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abstract

PURPOSE Immune checkpoint inhibitors (ICIs) are increasingly being used in non–small-cell lung cancer
(NSCLC), yet biomarkers predicting their benefit are lacking. We evaluated if on-treatment changes of circulating
tumor DNA (ctDNA) from ICI start (t0) to after two cycles (t1) assessed with a commercial panel could identify
patients with NSCLC who would benefit from ICI.

PATIENTS AND METHODS The molecular ctDNA response was evaluated as a predictor of radiographic tumor
response and long-term survival benefit of ICI. To maximize the yield of ctDNA detection, de novo mutation
calling was performed. Furthermore, the impact of clonal hematopoiesis (CH)–related variants as a source of
biologic noise was investigated.

RESULTS After correction for CH-related variants, which were detected in 75 patients (44.9%), ctDNA was
detected in 152 of 167 (91.0%) patients. We observed only a fair agreement of the molecular and radiographic
response, which was even more impaired by the inclusion of CH-related variants. After exclusion of those,
a ≥ 50% molecular response improved progression-free survival (10 v 2 months; hazard ratio [HR], 0.55; 95%
CI, 0.39 to 0.77; P = .0011) and overall survival (18.4 v 5.9 months; HR, 0.44; 95% CI, 0.31 to 0.62; P, .0001)
compared with patients not achieving this end point. After adjusting for clinical variables, ctDNA response and
STK11/KEAP1mutations (HR, 2.08; 95% CI, 1.4 to 3.0; P, .001) remained independent predictors for overall
survival, irrespective of programmed death ligand-1 expression. A landmark survival analysis at 2 months
(n = 129) provided similar results.

CONCLUSION On-treatment changes of ctDNA in plasma reveal predictive information for long-term clinical
benefit in ICI-treated patients with NSCLC. A broader NSCLC patient coverage through de novo mutation calling
and the use of a variant call set excluding CH-related variants improved the classification of molecular re-
sponders, but had no significant impact on survival.

JCO Precis Oncol 5:1540-1553. © 2021 by American Society of Clinical Oncology

INTRODUCTION

Circulating tumor DNA (ctDNA) has been extensively
studied to identify predictive markers and has im-
proved the delivery of targeted therapy for advanced
non–small-cell lung cancer (NSCLC).1,2 More recently,
next-generation sequencing (NGS) blood tests have
been used in patients treated with immune checkpoint
inhibitors (ICIs),3–7 as currently available candidate
biomarkers such as tumor mutational burden and
programmed death ligand-1 (PD-L1) expression are
not sufficiently specific to discern responders from
nonresponders.8–11 Although some studies evaluated
tumor mutational burden in cfDNA,12,13 others
focused on the on-treatment assessment of ctDNA
trajectories.3,5,14,15 Several recent studies reported that

molecular ctDNA responses correlate with radio-
graphic responses to ICI,3–6,15 whereas others sug-
gested a multiparameter model integrating ctDNA and
circulating immune cell profiling to improve the pre-
diction of tumor response.15 Most studies were per-
formed using comprehensive laboratory developed
tests, the development and validation of which are
complex and often not feasible for routine diagnostic
laboratories with respect to time and costs. Others
have used centralized testing facilities7; however,
outsourcing adds to the costs, requires efficient
sample, and results in transmission networks, which
can also result in sample-to-answer delay. Moreover,
most of these vendors do not correct for clonal he-
matopoiesis (CH), which refers to a clonal expansion of

ASSOCIATED
CONTENT

Data Supplement

Author affiliations
and support
information (if
applicable) appear at
the end of this
article.

Accepted on August
24, 2021 and
published at
ascopubs.org/journal/
po on September 29,
2021: DOI https://doi.
org/10.1200/PO.21.
00182

1540

Downloaded from ascopubs.org by 130.89.3.19 on January 26, 2022 from 130.089.003.019
Copyright © 2022 American Society of Clinical Oncology. All rights reserved. 

https://ascopubs.org/doi/suppl/10.1200/PO.21.00182
http://ascopubs.org/journal/po
http://ascopubs.org/journal/po
http://ascopubs.org/doi/full/10.1200/PO.21.00182
http://ascopubs.org/doi/full/10.1200/PO.21.00182
http://ascopubs.org/doi/full/10.1200/PO.21.00182
http://crossmark.crossref.org/dialog/?doi=10.1200%2FPO.21.00182&domain=pdf&date_stamp=2021-09-29


mutations in blood cells. Besides mutations in driver genes
for hematologic malignancies, there is increasing evidence
of CH-related mutations in genes usually mutated in solid
tumors, including TP53 or KRAS.16,17 Compared with clonal
hematopoiesis of indeterminate potential, in solid malig-
nancies, variant allele frequencies (VAFs) of CH-related
variants often overlap with the range of ctDNA-derived
variants.17 Therefore, these variants represent important
biologic confounders and paired analyses of cfDNA and
peripheral bloodmononuclear cells (PBMCs) are suggested.

Therefore, the use of commercial NGS kits may accelerate
a broad application of ctDNA. To this end, analytical val-
idation of ctDNA assays18 and the use of validated ctDNA
workflows are essential.19–21 Within the framework of
Cancer-ID,22 we have assessed the variability of cfDNA
extraction kits and commercial NGS kits that can be easily
implemented and standardized for clinical applications in
many laboratories.23–25 Here, we describe the use of a
commercial platform for liquid profiling in a large cohort of
patients with NSCLC undergoing ICI treatment. On-
treatment changes of ctDNA, the presence of specific
genetic alterations, and the influence of variants related to
CH on outcome were analyzed.

PATIENTS AND METHODS

Patients

Patients with advanced NSCLC (N = 177) treated with ICI
were recruited from December 2015 to May 2018 at the
University Medical Center Groningen (the Netherlands), of
which 167 patients were evaluable (Fig 1A and Table 1).
Blood was taken prospectively before ICI administration (t0)
and after two cycles (on average 4 weeks for nivolumab and
6 weeks for pembrolizumab; t1). Tumor response was
assessed by diagnostic computed tomography using
RECIST, version 1.1, by an observer blinded to the bio-
marker outcome. Early response (defined as complete [CR]

or partial [PR] tumor response at the first response evaluation)
was observed in 44 of 167 patients (26.4%), and 60 of 167
patients (35.9%) achieved a durable clinical response (de-
fined as CR or PR or persistent stable disease for more than
6 months). Patients without a durable response (no durable
response [NDR]) progressed within 6 months progressive
disease [PD]. For follow-up time and median survival, see the
Data Supplement. All patients provided written informed
consent. The ISO-certified biobank initiative (9001:2008
Healthcare) was approved by themedical ethics committee of
the University Medical Center Groningen (No. 2010/109) and
made available to the CANCER-ID consortium.

Molecular Profiling From Plasma

Molecular profiling was performed at t0 and t1 using the
AVENIO ctDNA Expanded kit (Roche, Basel, Switzerland;
Data Supplement) according to the manufacturer’s rec-
ommendations. Performance assessment confirmed the
reported sensitivity down to 0.1% (Data Supplement). Single
nucleotide polymorphism (SNPs) and CH-related variants
were filtered on the basis of public databases and patient-
matched PBMCs (for details, see the Data Supplement).

Assessment of ctDNA Levels

ctDNA levels were assessed as VAFs (percentage of al-
ternate sequence reads divided by the total number of reads
at that locus) and the number of mutant molecules (MMs)
permL plasma. For both proxies, the average of all identified
variants per patient (averagemutant molecules [aMMs] and
aVAF) and the value of the highest variant (hMM and hVAF)
were determined. Here, only the results from the aMM are
presented (for details, see the Data Supplement).

Study Design and Statistics

The primary hypothesis of this observational exploratory
study was that changing levels of ctDNA may serve as early
predictors of response to ICI in NSCLC. The prespecified
primary end point was the agreement between a molecular

CONTEXT

Key Objective
The search for predictive or prognostic biomarkers for response to immune checkpoint inhibitors (ICIs) in patients with

non–small-cell lung cancer (NSCLC) is of high clinical relevance. Given that circulating tumor DNA (ctDNA) reflects the total
body tumor burden, we assessed if the on-treatment ctDNA trajectories (before ICI and on average 4 weeks later) are
associated with radiographic response and survival.

Knowledge Generated
To this end, we used a broadly applicable, easy-to-implement commercial ctDNA test that achieves a broad NSCLC patient

coverage through de novo mutation calling. Our data indicated that changes in ctDNA levels are highly predictive for long-
term benefit in ICI-treated advanced NSCLC. The use of a tumor-specific variant call set by excluding variants related to
clonal hematopoiesis improved the discrimination of survival by a molecular ctDNA response.

Relevance
Our approach provides guidance for clinicians on the long-term benefit of the therapy and may enable stratification of patients

for clinical trials.
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FIG 1. Flowchart and study design. (A) Flowchart of patients included in the study. In 139 of 152 (91.4%) patients, at least one mutation was
identified at both time points, and in 91 of 152 patients (59.9%), additional mutations unique to a single time point (either t0 or t1) were observed.
(B) Analysis workflow of the study. CT, computed tomography; ctDNA-neg, no tumor-specific somatic mutation detected; ctDNA-pos, detection of
at least onemutation using the AVENIO ctDNA Expanded Kit; ctDNA, circulating tumor DNA; ICI, immune checkpoint inhibitor; NSCLC, non–small-
cell lung cancer; PET, positron emission tomography; t0, blood draw before initiation of ICI; t1, blood draw at first response assessment.

Weber et al

1542 © 2021 by American Society of Clinical Oncology

Downloaded from ascopubs.org by 130.89.3.19 on January 26, 2022 from 130.089.003.019
Copyright © 2022 American Society of Clinical Oncology. All rights reserved. 



ctDNA response (25% and 50% drop, see the Data
Supplement) from t0 to t1 and the radiographic tumor re-
sponse. The secondary aim was to compare overall survival
(OS) and progression-free survival (PFS) in patients who
presented a ctDNA response versus those who did not
achieve this end point. Further prespecified outcome
measures included the baseline ctDNA levels and the
number and types of mutations in association with survival.

Descriptive statistics were used for patient and tumor
characteristics. For comparisons of ctDNA levels, re-
sponse, and concordance between ctDNA and clinical
response, nonparametric and parametric tests were used.
Analyses of PFS and OS (defined from ICI start until ra-
diographic progression or death, the primary outcome was
censored on the date of last follow-up) were performed
using the Kaplan-Meier method and the log-rank test.
Moreover, a landmark analysis at 2 months (60 days after
therapy for survival analysis), which represents a critical
time point for clinicians to decide whether to continue with
ICI, was performed. For this analysis, 144 (OS) and 99
(PFS) patients were available (Fig 1B).

Multivariate Cox regression analysis was used to adjust for
clinical factors. Data were analyzed and visualized using
GraphPad PRISM, SPSS, and R (maftools and ggplot2
packages; for details, see the Data Supplement).

RESULTS

Clonal Hematopoiesis–Related Variants Are a Source of

Biologic Noise

Recent studies have indicated that CH—a process that
leads to the expansion of mutations in blood cells—affects
the specificity of ctDNA detection.19,26 Therefore, we in-
cluded PBMCs in our analyses to ensure a tumor-specific
variant call set. Of 913 somatic variants, 115 (12.6%) from
75 of 167 patients (44.9%) were also detected in PBMCs
(Fig 2A), whereas most CH-related variants were identified
in TP53 (Fig 2B).19,27,28 The number and presence of CH-
related variants were associated with higher age (Fig 2C and
Data Supplement). The median VAF of CH-related muta-
tions (0.59%; range, 0.07-14.65) was significantly lower
than that of the tumor-derived mutations (median VAF of
0.91%; range, 0.04-79.12; Fig 2D). In contrast to tumor-
specific variants (average fold change from t0 to t1 2.6, range
0-218), CH-related variants largely remained unchanged
(average fold change 0.95, range 0-3.0). Consistent with
previous reports, DNA fragments carrying tumor-specific
variants were slightly shorter than those carrying CH-related
variants (Kolmogorov-Smirnov test, P, 1 × 10−10; Fig 2E).19

The presence of CH-related variants was neither associated
with prior chemotherapy nor survival (Data Supplement).

De Novo Mutation Calling Shows Good Concordance With

Tissue and Leads to a Higher Yield ctDNA Detection Rate

After removing CH-related variants, an average of 5.25
tumor-specific mutations (median 4, range 1-68) were

TABLE 1. Baseline Patient Characteristics (n = 167)
Variable Parameter No. of Patients (%)

Age, years Median (range) 66 (29-87)

Sex Male 96 (57.5)

Female 71 (42.5)

Performance score 0 69 (41.3)

1 89 (53.3)

2 8 (4.8)

3 1 (0.6)

Smoking history Smoker 107 (64.1)

Former smoker 47 (28.1)

Nonsmoker 13 (7.8)

Stage IIIB 22 (13.2)

IV 145 (86.8)

Metastatic sites 0 3 (1.8)

1 32 (19.2)

2 55 (32.9)

3 41 (24.5)

≥ 4 36 (21.6)

Line of therapy First 13 (7.8)

Second 119 (71.2)

Third 35 (21.0)

Therapy Nivolumab 140 (83.8)

Pembrolizumab 15 (9.0)

Atezolizumab 7 (4.2)

Nivolumab plus ipilimumab 3 (1.8)

Durvalumab 2 (1.2)

No. of cycles Mean (SD) 13 (15)

ICI ended because of PD 121 (72.5)

Toxicity 25 (15.0)

2 years duration 19 (11.4)

Infection 2 (1.2)

Histology Adenocarcinoma 112 (67.1)

Squamous cell carcinoma 51 (30.5)

Others 4 (2.4)

PD-L1 expression , 1% 56 (33.5)

1%-49% 31 (18.6)

≥ 50% 23 (13.8)

NE or unknown 57 (34.1)

Tumor response CR 8 (4.8)

PR 36 (21.6)

SD 39 (23.4)

PD 70 (41.9)

NE 14 (8.4)

Early response Response at first CT 44 (26.3)

Durable response SD + PR + CR ≥ 6 months 60 (35.9)

Abbreviations: CR, complete response; CT, computed tomography; NE, not
evaluable; PD, progressive disease; PD-L1, programmeddeath ligand-1; PR, partial
response; SD, standard deviation.
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detected in 152 (91.0%) patients (Data Supplement),
excluding 15 patients without detectable ctDNA (non-
shedders) at both time points. Interestingly, six of those
nonshedders had CH-related variants and would have been
mistakenly classified as ctDNA-positive.

Tumor profiling data were available from 116 patients. In 71
(61.2%), a total of 85mutations were detected in the tissue.
From these, 64 were also detected in plasma from 54
patients, resulting in an overall concordance of 75.3%
(Data Supplement), which is consistent with previous
reports.28 Of 17 discordant samples, six were classified as
nonshedders, and in 11 patients, at least one other mu-
tation was detected. Not surprisingly, discordant plasma
samples had significantly lower ctDNA fractions (Data
Supplement). Of the 45 (38.8%) patients for whom no
mutation was detected in the tumor tissue, six were clas-
sified as nonshedders. In the remaining 39 patients, at least
one mutation could be identified with AVENIO, demon-
strating an improved breadth of patient coverage compared
with a hot spot panel.

Changes in ctDNA Levels and Tumor Response

Overall ctDNA levels at t0 were low, with 50.9% (85 of 167)
of patients having an average VAF (aVAF) , 1% (median
0.9%; range, 0-48.4) and aMM ranging from 0-57,500
molecules per mL of plasma. Responders had significantly
lower ctDNA levels at t1 compared with t0 (Data Supple-
ment). When assessing ctDNA response patterns from t0 to

t1, the majority of responders (DCR and ER) presented
decreasing ctDNA levels (Figs 3A and 3B), whereas
nonresponders (NDR and NR) had mixed molecular re-
sponses (Figs 3C and 3D and Data Supplement). In eight
patients (5.3%), ctDNA was cleared completely at t1,
whereas in five patients (3.3%), ctDNA was only detected
at t1 (Fig 1A). When using a 50% threshold for aMM
changes, on average, 54.5% of patients were evaluable,
whereas all others did not reach the cutoff in either di-
rection (Fig 3E). Without excluding CH-related variants, this
proportion even decreased and a total of 20 patients would
have been misclassified (Data Supplement). For example,
patient 1147, who presented a partial response, achieved a
51%molecular response (Fig 3F). However, on the basis of
all identified plasma variants, the ctDNA level increased by
more than 100%. Overall, early and durable responders
were 4.5- and 3.6-fold more likely to achieve a 50%
molecular ctDNA response compared with nonresponders
(Fisher’s exact test, P = .0003 and P = .0009; Fig 3G).
When assessing the agreement between radiographic and
molecular response from t0 to t1, only a fair agreement
(Cohen’s kappa coefficients 0.31 and 0.28 for 50% ctDNA
response and 0.27 and 0.23 for 25% ctDNA response,
respectively) was observed between early and durable
radiographic and ctDNA response.

A comparison of a tumor-informed approach (n = 71 pa-
tients), that is, considering only ctDNA variants identified
also in tumor tissue, and the CH-corrected de novo variant
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call set revealed no substantial differences (Data Supple-

ment). For the 25% threshold, similar results were obtained

(Data Supplement).

Plasma ctDNA Dynamics and Survival

Patients with detectable, CH-corrected ctDNA at both time
points (n = 147) had a significantly worse OS compared
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with nonshedders (no ctDNA at both time points; n = 15;
median OS 7.6 v 20.3 months; hazard ratio [HR], 0.48;
95% CI, 0.26 to 0.48; P = .0147; Data Supplement).
Moreover, patients with elevated ctDNA levels (above the
median) had significantly worse PFS and OS for both t0 and
t1 (for details, see the Data Supplement).

Interestingly, patients with a ≥ 50% molecular ctDNA re-
sponse had a similar PFS and OS like nonshedders,
whereas patients with a , 50% decrease or an increase of
ctDNA at t1 had a similarly worse outcome (Data Supple-
ment). When stratifying patients by a ≥ 50% molecular
ctDNA response, the median PFS and OS of patients

without a ≥ 50% drop were 2.0 and 5.9 months, re-
spectively, compared with 10 and 18.4 months for patients
with a ≥ 50% decrease (PFS HR, 0.55; 95% CI, 0.39 to
0.77; log-rank P = .0011; OS HR, 0.44; 95% CI, 0.31 to
0.62; log-rank P , .0001; Figs 4A and 4B). Without the
exclusion of the CH-related variants, survival curves were
still significantly different, but the stratification was less
pronounced (PFS HR 0.63 v 0.55 and OS HR 0.53 v 0.44;
Figs 4A and 4B). By contrast, stratification on the basis of a
tumor-informed approach (n = 55 patients) revealed the
same outcome as the CH-corrected de novo approach
(Data Supplement). A 2-month landmark analysis (60 days
after t0) again revealed a significant stratification for
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a ≥ 50% molecular ctDNA response (PFS HR, 0.59; 95%
CI, 0.37 to 0.94; log-rank P = .0319 and OS HR, 0.45; 95%
CI, 0.30 to 0.65; log-rank P = .001; Figs 4C and 4D). A
lower cutoff of 25% for ctDNA response revealed a similar
but slightly weaker stratification (Data Supplement).

Association of Genetic Alterations and Patient Outcome

Since genetic alterations may interfere with ICI outcome, we
tested whether any of the recurrently identified mutated
genes in our cohort are associated with survival. Except for
mutations in STK11 and/or KEAP1 (PFS HR, 0.53; 95% CI,
0.34 to 0.82; P = .0003; OS HR, 0.38; 95% CI, 0.24 to
0.61; P = .0001), none of the other evaluated genes were
associated with survival (Figs 5A and 5B). Interestingly, the
addition of NFE2L2 mutations did not improve the strati-
fication (Data Supplement). Although patients with STK11-
and/or KEAP1-mutated tumors died quickly, the 2-month
landmark comparing patients with and without detected
STK11/KEAP1 mutations again showed significantly dif-
ferent PFS (HR 0.48; 95% CI, 0.24 to 0.97; P = .0063) and
OS (HR, 0.42; 95% CI, 0.33 to 0.71; P , .0001; Figs 5C
and 5D).

Multivariable Analysis of Biomarkers

To investigate the influence of clinical variables on survival,
Cox regression analysis was performed. The number of
metastases as a marker of disease burden, performance
score, and sex were the most significant clinical variables.
When including ctDNA features in the clinical model
(n = 152), both a molecular response of ≥ 50% response
(HR, 0.58; 95% CI, 0.39 to 0.86; P , .007) and the
presence of STK11/KEAP1 mutations (HR, 1.56; 95% CI,
1.04 to 2.33; P, .03) were independent predictors for PFS
(interaction P = .78; Data Supplement). For OS and the
landmark survival analysis (n = 129), both biomarkers
provided a similar result (Data Supplement).

PD-L1 expression was available for 110 patients and
represented a borderline significant baseline biomarker for
PFS (HR, 0.77; 95% CI, 0.59 to 1.01; P = .057) and a
significant biomarker for OS (HR, 0.70; 95% CI, 0.53 to
0.93; P = .01). However, when adding themolecular ctDNA
response of ≥ 50% to the model, PD-L1 expression be-
came insignificant for both end points (Data Supplement).

DISCUSSION

Here, we evaluated whether dynamic ctDNA features may
identify patients with advanced NSCLC who benefit from ICI
treatment. Although similar studies have been reported, our

data include several novel aspects such as (1) the use of a
broadly applicable easy-to-implement ctDNA test that
achieves a broad NSCLC patient coverage through de novo
mutation calling, (2) a landmark survival analysis at a time
point when all ctDNA data are available and when clinicians
decide to continue or discontinue treatment, and (3) the
use of a tumor-specific variant call set by excluding CH-
related variants.

We used the commercial AVENIO platform, which provides
a user-friendly, generic end-to-end workflow. In contrast to
routine diagnostic workup, in which mutations were
identified in only 60% of patients, our de novo mutation
calling approach identified mutations in more than 90% of
the patients, which demonstrates a high sensitivity and a
broad patient coverage of the AVENIO platform that is
comparable with panels such as the Guardant360 assay
offered by a large service provider. A comparison of tumor-
informed and de novo mutation calling in plasma revealed
similar performances with respect to treatment response
and survival, confirming ctDNA as a reliable cancer marker
without the need for tissue sequencing.

Consistent with a recent study6, we observed lower pre- and
on-treatment levels of MMs for both early and durable
responders compared with nonresponders. In addition to
higher ctDNA levels at t0 and t1, the presence of STK11/
KEAP1 mutations was independently predictive of worse
survival. However, these mutations are not uniquely as-
sociated with response to ICI, but confer a poor prognosis
regardless of treatment.29 As not only a static assessment of
ctDNA levels but also changes in ctDNA levels may predict
response and long-term outcome,5–7,14,15 we assessed
ctDNA dynamics as a surrogate for tumor response and
survival. Our data indicate that on-treatment changes of
ctDNA predict survival, but did not well correlate with ra-
diographically assessed tumor response, which is in line
with previous reports.5,15 Although initial studies proposed
an association of early ctDNA dynamics and pathologic
response,3,5 we confirmed from a recent pan-cancer study
including 333 patients with NSCLC that ctDNA changes
provide prognostic information, but do not mirror the im-
mediate tumor response.7 Similarly, Nabet et al15 reported
that, on the basis of a molecular ctDNA response alone,
more than 25% of patients would be incorrectly classified
for early response assessment—a fraction similar to what
we observed—and that an early prediction of tumor re-
sponsemay require an integration of additional parameters.

FIG 4. Dynamic ctDNA changes are associated with survival. Kaplan-Meier curves of (A) PFS and (B) overall survival of patients with
detected ctDNA (n = 152 patients) stratified by a≥ 50%decrease in the average number of mutantmolecules from t0 to t1 calculated from
all somatic variants (all variants) and CH-corrected variant call set (without CH-related variants). Lower plots indicate HRs. (C) and (D) The
same as in (A) and (B), but using a 2-month landmark for OS and PFS calculation. By then, 23 patients had already died and only 77%
(129 of 167) of patients were evaluable. *P ≤ .05; **P ≤ .01, ***P ≤ .001, and ****P ≤ .0001. HR, hazard ratio plus 95% CI. n.s.
P values were calculated from log-rank tests. CH, clonal hematopoiesis; ctDNA, circulating tumor DNA; n.s., not significant; OS, overall
survival; PFS, progression-free survival.
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Therefore, the optimal time point for response assessment
still needs to be determined. Although some patients might
initially show short-term responses before progression,
others may demonstrate a delayed response. Therefore, a
continuous monitoring at several time points may harbor
important dynamic information30 and might better reflect
the pathologic response.

Nevertheless, on-treatment changes of ctDNA had an in-
dependent impact on PFS and OS, with patients without or
a complete clearance of ctDNA having the longest survival.
Moreover, we confirmed the observation from the study by
Nabet et al15 that tumor PD-L1 expression does not add
value to the outcome classification and is therefore dis-
pensable in this setting.

Since the outcome of on-treatment trajectories of ctDNA
can only be evaluated after the second blood sample, we
performed a landmark analysis 60 days after treatment
initiation, a time point when clinicians may inform their
patients about the efficacy of the treatment. In particular,
when the radiologic response is difficult to interpret, the
ctDNA result may help guide further procedures. At this
landmark, 23 of 152 (15.1%) patients had already died,
which emphasizes the need for a quick turnaround time
and an early assessment of the molecular response.

We confirm NSCLC as a low-ctDNA cancer31 since half of
our patients had a VAF below 1%. At these VAFs, CH-

related variants comprise an important source of biologic
noise.19,21,32,33 Indeed, CH-related variants were detected
in 43% of our patients. In addition to TP53, many other
genes that are not canonically associated with CH were
affected.19 Since CH-related variants in patients with solid
cancer are not related to changes in tumor burden, the
incorporation of CH-related variants might disguise the
actual ctDNA response and lead to misclassification of the
patient’s molecular response, as seen in more than 10% of
our cohort. In addition, although not significant, the ex-
clusion of CH-related variants improved the discrimination
of survival by a molecular ctDNA response.

Limitations of our study include the heterogeneous ICI reg-
imens, variable blood collection times, and predominantly
second-line ICI. However, a subgroup analysis including only
patients with the second blood draw after 4 weeks (62 days)
revealed the same result for OS (Data Supplement). Yet, a
major benefit of our study is the use of a broadly applicable
commercial ctDNA test including CH correction that might
facilitate a widespread implementation of ctDNA-based
clinical decision making. With respect to ICI, our approach
provides guidance for clinicians on the long-term benefit of
the therapy and may enable stratification of patients for
clinical trials, but an early prediction of tumor response may
require the integration of additional parameters.
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