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We propose a new dense local stereo matching framework for gray-level images based on an adaptive local segmentation using a
dynamic threshold. We define a new validity domain of the frontoparallel assumption based on the local intensity variations in the
4 neighborhoods of the matching pixel. The preprocessing step smoothes low-textured areas and sharpens texture edges, whereas
the postprocessing step detects and recovers occluded and unreliable disparities. The algorithm achieves high stereo reconstruction
quality in regions with uniform intensities as well as in textured regions. The algorithm is robust against local radiometrical
differences and successfully recovers disparities around the objects edges, disparities of thin objects, and the disparities of the
occluded region. Moreover, our algorithm intrinsically prevents errors caused by occlusion to propagate into nonoccluded regions.
It has only a small number of parameters. The performance of our algorithm is evaluated on the Middlebury test bed stereo images.
It ranks highly on the evaluation list outperforming many local and global stereo algorithms using color images. Among the local
algorithms relying on the frontoparallel assumption, our algorithm is the best-ranked algorithm. We also demonstrate that our
algorithm is working well on practical examples as for disparity estimation of a tomato seedling and a 3D reconstruction of a face.

1. Introduction

Stereo matching has been a popular topic in computer vision
for more than three decades, ever since one of the first papers
appeared in 1979 [1]. Stereo images are two images of the
same scene taken from different viewpoints. Dense stereo
matching is a correspondence problem with the aim to find
for each pixel in one image the corresponding pixel in the
other image. A map of all pixel displacements in an image is a
disparity map. To solve the stereo correspondence problem, it
is common to introduce constraints and assumptions, which
regularize the stereo correspondence problem.

The most common constraints and assumptions for
stereo matching are the epipolar constraint, the constant
brightness or the Lambertian assumption, the uniqueness
constraint, the smoothness constraint, the visibility con-
straint and the ordering constraint [2—4]. Stereo correspon-
dence algorithms belong to one of two major groups, local
or global, depending on whether the constraints are applied
to a small local region or propagated throughout the whole
image. Local stereo methods estimate the correspondence
using a local support region or a window [5, 6]. Local

algorithms generally rely on an approximation of the
smoothness constraint assuming that all pixels within the
matching region have the same disparity. This approximation
of the smoothness constraint is known as the frontoparallel
assumption. However, the frontoparallel assumption is not
valid for highly curved surfaces or around disparity discon-
tinuities. Global stereo methods consider stereo matching as
a labeling problem where the pixels of the reference image
are nodes and the estimated disparities are labels. An energy
functional embeds the matching assumptions by its data,
smoothness, and occlusion terms and propagates them along
the scan line or through the whole image. The labeling
problem is solved by energy functional minimization, using
dynamic programming, graph cuts, or belief propagation [7—
9]. A recent review of both local and global stereo vision
algorithms can be found in [10].

Algorithms based on rectangular window matching give
an accurate disparity estimation provided the majority of the
window pixels belong to the same smooth object surface with
only a slight curvature or inclination relative to the image
plain. In all other cases, window-based matching produces
an incorrect disparity map: the discontinuities are smoothed,



and the disparities of the high-textured surfaces are prop-
agated into low-textured areas [11]. Another restriction of
window-based matching is the size of objects of which the
disparity is to be determined. Weather the disparity of a
narrow object can be correctly estimated depends mostly
on the similarity between the occluded background, visible
background, and object [12]. Algorithms which use suitably
shaped matching areas for cost aggregation result in a more
accurate disparity estimation, [13—-18]. The matching region
is selected using pixels within certain fixed distances in RGB,
CIELab color space, and/or Euclidean space.

To alleviate the frontoparallel assumption, some ap-
proaches allow the matching area to lie on the inclined
plane, such as in [19, 20]. The alternative to the idea that
properly shaped areas for cost aggregation can result in more
accurate matching results is to allocate different weights to
pixels in the cost aggregation step. In [21], the pixels closer
in the color space and spatially closer to the central pixel
are given proportionally more significance, whereas, in [22],
the additional assumption of connectivity plays a role during
weight assignment.

Our stereo algorithm belongs to the group of local
stereo algorithms. Within the stereo framework, we rely on
some standard and some modified matching constraints
and assumptions. We use the epipolar constraint to convert
the stereo correspondence into a one-dimensional problem.
However, we modify the interpretation of the frontopar-
allel assumption and the Lambertian constraint. A novel
interpretation of the frontoparallel assumption is based on
local intensity variations. By adaptive local segmentation
in both matching windows, we constrain the frontoparallel
assumption only to the intersection of the central matching
segments of the initial rectangular window. This mechanism
prevents the propagation of the matching errors caused by
occlusion and enables an accurate disparity estimation for
narrow objects. The algorithm estimates correctly disparities
of both textured as well as textureless surfaces, and disparities
around depth discontinuities, disparities of the small as well
as large objects independently of the initial window size. We
apply the Lambertian constraint to local intensity differences
and not to the original gray values of the pixels in the
segment. In the postprocessing step, we apply the occlusion
constraint without imposing the ordering constraint, which
enables successful disparity estimation for narrow objects.
Also, our stereo algorithm is suitable for a fast real-time
implementation, because it is local algorithm for gray-valued
images which uses a local segmentation and only a small
subset of window pixels for cost calculation.

Our main contribution is the introduction of the rela-
tionship between the frontoparallel assumption and the
local intensity variation and its applications to the stereo
matching. In addition, we introduce a preprocessing step
that smoothes low-textured areas and sharpens texture edges
producing the image more favorable for a proper local
adaptive segmentation.

The paper is organized as follows: in Section 2, we
explain our stereo matching framework: the preprocessing
step, the adaptive local segmentation, the matching region
selection, the stereo matching, and the postprocessing step;
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FiGure 1: Flow chart of the local stereo matching algorithm using
adaptive local segmentation.

in Section 3, we show and discuss the results of our algorithm
on different stereo images; in Section 4, we draw conclusions.

2. Stereo Algorithm

Our algorithm consists of three steps: a preprocessing step, a
matching step, and a postprocessing step. The flow chart of
the algorithm is shown in Figure 1. Input to the algorithm
is a pair of rectified stereo images I; and I, where one of
them, for instance Ij, is considered as the reference image. For
each pixel in the reference image, we perform matching along
the epipolar line for each integer-valued disparity within the
disparity range. Firstly, the input images are preprocessed, as
explained in Section 2.1. The preprocessing step is applied
to each image individually. Next, we calculate the local
intensity variations maps for the preprocessed images and
used them to determine the dynamic threshold for adaptive
local segmentation, and elaborated in Section 2.2. Further,
the stereo matching comprises a final region selection from
segments, a matching cost calculation for all disparities
from the disparity range and disparity estimation by a
modification of the winner-take-all estimation method, see
Section 2.3. The result of the matching is two disparity maps,
Dir and Dgy, corresponding to the left and right images
of the stereo pair. Finally, postprocessing step calculates the
final disparity map corresponding to the reference image as
described in Section 2.4.

2.1. Preprocessing. We apply a nonlinear intensity transfor-
mation to the input images in order to make them more
suitable for adaptive local segmentation. The presence of
the Gaussian noise and the sampling errors in image can
produce erroneous segments for matching. The noise is
dominant in the low-textured and uniform regions, while
the sampling errors are pronounced in the high-textured
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FiGure 2: [llustration of the preprocessing step for one image from Tsukuba stereo pair: (a) original image, (b) detail of the original image,
and (c) detail of the original image after the preprocessing step is applied.

image regions. The sampling effects can be tackled by
choosing a cost measure insensitive to sampling as in [23],
or by interpolating the cost function as in [24]. We handle
these problems differently and within the preprocessing
step. The applied transformation suppresses the noise in
low-textured regions while simultaneously suppressing the
sampling effects in the high-textured regions.

The transformation is based on the interpolated subpixel
samples by bicubic transform in the 4 neighborhoodS and
by consistently replacing the central pixel value by maximum
or by minimum value of the set, depending on the relation
between the mean and the median of the set. We form a set
of samples of the observed pixel at the position (x, y) and the
intensities in horizontally and vertically interpolates image at
the subpixel level at §;:

Si=—Luil e, 4,
8 8 (1)

v={I(x—0,y),I(x,y— &) | Vie {0,1,...,14}}.

The intensity transformation is performed by replacing
the intensity I(x, y) with the new intensity as

max{v}: if median{v} > mean{v}

Hmﬂ—{ (2)

min{v}: otherwise

All intensity values are corrected in the same manner.
If the pixel intensity differs significantly from its four
neighbors, as in the high-textured regions, it will be replaced
by the maximum value in the interpolated subpixel set v,
resulting in the sharpening effect. On the other hand, in low-
textured regions, the intensity change is small, and replacing
the initial intensity value systematically with the minimum
value of the interpolated subpixel set v, it produces the
favorable denoising effect. These positive effects originate
from the image resampling done by bicubic interpolation,
because the bicubic interpolation exhibits overshoots at
locations with large differences between adjacent pixels, see
Chapter 4.4 in [25] and Chapter 6.6 in [26]. These favorable
effects are lacking if the interpolation method is linear.

We illustrate the effect of the preprocessing step for an
image from a stereo pair from the Middlebury evaluation

database in Figure 2. Therefore, the preprocessing step
modifies regions with high-intensity variations and results
in the sharper image. Further, in Section 3, we show the
influence of this step to overall algorithm score.

2.2. Adaptive Local Segmentation. Adaptive local segmen-
tation establishes a new relationship between the local
intensity variation and the frontoparallel assumption applied
to stereo matching. Adaptive local segmentation selects a
central subset of pixels from a large rectangular window for
which we assume that the frontoparallel assumption holds
for the segment. The segment contains the central window
pixel and pixels, spatially connected to the central pixel,
whose intensities lie within the dynamic threshold from the
intensity of the central window. Starting from the segment,
we form a final region selection for matching, see Section 2.3.

The idea behind the adaptive local segmentation is to
prevent that the matching region contains the pixels with
significantly different disparities prior to actually estimating
disparity. We accomplish this aim by conveniently choosing
threshold for segmentation based on the local texture. If
local texture is uniform with local intensity variations caused
only by the Gaussian noise, we opt for a small threshold
value. In this way, because the intensity variations are small,
the segment will comprise the whole uniform region. We
assume that these pixels originate from the smooth surface of
one object and therefore that the frontoparallel assumption
holds for the segment. On the other hand, if the window is
textured, that is, intensity variations are significantly larger
than the noise level, it is not possible to distinguish based
only on the pixel intensities and prior to matching, whether
the pixels originate from one textured object or from several
different objects at different distances from the camera. In
this case, relying on the high texture for an accurate matching
result, it is good to select small segment in order to assure
that the segment contains pixels from only one object and
does not contain depth discontinuity. Due to the high local
intensity variations, this is achieved by large threshold.

We introduce local intensity variation measure in order
to determine the level of local texture and subsequently the
dynamic threshold. We define the local intensity variation
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FIGURE 3: Left image from Tsukuba stereo pair with a color-coded local intensity variations levels: the lowest local intensity variation is in
red, and in the ascending order follow orange, green; the highest local intensity variations are in blue.

measure as a sharpness of local edges in the 4 neighborhoods
of the central window pixel. The sharper local edges are, the
larger is the local intensity variation. We calculate the local
intensity variation using the maximum of the first derivatives
in the horizontal and the vertical directions at the half-pixel
interpolated image by benefiting again from overshooting
effect of the bicubic interpolation. The horizontal central
difference for a pixel at the position (x,y) in image I is
calculated as

A R S A

where I(x — 1/2, y) and I(x + 1/2, y) are horizontal half-pixel
shifts of image I to the left and to the right. The vertical
central difference for a pixel at the position (x, y) in image
I is calculated as

1 1
velifor=3) 1(er+3)) “
where I(x,y — 1/2) and I(x, y + 1/2) are vertical half-pixel

shifts of image I. We define the intensity variation measure
as

M;(x,y) = max (V,H). (5)

We divide local intensity variations into four ranges
based on the preselected constant T' and define a dynamic
threshold for each range by a look-up table:

(T T
E. M[(x,)/) S 70,2
3-T T T
T Mbe[4)
Td(x>)’) = : . (6)
T: M (x,y) € %,T)
2-T: Mi(x,y) €T, )

Figure 3 shows a color-coded dynamic threshold map,
or equivalently local intensity variation ranges, for the left
image from Tsukuba stereo pair from the Middlebury stereo
evaluation set [27].

Step 1: Dynamic thresholding
fori=1to W do
for j=1to W do
if [p). — eyl < Ta(x, y) then
set B;’/, tol
end if
end for
end for
Step 2: Dilation
Dilate By, with 3 X 3 squared structured element
Step 3: Imposing connectivity
for i =1to W do
for j = 1to W do

if Bj] = 1and not connected to B "™*" then
ij
set By, to 0
end if
end for
end for

ALGorIiTHM 1: Adaptive local segmentation for reference pixel
Il(x>y)~

The dynamic threshold Ty(x, y) defined by (6) for the
reference pixel in the reference image is also used for the
adaptive local segmentation in the nonreference image for all
potentially corresponding pixels from the disparity range.

The adaptive local segmentation pseudocode for the
reference pixel Ij(x,y) in the left image is given by
Algorithm 1. The segmentation is performed for reference
and nonreference windows independently using the same
threshold Ti(x, y). Thus, in the W x W window, where
W =2 - w+ 1, around the pixel at the position (x, y) in the
reference image, we declare that the pixel at (i, j) position,
where i, j = 1,..., W in the reference window, belongs to
the segment if its gray value p;” differs from the central
pixel’s gray value ¢; = p}”H’WH for less than the dynamic
threshold Ty(x, y). The segment pixels in the nonreference
window are chosen in similar way using the same threshold
Ta(x, y). Next, the central 8-connected components in the



ISRN Machine Vision

fori=1to W do
for j =1to W do
if B,/ A By then
set B¥ to 1
end if
end for
end for

ArgoriTHM 2: The final binary map calculation.

dilated masks are selected. The final segments are defined by
the binary W X W maps, B; and B,, with ones if the pixels
belong to the segment. Dilation is performed by 3 X3 squared
structured element to include additional neighbor pixels into
segments and to merge isolated but close-selected pixels.

2.3. Stereo Correspondence. The matching region is defined
by the overlap of the adaptive local segments in the reference
and nonreference windows. Thus, the matching region is
defined by binary map B, which has ones if and only if both
binary maps, B; and B,, have ones at the same positions, as
given in Algorithm 2.

We assume that the corresponding pixels have similar
intensities and that the differences exist only due to the
Gaussian noise with the variance ¢2. One-dimensional
vectors, z; and z,, are formed from the pixels from the left
and right matching window at positions of ones within the
binary map B. Besides the noise, differences between vectors
can occur due to different offsets and due to occlusion.
To make the matching vectors insensitive to local different
offsets, we subtract the central pixel values ¢; and ¢, from
vectors z; and z,, given by Algorithm 3. In this way, the
intensity information is transformed from the absolute
intensities to the differences of intensities with respect to the
central window pixels. Further, we impose the Lambertian
assumption on the pixels after the central pixel subtraction
and not on the original pixel intensities. To prevent the
occlusion influence in matching we eliminate the occlusion
outliers by keeping only the coordinates of vectors which
differ for less than threshold T as given by Algorithm 4.

We calculate the matching cost using the sum of squared
differences (SSDs) [7, 28]. To compare the costs with
different length of vectors z; and z, for different disparities,
we introduce the normalized SSD:
1z -z

Cussp(d) o —
N, 4-0}

, (7)
where N, is the length of vectors z; and z, for disparity d.
The winner-take-all (WTA) method selects the disparity
with the minimal cost for the observed reference pixel.
In our algorithm, besides the cost, the number of pixels
participating in the cost calculation is also an indication
of a correspondence. This ordinal measure cannot be used
directly in the disparity estimation, because it is not always
a reliable indication of the correspondence as in the case of
occlusion. If the number of pixels used in the cost calculation

is very low, it may be due to occlusion. However, a reliable
match has a substantial ordinal support.

We combine the cost and the number of participating
pixels in the disparity estimation and introduce a hybrid
WTA; we consider only disparities supported by a sufficient
number of pixels as potential candidates for a disparity
estimate. Thus, the final disparity estimate is chosen from a
subset of the all possible disparities from the disparity range.
We term these disparity candidates as the reliable disparity
candidates [13, 29].

The reliable disparity candidates have at least Ny = K, -
max{N;’y } supporting pixels, where N;’y is a set containing
the number of pixels participating in the cost aggregation
step for each possible disparity value from the disparity range
[Drnin> Dmax]- Kj is the ratio coefficient 0 < K, < 1. The
estimated disparity d(x, y) is

d(x,y) = argmin  {Cp(d) | N;7(d) >N, (g)
di € {Drin>e--sDimax }

wherex = 1,...,Rand y = 1,..., C, for image of the dimen-
sion R X C pixels, and d; belongs to the set of all possible
disparities from the disparity range [ Dmin, Dmax]-

The final result of the hybrid WTA is the disparity map D

D={d(x,y) | Vx € [1,R] A Vye[1,C]}. 9)

We calculate two disparity maps, one disparity map, Dir,
with the left image I; as the reference, and the other, Dgy, as
the right image I as the reference.

2.4. Postprocessing. In the postprocessing, we detect the dis-
parity errors and correct them. There are some areas of incor-
rect disparity values caused by low-textured areas larger than
the initial window. There are some isolated disparity errors
with significantly different disparity from the neighborhood
disparities, so called outliers, caused by isolated pixels or
groups of several pixels if the adaptive local segmentation
did not result in sufficiently large segment due to high local
intensity variation. Also, there are disparity errors caused by
occlusion. Although the matching procedure is the same for
both occluded and nonoccluded pixels, our stereo matching
algorithm does not propagate error caused by occlusions
because the boundaries of objects are taken into account by
both the adaptive local segmentation and the final matching
region selection. However, occluded pixels do not have
corresponding pixels, and the estimated disparities for the
occluded pixels are incorrect.

The postprocessing consists of several steps including
median filtering of the initial disparity maps, disparity
refinement of the individual disparity maps, consistency
check, and propagation of the reliable disparities.

First, we apply L X L median filter to both disparity
maps, Dir and Dy, and eliminate disparity outliers. Second,
we refine the filtered disparity maps individually to correct
low-textured areas with erroneous disparities, in an iterative
procedure. The refinement step propagates disparities by
histogram voting to the regions with close intensities defined
by a look-up table given in (10) across the whole image as
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Ny is the length of the vectors z; and z,
¢; and ¢, are the central intensities in the left and in the right window
fori=1toN; do
zi(i) =z(i) — g
z,(i) = z,(i) — ¢
end for
AvrcoriTHM 3: Offset neutralization.
TABLE 1: Xmp and yump values for histogram calculation in (11).
Direction Ximp YVimp Condition
1 Up X — i, y i,={ltox—1]x—-1>0}
2 Up-right X — iy Y+ iy iy = {ltomin(x — 1,C - y) | min(x —1,C—y) >0}
3 Right X y+i ir={l1toC—y|C—-y>0}
4 Down-right X+ i, y+igr igr = {1 tomin(R — x,C — y) | min(R — x,C — y) > 0}
5 Down X+ iy y ig={ltoR-—x|R—x>0}
6 Down-left X+ ig Y —ia igg= {1tomin(R - x,y — 1) | min(R - x,y — 1) > 0}
7 Left X y—i i={ltoy—-1]y—-1>0}
8 Up-left X — iy Y — i iy = {1tomin(x — 1,y — 1) | min(x — 1,y — 1) > 0}

Ny is the length of the initial vectors z; and z,
k=0
for i = 1to N, do

if |z(i) — z,(i)] = T then

Remove z;(i) and z, (i)

end if
end for
N, is the length of the final vectors z; and z,

AvrcoriTHM 4: Elimination of the outliers.

illustrated in propagation scheme in Figure 4. Some similar
notions to this approach appear separately in the literature,
[18, 30], and we were inspired by them. In [30], the cost
aggregation is done along the 16 radial directions in disparity
space, while in [18], histogram voting is used within the
segment for disparity refinement. We refine our disparity
maps by histogram voting of accumulating disparities along
8 radial directions across the whole disparity map with
constraint of the maximum allowed intensity difference with
the pixel being refined. The maximum intensity difference
is defined by a dynamic threshold T, with the same logic
behind as in local intensity variation measure in Section 2.2,
with the difference that here we distinguish three ranges of
intensity differences. Thus, the histogram is formed using
disparities of the pixels with close intensities along 8 radial
directions, see Figure 4 and Table 1. The pixels are close in
intensities, and their disparities are taken into account in
histogram forming if they lie within the threshold T}, from

y C
[ r
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R
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R

FIGURE 4: Propagation scheme.

the intensity of the pixel at the observed position (x, y). The
threshold T, (x, y) is selected based on a look-up table:

T T
E. Mt(x,y) (S _0,5)
3T T 3-T
TP(X,}/) = TZ Mt(x,y) S E,T> . (10)
T: M(x,y) € TT,W)

The histogram H with a number of bins equal to the
number of disparities within the disparity range is formed
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by counting the disparities along 8 radial directions for the
pixels whose intensity is within threshold T, (x;, y):

H(d(xtm}”ytmp)) = H(d(xtm;»}/tmp)) +1 o
i |1 (s ) = 15, ) | < T30,

where Ximp and yump are given by Table 1.
We calculate disparity dj, as a disparity of the normalized
histogram maximum:

. H®) o
h(l) - le(l)) 1= Dmm tO DmaX) (12)
dp = argmaxh(i), i = Dmin t0 Dmax. (13)

The initial disparity d(x, y) is replaced by the new value
dy if it is significantly supported, that is, if the normalized
histogram value h(dj,) is greater than a; otherwise, it is left
unchanged:

dp: if |dp—d(x,y)| >1Ah(dy) >

d(x,y): otherwise

d(x,y) ={

(14)

where a, 0 < a < 1, is a significance threshold. The steps
given by (11), (12), (13), and (14) are repeated iteratively
until there are no more updates to disparities in the map.

Next, we detect occluded disparities by the consistency
check between two disparity maps:

| Dre (%, y = Dir(x, y)) — Dr(x, y) | < 1. (15)

If the condition in (15) is not satisfied for disparity
Dir(x,y), we declare it as inconsistent and eliminate it
from the disparity map. The missing disparities are filled
in by an iterative refinement procedure similar to the
previously applied procedure for the disparity propagation
by histogram voting. In the iterative step to fill in the
inconsistent disparities, we use the threshold look-up table
(10) as in the disparity refinement step. We calculate the
histogram h of the consistent disparities with close intensities
along 8 radial directions as given by (11) and (12). The
missing disparity is filled in with the disparity dj, with the
largest support in the histogram, provided that the histogram
is not empty. The remaining unfilled inconsistent disparities,
and we fill in by the disparity of the nearest neighbor with
known disparities with the smallest intensity differences. As
a last step in the postprocessing, we apply L X L median filter
to obtain the final disparity map.

3. Experiments and Discussion

We have used the Middlebury stereo benchmark [4] to
evaluate the performance of our stereo matching algorithm.
The parameters of the algorithm are fixed for all four stereo
pairs as required by the benchmark. There are five free
parameters in our algorithm. The threshold value is set to
T = 12. The half-window size is w = 15, and the window size

TaBLE 2: Evaluation results based on the online Middlebury
stereo benchmark [4]: the errors are given in percentages for the
nonoccluded (NONOCC) region, the whole image (ALL), and
discontinuity (DISC) areas. The numbers within brackets indicate
the ranking in the Middlebury table.

Images Nonocc All Disc

Tsukuba 1.33 (37) 1.82 (32) 7.19 (46)
Venus 0.32 (39) 0.79 (46) 45 (58)
Teddy 5.32 (17) 11.9 (40) 14.5 (19)
Cones 2.73 (14) 9.69 (53) 7.91 (21)

is WX W where W = 31. The noise variance o7 is a small and
constant scaling factor in (7). The ratio coefficient in hybrid
WTA is K, = 0.5. In the postprocessing step, the median
filter parameter is L = 5, and the significance threshold in
histogram voting is « = 0.45.

Figure 5 shows results for all four stereo pairs from
the Middlebury stereo evaluation database: Tsukuba, Venus,
Teddy, and Cones. The leftmost column contains the left
images of the four stereo pairs. The ground truth (GT)
disparity maps are shown in the second column, the
estimated disparity maps are shown in the third column,
and the error maps are shown in the forth column. In the
error maps, the white regions denote correctly calculated
disparity values which do not differ for more than 1 from the
ground truth. If the estimated disparity differs for more than
1 from the ground truth value, it is marked as an error. The
errors are shown in black and gray, where black represents
the errors in the nonoccluded regions, and gray represents
errors in the occluded regions. The quantitative results in
the Middlebury stereo evaluation framework are presented
in Table 2.

The results show that our stereo algorithm preserves
disparity edges. It estimates successfully the disparities of
thin objects and successfully deals with subtle radiometrical
differences between images of the same stereo pair. Occlusion
errors are not propagated, and occluded disparities are
successfully filled in the postprocessing step. A narrow object
is best visible in the Tsukuba disparity map (the lamp
construction) and in Cones disparity map (pens in a cup in
the lower right corner). Our algorithm correctly estimates
disparities of both textureless and textured surfaces, for
example, the examples of large uniform surfaces in stereo
pairs Venus and Teddy are successfully recovered.

The images in the Middlebury database have different
sizes, different disparity ranges, and different radiometric
properties. The stereo pairs Tsukuba, 384 x 288 pixels, and
Venus, 434 x 383 pixels, have disparity ranges from 0 to
15 and from 0 to 19. The radiometric properties of the
images in these stereo pairs are almost identical, and the
offset compensation given by Algorithm 3 is not significant
for these two example pairs, as we demonstrated in [13].
As required by the Middlebury evaluation framework, we
apply the offset compensation to all four stereo pairs. The
stereo pairs Teddy, 450 x 375 pixels, and Cones, 450 x 375
pixels, have disparity ranges from 0 to 59. The images of these
stereo pairs are not radiometrically identical, and the offset
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FIGURE 5: Disparity results for the stereo pairs (1st row: Tsukuba, 2nd row: Venus, 3rd row: Teddy, and 4th row: Cones) from the Middlebury
testbed database. The columns show, from left to the right, the left image, ground truth, result computed by our stereo algorithm, and
disparity error map larger than 1 pixel. The nonoccluded regions errors with ranking are, respectively, Tsukuba 1.33% (37), Venus 0.32%

(39), Teddy 5.32% (17), and Cones 2.73% (14).

compensation successfully deals with these radiometrical
differences [13].

The error percentages together with ranking in the Mid-
dlebury evaluation online list are given in Table 2. The
numbers show error percentages for nonoccluded regions
(NONOCC), discontinuity regions (DISC), and the whole
(ALL) disparity map. The overall ranking of our algorithm
in the Middlebury evaluation table of stereo algorithms is
the 28th place out of 123 evaluated algorithms. Thus, our
stereo algorithm outperforms many local as well as global
algorithms. Among the algorithms ranked in the Middlebury
stereo evaluation, there are only two local algorithms ranked
higher than our algorithm, but both of them do not impose
the frontoparallel assumption strictly: a local matching
method using image geodesic-supported weights GeoSup [5]
and a matching approach with slanted support windows
PatchMatch [31]. Both of these algorithms use colored
images, while our algorithm works with intensity images and

achieves comparable results. Although these approaches have
better general ranking in the Middlebury stereo evaluation
list, our approach with matching based on frontoparallel
regions outperforms the PatchMatch algorithm for Tsukuba
stereo pair, and the GeoSup algorithm for Tsukuba, Teddy,
and Cones stereo pairs. Thus, our approach with region
selection by threshold produces more accurate disparity
maps for cluttered scenes than GeoSup algorithm with region
selection using geodesic support weights.

To investigate the contribution of the preprocessing and
the postprocessing steps to the overall result, we show in
Table 3 the results we obtained on the benchmark stereo pairs
with or without the preprocessing and the postprocessing
steps in the algorithm. We show the results if neither, only
one, and both steps are applied. If our postprocessing step
was omitted, the L X L median filter was applied. From the
results in Table 3, we conclude that both steps, if individually
applied, improve the qualities of the final disparity maps.
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TaBLE 3: Comparison of results with (+) or without (—) preprocessing (preP) and postprocessing (postP) steps.
Tsukuba Venus Teddy Cones
PreP  PostP Nonocc All Disc Nonocc All Disc Nonocc All Disc Nonocc All Disc
- - 3.6 5.41 10.04 2.76 4.38 13.18 8.11 17.42 19.73 4.77 15.04 12.33
+ - 2.74 4.50 10.11 0.62 1.63 7.95 7.52 16.82 19.41 3.98 14.37 11.27
- + 2.45 3.05 7.31 1.53 2.11 5.75 6.11 12.49 15.20 3.20 9.30 9.14
+ + 1.33 1.82 7.19 0.32 0.79 4.5 5.32 11.90 14.50 2.73 9.69 7.91

-y

FIGURE 6: Disparity results for the stereo pair Tsukuba: (a) without preprocessing and without postprocessing, (b) without preprocessing
and with postprocessing, (c) with preprocessing and without postprocessing, and (d) with preprocessing and with postprocessing.

FIGURE 7: Disparity results for the stereo pairs (1st row: Art, 2nd row: Dolls) from the Middlebury database of the stereo images. Size of each
image is 370 x 463 pixels. Disparity range in both stereo pair is 0 to 75. The columns show, from left to the right, the left image, the ground
truth, the result computed by our stereo algorithm, and the disparity error map larger than 1 pixel.

If we apply both steps, the accuracy of the disparity maps
is the highest. Furthermore, the improvement contribution
of the preprocessing step is greater than the postprocessing
step only for Venus stereo pair. This is because the sampling
effects were most pronounced in Venus scene. In addition,
we show in Figure 6 the disparity maps for Tsukuba stereo
pair for all four combinations: if the preprocessing and the
postprocessing steps are included or not in the algorithm. We
conclude that the preprocessing step plays a significant role
in accurate disparity estimation of textureless areas, while the
postprocessing step especially helps in an accurate estimation
of disparity discontinuities.

To illustrate the subtle features of our algorithm not
captured in the standard test bed images, and we apply our
stereo algorithm, while retaining the parameter values, on
some other images from the Middlebury site in Figure 7. For

two other stereo pairs, Art and Dolls, we show the left images
of two stereo pairs in the leftmost column. The ground
truth (GT) disparity maps are in the second column. The
third column shows our estimation of the disparity maps.
The fourth column shows the error maps with regard to
the ground truth. The algorithm successfully recovers the
disparities of very narrow structures as in Art disparity map.
The disparity of the cluttered scene is successfully estimated,
as in Dolls disparity map.

Next, we demonstrate that the presented local stereo
algorithm works well on practical problems. Examples of
disparity map estimation and 3D reconstruction of a face
are shown for stereo pair Sanja in Figure 8. The disparity
map estimation of a plant in stereo pair Tomato seedling is
shown in Figure 9. The parameters of the algorithm are kept
the same as in the previous examples. Thus, our algorithm
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z (mm)

FIGURE 8: Disparity results for the stereo pair Sanja, taken at the vision laboratory of Signals and Systems Group, University of Twente. Size
of each image is 781 X 641 pixels. Disparity range is 0 to 40. (a) Left stereo image, (b) right stereo image, (c) disparity map corresponding to
the right image, and (d) depth map with texture overlay.

FIGURE 9: Disparity results for the stereo pair Tomato seedling, taken within MARVIN project at the vision laboratory of Intelligent System

Group, Wageningen UR-Food and Biobased Research. Size of the region of interest in each image is 300 x 310 pixels. Disparity range is 0
to 90. (a) Left stereo image, (b) right stereo image, (c) region of interest in the left image, and (d) disparity map corresponding to the left

image.

successfully estimates the disparity of the smooth low-
textured objects and is suitable also for application to 3D face
reconstruction, Figure 8(d). Our algorithm also successfully
estimated the disparity map of the tomato seedling. Tomato
seedling stereo images represent a challenging task for a
stereo matching algorithm in general, because the viewpoints
significantly differ and the structure of the plant is narrow,
that is, much smaller than the window dimension.

As far as the initial window size is concerned, our algo-
rithm is not influenced by the window size above certain
size. In principle, we could apply our algorithm using the
whole image as the initial window around the reference pixel.
This would result in a sufficiently large region selection for
uniform regions in the image and make the ordinal measure
within the hybrid WTA more reliable. On the other hand,
in matching windows with high local intensity variations,
the selected region is always significantly smaller than the
window and does not change if the window is enlarged
because of the connectivity constraint with the reference
central pixel.

4. Conclusion

In our local stereo algorithm, we have introduced a new ap-
proach for stereo correspondence based on the adaptive
local segmentation by a dynamic threshold so that the
frontoparallel assumption holds for a segment. Further, we

have established a relationship among the local intensity
variation in an image and the dynamic threshold. We have
applied the novel preprocessing procedure on both stereo
images to eliminate the influence of noise and sampling
artifacts. The mechanism for the final matching region
selection prevents error propagation due to disparity dis-
continuities and occlusion. In the postprocessing step, we
introduce a new histogram voting procedure for disparity
refinement and for filling in the eliminated inconsistent
disparities. Although the starting point in matching is the
large rectangular window, disparity of narrow structures is
accurately estimated.

We evaluated our algorithm on the stereo pairs from the
Middlebury database. It ranks highly on the list, outperform-
ing many local and global algorithms that use color infor-
mation while we use only intensity images. Our algorithm is
the best performing algorithm in the class of local algorithms
which use intensity images and the frontoparallel assumption
without weighting the intensities of the matching region.
Furthermore, our algorithm matches textureless as well
as textured surfaces equally well, handles well the local
radiometric differences, preserves edges in disparity maps,
and successfully recovers the disparity of thin objects and the
disparities of the occluded regions. We demonstrated the per-
formance of our algorithm on two additional examples from
the Middlebury database and on two practical examples. The
results on this additional examples show that the disparity
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maps of scenes of different natures are successfully estimated:
smooth low-textured objects as well as textured cluttered
scenes, narrow structures, and textureless surfaces. Moreover,

our

algorithm has also other positive aspects making it

suitable for real-time implementation: it is local; it has just

five

parameters; intensity variations are locally calculated,

and there is no global segmentation algorithm involved.
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