and smaller spatial biases than VGI-
based POIs and social media big data. Thus, commercial POI data are
suitable in mapping population distribution at fine spatial resolutions
and across large geographic scales.
6. Conclusions

In the study, we used multiple kinds of remote sensing image
products and Baidu's POIs within an RF model to spatially disaggregate
census data to produce a gridded population map for China at 100-m
spatial resolution. Our population map showed higher accuracy than
the WorldPop dataset. The considerably evident underestimations in
urban and overestimations in rural and suburban areas that once
existed in the WorldPop dataset were markedly reduced in the new
PoiPop date due to the integrated of POIs. In the RF model, brightness
of NTL,whichwas extensively believed to be a good proxy of population
distribution, showed less importance than the two POI-related variables
(i.e. POI density and DtN-POI). Compared with brightness of NTL, POI
density had more adequate variation across urban areas and did not
have overly high values in undeveloped areas (i.e., no blooming effects).

Apart from distributing census population, brightness of NTL has
also been extensively used as an indicator of socioeconomic factors
(e.g., GDP, electric power consumption, and CO2) (Chen and
Nordhaus, 2011; Doll et al., 2006; He et al., 2014; Liu et al., 2018a; Ou
et al., 2015). Although NTL can generally delimit the extent of human
activities and indicate intensities of these activities, categories of such
activities cannot be discerned. For example, two regions' total bright-
ness of NTL may be the same, despite one region being a residential
area and the other being a business district. In such cases, the business
district should have more GDP than the residential area although
they have the same total brightness of NTL. POI data contain semantic
information, thus showing locations at which wealth is produced and
indicating kinds of industry from which wealth is derived. This charac-
teristic shows great potential for POI data to be used in spatially disag-
gregating other socioeconomic parameters in the future.
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