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Abstract Ageometric dynamicmodeling framework
for generic multirotor aerial vehicles (MAV), based on
a modern Lie group formulation of classical screw the-
ory, is presented. Our framework allows for a broad
range of rotor-wing configurations: any number of
rotors can be attached in arbitrary configurations to
either the body or wings, with the rotors and wings also
tiltable. Our framework takes into account all masses
and inertias of the MAV body and rotors, and accounts
for both rotor thrust forces and moments as well as
external aerodynamic and other forces. Compared to
existing methods, our Lie group framework possesses
several practical advantages useful for applications
ranging from design optimization to model identifi-
cation and trajectory optimization: (1) the dynamic

Y. Hong (B) · S. Noh · T. Lee · F. C. Park
Department of Mechanical and Aerospace Engineering,
Seoul National University, Seoul, Korea
e-mail: yshong@robotics.snu.ac.kr

S. Noh
e-mail: kaironseu@naver.com

T. Lee
e-mail: alex07143@snu.ac.kr

F. C. Park
e-mail: fcp@snu.ac.kr

R. Rashad · S. Stramigioli
Robotics and Mechatronics Group, University of Twente,
Enschede, The Netherlands
e-mail: r.a.m.rashadhashem@utwente.nl

S. Stramigioli
e-mail: s.stramigioli@utwente.nl

equations can be easily transformed to coordinates of
any reference frame; (2) kinematic and mass–inertial
parameters can be easily factored from the dynamic
equations; (3) exact, closed-form analytic derivatives
of the dynamics with respect to the configuration vari-
ables are easily derived.Wedemonstrate our systematic
modeling procedure on examples of fixed-tilt, variable-
tilt and hybrid MAVs with wings.

Keywords Multirotor aerial vehicle · Multibody
dynamics · Screw theory · Lie group · Lie algebra

List of symbols

{a} Reference frame a
Tb
a ∈ SE(3) Relative configuration of {a} w.r.t. {b}

Rb
a ∈ SO(3) Relative orientation of {a} w.r.t. {b}

pba ∈ R
3 Position of the origin of {a} expressed

in {b}
[x] ∈ so(3) Skew-symmetric 3×3matrix represen-

tation of x ∈ R
3

Vc,b
a ∈ R

6 Twist (generalized velocity) of {a}w.r.t.
{b} expressed in {c}

ω
c,b
a ,∈ R

3 The angular part of the twist Vc,b
a

v
c,b
a ∈ R

3 The linear part of the twist Vc,b
a

[V] ∈ se(3) The 4 × 4 matrix representation of the
twist V ∈ R

6

Sc,b
a ∈ R

6 The screw-vector corresponding to a
unit twist between the bodies attached
to {a} and {b}, expressed in {c}
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Wc,b
src ∈ (R6)∗ The applied wrench by the source (src)

to thebodyassociatedwith {b}, expressed
in {c}

mc,b
src ∈ (R3)∗ The moment part of the wrench Wc,b

src
f c,bsrc ∈ (R3)∗ The force part of the wrench Wc,b

src
Gc
b ∈ R

6×6 The generalized inertia tensor of the
body associated with {b}, expressed in
{c}

1 Introduction

Multirotor aerial vehicles (MAV) come in a wide vari-
ety of designs and configurations, from the standard
quadrotor-type unmanned aerial vehicle (UAV) to those
with rotor axes aligned in different directions, some
actively tiltable, possibly with fixed or moving wings
attached to various parts of the vehicle (e.g., vertical
takeoff and landing aircraft designs). With the grow-
ing diversity of designs, together with the increasingly
dynamic and complex maneuvers that are being per-
formed by MAVs, accurate mathematical models are
becoming more and more critical to their control and
design. Such models are essential not only for accu-
rate physics-based simulation and design optimization,
but also for applying advanced model-based nonlinear
control laws and trajectory planning algorithms, which
with advances in computational power are now becom-
ing more and more amenable to real-time computation.

Most of the existingworks onMAVdynamicmodels
have been limited to the most basic designs, in which
the vehicle is modeled as a single rigid body subject
to rotor thrust, aerodynamic and other external forces.
For example, the dynamics of standard quadrotors are
addressed in [2,12,13,18,28]. Thework of [2,13] takes
into account the dynamics of the rotor actuators. The
work of [18] also considers the aerodynamic forces act-
ing on the vehicle. All of the previous works assume
the standard quadrotor configuration, i.e., the four rotor
axes are parallel and symmetrically arranged about the
vehicle center ofmass. The dynamics of six rotorMAVs
are addressed in [1], and eight-rotorMAVs in [31]; here
the rotor axes are all assumed parallel and arranged
symmetrically about the vehicle center of mass. More
recently [4,15,23,34], address the dynamics of simple
omnidirectional aerial vehicles with rotors aligned in
arbitrary directions, but only the mass–inertia of the
main body is considered, and the dynamics is formu-

lated in the conventional way with respect to the center
of mass frame only.

More recently, in an effort to overcome the inherent
power limitations of wingless rotorcraft, MAV designs
with both fixed and moving wings attached have been
proposed in the literature. The authors of [7,11] derive
the dynamics of a MAV with two fixed wings, while
the authors of [6] derive the kinematics (but not the
dynamics) of a quad tilt-wingMAVwith four rotors. A
systematic analysis of the dynamics of generic winged
MAVs has yet to be addressed in the literature.

In practice many of the underlying design assump-
tions made in the previous works will usually not hold
entirely:manufacturing tolerances and errorswill result
in, e.g., rotor axes that may not be exactly parallel to
one another, or rotorsmay not be arranged in a perfectly
symmetric fashion about the vehicle’s center ofmass, or
some of the rotor axes may fail to pass directly through
the rotor body’s center of mass. In some cases deliber-
ately designing a MAV in such an asymmetric or skew
way, with different types of wings arranged in atypical
configurations, may even enhance some aspect of the
MAV’s performance. For a recent survey, the reader is
referred to [27].

In this paper we present a systematic modeling
framework for generic MAVs that encompasses a wide
spectrum of possible designs. We assume the MAVs
are driven by a set of rotors, possibly with tiltable axes,
and that an arbitrary number of fixed and adjustable
wings may be attached to the vehicle body. A sub-
set of the rotors may be attached to the wings and
some to the main MAV body. Our modeling frame-
work considers the rigid multibody dynamics of both
the vehicle body’smass and inertia aswell as themasses
and inertias of the rotor bodies; other articulated bod-
ies that may be attached to the MAV—for example, an
open chain manipulator—can also be treated straight-
forwardly within our framework. In addition to the
thrust forces and moments generated by the rotors,
our framework allows for the consideration of exter-
nal aerodynamic forces that are applied to the MAV.

One of the distinguishing features of our approach
is the adoption of modern screw-theoretic methods for
multibody dynamic modeling, or more precisely, using
notation andoperations associatedwith theLie groupof
rigid body motions, also commonly known as the Spe-
cial Euclidean group SE(3). The use of such methods
is by now quite standard in the robot dynamics litera-
ture, e.g., [17,20–22], as the algorithms are expressed
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in a way that is invariant with respect to the placement
of reference frames on the bodies, and closed-form
expressions for derivatives of the dynamics are avail-
able for optimization and sensitivity analysis, among
other applications. Here we apply the same concepts
and transformations to MAV dynamic modeling and
derive a reference frame-invariant set of dynamic equa-
tions for generic winged and wingless MAV models.
The dynamics ofMAVswith articulated structures such
as a multi-dof robot arm attached to the body can also
be systematically included within this framework.

By adopting the Lie group framework and the ensu-
ing rules for the transformation of six-dimensional
velocities, forces and inertias, the dynamics of complex
MAVs can be derived in a straightforward and system-
atic way, without regard to the way in which reference
frames are attached to theMAV.Moreover, the resulting
equations are shown to be easily factored with respect
to any of themodel parameters, e.g., inertias of the body
and rotors, rotor axes, aerodynamic constants and also
easily differentiated. These features make our geomet-
ric formulation particularly attractive for applications
such as design, calibration and identification, and also
dynamics-based trajectory optimizationwhere analytic
gradients involving the dynamics are required.

The paper is organized as follows. Section 2 reviews
the formulation of the dynamic equations for a single
rigid body using Lie group concepts and notation. Sec-
tion 3 presents the main results of our dynamic mod-
eling framework for a generic MAV that incorporates
fixed-tilt, variable-tilt and hybrid MAVs. In Sect. 4, we
apply our generic framework, together with complete
solutions, for representative MAV structures like the
standard quadrotor and also more complex structures
like quadrotors with tilting rotors and multirotor tilt-
wing MAVs. Finally, we conclude the paper in Sect. 5.

2 Mathematical preliminaries

We begin with some basic definitions and remarks
about the notation, mostly following that used in
[22] with some variations. Let {a} denote a right-
handedorthonormal coordinate framedefined as {a} :=
(oa, ı̂a, ĵa, k̂a), with oa denoting the origin of the
frame and (ı̂a, ĵa, k̂a) are linearly independent free
vectors.

Given two frames {a} and {b} situated in space, we
denote by Tb

a ∈ SE(3) the relative displacement of

frame {a} with respect to frame {b}, where SE(3) is
the matrix Lie group of rigid body transformations. An
element Tb

a has the explicit form

Tb
a =

[
Rb
a pba
0 1

]
, (1)

where Rb
a ∈ SO(3) is a 3×3 rotation matrix represent-

ing the orientation of frame {a} with respect to frame
{b}, while pba ∈ R

3 denotes the position of oa in {b}.
A general rigid body motion on SE(3) is a combina-

tion of rotational and translationalmotion. The geomet-
ric treatment followed in thiswork allows us to describe
these two aspects using a single mathematical object,
called a twist, which is an element of the Lie algebra of
SE(3). We denote by se(3) the Lie algebra of the Lie
group SE(3), consisting of 4 × 4 matrices of the form

[V] =
[ [ω] v

0 0

]
, (2)

where v ∈ R
3 represents linear velocity, and [ω] ∈

so(3) is a 3 × 3 skew-symmetric matrix representing
angular velocity.

We can associate to any [ω] ∈ so(3) a vectorω ∈ R
3

using the isomorphism

ω :=
⎡
⎣ω1

ω2

ω3

⎤
⎦ �→

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ =: [ω]. (3)

Consequently, we can always identify the twist [V] ∈
se(3)with a six-dimensional vectorV ∈ R

6 of the form

V =
[

ω

v

]
∈ R

6. (4)

For convenienceV will also sometimes bewrittenV =
(ω, v), and with an abuse of notation we will call both
V and [V] a twist.

If either {a} or {b} is a moving frame, then the twist
of {a} with respect to frame {b}, expressed in {a}, is
denoted by [Va,b

a ] ∈ se(3). The explicit form of [Va,b
a ]

is calculated by

[Va,b
a ] = Ta

b Ṫ
b
a =

[
Ra
b Ṙ

b
a Ra

b ṗ
b
a

0 0

]
=

[ [ωa,b
a ] v

a,b
a

0 0

]
,

(5)
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where the over-dot denotes differentiation with respect
to time, andω

a,b
a , v

a,b
a ∈ R

3 are, respectively, the angu-
lar and linear velocity components of the twist Va,b

a .
Another important connection between SE(3) and

se(3) is the Chasles–Mozzi theorem,1 which states
that every rigid body motion can be expressed as a
screw motion. Mathematically, every T ∈ SE(3) can
be expressed as a matrix exponential of the form

T = e[S]θ , (6)

where the Plucker coordinates S = (ω, v) correspond
to an element of se(3), and θ is a scalar. Closed-form
expressions for the matrix exponential and its inverse
(i.e., the matrix logarithm) can be found in, e.g., [17,
35].

We denote the dual space of se(3) by se∗(3)which is
the space of wrenches (i.e., generalized forces) that are
dual entities to twists. The pairing between a wrench
[W] ∈ se∗(3) and a twist [V] ∈ se(3) is a scalar that
corresponds to the total power that is supplied to gener-
ate the rigid body motion described by [V]. By duality,
we can associate to every wrench [W] ∈ se∗(3) a 6-
dimensional vector2 W ∈ (R6)∗ given by

W =
[
m
f

]
∈ (R6)∗, (7)

wherem, f ∈ (R3)∗ are the moment and force compo-
nents of the wrench, respectively. Similar to twists, we
abusively call both [W] andW wrenches. The duality
pairing of a wrench W and a twist V yields

W�V = m�ω + f�v, (8)

which corresponds to the total mechanical power.
Now consider a three-dimensional rigid body of

mass m with a body-fixed frame {b} attached to the
body’s center of mass. Let Ib ∈ R

3×3 be the 3 × 3
rotational inertia matrix of the rigid body expressed in
{b}. We assume that {b} is chosen to be aligned with the

1 Most textbooks contribute this theorem only to the work of M.
Chasles in 1830; however, it dates back to G. Mozzi in 1763.
2 Although one has that (R6)∗ ∼= R

6, we denote in this work the
space of wrenches by (R6)∗ to stress their covector nature which
is crucial to note as wrenches and twists change coordinates dif-
ferently.

principle directions of the inertia ellipsoid of the cor-
responding rigid body. Consequently, Ib is a diagonal
matrix.

Consider an inertial fixed frame {0} fixed to the
ground. Let Vb,0

b be the twist of the rigid body with
respect to this ground frame expressed in {b}. Further,
letWb,b

ext be the net external wrench applied to the body
expressed in {b}. The equations of motion of the rigid
body motion can then be expressed as

Gb
bV̇

b,0
b = [adVb,0

b
]�Gb

bVb,0
b + Wb,b

ext , (9)

where Gb
b ∈ R

6×6 is the generalized inertia tensor of
the rigid body defined by

Gb
b :=

[Ib 0
0 m · 1

]
, (10)

with 1 denoting the 3 × 3 identity matrix. The 6 × 6
matrix [adV ] represents the adjoint action of the Lie
algebra se(3) given by the following matrix:

[adV ] =
[[ω] 0
[v] [ω]

]
, V =

[
ω

v

]
. (11)

Note that the total kinetic energy of the rigid body can
be compactly represented as

Hkin = 1

2
(Vb,0

b )�Gb
bVb,0

b . (12)

Along solutions of dynamical equation (9), the kinetic
energy satisfies the power balance:

Ḣkin = (Wb,b
ext )

�Vb,0
b . (13)

The compact formof dynamic equations (9) is equiv-
alent to the well-known rigid body equations

Ibω̇
b,0
b =

[
Ibω

b,0
b

]
ω
b,0
b + mb,b

ext ,

mv̇
b,0
b = [mv

b,0
b ]ωb,0

b + f b,bext .

An important advantage of the Lie group formula-
tion of rigid body motion presented so far and used
extensively in this work is the ease of changing coordi-
nates. Let {a} be any arbitrary frame one wishes to rep-
resent the dynamics of the rigid body associated to {b}
in. Then, the relative spatial displacement Tb

a ∈ SE(3)
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(and its inverse Ta
b) is all that is needed to express

the dynamic equations in the new frame {a}. For that
purpose, one uses the adjoint representation of the Lie
group SE(3) given by the 6 × 6 matrix:

[AdT ] =
[

R 0[
p
]
R R

]
, T ∈ SE(3), (14)

where [ p] denotes the skew-symmetric matrix repre-
sentation of p given by (3).

The coordinate transformation rules for twists,
wrenches, and generalized inertias are as follows:

Va,∗
� = [AdTa

b
]Vb,∗

� (15)

Wa,∗
� = [AdTb

a
]�Wb,∗

� (16)

Ga
� = [AdTb

a
]�Gb

�[AdTb
a
] (17)

[adVa,∗
�

] = [AdTa
b
][adVb,∗

�
][AdTb

a
]. (18)

In the special case that {a} is another arbitrary body-
fixed coordinate frame attached to a different point on
the rigid body, then one has that Va,b

a = 0 and thus

Va,0
a = [AdTa

b
]Vb,0

b + Va,b
a = [AdTa

b
]Vb,0

b .

The rigid body dynamic equations in terms of the new
body-fixed frame {a} then become

Ga
aV̇

a,0
a = [adVa,0

a
]�Ga

aVa,0
a + Wa,a

ext , (19)

which is exactly of the same form as (9). This form-
invariance property under change of coordinates is an
advantage of the differential geometric framework uti-
lized to describe body motion. Note that in the new
coordinate frame {a}, the generalized inertia Ga

a is a
symmetric positive definite matrix but does not have
the diagonal form in (10).

3 Dynamics of generic MAVs

In this section, we present the systematicmodeling pro-
cedure for a generic MAV. As for many other types of
robots, it is common to treat aMAV as amultibody sys-
tem consisting of a set of rigid bodies linked together
via joints that are usually activated by electric motors.
In what follows, we describe the dynamic model of
two rigid bodies connected by a 1 degree-of-freedom
revolute joint, excluding any other externally applied
wrench. Then, we show how these basic atomic units

Fig. 1 Block diagram representation of a parent rigid body {p}
and a child rigid body {c} connected through a revolute joint
J p
c (θc). The dynamics of the parent body are in integral causality

(23) while that of the child body are in differential causality (28)

can be generalized systematically to model a complete
generic MAV with different external sources.

3.1 Parent–child relations

Consider the parent rigid body, with body-fixed frame
{p}, connected through a revolute joint to a child rigid
body, with body-fixed frame {c}, as depicted in Fig. 1.

The revolute joint constraints the relative motion of
the two rigid bodies with a unique twist V p,p

c ∈ R
6

given by

V p,p
c = S p,p

c θ̇c, (20)

where θ̇c ∈ R is the joint’s velocity and S p,p
c ∈ R

6 is
a constant unit twist fixed in {p} and given by S p,p

c =
(n̂c, qc × n̂c), with n̂c ∈ S

2 denoting the unit vector
that describes the rotation axis of the joint, with positive
rotation defined in the sense of the right-hand rule, and
qc ∈ R

3 is any vector from the origin of {p} to any
point on the axis n̂c (both n̂c and qc are expressed in
coordinates of {p}).

Let T p
c ∈ SE(3) denote the relative displacement

between the two frames {c} and {p}, then one has that

T p
c (θc) = e[S p,p

c ]θcT p
c (0), (21)

where θc is the joint’s angular displacement and T p
c (0)

is the relative displacement of the two frames when θc
is zero.

A very important distinction between the parent and
child rigid bodies is that the twist of the child body
Vc,0

c ∈ R
6 is completely determined by the parent’s
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motion and the joint’s velocity:

Vc,0
c = Vc,0

p + Vc,p
c = [AdT c

p
]
(
V p,0

p + S p,p
c θ̇c

)
.

(22)

On the other hand, the twist of the parent body V p,0
p ∈

R
6 is determined by the differential equation:

G p
pV̇ p,0

p = [adV p,0
p

]�G p
pV p,0

p + W p,p
c (23)

where W p,p
c ∈ (R6)∗ is the reaction wrench exerted

by the child body on the parent body, expressed in {p}.
This reaction wrench corresponds to the inertial forces
and moments associated with the relative motion of the
child’s body (aswell as other externalwrenches applied
to it which were not considered so far). The reaction
wrench W p,p

c is computed by

W p,p
c = −W p,c

c = −[AdT c
p
]�Wc,c

c , (24)

with Wc,c
c ∈ (R6)∗ denoting the reaction wrench that

the parent body exerts on the child body (expressed in
{c}) which is given by

Wc,c
c = Gc

cV̇
c,0
c − [adVc,0

c
]�Gc

cVc,0
c , (25)

withVc,0
c given by (22) and its rate of change given by

the closed-form expression

V̇c,0
c = [adVc,0

c
]Sc,p

c θ̇c + [AdT c
p
]V̇ p,0

p +Sc,p
c θ̈c, (26)

whereSc,p
c is the joint’s unit twist expressed in {c} and

related to S p,p
c by

Sc,p
c = AdT c

p(0)S
p,p
c . (27)

By substituting Eqs. (22, 25, 26) into (24) and
expressing all quantities related to the child body in
{p} using (15–18), one can express the wrench W p,p

c

applied by the child on the parent as

W p,p
c = −G p

c V̇ p,0
p − G p

cS p,p
c θ̈c

+[adV p,0
p

]�G p
cV p,0

p + X p
c , (28)

where G p
c is the child’s generalized inertia expressed

in {p}, and X p
c ∈ (R6)∗ is given by

X p
c =

(
G p

c [adS p,p
c

]V p,0
p + [adS p,p

c
]�G p

cV p,0
p

+ [adV p,0
p

]�G p
cS p,p

c

)
θ̇c + [adS p,p

c
]�G p

cS p,p
c θ̇2c .

(29)

Finally using (28), one can re-express the parent’s
dynamic equations of motion (23) as

G p
TV̇

p,0
p = [adV p,0

p
]�G p

TV p,0
p −G p

cS p,p
c θ̈c+X p

c , (30)

with the total (or locked) inertia tensor G p
T ∈ R

6×6

given by

G p
T = G p

p + G p
c = G p

p + [AdT c
p
]�Gc

c[AdT c
p
]. (31)

We conclude this section by some remarks on the
three basic units mentioned in this section, with refer-
ence to Fig. 1. First, while both the parent and child
bodies are governed by rigid body dynamics (9), they
differ in the causality. In particular, the wrench is an
input to parent’s dynamic model (23), while the twist
is an output which is in contrast to child’s dynamic
model (25). Thus, we refer to the parent’s dynamics to
be in integral causality, while the child’s dynamics to
be in differential causality. The reader is referred to [8]
for more details on this terminology and its relation to
energy-based modeling using bond graphs.

Second, the differential geometric approach
employed above allows a compact representation of the
motion of two rigid bodies in space. Furthermore, one
can compact (22) and (24) into the following relation

⎡
⎣W p,p

c

Vc,0
c
τc

⎤
⎦ = J p

c (θc)

⎡
⎣ V p,0

p

W p,p
c

θ̇c

⎤
⎦ , (32)

with the additional output τc ∈ R denoting the torque
applied by the joint to generate the motion, while
J p
c (θc) is the matrix defined as

J p
c (θc) :=

⎡
⎢⎣

0 −[AdT c
p
]� 0

[AdT c
p
] 0 [AdT c

p
]S p,p

c

0 (S p,p
c )�[AdT c

p
]� 0

⎤
⎥⎦ ,
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0

w

w

w

r1

r2

ri

qi

ni

Fig. 2 Generic MAV with m wings in addition to n rotors that
are arbitrarily to either the main body or a wing

(33)

with T p
c given by (21). Therefore, J

p
c (θc) is determined

completely by θc and is constructed by the constant
matrices S p,p

c and T p
c (0) which are known by defini-

tion of the joint’s rotation axes and the choice of the
reference frames {p} and {c}.

3.2 Generic MAV with wings

A generic MAV model with n rotors and m wings
is depicted in Fig. 2. The MAV’s rotors could be
attached to the main body or to one of the wings. Such
generic model encompasses fixed-tilt MAVs, variable-
tilt MAVs and hybrid MAVs with wings. In our frame-
work, we treat the tilting mechanisms of a variable-tilt
MAV as wings with zero surface area.

We denote by nα the number of rotors connected to
the α-th wing, and by nb the number of rotors directly
connected to the body, so that n = nb + ∑m

α=1 nα .
Let Nα be the set of indices for the rotors connected
to wing α, and Nb be the set of indices for the rotors
directly connected to the body. In what follows, we
will use the index α = {1, · · · ,m} for all the physical
quantities associated with the wings. While the indices
i ∈ Nb and j ∈ Nα will be used for the corresponding

quantities associated with the body rotors and the α-th
wing rotors, respectively.

Let frame {0} denote the inertial (ground) frame,
while {b} is a moving frame (the “body” frame)
attached to the MAV’s main body. Frame {wα} is a
moving frame attached to wing α, for α ∈ {1, · · · ,m},
whereas frames {ri } and {r j } are moving frames
attached, respectively, to rotors i , for i ∈ Nb, and rotors
j , for j ∈ Nα . All of the aforementioned frames can be
arbitrarily oriented and attached to their respective bod-
ies. Furthermore, the tilting axes of the wings and the
rotation axes of the rotors can be arbitrary. The angles
for wings are denoted by φα , for α = 1, ...,m, whereas
the angles for rotors are denoted by θi for i ∈ Nb and
θ j for j ∈ Nα .

Now we show how the parent–child dynamics
described in the previous section can be employed
to systematically construct the dynamic model for
the generic MAV described above. Possible combi-
nations of parent–child frames (p,c) include (b,α) for
α = 1, . . . ,m, (α, j) for j ∈ Nα , and (b, i) for i ∈ Nb.
The overall dynamic model is depicted in Fig. 3. Next,
we explicate the individual submodels corresponding
to the MAV’s components.

3.2.1 Main body dynamics

First we consider the dynamic modeling of the MAV’s
main body. Similar to the parent dynamics previously
discussed in (23), the dynamic equations for theMAV’s
body (expressed in {b}) are in the integral causality
form given by

Gb
bV̇

b,0
b = [adVb,0

b
]�Gb

bVb,0
b + Wb,b

ext +
m∑

α=1

Wb,b
α

+
∑
i∈Nb

Wb,b
i , (34)

where Wb,b
α ,Wb,b

i ∈ (R6)∗ denote the reaction
wrenches exerted on the main body by the wing α

and body rotor i , respectively. Further, Wb,b
ext ∈ (R6)∗

denotes the external wrench (with respect to the MAV
as a whole) applied to the main body which is given by
the sum of the gravity wrench Wb,b

grv and the aerody-

namic wrench Wb,b
aer .

The wrench Wb,b
grv ∈ (R6)∗ exerted by gravity on

the body, expressed in {b}, is given by

Wb,b
grv = Gb

b[AdTb
0
]A0

grv, (35)
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Fig. 3 Block diagram representation of a genericMAV dynamic
model showing the main MAV’s body {b}, the wings or tilting
mechanisms {wα}, the body-attached rotors {ri } and the wing-
attached rotors {r j }. The figure also depicts the revolute joints

that define the interconnection structure of the MAV’s compo-
nents. Each individual body is subjected to external wrenches
due to aerodynamics and gravity

where A0
grv = (0, a0) ∈ R

6, with a0 ∈ R
3 denoting

the gravitational acceleration vector expressed in the
ground frame {0}. Note that in the special case that {b}
was chosen to coincide with the center of mass of the
body, the gravity wrench takes the more usual form

Wb,b
grv =

[
0

mbRb
0a

0

]
. (36)

However, the expression in (35) accounts for the addi-
tional moments due to the arbitrary choice of {b}.

The aerodynamic wrench Wb,b
aer in turn does not

solely depend on the body’s ground speed, correspond-
ing to Vb,0

b , but rather its air speed, corresponding to

Vb,a
b which denotes the relative twist of {b}with respect

to the air given by

Vb,a
b = Vb,0

b − [AdTb
0
]V0,0

a , (37)

where V0,0
a = (0, v0,0a ) denotes the local velocity of

the wind with respect to the inertial frame in a region
upstream of the MAV’s body. In case the wind is
neglected (i.e., V0,0

a = 0), the ground speed and air
speed coincide with each other.

The aerodynamic wrench Wb,b
aer acting on the main

body is usually due to drag that is modeled as a nonlin-
ear function of the twistVb,a

b that depends on properties
of the body like its shape and material, and whose pre-
cise form is obtained from aerodynamic experiments.
Depending onVb,a

b , the drag force can be dominated by
either the viscous force term (which is linearly depen-
dent on the speed) or the inertial drag term (which is
quadratically dependent on the speed).

3.2.2 Rotor dynamics

Next, we consider the dynamic modeling of the rotors
attached directly to the MAV’s body through revolute
joints.

Let Tb
i ∈ SE(3) be the relative displacement

between theMAV’s body frame {b} and the rotor frame
{ri }, for i ∈ Nb. Denoting by θi the angle of rotation for
rotor i , one can express Tb

i in the following exponential
form:

Tb
i (θi ) = e[Sb,b

i ]θi Tb
i (0), (38)

where Tb
i (0) ∈ SE(3) is the displacement of rotor

frame {ri } relative to the body frame {b} when θi is
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zero and Sb,b
i ∈ R

6 is the constant screw vector corre-
sponding to rotor’s rotation axis as seen from {b}.

In our presented framework, one has to provide the
constant matrices Tb

i (0) and Sb,b
i based on the choice

of the reference frames and the definition of the rotor’s
axis. In applications, it is more convenient to define
the unit twist S i,b

i corresponding to the rotor’s axis

expressed in {ri }. Thus, one can defineS i,b
i = (n̂i , qi×

n̂i ) , where n̂i ∈ R
3 is a unit vector in the direction of

the rotor axis and qi ∈ R
3 is any vector from the {ri }

frame origin to any point on rotor axis i . Then, similar
to (27), one could compute Sb,b

i by

S i,b
i =

[
AdT i

b(0)

]
Sb,b

i . (39)

Ideally the rotor frame would be placed such that its
origin lies on the rotor axis, in which case qi will be
zero. However, with this more general formulation one
can reflect, e.g., possible manufacturing tolerances and
other errors introduced in the rotor assembly modeling
that are inevitable in practice.

Using Tb
i (0),Sb,b

i and the joint angle, one can con-
struct the joint matrix Jbi (θi ) given by (33), replacing
the scripts c and p by i and b, respectively. The joint
matrix Jbi (θi ) will be essential for relating the main

body’s ground twistVb,0
b , the rotor’s ground twistV i,0

i
and the joint’s velocity θ̇i , aswell as the reactionwrench
on the main body Wb,b

i , the reaction wrench on the

rotor W i,i
b and the joint’s torque τi .

Based on our earlier geometric treatment of the
dynamics of a child rigid body in (25), the dynamic
equations for rotor i (expressed in {ri }) are in the dif-
ferential causality form

W i,i
b = Gi

i V̇
i,0
i − [adV i,0

i
]�Gi

iV i,0
i − W i,i

ext, (40)

where W i,i
b is the reaction wrench applied by the

MAV’s main body to the rotor andW i,i
ext is the wrench

applied due to external sources given by the sum of
the gravity wrenchW i,i

grv and the aerodynamic wrench

W i,i
aer.
The gravity wrenchW i,i

grv has the exact form as (35)
with the script b replaced by i . On the other hand, the
aerodynamic wrench W i,i

aer depends on the rotor’s rel-
ative air twist V i,a

i which in turn depends on the rota-

tional velocity θ̇i andmain body’s relative air twistVb,a
b

(37), i.e.,

V i,a
i = V i,b

i + V i,a
b = S i,b

i θ̇i + [AdT i
b
]Vb,a

b . (41)

In practice, MAVs are usually operated in near-
hovering regimes and thus it is common to neglect the
main body’s relative air twist and experimentally fit the
aerodynamicwrenchW i,i

aer as a quadratic functionwith
respect to the rotor’s rotational velocity θ̇i . As outlined
in [3,12,14,19], for MAVs W i,i

aer can be written as

W i,i
aer = K iS i,b

i θ̇2i , (42)

where K i ∈ R
6×6 is the following constant matrix:

K i =
[−kdi · 1 kli εi · 1
kli εi · 1 0

]
,

where εi = ±1 depends on whether the rotor rotates
counterclockwise (+1) or clockwise (−1) with respect
to the rotor axis direction n̂i , and kdi and kli are
constants whose values are specified by the propeller
geometry, air density, air velocity, etc. [14].

Note that in the special case in which the coordinate
frame {ri } is placed along the rotation axis n̂i , then one
has that qi is zero and the aerodynamic wrench W i,i

aer
takes the usual form

W i,i
aer =

[−kdi n̂i θ̇
2
i

kli εi n̂i θ̇
2
i

]
. (43)

In practice however, one could have that qi �= 0 as
mentioned above and consequently an extra moment
appears in (42) compared to ideal case (43).

Finally, all the previous constructions in (40–43)
hold also for each rotor j ∈ Nα attached to the α-
th wing with the indices i and b replaced by j and α,
respectively. Following the same line of thought pre-
sented above, one can construct the joint matrix Jα

j (θ j )

using the constant matrices Tα
j (0) and Sα,α

j based on
the choice of the reference frames and the definition of
the rotor’s axis. Then, the dynamic model for rotor j is
given by

W j, j
α = G j

j V̇
j,0
j − [adV j,0

j
]�G j

jV j,0
j − W j, j

ext . (44)
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3.2.3 Wing and tilt-mechanism dynamics

Now we consider the dynamic modeling of the wings
and/or tilting mechanisms of the MAV. In our frame-
work, the tilting mechanism of a variable-tilt rotor is
considered as a wing with zero surface area. Thus, the
only distinction in its dynamic model compared to a
generalwing is the absence of the aerodynamicwrench.

Let φα ∈ R denote the tilting angle of wing α,
Sb,b

α ∈ R
6 denote the constant screw vector corre-

sponding to the wing’s tilting axis, and Tb
α(0) ∈ SE(3)

denote the relative displacement of thewing frame {wα}
and the body frame {b} when φα = 0. Using (33), one
can construct the joint matrix Jbα(φα)which relates the
main body’s ground twistVb,0

b , the wing’s ground twist
Vα,0

α and the joint’s velocity φ̇α , as well as the reaction
wrench on the main body Wb,b

α , the reaction wrench
on the wing Wα,α

B , and the joint’s torque τα .
The dynamic equations for wing α are given in dif-

ferential causality form by

Wα,α
b = Gα

αV̇
α,0
α − [adVα,0

α
]�Gα

αVα,0
α

−Wα,α
ext −

∑
j∈Nα

Wα,α
j , (45)

whereWα,α
j is the reactionwrench applied on thewing

by rotor j attached to it, which is related to its counter-
part W j, j

α in (44) by the joint matrix Jα
j (θ j ).

The wrenchWα,α
ext applied to the wing due to exter-

nal sources is given by the sum of the gravity wrench
Wα,α

grv , similar to (35), and the aerodynamic wrench
Wα,α

aer . In case the wing α represents the tilting mech-
anism of a rotor, then one has that Wα,α

aer = 0.
Nextwediscuss how the aerodynamicwrenchWα,α

aer
is calculated for general wings. The primary difference
between winged MAV models considered in this work
and typical fixed-wing aerial vehicles is that in the
former, aerodynamic forces need to be considered in
the dynamic equations for each wing. In typical fixed-
wing designs where identical wings may be multi-
ply attached in symmetric configurations, aerodynamic
forces can usually be derived directly with respect to
the main body frame. This is no longer the case for
MAVs with wings of different shapes and sizes that
in general are actively tilted; aerodynamic forces need
to be considered wing-by-wing for such generic MAV
model.

The aerodynamic wrench applied on each wing will
typically be calculated from the dimensionless aerody-

w

w

j

i
k

W

W

Wgrv

Waer

S

Fig. 4 Free bodydiagram forwingα showing the arbitrary frame
{wα} chosen to represent thewing’s dynamics aswell as thewing-
fixed frame {wα′ } used for defining the aerodynamic coefficients.
The wing’s planform area Sα is also shown shaded in the figure

namic coefficients of the finite wing. However, a cru-
cial issue that should be considered is the coordinate
frame in which these aerodynamic coefficients are rep-
resented. This issue is sometimes a source of confusion
since the terminology used in the aerodynamic litera-
ture to describe the components of the aerodynamic
wrench implicitly defines the coordinate frame.

Note that in this section so far, our treatment allowed
an arbitrary location and orientation of the wing frame
{wα}. However, it is standard to define the aerodynamic
coefficientswith respect to a frame located at thewing’s
center of mass. For that purpose, we introduce another
body-fixed reference frame attached towingα, denoted
by {wα′ }, that is located at the wing’s center of the mass
and oriented such that the îα′ axis is aligned with the
wing’s chord, the k̂α′ axis is normal to thewing’s chord,
and ĵα′ completes the coordinate frame as depicted in
Fig. 4.

In terms of the coordinate frame {wα′ }, the wing’s
ground twist and aerodynamic wrench applied to it are
related to their counterparts in the arbitrary frame {wα}
by

Vα′,0
α′ = [AdTα′

α
]Vα,0

α , (46)

Wα,α
aer = [AdTα′

α
]�Wα′,α′

aer . (47)
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The aerodynamic wrenchWα′,α′
aer acting on the wing

depends on two factors: the relative motion of the wing
with respect to the air as well as on the orientation of
the wing with respect to the air flow. The first factor is
represented by the wing’s twist relative to the airVα′,a

α′
given by

Vα′,a
α′ = Vα′,0

α′ − [AdTα′
0

]V0,0
a , (48)

similar to (37). Themagnitude of vα′,a
α′ , the linear veloc-

ity component of the twist Vα′,a
α′ , is known as the free

stream speed V∞ ∈ R, i.e.,

V∞ := ||vα′,a
α′ ||. (49)

The second factor is represented by two aerodynamic
angles: the angle of attack βaa and the side-slip angle
βss. If we denote the individual components of vα′,a

α′ by

(vα′
x , vα′

y , vα′
z ), then the aerodynamic angles are defined

by

tan (βaa) := −vα′
z

vα′
x

, sin (βss) := − vα′
y

V∞
. (50)

Therefore, the aerodynamic wrench Wα′,α′
aer can be

expressed in the form [7,10,32]

Wα′,α′
aer = 1

2
ρ∞SαV

2∞Cα′
, (51)

where ρ∞ is the free-stream air density, Sα is the plan-
form area of wing α (shown shaded in Fig. 4), V∞
is the free-stream speed, and Cα′ ∈ (R6)∗ is the six-
dimensional vector of aerodynamic coefficients:

Cα′ = (Clbα,Cmc̄α,Cnbα,CA,CY ,CN )� , (52)

where c̄α, bα are the mean aerodynamic chord and the
span of wing α, respectively, while the rest of the coef-
ficients are defined in Table 1.

An alternative and more common way to define the
aerodynamic coefficients is in another frame that is
aligned with the direction of the free-stream veloc-
ity instead of being aligned with the wing’s geometry.
Using aerodynamic angles (50), it is common in the
literature to introduce another frame {wᾱ} that is also

Table 1 Coefficients of aerodynamic spatial force

Notation Definition

Cl Rolling moment coefficient

Cm Pitching moment coefficient

Cn Yawing moment coefficient

CA Axial force coefficient

CY Side force coefficient

CN Normal force coefficient

CD Drag force coefficient

CC Cross-wind force coefficient

CL Lift force coefficient

located at the center of mass of the wing but oriented
relative to {wα′ } by:

Rα′
ᾱ = Rot (y,−βaa) Rot (z, βss) , (53)

where Rot(z, β), Rot(y, β) ∈ SO(3) denote, respec-
tively, the standard rotation matrices about the z-axis
and y-axis by β.

Let V ᾱ,a
ᾱ denote the wing’s twist relative to the air

and W ᾱ,ᾱ
aer denote the aerodynamic wrench applied to

the wing, both expressed in the new frame {wᾱ} and
related to their counterparts in {wα′ } by

V ᾱ,a
ᾱ = [AdT ᾱ

α′ ]V
α′,a
α′ , (54)

Wα′,α′
aer = [AdT ᾱ

α′ ]�W ᾱ,ᾱ
aer . (55)

In the frame {wᾱ}, the linear velocity component of
V ᾱ,a

ᾱ takes the form v
ᾱ,a
ᾱ = (V∞, 0, 0) ∈ R

3, while the
aerodynamic wrench W ᾱ,ᾱ

aer is expressed by

W ᾱ,ᾱ
aer = 1

2
ρ∞SαV

2∞Cᾱ, (56)

where Cᾱ ∈ (R6)∗ is the six-dimensional vector of
aerodynamic coefficients:

Cᾱ = (Clbα,Cmc̄α,Cnbα,−CD,CC ,CL)� , (57)

where the individual coefficients are defined in Table 1.
Note that it is quite common in the aerodynamic liter-
ature that the same notation is used for the moment
coefficients as in (52) and (57), although they are rep-
resented in two different frames [32].
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In summary, the calculation of the wrench Wα′,α′
aer

depends on the coordinate framechosen to represent the
dimensionless coefficients. The representation of the
aerodynamic coefficients in terms of the normal, axial
and side-force components implies that one should use
(51, 52) to calculate the aerodynamic wrench applied
to the wing. On the other hand, the representation of
the drag, cross-wind and lift components implies that
one should use (55, 56,57) to calculate the aerodynamic
wrench.

In general, the aerodynamic coefficients are obtained
from experimental wind-tunnel measurements or using
computational techniques. Furthermore, they depend
on the attack angle βaa , the sideslip angle βss, as well
as on the Reynolds Mach numbers. Another important
point is that aerodynamic coefficients (57) or (52) are
in fact static coefficients that do not include the effects
of the MAV maneuvering or the wings being actively
tilted.More accuratemodels that address such unsteady
aerodynamic effects are thus needed for a genericMAV
with wings. We refer the reader to [10,32] for further
discussion on static and dynamic aerodynamic coeffi-
cients.

3.2.4 Compact MAV body model

With the constructions presented so far, one candevelop
the dynamic model for a generic MAV in the frame-
work shown in Fig. 3. The framework’s compactness
andmodularity is beneficial for conceptual analysis and
simulation purposes.

In case it is desired to compact the MAV’s dynamic
model, e.g., for control or identification purposes, then
dynamic equation (40) for each rotor i connected to the
main body should be represented in {b} and substituted
in (34). Then, dynamic equation (44) for each rotor j ,
connected towingα, should be represented in {wα} and
substituted in (45). Next, onewould represent the result
of (45) in {b} and then substitute it in dynamic equation
(34). These steps are summarized in Algorithm 1.

To demonstrate Algorithm 1, consider the special
case of a generic fixed-tilt MAV depicted in Fig.5. The
MAV has n rotors all attached to the main body with no
wings or tilting mechanisms i.e., i ∈ Nb = {1, · · · , n}
and m = 0.

By applying lines (1-6) in Algorithm 1, the dynamic
equations for theMAVbody including all rotorwrenches
can now be written in frame {b} coordinates as follows:

Algorithm 1 Dynamics of a generic MAV model
1: for i ∈ Nb do
2: Construct Jbi (θi ) using Tb

i (0) and Sb,b
i ;

3: Evaluate W i,i
b from (40);

4: Compute Wb,b
i and τi using Jbi (θi );

5: Substitute Wb,b
i into (34);

6: end for
7: for α = 1 : m do
8: for j ∈ Nα do
9: Construct Jα

j (θ j ) using Tα
j (0) and Sα,α

j ;

10: Evaluate W j, j
α from (44);

11: Compute Wα,α
j and τ j using Jα

j (θ j );

12: Substitute Wα,α
j into (45);

13: end for
14: Construct Jbα(φα) using Tb

α(0) and Sb,b
α ;

15: Evaluate Wα,α
b from (45);

16: Compute Wb,b
α and τα using Jbα(φα);

17: Substitute Wb,b
α into (34);

18: end for

Gb
bV̇

b,0
b = [adVb,0

b
]�Gb

bVb,0
b + Wb,b

ext

+
n∑

i=1

[AdT i
b
]�

(
W i,i

ext−Gi
i V̇

i,0
i +[adV i,0

i
]�Gi

iV i,0
i

)
.

Following the same line of thought as in (28), in addi-
tion to using transformation rules (15–18) and the
expressions for the external wrenchesWb,b

ext andW i,i
ext,

the above dynamic equation can be compactly rewritten
as follows:

Gb
TV̇

b,0
b = [adVb,0

b
]�Gb

TVb,0
b + Wb,b

aer + Gb
T[AdTb

0
]A0

grv

+
n∑

i=1

(
−Gb

i Sb,b
i θ̈i + K̄ iSb,b

i θ̇2i + X b
i

)
, (58)

where the inertia tensors Gb
T and Gb

i are given by

Gb
T = Gb

b +
n∑

i=1

Gb
i , (59)

Gb
i = [AdT i

b
]�Gi

i [AdT i
b
], (60)

whereas the matrix K̄ i ∈ R
6×6 is given by

K̄ i := [AdT i
b
]�K i [AdT i

b
]. (61)
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r1

r2

ri

rn

0

Fig. 5 Generic fixed-tilt MAV with n rotors {ri } connected to
the main body {b}

A straightforward calculation shows in fact that K̄ i =
K i . Furthermore, the screw vectors Sb,b

i and S i,b
i are

related to each other by (39), and finally X b
i ∈ (R6)∗

is equivalent to (29) with c and p replaced by i and b,
respectively.

For the small-scale fixed MAVs usually used in
research, the aerodynamic wrench Wb,b

aer applied on
the body due to air drag is usually neglected in near-
hovering situations. Also, the inertial-coupling effects
of the rotors are typically quite small compared to other
wrenches acting the body, so that they can be treated as
zero in many situations. In this case dynamic equation
(58) reduces to

Gb
TV̇

b,0
b = [adVb,0

b
]�Gb

TVb,0
b +Gb

T[AdTb
0
]A0

grv+Kθ̇
2
,

(62)

where θ̇
2 := [θ̇21 , · · · , θ̇2n ]� ∈ R

n is a vector of the
squared rotor speeds and K ∈ R

6×n is the constant
control allocation matrix with its i-th column given by
K iSb,b

i .
Above-simplified formulation (62) can be adopted

to many practical MAV control applications. Often to
further simplify matters, it is common practice to for-
mulate the translational dynamics in terms of a body-
fixed frame attached at the center of mass, with the
further assumption that the rotor axes are placed sym-
metrically about the center of mass. One of the advan-

tages of Lie group formulation presented in our work
is that the dynamics can be formulated independent of
the choice of body frame, and without assuming the
rotors are symmetrically placed or aligned in the same
direction. Note also that all the model parameters in
(62), i.e., the screw parameters of the rotor axes Sb,b

i ,
matrices of aerodynamic coefficients K i , and themass–
inertial parameters Gb

T, appear in explicit and linear
form, independently of each other. This feature is par-
ticularly important for model identification and adap-
tive control purposes.

4 Examples

Based on the dynamicmodeling framework formulated
above, we demonstrate through several selected case
studies that our framework is general enough to incor-
porate a wide spectrum of MAV models with the same
geometric tools and in amodular fashion.We derive the
dynamics for fourMAVdesigns: (1) a standard quadro-
tor with symmetric parallel rotor axes; (2) a standard
quadrotor with tilting rotors; (3) a quadrotor with two
wings; and (4) a quadrotor with four tilting wings. The
four examples highlight the applicability of our frame-
work to fixed-tilt, variable-tilt and hybrid MAVs.

4.1 Standard quadrotor

A standard quadrotor together with its assigned body
and rotor frames is depicted in Fig. 6. Assume that
orientations of all rotor frames are identical to that of
{b}, and each of the rotor and body frames are attached
to its corresponding center of mass. The first and third
rotors rotate clockwise, while the second and fourth
rotors rotate counterclockwise, so that εi = (−1)i . The
four rotors are parallel and symmetrically located about
its center of mass. Denote by d the distance between
the body’s center of mass and each of the rotor axes. If
each rotor is assumed to be ideally balanced about its
center of mass, each qi will be zero, and the screw axis
for each rotor is given by

S i,b
i =

[
0, 0, (−1)i , 0, 0, 0

]�
, (63)

for i ∈ Nb = {1, . . . , 4}. The initial relative configu-
ration Tb

i (0) of each frame {ri } with respect to {b} is
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Fig. 6 Standard quadrotor

defined by the pair

Rb
i (0) = 1, pbi (0) = [cos (ψi ) d, sin (ψi ) d, 0]� ,

(64)

where ψi ∈ {π,−π/2, 0, π/2}.
Substituting (63) and (64) into (38), the orientation

and position of each rotor frame for a given rotor angle
θi is given by

Rb
i (θi ) = Rot (z, θi ) , pbi (θi ) = pbi (0). (65)

Furthermore, using (63-65), one has that the gyroscopic
wrench X b

i exerted by each rotor on the body, defined
in (29), simplifies to

X b
i = [adVb,0

b
]�Gb

i Sb,b
i θ̇i . (66)

Under the assumption that the frames {b} and {ri }
are aligned with the principal axes of inertia and all
rotors have identical mass distributions, one has that
the inertia tensors Gb

b and Gi
i are diagonal, i.e.,

Gb
b = diag

[
Ibx , Iby, Ibz,mb,mb,mb

]
(67)

Gi
i = diag

[
Irx , Iry, Irz,mr ,mr ,mr

]
, (68)

where Ibx , Iby and Ibz denote the moments of inertia

of the body about ı̂b, ĵb, k̂b, respectively, and Irx , Iry
and Irz denote the moments of inertia of the rotor about
ı̂ i , ĵ i , k̂i , respectively. Further, mb denotes the main
body mass and mr the rotor mass.

The dynamic equations for this fixed-tilt MAV are
given in (58–60), which can be rewritten as

Gb
TV̇

b,0
b = [adVb,0

b
]�Gb

TVb,0
b + Gb

T[AdTb
0
]A0

grv

+ Wb,b
aer + Kθ̇

2 + Yb + X b, (69)

where

Kθ̇
2 =

[
dkl

(
−θ̇22 + θ̇24

)
, dkl

(
θ̇21 − θ̇23

)
,

kd
(
θ̇21 − θ̇22 + θ̇23 − θ̇24

)
,

0, 0, kl
(
θ̇21 + θ̇22 + θ̇23 + θ̇24

)]�
(70)

Yb = [
0, 0, Irz

(
θ̈1 − θ̈2 + θ̈3 − θ̈4

)
, 0, 0, 0

]�
(71)

X b = [
wy Irz

(
θ̇1 − θ̇2 + θ̇3 − θ̇4

)
,

−wx Irz
(
θ̇1 − θ̇2 + θ̇3 − θ̇4

)
, 0, 0, 0, 0

]�
.

(72)

Furthermore, if Vb,0
b = [wx , wy, wz, vx , vy, vz]� we

have that

Gb
TV̇

b,0
b =

⎡
⎢⎢⎢⎢⎢⎢⎣

ẇx
(
2mrd2 + IT x

)
ẇy

(
2mrd2 + IT x

)
ẇz

(
4mrd2 + IT z

)
v̇xmT

v̇ymT

v̇zmT

⎤
⎥⎥⎥⎥⎥⎥⎦

(73)

[adVb,0
b

]�Gb
TVb,0

b =

⎡
⎢⎢⎢⎢⎢⎢⎣

−wywz
(
2mrd2 − IT x + IT z

)
wxwz

(
2mrd2 − IT x + IT z

)
0

mT
(
vywz − vzwy

)
−mT (vxwz − vzwx )

mT
(
vxwy − vywz

)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(74)

where mT = mb + 4mr , IT x = Ibx + 4Irx and IT z =
Ibz + 4Irz .

4.2 Quadrotor with tilting rotors

The variable-tilt quadrotor shown in Fig. 7 has four
rotors whose axes can be tilted [9,28–30]. We assume
that four identical rotors are symmetrically attached
about the body center of mass, with the first and third
rotors rotating clockwise, and the second and fourth
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rotors rotating counterclockwise, so that as in the pre-
vious example we have ε j = (−1) j . All frames includ-
ing the body, rotors, and tilting assemblies are assumed
attached to the corresponding center ofmass. If the four
tilting assemblies including each rotor are considered
as a type of wing with zero platform area, then Algo-
rithm 1 can be used to derive the dynamics for this
quadrotor. For the rotor frames {r j } and wing frames
{wα} shown in Fig. 7, the configuration of each of the
wings and rotors for α ∈ {1, · · · , 4} and j = α is given
by

Rb
α (φα) =Rb

α(0)Rot (z, φα) , pbα (φα) = pbα(0),

(75)

Rα
j

(
θ j

) =Rα
j (0)Rot

(
ε j z, θ j

)
, pα

j

(
θ j

) = pα
j (0).

(76)

Using Lines 8–15 of Algorithm 1 to derive the
dynamic equations for each tilting assembly, we mul-
tiply −[Ad

T j
α
]� to both sides of (44) and substitute the

result into (45), so that all terms are now expressed in
{wα}. Then, we have that

Wα,α
b =

(
Gα

α + Gα
j

)
V̇α,0

α − [adVα,0
α

]�
(
Gα

α + Gα
j

)
Vα,0

α

−
(
Gα

α + Gα
j

)
[AdTα

0
]A0

grv − K jSα,α
j θ̇2j

+ Gα
jSα,α

j θ̈ j − [adVα,0
α

]�Gα
jSα,α

j θ̇ j , (77)

where the aerodynamic wrench Wα,α
aer was neglected

and the last term on the right-hand-side corresponds to
the gyroscopic wrench similar to (66).

Applying Lines 16–17 of Algorithm 1 to (77), the
final form of the MAV dynamic equations expressed in
the main body’s frame {b} becomes

Gb
TV̇

b,0
b = [adVb,0

b
]�Gb

TVb,0
b + Gb

T[AdTb
0
]A0

grv

+ Wb,b
aer + K(φ)θ̇

2 + Yb + X b, (78)
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Fig. 7 Quadrotor with tilting rotors

where the last three wrenches are given by

K(φ)θ̇
2 =

4∑
α=1

K jSb,α
j θ̇2j ,

Yb =
4∑

α=1

−
(
Gb

α + Gb
j

)
Sb,b

α φ̈α − Gb
jSb,α

j θ̈ j ,

X b =
4∑

α=1

[adVb,0
b

]�
(
(Gb

α + Gb
j )Sb,b

α φ̇α + Gb
jSb,α

j θ̇ j

)

+ [adSb,b
α

]�Gb
jSb,α

j θ̇ j φ̇α,

while the wings’ tilting axes and rotors’ rotation axes
are given by

Sb,b
α =

[
AdTb

α(0)

]
Sα,b

α ,

Sb,α
j =

[
AdTb

α(φα)

]
Sα,α

j =
[
AdTb

α(φα)Tα
j (0)

]
S j,α

j ,

and finally the wings’, rotor’s and total inertia tensors
are given by

Gb
α = [AdTα

b
]�Gα

α[AdTα
b
],

Gb
j =

[
Ad

T j
αTα

b

]� G j
j

[
Ad

T j
αTα

b

]
,
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Fig. 8 Quadrotor with two fixed wings

Gb
T =Gb

b +
4∑

α=1

Gb
α +

4∑
j=1

Gb
j .

If the rotor masses and inertias are much smaller
than those of the body such that one can neglect
the inertia coupling wrench, the tilting angles φα

vary in time slow enough such that φ̇α and φ̈α

are negligible, and the drag wrench on the main
body is insignificant, dynamics (78) further simplifies
to

Gb
TV̇

b,0
b = [adVb,0

b
]�Gb

TVb,0
b +Gb

T[AdTb
0
]A0

grv+K(φ)θ̇
2
.

4.3 Quadrotor with two fixed wings

For this example we consider a quadrotor with two
wings and four rotors as shown in Fig. 8. Two of the
four rotors are connected to one wing, while the other
two are connected to the other wing. Assume that all
rotors are ideal, rotating in the way described in the
preceding examples. All frames are attached to the
corresponding center of mass, and their orientations
are the same as that of the body frame. Under these
assumptions, the screw axis for each rotorS i,b

i is given
by (63) and the current configuration Tb

i is given by
(65); for example, pbi=1 is (−d, h, w)� as shown in
Fig. 8.

Since all the wings are fixed, we have for α = 1, 2,
that φ̇α = 0 and consequently Vb,0

b and Vα,0
α are the

same, while Tb
α are constant transformations. There-

fore, the MAV dynamics are given by

0

r1

r2

r3

r4

w

w

w3

w4

k k
wr

Fig. 9 Quadrotor with four tilting wings

Gb
TV̇

b,0
b = [adVb,0

b
]�Gb

TVb,0
b + Gb

T[AdTb
0
]A0

grv

+ Wb,b
aer +

2∑
α=1

Wb,α
aer + Kθ̇

2 + Yb + X b,

(79)

where

Gb
T = Gb

b +
4∑

i=1

Gb
i +

2∑
α=1

Gb
α,

while Yb and X b are the same as given in (71) and

(72), respectively, and Kθ̇
2
is

Kθ̇
2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

hkl
(
θ̇21 − θ̇22 − θ̇23 + θ̇24

)
dkl

(
θ̇21 + θ̇22 − θ̇23 − θ̇24

)
kd

(
θ̇21 − θ̇22 + θ̇23 − θ̇24

)
0
0

kl
(
θ̇21 + θ̇22 + θ̇23 + θ̇24

)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (80)

A fundamental difference between the quadrotor
with two fixed wings of this example and the stan-
dard quadrotor in Sect. 4.1 is that the rotors are mostly
used in the latter to counteract gravity in near-hovering
regimes. On the other hand, the quadrotor with two
fixed wings uses the rotors to provide thrust in the
k̂b direction only, as indicated in (80), and is usually
operated at high forward speeds. Consequently, using a
static hoveringmodel as in (42) and (80)might be inad-
equate for estimating the rotors’ aerodynamic wrench
for suchMAVs. Instead, the aerodynamicwrenchW i,i

aer
should take into account also the main body’s relative
air twist in (41) and the aerodynamic drag wrench on
the body Wb,b

aer should be also considered.
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4.4 Quadrotor with four tilting wings

We now consider the quadrotor design shown in Fig. 9
and first presented in [6]. This particular quadrotor con-
sists of four tilting wings and four rotors. Each rotor is
attached to one of thewings, with the four wings identi-
cal and symmetrically arranged. Assume that all rotors
are ideal, rotating in the way described in the preced-
ing examples, and the rotating axis of each wing passes
through the wing’s center of mass along the dashed
lines indicated in Fig. 9. All frames including the body,
rotors and wings are assumed attached to the corre-
sponding center of mass.

ThisMAVwith four tilting platforms and four rotors
is quite similar in structure to the quadrotor with tilt-
ing rotors addressed in Sect. 4.3. The dynamic equa-
tions are in fact structurally identical to (78), since
the tilting assemblies in Sect. 4.3 correspond to the
wings of this quadrotor, with each of the tilting assem-
blies (and wings) possessing only one rotor. The only
remaining difference is the presence of the aerody-
namic wrenches Wα,α

aer in (77) and (78), since unlike
the tilting rotor case, the planform area of each wing
is not zero. Therefore, using the geometric character-
istics and aerodynamic coefficients of the wings, one
compute the wings’ aerodynamic wrench as described
in Sect. 3.2.3.

5 Conclusion

With the growing diversity of designs for multiro-
tor aerial vehicles (MAVs), together with the increas-
ingly dynamic and complex maneuvers that are being
performed by MAVs, accurate dynamical models are
becoming critical to MAV trajectory planning, control
and design. In this paper we have presented a system-
atic dynamic modeling framework for generic MAVs,
ranging from the standard fixed-tilt quadrotor to wing-
lessMAVswith tiltable rotors and to hybridMAVswith
tiltable wings. Our approach considers the dynamics of
both the vehicle body’s mass and inertia as well as the
masses and inertias of the rotors. Our framework does
not rely on the standard design assumptions and allows
for the possibility that, e.g., rotor axes may not be
exactly parallel to one another or arranged in a perfectly
symmetric fashion about the vehicle’s center ofmass, or
some of the rotor axes may fail to pass directly through
the rotor body’s center of mass. Both thrust forces and

moments generated by the rotors, as well as external
aerodynamic and other forces applied to the MAV, are
taken into account. Furthermore, our generic mathe-
matical representations highlight the hidden modeling
assumptions behind widely used dynamic models in
the literature.

A key feature of our approach is the adoption of
notation and operations associated with the Lie group
of rigid body motions SE(3). The Lie group frame-
work allows for, among other things, a reference frame-
invariant set of dynamic equations that can be eas-
ily transformed to coordinates of any arbitrary refer-
ence frame by using the tensorial transformation rules
for six-dimensional velocities, forces and inertias. The
kinematic and mass–inertial parameters can also be
transparently factored in linear form,making ourmodel
useful for model identification and calibration pur-
poses. Furthermore, the compactness and simplicity of
the expressions are useful in a range of optimization-
based applications involving general MAVs, e.g., tra-
jectory optimization, selecting optimal design parame-
ters or an optimal configuration for a given task; some
of these are further described in the survey paper [27].

A second important advantage of our geometric
framework is the ease with which the dynamics can
be differentiated in exact fashion; this feature allows
for exact analytic gradients to be computed for optimal
control and trajectory optimization problems, which is
critical for fast and numerically robust computation of
optimal trajectories [16].

An important point that was highlighted in our
work is the geometric dual structure of twists and
wrenches. The exploitation of this structure for mod-
eling of dynamical systems in general is the main rea-
son for the modularity that is clearly shown in Fig. 3.
This duality between twists and wrenches is essential
also for an energy-based interpretation of the MAV’s
dynamic model. The pairing between every twist and
its corresponding wrench yields the power-flow net-
work of the system, shown using the bond graphs nota-
tion in Fig.10. This alternative view of dynamical sys-
tems has proven very effective for modeling, analy-
sis and control purposes within the framework of port-
Hamiltonian systems, allowing the use of energy-based
control technique such as passivity-based control. The
interested reader in this topic can refer to [8,24–26,33].

Finally, an interesting extension of our presented
framework is to include flexible flapping wings. While
the kinematics and inertial effects of rigid flapping
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Fig. 10 Bond graph representation of a generic MAV equivalent to the block-diagram representation shown in Fig. 3. The bond graph
notation follows [8]

wings can be handled by our framework, the true
challenge of such complex dynamical systems lies
in the phenomenological relation between the aero-
dynamic wrench on the wing and the wing’s relative
air twist in addition to modeling the wing’s deforma-
tion. Such additions require the coupling of the finite-
dimensional dynamics presented in this work to the
infinite-dimensional dynamics of air flow and flexible
structures. The interested reader can refer to [5] for a
view of how energy-based modeling is well-suited for
such complex MAVs.
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