Graph Transformation for
Verification and Concurrency
(GT-VC 2005)

Satellite workshop of Concur 2005

Reiko Heckel, University of Leicester
Barbara Konig, University of Stuttgart
Arend Rensink, University of T'wente

(organizers)

San Francisco, 22 August 2005

Contents

I Invited presentation 1

Formal Modeling via Executable Specifications in Rewriting Logic.

Carolyn Talcott, SRI International 1
IT Full papers 3
Bigraphical Semantics of Higher-order Mobile Embedded Resources
with Local Names. Mikkel Bundgaard and Thomas Hildebrandt 3
Distributed Graph Traversals by Relabeling Systems with Applica-
tions. Bilel Derbel and Mohamed Mosbah 25
Graphical Verification of a Spatial Logic for the w-calculus. Fabio
Gadducci and Alberto Lluch-Lafuente 41
Hoare vs Milner: comparing synchronizations in a graphical frame-
work with mobility. Ivan Lanese and Ugo Montanari 29
III Work-in-progress 75

Extending C for Checking Shape Safety. Mike Dodds and Detlef Plump 75
Towards Attributed Graphs in Groove. Harmen Kastenberg 91

An integration tool for Stochastic Graph Transformation. Sebastian
Menge and Georgios Lajios 99

Semi-local model of computations on graphs to break the local sym-
metry. Dobieslaw Wroblewski 105

Formal Modeling via Executable Specifications
in Rewriting Logic

Carolyn Talcott, SRI International

SRI International

Abstract

The talk will begin with a brief introduction to Rewriting Logic and use of the
Maude language. A case study based on modeling security aspects a remote service
toolkit will be used to illustrate the approach to formal modeling and analysis in
more detail.

Preprint submitted to Elsevier Preprint

(This page intentionally left blank)

GT-VC 2005 Preliminary Version

Bigraphical Semantics of Higher-Order Mobile
Embedded Resources with Local Names *

Mikkel Bundgaard? Thomas Hildebrandt 3

Department of Theoretical Computer Science
IT University of Copenhagen
Denmark

Abstract

Bigraphs have been introduced with the aim to provide a topographical meta-model
for mobile, distributed agents that can manipulate their own linkages and nested lo-
cations, generalising both characteristics of the m-calculus and the Mobile Ambients
calculus. We give the first bigraphical presentation of a non-linear, higher-order
process calculus with nested locations, non-linear active process mobility, and local
names, the calculus of Higher-Order Mobile Embedded Resources (Homer). The pre-
sentation is based on Milner’s recent presentation of the A-calculus in local bigraphs.
The combination of non-linear active process mobility and local names requires a
new definition of parametric reaction rules and a representation of the location of
names. We suggest localised bigraphs as a generalisation of local bigraphs in which
links can be further localised.

Key words: bigraphs, local names, non-linear process mobility

Introduction

The theory of Bigraphical Reactive Systems (BRS) [13] has been proposed as a
topographical meta-model for mobile, distributed agents that can manipulate
their own linkages and nested locations. A bigraph consists of two structures:
the place graph and the link graph. The place graph is a tuple of unordered
trees that represents the topology of the system. The roots of the trees are
referred to as regions and the nodes are often referred to as places and may
represent locations or other process constructors such as e.g. action prefixing.
Some of the leaves may be sites (also referred to as holes) making the bigraph
a (multi-hole) context. Each non-site place is typed with a control and has

! Funded by the Danish Research Agency grant: 2059-03-0031 (LaCoMoCo) and IT-Vest
networking universities: National Teaching Network: Model-Based Design for Concurrency.
2 Email: mikkelbu@itu.dk
3 Email: hilde@itu.dk

This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

BUNDGAARD AND HILDEBRANDT

a number of ports linked together by the link graph. The link graph repre-
sents the connectivity in the system, corresponding to shared names in the
m-calculus. Free names are represented by links connected to a set of names
in the (outer) interface of the bigraph.

In so-called pure bigraphs, the place and link graph can be considered to
be orthogonal structures, since the nesting of the places and the connections
of the links have no interrelationship. Pure bigraphs are sufficient to represent
calculi such as the pure Mobile Ambient calculus. The orthogonality breaks
when we move to so-called binding and local bigraphs. Binding bigraphs were
introduced in [12] to capture the notions of binding and scope of names as
found in the m-calculus. In binding bigraphs we allow for a node to have bind-
ing ports, and require that any other port linked to the same link as a binding
port to be within the node of the binding port. In [15], Milner refines the
definition of binding bigraphs into local bigraphs. In local bigraphs, the free
names (i.e. names in the interface) are all explicitly located at the regions of
the bigraph, the same name possibly located at several regions. Correspond-
ingly, holes (i.e. sites) are explicitly annotated by a set of names connected to
links. Local bigraphs are used to facilitate the presentation of the A-calculus
in [16], which demonstrates how higher-order processes (process passing) can
be presented in the bigraphical framework using explicit substitutions.

In the present paper we give the first bigraphical presentation of the com-
bination of active processes in nested locations as present in the Mobile Am-
bients, non-linear higher-order process passing (by explicit substitution) as
present in the A-calculus and local names as present in the m-calculus. It
turns out that the combination of non-linear, active process mobility and lo-
cal names needs special care, i.e. we can not simply combine the previous
presentations of the Mobile Ambients, the A-calculus, and the 7-calculus.

We take as our starting point the calculus of (asynchronous) Higher-Order
Mobile Embedded Resources (Homer) [9]. Homer is a pure higher-order calcu-
lus inspired by prior higher-order calculi such as Plain CHOCS [19] and HO7®
[18], and can be regarded as an extension of the A-calculus to contain nested,
active locations and concurrent synchronisation over (nested) named channels.
It is also a natural subclass of bigraphs for studying active, mobile processes in
nested locations. Basically, asynchronous Homer has two constructors for lo-
cated resources 6(r) (passive) and §[r| (active) where ¢ is a sequence of names
representing the address of the resource. These two constructors correspond
respectively to a passive and an active bigraph control with ports connected
to the links 0. The interactions are controlled by two corresponding construc-
tors for moving located resources §(z).p (receive) and §(x).p (take), denoting
respectively the usual input-prefixed process waiting to receive a (passive) pro-
cess on the channel §, and an input action for taking an active process from
location 4, in both cases substituting the moved resource in for x in p. We
allow interactions with arbitrarily deeply nested, active processes by simply
composing addresses. In the example below we send the resource r down to

BUNDGAARD AND HILDEBRANDT

the nested address ab (composed of a and b), and it is received at the address
b residing in the location a

ab(r) |alb(z) . q | ¢'] N\ al qlr/2] | 4] . (1)
Dually, we can also take up resources from nested locations as in
alb[r] | p] | ab(x) . ¢\ alp] | q[r/a] . (2)

As usual, we let (n)p denote a process p in which the name n is local. With
local names we also need to handle scope extension. For most of the process
constructors scope extension is as expected, but when a resource is moved it
may be necessary to extend the scope of a name through the boundary of a
location, e.g. if the resource r contains the name n free, we will expect the
reaction

a[(n)(b[r] | p)] | ab(x) . ¢ \, (n)(alp] | ¢[r/x]) , (3)
where we have vertically, through the location boundary, extended the scope
of n to cover all possible occurrences of the name n. In the Mobile Ambients
calculus vertical scope extension is performed in the structural congruence
(along with the usual scope extension)

m[(n)p] = (n)m[p] , if n#m . (4)

However, as also discovered in [6] this rule is not sound when mobile processes
may be copied. There exists several solutions to this problem, all of them
exclude the vertical scope extension in the structural congruence (4), and
instead extend the scope in the reaction relation. This extension is either done
eagerly, meaning that we always extend the scope, or if and only if the name
n is free in 7. In Homer we have chosen the latter solution, which corresponds
to the usual semantics of e.g. HOw. Combined with nested locations it has
the consequence that a context can test if a name is free in a process, and
so for any non-trivial congruence related processes must have the same set
of free names (see, e.g., [9] for a detailed discussion). It is sometimes useful,
however, to be able to abstract from free, but non-accessible names, as e.g.
in the perfect firewall equation (n)(n[p]) =~ 0, stating that the behaviour of
a computing resource at a local location is unobservable. To facilitate this
we type processes explicitly with a set of names n containing the free names.
The typed perfect firewall equation then becomes (n)(n[p]) : 7 ~ 0 : n for
fan(p)\{n} C n. Interestingly, it turns out that for this equation to hold we
also need to explicitly annotate all located sub-resources with a type, which
is done by extending the syntax to §{(r); and &[r];.

Related Work

The Homer calculus were introduced in [9] together with labelled transition
bisimulation congruences, and an encoding in Homer of the synchronous 7-
calculus without summation was presented in [3,4]. Composite names in send

BUNDGAARD AND HILDEBRANDT

and receive prefixes are also found in the m-calculus with polyadic synchroni-
sation [5], however, the dual prefixes for active processes are not considered.

In [13,12] Jensen and Milner set up the basic theory of BRSs and exhibit a
bigraphical presentation of the asynchronous m-calculus A7 and prove that the
derived LTS and its bisimilarity match closely the traditional LTS and bisimi-
larity of Aw. Milner gives in [14] a bigraphical presentation of condition-event
Petri nets and Jensen gives in his forthcoming thesis a presentation of the
Mobile Ambient calculus [11]. Milner has refined the theory of binding bi-
graphs [15,16], to give a bigraphical presentation of a A-calculus with explicit
substitutions. Several aspects of the current paper are inspired by this presen-
tation. Besides bigraphs there exist several graphical formalisms suitable for
presenting calculi for concurrency and mobility: solo diagrams, synchronized
hyperedge replacement, tile systems etc., see e.g. [2] for references.

Explicit substitutions have been widely applied in the setting of functional
programming languages, primarily to bridge the gap between the abstract
definition of a programming language and the concrete implementation. In the
seminal work of Abadi et al. [1] on Ao, a A-calculus with explicit substitutions,
the substitutions are propagated throughout the term and applied locally.
The approach chosen in this paper differs from this solution, in the same
way as Milner’s A-calculus did, since we also perform the substitution ‘at
a distance’. Explicit substitutions have also appeared in process calculi for
concurrency and mobility. In particular the m-calculus has been augmented
with explicit substitutions in several variants, e.g. using a global environment
for the substitutions [8] or using De Bruijn indices and handling the name
instantiation using a term rewrite system [10].

The paper is structured as follows: In Sec. 1.1 we briefly review the main
concepts of local bigraphs, and in Sec. 1.2 we present the calculus Homero.
Sec. 2 contains the presentation of Homero as a BRS, ending with the sugges-
tion of localised bigraphs as a generalisation of local bigraphs in which links
can be further localised.

1 Preliminaries

In this section we first briefly recall the main concepts of the theory of local
bigraphs [15], and give a new definition of parametric reaction rules. We then
present the asynchronous variant of the calculus Homer introduced in [9],
but extended with explicit substitutions to present the higher-order process
passing of Homer in the bigraphical framework.

1.1 Local Bigraphs

We refer the reader to [13] for the basic static and dynamic theory of (pure
and binding) bigraphs and [15] and [16] for the remaining details about local
bigraphs. In this paper we will primarily use a simple term language, intro-

BUNDGAARD AND HILDEBRANDT

duced in the above mentioned papers, instead of the graphical representation
of bigraphs. The term language consists of the following constructors: h || g
and h | g are the parallel product and prime parallel product of two bigraphs
h and g, respectively. Whereas the prime parallel product merges the regions
of two single-region (prime) bigraphs, the parallel product juxtaposes the re-
gions. The closure constructor /no g is the bigraph g, where we have removed
the outer name n by replacing the name with an edge in g.

H
The outer face of a local bigraph is a pair (m, X), where m is the number
H
of regions and X is a vector of length m, such that X; is the set of E))cal names
attached to the ¢'th region. Similarly, the inner face is a pair (n, Y) where n

is the number of sites, |7| =n and Y; is the local names attached to the i'th
site. We can compose two bigraphs H and G, if the outer face of G and inner
face of H matches, resulting in the bigraph H o G, where the content of the
regions of GG have been inserted into the respective sites of H, and the links
of corresponding local names have been fused together.

A bigraph signature K is a set of controls and provides for each control
K a pair of finite ordinals, the number of binding and free ports, the binding
arity h and the free arity k, written K : h — k. It also determines which
controls are atomic, and which of the non-atomic controls are active.

A ground reaction rule is a pair (r,7") of ground bigraphs (bigraphs with
no holes) with the same outer face. Given a set of ground rules, the reaction
relation, —, is the least relation such that D or — D o’ for each active
context D and each ground rule (r,7’). Parametric reaction rules allow for the
rules to contain parameters, that can be replicated, discarded, or just moved.
A parametric reaction rule has a redex R and reactum R’, and takes the form
(R:1 — K,R :I' — K,n), with inner faces I = (m, f) and I' = (m/,)_(>’),
and : m’ — m is a map of ordinals, inducing the instantiation 77, defined
below. For every parameter d : I the parametric reaction rule generates a
ground reaction rule (Rod, R o7(d)). Differently from the original definition
in [15], we require that all outer names of a parameter are specified explicitly
by the parametric reaction rule, to ensure that we handle scope extension
properly. The instantiation maps a parameter for the redex to a parameter
for the reactum and allows for the rules to replicate some of their parameters
and discard others. More precisely, a ground bigraph a : (m,)—()) with no
closed links crossing regions can be factorised uniquely into prime bigraphs as
a=cyll || ¢m1, with ¢; : X;. For a map n : m’" — m we then define the
instantiation 7 as

— . /—>/ dif /d_ef . . /
n(a) : (m', X') = cyo) | - || eyomr—1) , where Xi = X, ;) for all j € m/.

1.2 Higher-Order Mobile Embedded Resources

We assume an infinite set of names N ranged over by m and n, and let n
range over finite sets of names. We let -y range over (possibly empty) sequences

BUNDGAARD AND HILDEBRANDT

Thp:n Thq:ng

THO:n i‘l—p’q:fMUng .%l_(—)ﬁ:ﬁ
Txtp:n Fg:m TkEp:nn
Trkx:n Thplr:=q:m]:nUn T (mp:n
Txtp:n ThEr:m
Tk p(z).p:aUfn(e) @ = ofrlm : m U fa(p)
Table 1

Typing rules for Homero

of names, and let § range over non-empty sequences of names, referred to as
addresses and let |§| denote the length of the address §, also we let o ::= 3 | 4.
We assume an infinite set of process variables V ranged over by x and y, and
let = range over finite sets of variables. The set P of process expressions
for the calculus Homero of (asynchronous) Higher-Order Mobile Embedded
Resources with explicit substitutions is then defined as follows

Processes: p,q,r = 0 T.p plq (n)p
plz =q: 7 x o(r)a olrl
Prefizes: T = d(z) o(x)

The complementary actions 6(r); and 6(z) are the usual prefixes of Plain
CHOCS [19] or HO7, except that we allow sequences of names as addresses
instead of only a name, and we explicit type the resource r. As described in
the introduction, the actions §[r]; and 0(x) are responsible for adding active
process mobility to the calculus. We write @[r)s for d[r]; or §(r)s. The
process plr := ¢ : 1] is an explicit syntactic substitution, representing the
process p in a context that can substitute ¢ (of type n) in for x. The typing
rules to be defined below ensures that ¢ is closed and that the free names of
q are contained in n. As usual, we let the restriction operator (n) bind the
name n, and let the prefixes ¢(z) and p[x := ¢ : n] bind the variable z.

Contexts C are defined by taking the grammar for processes and augment-
ing it with a symbol called a hole, written (—);. Note that holes are typed,
only a process with type 7 can be placed in a hole (—).

We define the valid typing judgements of the form z F p : n inductively by
the rules in Tab. 1. From now on we will only consider well-typed processes.
Note that a process p is well-typed with respect to a finite set of variables &
and names n, written Z - p : 71, if and only if the free names (variables) of p
are included in the set 7 (%), and for every sub-term ¢[(r)7 and g[z :=r : m]
in p we have that r can be typed with the type m. We define the free names
and free variables as usual with the addition that the free names of p[(r); and
plr :=r : 0] are defined as fn(p) Un and fn(p) Un, respectively.

BUNDGAARD AND HILDEBRANDT

We say that a process with no free variables is closed and let Po,. denote
the set of closed processes. We let Poj, (and Po.,) denote the set of a-
equivalence classes of (closed) process expressions, and we consider processes
up to a-equivalence. We omit trailing Os, write = p : i for - p : nn, and let
prefixing and restriction be right associative and bind stronger than explicit
substitution and let explicit substitution bind stronger than parallel compo-
sition. For a set of names . = {ny,...,nx} we let (n)p denote (nq) - - - (ng)p.
We write mn for m U 7, always assuming m N7 = ().

1.3 Reaction Semantics

We provide Homero with a reaction semantics defined using structural con-
gruence, evaluation contexts, and reaction rules. A binary relation R on
well-typed processes is called well-typed if and only if it relates processes p
and ¢ with the same type 1 (Z), written - p R ¢ : 7. We will only consider
well-typed relations in this paper. A relation R is called a congruence if and
only if it is a well-typed equivalence relation and it satisfies that T+ p R q: n
implies 2’ - C(p) R C(q) : 7’ for all contexts C.

Structural congruence =, is defined as the least congruence on well-typed
processes relating t - p=,q:n,ifxFp:n,Fq:n,and p =, q can be
derived using the following rules

plO=p (@|P) I =pl@I) ple=sqlp
mp|g=, (n)(p|q), if n & fn(q) 7. (n)p=, (n)m.p, if n & fn(r)
(n)(m)p = (m)(n)p (n)p =o p, it n & fn(p)
(n)(plz:=7r:7]) =, (n)plx :=r: 0], fngn
As Homero permits reactions arbitrarily deep in the location hierarchy
and also permits reactions between a process and an arbitrarily deeply nested
sub-resource, we define the concepts of evaluation and path contexts. An

evaluation context £ is a context with no free variables and whose hole is not
guarded by a prefix, nor does it occur as the object of a send constructor

Ex=(—)a | €lp |)& | 0[€]a, for p € Po, .

We define a family of multi-hole path contexts CI}, indexed by a path address
v € N* and a set of names 71, inductively in 7 and ~

€Y= (—)a and CE = 3(A)(C | ()l

whenever n Ny = (). Note that the evaluation context 6[]; enables internal
reactions of active resources, and that for a path context Cf}, the path address
~ indicates the path under which the context’s hole is found, and the set
of names n indicates the bound names of the hole. The side condition in

10

BUNDGAARD AND HILDEBRANDT

(sendo) F~6(r)a|C
U
(takeo) = C,’Yh(é[r]ﬁ,)| 7(x) . p \y (RN M) (7 @CZ?(O, D) | plzi=r:al):a

(applyc) FC(x)|z:=r: 0|\, nOCr)|z:=r:n]: 7",
if C does not bind x or the names in n

(garbageo) Fplr:=q:n|\,p: 7 , if 2 & fu(p)

Table 2
Reaction rules for Homero

the definition of path contexts ensures that none of the names in the path
address of the hole are bound. The bound names (72) in the definition of path
contexts are needed since the structural congruence does not permit vertical
scope extension, as described in the introduction.

We handle the vertical scope extension and the update of the type annota-
tion of a location using an open operator, defined on path contexts. We define
an open operator on path contexts m ® C,’;‘ inductively by:

mec? =Y
m© ?«;M = 0[(7 \m)(m@cf}z | (=)a)]mom

if ?fl? = 0[(11)(CI? | (=)ar)]mv and m N yng N f(?fl?) = (). Intuitively, the
open operator in m © CJ removes the names m from the bound names of the
hole and adds them to the type annotation of the locations that are part of
the address path. When applied in the reaction rule, the latter condition of
the open operator can always be met by a-conversion, the condition ensures
us that we can extend the scope by using the open operator and place the
restriction at top level, without any name captures.

As for the structural congruence, we define the reaction relation for Homero,
written N\, as the least well-typed relation on well-typed closed processes
satisfying the rules in Tab. 2 and closed under all evaluation contexts £ and
structural congruence.

The (sendo) rule expresses how a passive resource r is sent (down) to the
(sub) location v, where it is received at the address 6. The side conditions
ensure the location path is not bound in the context and that no free names
of r get bound during movement. The open operator only extends the type
annotation of the locations constituting the location path and does not lift any
restrictions. The (takeo) rule captures that a computing resource r is taken

BUNDGAARD AND HILDEBRANDT

from the (sub) location v, where it is running at the address §. Again, the
side conditions ensure that the location path is not bound in the context, and
that no free name is bound, when we lift the restriction. It is possible that the
open operator both lifts restrictions and extends the type annotation of the
locations. The rule (applyo) replaces one occurrence of the variable (arbitrarily
deep in the context) with the content of the explicit substitution. Note that we
overload the use of ® in (applyo), applying the operator to a general context
and not only a path context. However, the result of the operator is the same,
it extends the type annotation of all the locations (and send constructors)
containing this occurrence of the variable. The latter condition of the rule can
always be satisfied using a-conversion of the context. The (garbageo) rule is
responsible for garbage collecting superfluous substitutions.

The types ensure that no names can disappear from the free names of a
location or from top-level during reaction. Locations or send constructors in
the process that receives a resource r can get their type annotation extended
by the type of r that do not already appear in their annotation.

2 Bigraphical Semantics of Homero

In this section we give the bigraphical presentation of Homero as the BRS
Homero. First, we present the signature for Homero, and give a fully compo-
sitional translation of Homero-terms into bigraphs. Second, we translate the
path contexts and the reaction relation. An important criteria for the presen-
tation is to show that there is a static and operational correspondence between
Homero and its presentation as a BRS, meaning that structural congruence
of Homero corresponds to graph isomorphism in the bigraphical presentation,
and that reactions match.

The signature has controls rece and take representing the two input pre-
fixes, and send, and loca representing the two kinds (passive and active) of
located resources. Controls var, sub, and def represent a variable and the con-
structs for explicit substitutions, respectively. Finally, the signature also has
atomic controls tname (abbreviation for typename) and ann (abbreviation
for annotation) to represent the explicit type annotation of resource and send
constructors. We will discuss this in more detail after having presented the
reaction rules in the bigraphical framework. Note that since path addresses
are represented with one port for each element in the sequence, we have an
infinite family of controls indexed by the length of the address. In total, the
signature for Homero is defined as follows.

¢ The controls var: 0 — 1 and tname: 0 — 1 are atomic

* The families of controls: recejs;: 1 — |9}, takejs;: 1 — |0], and sendjs: 0 —
|d] are all inactive

* The family of controls locay;;: 0 — || is active

e The controls def: 0 — 1, sub: 1 — 0, and ann: 0 — 0 are inactive

11

BUNDGAARD AND HILDEBRANDT

g, P E

sub ___ . det ____ \V J \tname@ __________

Figure 1. Ions and atoms for Homero

Note that we have no controls for restriction and the inactive process. This is
to ensure the static correspondence, as stated in Thm. 2.2.

In Fig. 1 we depict the ions and the atoms used in the translation, we
have left out the controls take and loca as they are similar to rece and send,
respectively. We have chosen to depict the control tname as just a dot, ®, in
order to be able to distinguish graphically between tname and var controls.
Following the convention of Milner [16], we write var, and tname, for the
atoms, and we denote the ions as follows

sub,) ®id; def, ®id; ann Tid; reces,) ®id; sends Tidy .

We write the binding port names in parenthesis and last. We use the &
operator to extend a bigraph with an identity wiring, hereby extending the
inner and outer face of the bigraph. So the ion sends ® id; has Z as inner
names and Z U ¢ as outer names.

2.1 The Translation

We have a fully compositional translation from Homero to bigraphs.

Definition 2.1 (Translation of Homero-terms into bigraphs) We define
the translation of a Homero-term p inductively in the inference of T+ p:n

[zF0:n] =nozr

[T+ p|q:niUns =[zkp:m]|[z2F q: 7o
[ZF (n)p:n] = /no([z+ p:nn])

[Zx b x:n] =var, Dnd 7T

[ZFplx:=r:7]:nun] =

—~

sub(m) @) idﬁjg)([[i'l' Fp:n]|
(def, @ idy/) ([r: '] | (ann @ ids/)[7/]))

[z & d[r)a =7/ U m(d)] = (loca; ® id; z)([Z F r: 2] | (ann & id7/)[7'])
[#F 6(r)a -7 Ufn(5)] = (sends @ idsz)([ZF 7 : 7] | (ann @ ids)[7'])
[#F6(x).p:nUfMm(d)] = (recesy) ©idyz)[Tx - p:]
[ZFo(z).p:nUf(d)] = (takes(,) @ idnz)[T2 Fp: 7]

and we translate the type annotations as follows: [i] = | tname, .

nen

BUNDGAARD AND HILDEBRANDT

m n

_____ i ____4__

send

Figure 2. Example on translation of the term 7(r | r >{m} | n(z) . z into a bigraph

We represent 0 as an empty bigraph with the correct outer face, parallel com-
position is represented by the prime product, and we use a closure /n to
represent the restriction of the name n. A variable is represented as a node of
control var which is connect to the name . We represent the explicit substi-
tutions in Homero in the same way as [16], except that we have augmented
the explicit substitution with a type annotation.

The two constructors §[r]; and d(r); are represented by a place with the
corresponding control containing the representation of the resource r and the
representation of the type annotation as a set of tname nodes enclosed by
a place with control ann. The two prefixes §(z) . p and &(z) . p are encoded
straightforwardly by a node of the respective control, where the variable = is
bound in the enclosed encoding of p, and we require that x and z are disjoint.
As an example on the translation from Homero-terms to bigraphs, we depict
in Fig. 2 the result of the translation of 7(r | ")y | n(x) . . The static
correspondence, stated by the theorem below, is proven in App. B.

Theorem 2.2 (Static correspondence) Z - p =, ¢ : n if and only if
[ZFp:n]=[2Fq:n].

In order to present the reaction rules of Homero we first present the path
contexts and the open operation. We define the translation of a path context

C,’;‘ into a bigraph of a certain form, called a path bigraph, inductively in the
structure of C

[[I_ C? : fl”]] = idﬁ”
[-Ci™ "] = (locas @ idsr)(/Ro ([FCI /] |ids) | (ann @ idy) [/])

if C37" = 0[(R)(CI* | (=))] We let F, F' range over path bigraphs. And as
for Homero we will sometimes use subscript to denote the address of the hole
and superscript to denote the bound names of the hole. We define an open
operator on path bigraphs, m ©; F', extending the type annotations with m

rh ®b |dﬁ == idﬁum
moy F = (|0C35 @) Idﬁ/gm)(/(’fb \ Th) o ((’rh ®p [[I— C,Tyh : ﬁ/]]) | |dﬁ/) |
(ann @ idsy 5) [Um])

13

14

BUNDGAARD AND HILDEBRANDT

if /= (Ioca5 &) idﬁ//)(/'fl o ([[I— C,Tyh : ’fl/]] | |dﬁ/) | (ann &) idm/)[[m/]]) Note that
we cannot just juxtaposition the type annotations as [m'] | [m], since we rep-
resent the individual elements of the type annotations explicitly with one node
per element in the annotation, as this would result in our annotations being
multisets rather than sets. In App. A we present a sorting, which describes
the bigraphs corresponding to Homero processes.

2.2 Reaction Rules of ' Homero

In this subsection we present the reaction rules of Homero.

Definition 2.3 (reaction rules of Homero) We define the four reaction
rules of 'Homero below

Send:

R = (send.s & id3) (idy | (ann @ idy)) | F, o (reces(,) @ idy)

R/ = (ﬁ O] F’Y) o (sub(x) @ idﬁ/)(idmﬁ/ ’ (defx @ |dﬁ)(|dﬁ ‘ (ann @ |dﬁ)))
n={0—2,1—0,2— 1}

Take:

R = F:/ﬁ o (Ioca5 &) |dﬁ)(|dﬁ | (ann D |dﬁ)) | (takeﬁﬂg(z) &) |dﬁ/)

R = /(m N ﬁ)o((ﬁ@bF,;h)OO) | (sub(m) D idﬁ/)(idxﬁ/ ‘ (defx D |dﬁ)(|dﬁ ’ (ann &) |dﬁ)))
n={0—2,1~0,2—1}

Apply:

R = (sub(x) @ Idﬁ/)(c ovar, | (defz @ |dﬁ)(|dﬁ | (ann @ Idﬁ)))

R = (sub(x) D Idﬁ/)(ﬁ Oy Co idﬁ ‘ (defx D |dﬁ)(|dﬁ ’ (ann &) |dﬁ)))
n=1{0,1r 0,2 1}

Garbage:

R = (sub(,y @ idy/) (id; | (def, B idy)), R =idw, n={0— 0}

In all the rules we have chosen to enumerate the holes from left to right in the
terms representing the bigraphs, but omitting the last £ holes in the £+ 1-hole
path contexts F’, and F,;’"“ on which the instantiation acts as the identity. In
both the rules Send and Take the path bigraph F, does not bind the names
in 0. In both rules the content of the ann node is used in the open operator,
that is the set n. Both rules mimic their counterparts in Homero closely.
Note that it is crucial that we have explicitly typed the parameters of the
parametric reaction rule, and that we do not allow parameters to contain
outer names not mentioned explicitly in the rules. In the rule Apply we utilise
a general Homero context C satisfying the sorting requirement and that it
does not close the variable-link x. The reaction rule Garbage, which discards
the explicit substitution, is defined as in [16]. The proof of the operational
correspondence, stated in the theorem below, is given in App. D.

Theorem 2.4 (Operational correspondence) For every well-typed process
Fp:n, we have

Fp Ny P :nifand only if [Fp:n] — [Fp' i n] .

BUNDGAARD AND HILDEBRANDT

m 7 m n
=~ | 7 \
=) @
C]alk'l’l_l a

loca loca
(n)m[(—)nlan m[(n)(—)nln

Figure 3. Location of a restriction

Now, let us take a closer look at the use of the type annotations. As
mentioned in the introduction we have to be careful when combining local
names and non-linear process passing. Since the two processes

(n)m[P] and m[(n)P] (assuming n # m) (5)

are not structural congruent in general, they should not give rise to isomorphic
bigraphs under the translation. If we consider our encoding without type
annotations, then the two processes in (5) will give rise to isomorphic bigraphs,
since we have no means to detect whether the closure occur outside or inside
the location. In BRSs which copy parameters this would lead to the same kind
of problems as mentioned in the introduction. In Fig. 3 we have illustrated
how the type annotations helps us in distinguishing the two bigraphs. If the
name appears in the type annotation, then the closure must be outside the
location and every copy of the parameter will share this link. On the other
hand, if the restricted name does not appear in the type annotation then every
copy of the parameter will have a distinct link.

An immediate suggestion for an alternative to the type annotations is to
represent name closures explicitly as a control with a binding port. However,
then the usual scope condition would require the place with the binding port
in the representation of (n)p to be around the process p, which would break
the usual structural congruence equalities such as (n)(m)p =, (m)(n)p and
(n)p | ¢ =0 (n)(p | q), for n & fn(q).

Recently Jensen and Milner have proposed a solution to the same prob-
lem of copying parameters with closed links unambiguously. In their solution
they make use of an atomic res place for the restriction with a new kind of
outward-binding port. The sole purpose of the res place is to facilitate this
binding port, but contrary to the binding ports in normal binding bigraphs,
this port does not bind inside the node, but instead it binds inside the parent
node. Besides this change the port behaves as a traditional binding port. This
explicit representation of restriction using one res place per restriction behaves
well wrt the structural equalities above, but instead it breaks the equalities:
. (n)p =, (n)w.p, if n & fn(m) and (n)p =, p, if n & fn(p). More
importantly, this solution does neither provide the desired bisimulation con-
gruence. The typed perfect firewall equation (n)(n[p]) : 7 ~ 0 : 1 given in the
introduction will only hold if fn(p) C {n}. The reason is that without the ex-
plicit localisation of links within active sub locations we loose local information

15

16

BUNDGAARD AND HILDEBRANDT

m n m n

Figure 4. Original representation and using localised links

about the outer names of a process when we place it in a context.

2.3 DBigraphs with Localised Links

Since the type annotations in Homero are sets, we needed a way to associate
an arbitrary number of names to a place in an unordered way. In the left-hand
side of Fig. 4 we have sketched a situation where we have 3 places representing
the Homero process 6[0],, | [0 | 9[0]m.n, where we have omitted the links
0. The solution used in this paper, and also used in the encoding of “The
Game of Life” in [7], is to introduce an ann place as a child of the place, and
let it contain one tname place per name that we want to associate with the
grand-parent place.

The annotation of names to places suggests an extension to local bigraphs
in which one can associate names directly to a place in an unordered way, as
illustrated on the right-hand side of Fig. 4, which we will call localised links.
A direct consequence of this extension will be that we can remove the controls
tname and ann from the encoding and instead represent the type annotations
directly using localised links.

We do not propose localised links as a replacement for traditional links,
but rather as an extension to these, as we still also want to be able to connect
links to ordered ports, e.g. when representing m/[p|;,; the name m will both
be connected to the port corresponding to the address of the location, and
localised in the place because of the type annotation.

Formally, we suggest to introduce a new function to the definition of a local
bigraph. For a local bigraph G : (m,)_5) — (n, ?) with the set of edges E and
the set of places V', we let the function localise map edges and outer names to
a set of places, localise : EWY — Pow(V'). We require that this map satisfies
a scoping condition as for traditional links. We define the composition of two
bigraphs

F:(m,)_5) — (n, ?) with places V, edges F, and function localise
G: (I, 7) — (m, Y> with places V', edges E’, and function localise’

as usual for local bigraphs. The localisation function localise” : EWE' WY —
P(V)WP(V') for F oG is defined as follows (using the link map, link, of F)

localise’ (x) ifxeE

localise” (x) =
(@) localise(x) ,icx and link(a)=e localise’(z') ifz € EWY .

BUNDGAARD AND HILDEBRANDT

The locations of an edge in £’ remain unchanged by the composition, whereas
for a name in Y or an edge in £ we might need to combine the locations of
localise and localise’, if a name in X links to the name or edge, respectively.

3 Conclusions and Further Work

We have presented a higher-order calculus with non-linear active process mo-
bility and local names, Homero as a bigraphical reactive system Homero. We
prove that structural congruence of Homero corresponds to graph isomorphism
in Homero and that there is a tight operational correspondence between the
reaction relation of Homero and the reaction relation of Homero. The pre-
sentation highlights the importance of keeping explicit track of the free names
of parameters in reaction rules of bigraphs. It also address the issue of local-
isation of names (links) which suggests an extension to local bigraphs called
bigraphs with localised links.

Several interesting questions arise from the work done in this paper. First
and foremost, we plan to examine the labelled transition bisimulation con-
gruence derivable using the general theory of bigraphs and compare it to the
labelled transition bisimulation congruences for Homer in [9]. In this process
we plan to examine proof techniques known from calculi for concurrency and
mobility in the setting of bigraphs. Especially we plan to investigate the no-
tion of up-to proof techniques related to bisimulation equivalences in bigraphs.
We would also plan to further examine the extension of localised links, both
with respect to facilitate encodings as bigraphical reactive systems and with
respect to the behavioural theory of bigraphical reactive systems, in particular
if the extension retains relative pushouts.

Currently several proposals exists for expressing constraints on the possible
nesting of nodes, the linkage between ports etc. It would be interesting to see
whether the sorting presented in App. A can be expressed in these settings,
and in particular if we can enforce a more strict control with the movement
and locations of closed free links. Hence to capture some of the same informa-
tion as the outward-binding node, but without introducing an explicit node
representing the restriction.

Acknowledgement

The authors would like to thank the members of the Bigraphical Programming
Languages-group at I'TU for helpful discussions about how to encode certain
properties and constructs in bigraphs. We would also like to thank Robin
Milner and Ole Hggh Jensen for providing access to early drafts of their papers.

17

18

BUNDGAARD AND HILDEBRANDT
References

[1] Abadi, M., L. Cardelli, P.-L. Curien and J.-J. Levy, Ezplicit substitutions,
Journal of Functional Programming 1 (1991), pp. 375-416.

[2] Bruni, R. and 1. Lanese, On graph(ic) encodings, in: B. Koenig, U. Montanari
and P. Gardner, editors, Graph Transformations and Process Algebras for
Modeling Distributed and Mobile Systems, number 04241 in Dagstuhl Seminar
Proceedings (2005).

[3] Bundgaard, M., T. Hildebrandt and J. C. Godskesen, A CPS encoding of
name-passing in higher-order mobile embedded resources, in: J. Baeten and
F. Corradini, editors, Proceedings of the 11th International Workshop on
Expressiveness in Concurrency (EXPRESS’04), Electronic Notes in Theoretical
Computer Science 128 (2005), pp. 131-150.

[4] Bundgaard, M., T. Hildebrandt and J. C. Godskesen, A CPS encoding of
name-passing in higher-order mobile embedded resources, Theoretical Computer
Science (2005), accepted for publication in a special issue of TCS.

[5] Carbone, M. and S. Maffeis, On the expressive power of polyadic synchronisation
in mw-calculus, Nordic Journal of Computing 10 (2003), pp. 70-98.

[6] Castagna, G., J. Vitek and F. Z. Nardelli, The Seal calculus (2004), accepted
for publication in Information and Computation.

[7] Debois, S. and T. C. Damgaard, Bigraphs by example, Technical Report TR-
2005-61, IT University of Copenhagen (2005).

[8] Ferrari, G., U. Montanari and P. Quaglia, A w-calculus with explicit
substitutions, Theoretical Computer Science 168 (1996), pp. 53-103.

[9] Hildebrandt, T., J. C. Godskesen and M. Bundgaard, Bisimulation congruences
for Homer — a calculus of higher order mobile embedded resources, Technical
Report TR-2004-52, IT University of Copenhagen (2004).

[10] Hirschkoff, D., Handling substitutions explicitely in the w-calculus, in:
Proceedings of Second International Workshop on Explicit Substitutions: Theory
and Applications to Programs and Proofs (WESTAPP’99), 1999, pp. 28-43.
URL http://cermics.enpc.fr/"dh/sigma/full.ps.gz

[11] Jensen, O. H., “Mobile Processes in Bigraphs,” Ph.D. thesis, Department of
Computer Science, Aalborg University (2005), forthcoming.

[12] Jensen, O. H. and R. Milner, Bigraphs and transitions, in: Proceedings of
the 30rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL’03) (2003), pp. 38-49.

[13] Jensen, O. H. and R. Milner, Bigraphs and mobile processes (revised), Technical
Report UCAM-CL-TR-580, University of Cambridge, Computer Laboratory
(2004).

URL http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-580.pdf

BUNDGAARD AND HILDEBRANDT

[14] Milner, R., Bigraphs for petri nets, in: J. Desel, W. Reisig and G. Rozenberg,
editors, Lectures on Concurrency and Petri Nets: Advances in Petri Nets,
Lecture Notes in Computer Science 3098 (2004), pp. 686-701.

[15] Milner, R., Bigraphs whose names have multiple locality, Technical Report

UCAM-CL-TR-603, University of Cambridge, Computer Laboratory (2004).
URL http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-603.pdf

[16] Milner, R., Local bigraphs, confluence and A-calculus (2004), draft of October
31, 2004.

[17] Rose, K. H., Explicit substitution — tutorial & survey, Lecture Series LS-
96-3, BRICS, Department of Computer Science, University of Aarhus (1996),
v+150 pp.

[18] Sangiorgi, D., “Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms,” Ph.D. thesis, Department of Computer Science,
University of Edinburgh (1992).

[19] Thomsen, B., Plain CHOCS: A second generation calculus for higher order
processes, Acta Informatica 30 (1993), pp. 1-59.

A A Simple Sorting on Homero

In this appendix we present a simple sorting to ensure that we only work with
a subset of ground bigraphs, that is the bigraphs that are ‘correct’ with respect
to our encoding. The sorting introduces a requirement on the possible nesting
of nodes and on how the linkage is performed, particularly that the sets of
free names and variables are kept disjoint. We need some nomenclature to
differentiate the different kinds of links and ports before stating the definition
of the class of bigraphs that we are interested in. We have two kinds of ports:
name- and variable-ports.

e The name-ports are the port of a tname node and all the free ports of a
rece, take, send, or a loca node.

e The wvariable-ports are the free port of a def node or a var node or the
binding port of a sub, rece, or a take node.

In the same way we define two kinds of links:

e A name-link is a link with only name-ports, and if free a name.

e A wariable-link is a link with only variable-ports connected to it, and if free
a variable name.

Definition A.1 (bigraphs good for Homero) We define a sub-class T of
ground bigraphs in "Homero as the bigraphs that satisfy the following require-
ments

o We only allow name- and variable-links as links in the bigraph.

e A wvariable-link can be connected to any number of var-ports.

19

20

BUNDGAARD AND HILDEBRANDT

- If a variable-link is bound by either a rece-or a take-port, then it contains
no def-ports.

- If a variable-link is bound by a port on a sub-node v, then it also has one
unique def-port, which resides on a child of v, and this is the only location
where a def node can occur.

A name-link can be connected to any number of name-ports.

e For every pair of distinct tname nodes enclosed in the same ann node their
name-ports must be connected to distinct links.

e Fvery loca, send, and def node must contain an unique ann child node,
and these are the only locations where ann nodes can occur.

e All tname nodes must be in a ann node and no other kind of nodes can
reside here.

We have introduced all the abovementioned restrictions to enforce that we
only work with bigraphs, that have a structure corresponding to how we in-
terpret Homero in bigraphs. In Homero the sets of names and variables are
by definition disjoint, but since we use the links of bigraphs to encode both
sets, we need some additional requirements to enforce the distinction in kinds
of links.

The requirements enforce that a loca node and a send node contains
unique ann node. We also require that def can only appear as a child of
a sub node. Finally, we require that the tname nodes representing a type
annotation only occur in a ann node and that they are unique, in the sense
that they all are linked to different name-links.

Proposition A.2 (invariant) The class of bigraphs T is preserved by the re-
action relation — defined in Sec. 2.2 and contains all images of the translation
giwven in Def. 2.1.

B Static Correspondence

In this appendix we prove that two Homero-processes are structural congruent
if and only if their image under the encoding are isomorphic. We prove each
direction separately.

Proposition B.1 &+ p=, q: 7 implies [t +p:n] =[zF q:7n].
Proof Since the translation is compositional we can consider each of the
axioms defining =, separately. We only present some of the cases

e Fach of the axioms

TEp|l0=p:n TE@|Y)IP =p|@|P):n TFpla=,q|p:n

follows directly from the translation, since we translate parallel composition
in Homero as the prime product in bigraphs ‘|’, which can be shown to be
associative and commutative, and as we translate 0 into the unit for |.

BUNDGAARD AND HILDEBRANDT
* To prove the case for the axiom for reordering of restrictions

zt (n)(m)p =, (m)(n)p : &

we show that the two bigraphs [Z F (n)(m)p : 7] and [Z = (m)(n)p : 7] can
be constructed in the same manner (we assume that m and n are distinct
and names of p). We construct [z - p : nnm] and add two edges to its link
graph e, and e, and make all points of m (n) point to e,, (e,). Finally we
remove the names m and n.

e The axiom for scope extension

Ek(n)plg=, (n)(p|q):n, ifnéfa(g)

can be proven in the same way. We construct the bigraphs [z = (n)p | ¢ : 7]
and [z F (n)(p| q) : 7] in the following way. Without loss of generality we
assume that n = n;Uny, where ninx and n,Z are the names in the outer face
of [+ p:nyn] and [z F ¢ : ng], respectively. First we build [Z F p: nyn]
and [b ¢ : ny] and combine them using the prime product, then we add
one edge e, to the link graph of this bigraph and make all points of the
name n point to e,. Since n & fn(q) we only touch points in [Z F p : 7yn].
Finally we remove the name n.
e For the remaining cases we proceed in the same manner by exhibiting a
constructing that forms both bigraphs.
O

Proposition B.2 If[tFp:n]=[zF q:n] thenztp=,q:n.

From Prop. B.1 and Prop. B.2 it follows that two Homero-processes are struc-
tural congruent if and only if their image under the encoding are isomorphic.

Theorem B.3 (Static correspondence) = - p =, ¢ : n if and only if
[ZFp:n]=[zFq:n].

C Mimicking Reactions

In this appendix we present how reactions in Homero are mimicked by the
encoding as a BRS. We consider the following reactions, where we have omitted
the top-level types.

on(r |) my | o[n(@) - 2]y o
olz[z := (r [) : {m}]nmy o
of(r |)z == (r [") : {m}]pnmy o

olr | '] {nm}

21

22

BUNDGAARD AND HILDEBRANDT

:' \ }%3 |
T @) e |

-—— e e e e — —

Figure C.1. Mimicking on(r | ')y | o[n() . 2]y o 0" | 7' {nm)

using the rules, sendo, applyo, and garbages. In the second line we have the
location o containing the process variable x enclosed in an explicit substitution,
which can substitute r | r’ of type {m} in for z. In bigraphs we have the
matching sequence of reactions depicted in Fig. C.1. Note that we have chosen
not to draw the possible free name m of r and r’.

D Operational Correspondence

In this appendix we prove the main theorem of the paper, the operational
correspondence between reactions in Homero and reactions in its encoding as
a BRS Homero. By inspecting the translation we can easy see that evaluation
contexts in Homero are translated to active contexts, and conversely if the
image under the translation is an active context then the preimage must have
been an evaluation context.

We follow the same method as Jensen and Milner by first characterising
the reactions in both Homerc and Homero by the forms of the expressions
involved. Then we use the definition of the translation to connect the char-
acterisations. We only present two of the cases (garbages) and (sendo) the
remaining two are similar. Prop. D.1 and Prop. D.2 characterise the reaction
relations N\, and — (for the rules (garbageo) and Garbage, respectively) in
terms of the form of the processes and bigraphs.

Proposition D.1 = p N\, p' : 1 by the rule (garbagec) if and only if p and
p’ are of the forms

Fp =, E(qz:=r:7]):n
Fp' =, E(g):n,

if & fn(q) and for an evaluation context E.

BUNDGAARD AND HILDEBRANDT

Proposition D.2 g — ¢’ by the rule Garbage if and only if g and g’ are of
the forms

g = Eo((subyy @idy) h | (def, @ idy)h')
g =FEoh,
if the outer face of h is n and E is an active context.

Since the outer face of A is 7, it means that h cannot be connected to the
binder x in the surrounding sub control.

Lemma D.3 (operational correspondence on (garbages) and Garbage)

Fp N\ P 7 by the rule (garbageo) if and only if [Fp:n] — [Fp': 7] by
the rule Garbage.

Proof From Prop. D.1 we know that = p \, p’ : 7 if and only if p and p’
have the forms

Fp =, EQ@Qr:=r:7]):n

Fp' = E(g):n,
and x € fn(q) and from a-conversion we can assume that all bound names
are distinct and disjoint from the free names, and without loss of generality
that the hole of £ is annotated with the type n”. From the correspondence
between structural congruence and graph isomorphism we have

[Fp:n] =[FE&:n]o([Fqlx:=r:a]:n"])
= [F & :n]o((suby @ idu) ([g : 2"] | (def, @ ids)R'))
[Fp'n] =1F&:a]eo(l-q:n"])

since x & fn(q) and letting ' = [Fr: '] | (ann @ ids/)[7']. By Prop. D.2
this holds if and only if [p: n] — [p’ : 7]. O

We proceed in the same manner with the case for (sendo). Prop. D.4 and
Prop. D.5 characterise the reaction relations N, and — (for the rules (sendo)
and Send, respectively) in terms of the form of the processes and bigraphs.

Proposition D.4 Fp \,, F p' : 7 by the rule (sendo) if and only if p and
p’ are of the forms

Fp = EQO(r)a | CM(x).q,q)) : 7

Fp =, E@ OCHglz =1 :7],7q)) 7,

ifmnN(dUn’) =0 and for an evaluation context E.

Proposition D.5 g — ¢ by the rule Send if and only if g and g' are of the

23

24

BUNDGAARD AND HILDEBRANDT
forms

g = Eo((send,s Tidy) & | (ann B idp)l! | F, o ((recesi) B idan)h™))
g/ = Fo ((ﬁ/ ®p F’y) o (SUb(x) @D idﬁ”’Uﬁ’)(
" | (def, @ id;) (h | (ann @ id;/)R')))

if the outer face of h and h' are 7/, of h'" is n"'x, E is an active context with

inner face n”, and F, is a path bigraph with inner face n".

Note that we leave the last & holes in the k + 1-hole path contexts F’, unspec-
ified.

Lemma D.6 (operational correspondence on (sendo) and Send) Fp\,

p 1 by the rule (sendo) if and only if [- p: n] — [F p' : n] by the rule Send.

Proof From Prop. D.4 we know that - p \, p' : n if and only if p and p’
have the forms

Fp = EOO(r)a [CJ0(x) .. 7q)) 7

Fp =, EOCTH gz =1 W, q)) 7,
if mN(dUR’) = 0 and from a-conversion we can assume that all bound names
are distinct and disjoint from the free names, and without loss of generality

that the hole of £ is annotated with n”. From the correspondence between
structural congruence and graph isomorphism we have

[Fp:a] =[-&:a]o([Fyd(r)a | C((x) . q,q) - 2"])
_ [€ #] o ((sendys & ids)([F 7 : 7] | ((ann @ ids)[7])) |
[-Ct "] o (reces(ny @ idmm) [zt g - 2])
[Fo'n] = [FE:n]o([Fa'®CPgle = r:], 'q) : 2"])
—[F & Al o (7 @y [C7) o (subgy T idamin)
(lz kg : "] | (def, & idw)([-r: 7] | (ann & id;)[7])))

By Prop. D.5 this holds if and only if [p: n] — [p' : 72]. O

Theorem D.7 (Operational correspondence) For every well-typed pro-
cess = p:n, we have

Fp N\ P inifand only if [Fp:n] — [Fp' :n] .

Distributed Graph Traversals by Relabelling
Systems with Applications

Bilel Derbel !

LaBRI, Université Bordeaux 1
351, cours de la libération
33405 Bordeaux, France

Mohamed Mosbah 2

LaBRI, Université Bordeaux 1
351, cours de la libération
33405 Bordeaux, France

Abstract

Graph traversals are in the basis of many distributed algorithms. In this paper, we use
graph relabelling systems to encode two basic graph traversals which are the broadcast and
the convergecast. This encoding allows us to derive formal, modular and simple encoding
for many distributed graph algorithms. We illustrate this method by investigating the dis-
tributed computation of a breadth-first spanning tree and the distributed computation of a
minimum spanning tree. Our formalism allows to focus on the correctness of a distributed
algorithm rather than on the implementation and the communication details.

Key words: Distributed algorithms, Graph traversals, Relabelling
systems.

1 Introduction

1.1 Motivation and contribution

Distributed algorithmsare designed to run on networks consisting of interconnected
autonomous entities of computations (processes) cooperating to solve given prob-
lems. Many of these algorithms, mainly dealing with the traversal of the network,
appear as the compositions of some basic tasks. These basic tasks include the

I Email: derbel@labri.fr
2 Email: mosbahelabri.fr
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

25

26

1. LJ1UIVDIUL AIND 1VL. VIO DALL

broadcasting or the propagation of information and the echo or convergecast a-
gorithm [4,15,10,14]. For instance, in the message-passing scheme, a distributed
computation of a spanning tree can be performed by broadcasting a message from
an initial node to all other nodes of the graph; each node propagates the message
to its neighbors upon receiving it. Thissimple agorithm may be described in some
other way depending on the distributed model. In fact, in the distributed setting,
many distributed algorithms are inherently dependent on the model one consid-
ersi.e., message-passing, shared memory, synchronous, asynchronous etc. A dis-
tributed algorithm which is designed and implemented in a given model becomes
in general obsolete in another model. Even though it is possible, one has often to
re-adapt or to re-encode the algorithm depending on the model specification.

In this context, graph relabelling systems and local computations [8,7,9] can
be viewed as a tool which allows to encode distributed algorithms in aformal and
unified way. In fact, a graph relabelling system is based on a set of relabelling
rules which are executed locally and concurrently. These rules are described using
mathematical and logic formulaswhich enablesto derive formal and rigorous math-
ematical proofs of their correctness and by the same way to prove the correctness
of an algorithm on a distributed system.

In this paper, we are interested in a high level encoding of some basic Wave
and graph traversal algorithms which are in the basis of many sophisticated dis-
tributed algorithms. In particular, we show that by expressing the broadcast and the
convergecast by graph relabelling systems, alarge class of graph traversals can in
turn be expressed by graph relabelling systems. The high-level encoding of such
algorithmsin form of graph relabelling systems allowsto encode them and to prove
themin aunified and simple way. Furthermore, we show that it is possible to com-
bine these two subroutines to give a formal encoding for some basic applications
which illustrate our approach.

First, we show how to encode the classical distributed layered breadth-first
spanning (BFS for short) construction [5,15,13]. This algorithm involves the en-
coding of many iterations of a classical technique in distributed computing which
is known as the “Propagation of Information with Feedback” (PIF for short) [14].
Even though our encoding is given in the special case of the BFS tree construction,
it gives a general idea about how to design sophisticated algorithms based on the
PIF technique.

Second, by using the convergecast as a building block, we give ageneral method
to encode with relabelling system distributed algorithms for computing some par-
ticular (commutative and associative) global functions.

These two basic applications are then combined to derive the graph relabelling
system that encodes the classical Prim’sdistributed algorithm for computing amin-
imum spanning tree (MST for short) [5,15,13]. This example aimsto show how to
combine the basic graph traversalswe have encoded in order to obtain asimple and
formal encoding of more advanced algorithms.

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

1.2 Graph model and notations

In this section, we illustrate, in an intuitive way, the notion of graph relabelling
systems by showing how some agorithms on networks of processors may be en-
coded within this framework [9]. As usual, such a network is represented by a
graph G = (V, E') whose nodes stand for processors and edges for (bidirectional)
links between processors. We only consider undirected connected graphs without
multiple edges and self-loops. At every time, each node and each edge isin some
particular state encoded by a node or an edge label. According to its own state
and to the states of its neighbors, each node may decide to realize an elementary
computation step. After this step, the states of this node, of its neighbors and of the
corresponding edges may have changed according to some specific computation
rules. Let usrecall that graph relabelling systems satisfy the following require-
ments:

(C1) they do not change the underlying graph but only the labelling of its components
(edges and/or nodes), the final labelling being the result,

(C2) they arelocal, that is, each relabelling changes only a connected subgraph of a
fixed size in the underlying graph,

(C3) they are locally generated, that is, the applicability condition of the relabelling
only depends on the local context of the relabelled subgraph.

A precise description and definition of local computations can be found in [7].
We recall here only the description of local computations and we explain the con-
vention under which we will describe graph relabelling systemslater. A relabelling
systemisatripleR = (£,Z,P) where L = L, U L, aset of labels, £, aset of node
labels, £, aset of edge labels, Z a subset of £ caled the set of initial labels and P
afinite set of relabelling rules.

For each relabelling rule, we will consider a generic star-graph of generic center
vo and of generic set of nodes B(vy, 1) (star of radius 1 centered at v,) and we will
refer to anode v # vy of the star graph by writing v € B(vg,1). Within these
conventions, each relabelling rule is described by its precondition and relabelling.
If A(v) is the label of v in the precondition, then \'(v) will be its label in the
relabelling. We will omit in the relabelling the description of labels that are not
modified by the rule. This means that if A(v) is a label such that \'(v) is not
explicitly described in the rule for a given v, then \'(v) = A(v). The label of a
node can be composed of & components (with k& a given integer). In this case, we
denoteby £, = {L1 x Ly x ... x L} theset of labelswhere L; (1 < i < k) isaset
of possible values of the i’ component. For every node v, we denote by \(v).L;
the i*» component of the label of v. We adopt the same notations for edge labels.
For instance, consider anode v € B(vy, 1), then A(vg, v) refers to the labels of the
edgee = (vg, v) inthe precondition and ' (vg, v) will beitslabel in the relabelling.
The preconditions and the relabelling are written as logic formulas. We use the
logic symbols A, Vv, 3, 3! and V to denote respectively the logic operators “and”,

” “

“or”, “it exist”, “it existsa unique” and “for al”. In the case of a weighted graph

28

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

Gyy, If e = (u, v) isan edge then we will denote by W(u, v) the weight of e.

1.3 Summary

The paper is organized as follows. In Section 2, we give an encoding of the broad-
cast and convergecast process using graph relabelling systems. In Section 3, we
give two basic applications which are the distributed layered construction of a BFS
tree and the computation of global functions. As a combination of these two ap-
plications, in Section 4, we give aformal and detailed algorithm for computing a
minimum spanning tree. Finaly, in Section 5, we give some concluding remarks.

2 Building blocks

Many basic distributed algorithms can be described as a combination of many cou-
ples of broadcast and convergecast. The broadcast is usually used to deliver agiven
information (e.g: the value of a variable, the beginning of a new step in the algo-
rithm) to al the nodes of the network. The convergecast isin general used to collect
some information into one single node. Thisinformation isfor example used to ac-
tivate some treatment. In the next two subsections, we give the relabelling systems
corresponding to the broadcast and convergecast operations. In this section, we
do not care about the information to be broadcast or collected. We only give the
intuitive method to do it using relabelling systems.

2.1 The broadcast technique

The broadcast operation can be defined as the dissemination of some informa-
tion from a source node to all nodes in the network. It can be encoded with
the relabelling system R, = (L;,Z;, Py) defined by: £, = {E} U {0,1}, where
E € {A,5,0}, 1, = {A, 0} U {0} and P, = {R}, R?}. Initially, one source node
from whom the broadcast isinitiated islabelled A and all other nodes are labelled
O. All the edges of the graph are initialy labelled 0. The label S encodes the fact
that the broadcast process has reached some node.

R} : Broadcast : initial step
Precondition :
' >\('U())E =A
Relabelling :
Vo € Blug, 1) (\(0).E =0 = (N(v) := 5, X (v,v9) := 1))

R? : Broadcast

Precondition :

- Mwo).E =8

- Jv € B(vg,1)(A(v).E = 0O)

Relabelling :

- Yo € B(vg,1) (Av).E =0 = (N(v) :=85,N(v,00) :=1))

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

Rule R} (resp. R?) can be applied as follows. If a star center vy islabelled A
(resp. S) then for each node v inthe star B(v, 1), if vislabelled O then it becomes
labelled S and the edge (v, v) becomes|abelled 1. Note that as a basic application
of therelabelling system R, once the broadcast isterminated, we obtain aspanning
tree by considering the edges with labels 1. Figure 1 shows an example of the
broadcast algorithm using the relabelling system R,. Note that the rules can be
applied by many nodes on distinct balls as far astheir precondition states are at the
same time satisfied.

8588

i

e - !

o label A O:label O e@:labe S — :label 0 — :label 1

Fig. 1. An example of abroadcast using the relabelling system R.

2.2 The convergecast technique

The convergecast operation consists in collecting information upwards on a tree.
The most fundamental example is to let a source node, that has broadcast some
information, detects that the broadcast has terminated. In fact, in order to detect the
“broadcast termination”, aconvergecast process can be performed asfollows. First,
each leaf of the tree which has been reached by the broadcast sends an acknowl-
edgment to its parent. Upon receipt of an acknowledgment from all its children, a
node sends an acknowledgment to its parent and so on. When the source node re-
ceives an acknowledgment from al its children then the source node knows that the
broadcast has reached all the nodes of the graph. This example can be generalized
when we want to collect some other information in some root node.

We assume that we have a precomputed rooted spanning tree (Recall that the
relabelling system R, enables us to construct such atree). Then, the convergecast
operation can be encoded using the relabelling system R. = (L., Z., P.) defined
by: £. = {E} U{0,1}, where E € {A,S,F,T}, I. = {A,S} U{0,1} and P, =
{R}, R?}. Initidly, the source node islabelled A, al other nodes are labelled S, an
edge belonging to the spanning tree is labelled 1 and all other edges are labelled
0. If anode becomes labelled F' then it has finished the convergecast. When the
source node A becomes labelled 7' then the convergecast process is terminated.
Figure 2 shows an example of the execution of the convergecast algorithm using
the relabelling system R...

29

30

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

R!: A node becomes a leaf

c

Precondition :

')\(Uo)E =5

< dloy € B(Uo, 1) (()\(Ul)E =SV)\(Ul).E = A) A)\(Uo,vl) = 1)
Relabelling :

')\I(UO).E =F

R?: Termination detection

Precondition :

')\(Uo)E =A

- Vv € B(vg,1) (A\(v).E = F)
Relabelling :

')\I(UO).E =T

o :labd A @ :labe T

Fig. 2. An example of a convergecast using the relabelling system R..

3 Two basic applications

3.1 Layered BFS tree construction

Many distributed algorithms can be implemented by performing as many as nec-
essary phases of broadcast and convergecast. Each phase corresponds to a propa-
gation of some information with feedback (PIF). The broadcast can be viewed as
the beginning of a new stage of the algorithm and the convergecast corresponds to
the termination of that stage. This technique is fundamental when designing dis-
tributed algorithms because, in the distributed setting, there is no centralized entity
which supervisesin a global way the execution of an algorithm. In the following,
our main goal isto show how to encode by graph relabelling systemsthe Dijkstra's
layered BFS tree [5,15,13] algorithm which is based on the PIF operation.

Recall that a BFS tree of a graph G with respect to aroot node r is a spanning
tree with the property that for every node v, the path leading from the root » to v in

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

thetreeisof the minimum (unweighted) length possible. One classical techniqueto
construct a BFS tree begins by growing the tree from one pre-distinguished node.
Then, it proceeds in many iterations by constructing the tree in a layered fash-
ion beginning from the root downwards. At each iteration, the unprocessed nodes
which are adjacent to some node marked as part of the tree are added. Once alayer
is added, the construction of a new layer can begin. The main difficulty here is
to begin adding the next layer only when the previous layer has been completely
added.

The classical layered BFS tree construction can be encoded using the graph
relabelling system R, = (£;,Z;,P;) defined by: £, = {F x i} U {0,1}, where
E € {A,S,F,T.0} andi € {-1,1}; Z; = {(O,-1),(A,-1)} U {0} and P, =
{R%aR%aR?:Ri}:R?’R?aRZ}'

In the remainder, by BFS tree, we mean the fragment which is being enlarged.
Initially, a pre-distinguished node (the root) is labelled (A, —1) i.e, active. All
other nodes arelabelled (O, —1) i.e., outside the BFS tree. All edgesarelabelled 0.
If an edge becomes|abelled 1 then it is part of thetree. The A-labelled node acts as
theinitiator of anew iteration of the algorithmi.e., the construction of a new layer.
Thelabel (S, 1) indicates that a node which isinside the fragment tree must broad-
cast some information (i.e., the construction of a new layer). In contrast, when a
node is labelled (S, —1) then it is waiting for the acknowledgment of its children.
A node labelled F' isanode that has finished the convergecast and iswaiting for an
order from its parent. Finally, when anodeislabelled T" then this node has locally
terminated i.e., it can not contribute any more in the tree construction.

Rule R} initiates the computation of the BFS tree by adding the first layer. It
also encodes the beginning of a new iteration of the algorithm. In fact, when the
neighbors of the A-node become F' (or T') labelled, then the A-node knows that
anew layer has been added and the construction of a new layer can begin. Thus,
the labels of al F-neighborsare set to (S, 1) in order to begin the broadcast of this
information up to the leaves of the BFS tree.

R} : Beginning the construction of a new layer

Precondition :

- Mvg).E=A /*the root node*/

- Yv € B(vg,1) (A(v).E #S) /*broadcast-convergecast finished*/
- Juy € B(vg,1) (AM(v1).E #T) /*the computation is not over */
Relabelling :

- Yv € B(vg,1) (A(v).E#T = (N(v) :=(S,1), N (vg,v) := 1))

If an (.S, 1)-labelled node u isin theinterior of the BFStree, then it just informs
its children by setting their labels to (S, 1) and it becomes (S, —1) labelled (Rule
R?). Otherwise, if a u is aleaf, then either there exist some not yet marked O-
neighborsin which case these nodes are added to the tree and « becomes F'-1abelled
(Rule R?), or there are no new nodes to add. In this case, u becomes T-labelled:
terminated state (Rule R}).

31

32

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

R?: Broadcast

Precondition :

- Mwg) = (S, 1) /*broadcast in progress*/
- Juy € B(vg, 1) (AM(vg,v1) = 1 A X(v1).E = F) /*children are not in-
formed*/
Relabelling :
- M(wg) := (S, -1)

- Yv € B(vg,1) (A(v).E = F A XMvg,v) =1) = N(v) :=(S5,1))

R} : Congtruction of the next layer

Precondition :
- AMwo) = (5,1)

- Juy € B(vg, 1) (A(v1).E = O) /*some neighbors are not in the tree*/
Relabelling :

:)\I(Uo) = (F,—l)
- Yo € B(vg,1) (Av).E:=0 = (A(v) := (F,—1),X(vg,v) :=1))

R} : Nonodesto add to the next layer
Precondition :

© Avo) = (5,1)

- Yv € B(vg,1)(A(v).E # O) /*all neighbors are in the treex*/
- Flvy € B(vg, 1) (AM(vg,v1) =1) /*vg is a leaf*/

Relabelling :

:)\I(Uo) = (T,—l)

After the broadcast step in Rule 7, anode u which becomes (S, —1)-labelled
walits for the acknowledgment of its children. When these children become F-
labelled, then v knows that the new layer that corresponds to the last broadcast has
been added by the leaves of the subtree rooted at it. Thus, it becomes (F, —1)-
labelled in order to inform its parent (Rule R7). Note that if all the children of u
become T'-labelled, then u knows that no new nodes can be added in the subtree
rooted at it. Thus, it becomes T-labelled (Rule RY).

R} : Convergecast: Waiting for the next broadcast

Precondition :
+ Awo) = (S, 1)
Aoy e B(’Uo, 1) (()\(’Ul)E =SV)\('Ul)E = A) A >\('I)0,’l)1) = 1)
/*all children have received an acknowledgment*/
- Jug € B(vg, 1) (A(v2).E = F A XMuwg,v2) = 1)
/*some children have not yet terminated the algorithm*/
Relabelling :
- M(vg) := (F,-1)

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

RY : Convergecast: Thetree construction islocally finished

Precondition :

A(wo) = (5,-1)

< Jloy € B(Uo, 1) (()\(Ul)E =SV)\(Ul).E = A) A)\(Uo,vl) = 1)
- Yv € B(vo,1) (v # v1 A Xvg,v) =1) = A(v).E=1T)
Relabelling :

- M(vg) := (T, -1)

The construction of the BFS tree is terminated when all the neighbors of the
A-labelled node become T-labelled. In fact, this means that there is no new layer
to add: all the nodes of the graph are in the tree. In this case, the A-labelled node
becomes T-labelled (Rule R7). Note that at this stage of the algorithm, only the
A-labelled node detects the global termination of the algorithm.

R} : Termination detection

Precondition :

' >\('U())E =A

- Yv € B(vg,1) (A(v).E =T)
Relabelling :

')\I(UO).E =T

3.2 Global function computation

In many distributed al gorithms, the convergecast and the broadcast are used in order
to compute some functions of the graph. Supposefor instance that we want asource
node to computeaglobal function f(X,,, X,,, ..., X,,) where X, isan input stored
in each node v. Supposethat f verifiesthe following properties (we adopt the same
notations as in [13] page 36) :

 fiswell-defined for any subset of the inputs.
 f isassociative and commutative.

In the following, we assume that we have a precomputed spanning tree (obtained
for example by using the relabelling system R;). Such a function f, also caled
semigroup function, can be computed in a distributed manner by performing a con-
vergecast process. In fact, f(X,,, X,,, ..., X,,) can be computed using the rela-
belling system Ry = (L. Zy, Py) defined by: £; = {E x X x Y} U {0,1}, where
E e {S,F, T}, X aninput of thefunction f,Z, = {S} U{0,1} and P; = {R}, R7}.
Initially, all the nodes are labelled S and an edge with label 1 ispart of the precom-
puted spanning tree.

By local value of f inrule RL, we mean thevalue of f computed on the subtree
T, rooted at the node v that executes the rule R}. The variable Y7 in rule R}
contains the value of f applied to all the entries X, with v; € T, and v; # v.
The local value of f computed by v will enable the parent u of v to compute its
own local value of f. Each time a node applies Rule R} it becomes F'-labelled

33

34

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

which means that it has finished to compute the local value of f. At the end of
the process, only one node with label S remains. This node then applies rule R?
and it computes the global value f(X,,, X,,, ..., X,,). Note that the convergecast
process used here does not end at a pre-distinguished node but at some node which
iselected at random depending on the al gorithm execution. However, the two rules
must be executed on digjoint stars that do not overlapp.

R} . Convergecast: Computation of thelocal value of f
Precondition :

' >\('U())E =5

< dloy € B(Uo, 1) ()\(Ul).E =SA)\(Uo,vl) = 1)
Relabelling :

Y1 = f(UpeBuo,1)(Awi). E=FAM(woi)=1) A (Vi) .Y).

')\I(UO).E =F

- NM(vo).Y == f(A(vo). X, Y1)

R? : Convergecast: Global computation of f and termination detection

Precondition :

- Mvg).E =S

- Yv € B(vg, 1) (A(v).E = F)
Relabelling :

Y1 = f(UyeBuo,1)(A(wov)=1) A(vi).Y).
- M(vg).E:=T

.)\I(Uo).Y = f()\(UO)X Yl)

Using these two simple rules, we can encode in a forma way some classica
distributed algorithms. For example, to compute the maximum of values stored
by the network nodes, we just take f := max; to compute the sum over the node
inputs, we take f := +. This method can aso be used to derive distributed algo-
rithms for computing some logical functions. For example, let X, be avariable set
to 1 if some predicate Pred(v) = true and 0 otherwise. Suppose that we want
to design a distributed algorithm to determine if the predicate 3v Pred(v) holdsin
the network (i.e., : there exists some node v with Pred(v) = true). This can be
done by letting f be the logical or operator. The predicate Vv Pred(v) can aso be
computed distributively be setting f := and.

4 Distributed minimum spanning tree: Prim’salgorithm

4.1 Preliminaries

In this section, we focus on the distributed construction of aminimum spanning
tree. Thisproblemis of special interest because the classical distributed algorithms
for solving it use the basi ¢ techniques that we have described in previous sections as
basic procedures. Our main motivationisto show that by using relabelling systems,
we can design such a sophisticated algorithm in adetailed and comprehensive way.

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

Input: aweighted graph Gy, = (V, E).

Step 1: Initialy, set Ep (aset of edges) empty.
Set Vr (aset of nodes) empty.
Step 2: Select an arbitrary nodein V', and add it to V7.
Step 3: Find the lowest weight edge e = (u, v) such that
u € Vpbutv ¢ Vp. Add v to Vi, and e to Er.
Step 4: Repeat Step3 until Vi equals V.

Output: A minimum spanning tree 7' = (V, Er).

Fig. 3. Prim’s Algorithm

Recall that given a weighted graph Gy, the MST problem consists in comput-
ing a spanning tree 7" such that the sum of the weights of the edges of T is the
minimum over all possible spanning trees of GGy,. The problem has been heavily
studied and many features of the M ST problem, such as the distributed computabil-
ity of such atree or the time complexity for constructing it, were studied under
many assumptions in past works. In this paper, we assume that the edge weights
are unique, real and positive. Under this assumption, it is well known that there
exists a unique minimum spanning tree of Gy (see[5,15,13] and references there).

One of the most basic algorithms for computing such a MST is the Prim’'s al-
gorithm [5,15,13] (see Figure 3). Starting from one node, thisagorithm consistsin
growing a fragment by adding at each iteration the minimum outgoing edge (MOE
for short) to this fragment. The correctness of the algorithm relies on the fact that,
at each iteration, the constructed fragment is part of the MST.

The classical distributed implementation of this algorithm consists of many
phases, each one consists of two stages. In the first stage, the nodes in a fragment
cooperate to compute the weight of the MOE. Thisis performed using a converge-
cast in the already computed fragment. The second stage consists in adding the
MOE which is performed by broadcasting the weight of the MOE to all nodes in
the fragment. When learning about the weight of the MOE, a node either adds the
new edge to the fragment (if the MOE is incident to it) or re-initialize its state in
order to begin another phase. The main difficulty here isto combine many broad-
cast and convergecast operations with the MOE computation. In the following, we
give the relabelling system which encodes this M ST agorithm.

By combining R, and R y—m:,, Prim’s algorithm can be encoded by the graph
relabelling system R.,,,=(L, Zrn, Prn) defined by: L£,,={E X wsyptree X Wigear X i} U
{051} where E ¢ {S: FaT:O}! i€ {_151} and (wsubtreeawlocal) € Ra- UL Im =
{(0,1,1,-1),(S, L, L,-1)}u {0} and P,,={R},, R%,, R} R} . R)}. Notethat, if
the value of attribute w,piee (OF wioeq) iSequal to L, then this value has not been
Set yet.

Initially, there is a distinguished node with label (S, L, L, —1) which isthefirst
node in the fragment. All other nodes are labelled (O, L, 1, —1). Asfor therela
belling system R, if the value of the attribute i is equal to 1 (resp. —1) then an
S-labelled node knows that it isin the broadcast (resp. convergecast) stage. At the

35

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

beginning, al edges are labelled 0. If an edge becomes labelled 1 then it is part of
the tree.

4.2 Computing the weight of the MOE: convergecast

The nodes of the fragment have to cooperate in order to compute the MOE i.e.,
convergecast from the leaves of the fragment up to an elected node (rule R/). Each
node must compute the attributes w ;.. Which isthe weight of the minimum out-
going edge of the subtreerooted at it. Note that, during the convergecast, each node
also stores the attribute w;,.,; Which isthe weight of incident edges that connect it
to nodes with label O. Thiswill servein the broadcast stage to find and to add the
MOE of the whole fragment.
R! : Computing the minimum outgoing edge

Precondition :

- AMwo) = (S, L, L,-1) /*convergecast stage*/

- Vv € B(vg, 1)((A(v).E =S A XMuwg,v) =1) = A\(v).1 = —1)

Aoy e B(’Uo, 1) ()\('Ul)E =SA >\('U()./’Ul) = 1)

/*all children have received an acknowledgment */

Relabelling :

- w = min{{W(vg,v) | v € B(vg,1)(A(v).E = O)}U{+00}} /*1local MOE*/

© Wi = MAn{{A(v) Wsuptree | v € B(vo,1)(A(vg,v) = 1 A Xv).E = F)} U

{w}}
/*the MOE of the subtree rooted at wvg*/
- (Win = +00) = N(vg).E:=T /*local termination*/

- (Wmin # +00) = XN (vo) = (F, Win, w, —1)

At the end of the convergecast, the weight w,,;,, of the MOE is computed at
some elected node (rule R?2)). This node sets its label to (S, wyin, w, 1) in order
to begin the broadcast phase. (Note also that rule 22, also enables to initialize the
MST construction).

R?, . Election of anode

Precondition :

- AMwo) = (S, L, 1L,-1)

- Vv € B(vg, 1)(A(vg,v) =1 = Av).E #S5)

Relabelling :

< w = min{{W(vg,v) | v € B(vg,1)(A(v).E = O)} U{+oc}}

© Winin = MAn{{A(v) Wsuptree | v € B(vo,1)(A(vg,v) = 1A AXv).E = F)} U
{w}}

- (Win = +00) = N(vg).E =T

- (Wpin # +00) = N (vg) := (S, Winin, w, 1)

Rules R}, and 2, also allow to detect the termination of the M ST construction.
In fact, if the weight of the MOE is equal to +oc then there is no node with label
O at the frontier of the fragment and thus al the nodes of the graph are in the
fragment.

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

4.3 Finding and adding the MST: broadcast

At the end of the convergecast process (rule ?2)), thereis an elected node with | abel
(S, w,w', 1) that beginsthe broadcast (attributei isequal to 1). Thus, anode « with
label (S, w,w', 1) first compares w and w'. If w=w' then the MOE is incident to
u itself. Thus, the minimum edge is added and « setsits variable 7 to —1 in order
to reinitialize the computation of another minimum edge (Rule R?). Otherwise,
if w # w' then there must exist a neighbor with label (F, w, w", —1) from whom
u has inherited its w value and the MOE must be in the subtree rooted at that
neighbor. Thus, the F'-labelled neighbor becomes (S, w, w”, 1)-labelled (Rule R?).
The other F'-labelled children become (S, L, 1, 1)-labelled in order re-initialize the
computation of anew MOE (Rule R?).

R3 . Broadcast the weight of the MOE
Precondition :
- AMwg) = (S, w,w', 1)
cw#w A (w# Fo0) A (w# L)
- vy € B(vo, 1) (Mvo,v1) = 1A XNw1) Wsyptree = W)
/*weights are unique*/

Relabelling :

- M(vg) := (S, L, L,-1)

- N(n).E :S,)\’(1)4:=1

- Yo € B(vg, 1) ((v # v1 AX(vg,v) =1AXv).E=F) = XN(v):=(S,1,1,1))

R} . Addingthe MOE
Precondition :
- Mwg) = (S,w,w, 1)
- (w # 4o0) A (w # 1)
- vy € B(vg, 1) (AM(vo,v1) =1 AXNwv1).E =0 AW(vg,v1) = w)
Relabelling :
- M(wg) := (S, L, L, -1)
- Yv € B(vg,1) (v # v1 AM(vg,v) =1ANw).E =F) = N():=(S, L1, 1,1))
- M(vp) = (S, L, L, -1)
')\I(Uo,vl) =1

R : Reinitialization
Precondition :

- Mwvg) = (S,L,1,1) /*the MOE is not in the subtree rooted at wvg*/
Relabelling :

TN(wg) = (8, L, L, 1)
Vo € Blug,1) (Mw).E = F A Mvo,v) = 1) = N(v) := (S, L, L, 1))

5 Concluding Remarks

In this paper, we give a general technique that provides a modular construction of
alarge class of distributed computing algorithms. By exploiting this modular con-

37

38

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

struction and the properties of graph relabelling systems, we obtain a general and
a unified framework for expressing, proving and implementing distributed algo-
rithms. The expressiveness has been clearly demonstrated by the numerous algo-
rithms described in the paper. However, some other features concerning the proof
techniques and the impelmentation issues remains to be studied in future work.

In fact, in order to prove the correctness of a graph relabelling system, that is
the correctness of the algorithm encoded by such a system, it is useful to exhibit (i)
some invariant properties associated with the system (i.e., some properties of the
graph labelling that is satisfied by the initial labelling and that is preserved by the
application of every relabelling rule) and (ii) some properties of irreducible graphs
[11]. The correctness of the algorithms given in this paper can be formally proven
using that technique. Nevertheless, because our algorithms are clearly expressed as
acombination of some few basic procedures, proving these basic procedures allows
us to get basic building blocks which can be used as a bottelneck for proving the
more sophisticated algorithms. Our aim isto give more generic algorithmsallowing
to automatically combine the basic techniques presented in this paper by using
some logical functions F to be formally defined in future work. This will allow
to automatically derive the relabelling system A corresponding to a distributed
algorithm A expressed in term of some basic procedures (convergcast, broadcast,
PIF, etc.). By the same way, by using the properties of F together with the proofs
of these basic procedures, we hope to develop new modular techniques that help
proving the correcteness of the relabelling system A .

In addition to be formal, provable and tractable, the relabelling systems given
in this paper can be trandlated in practical distributed algorithms in the message
passing model. In fact, a new language called Lidia has been developped in [12]
in order to automatically transform a given relabelling system in an executable dis-
tributed program using the Visidia [6,1,2] platform (i.e., a software tool for the
simulation and the visualization of distributed algorithms in the message passing
model). Furthermore, the distributed model studied in [3] combined with ideas
from this paper will enable to trandate a distributed algorithm expressed in a mes-
sage passing model in a more formal and theoritical framework. This will enable
to verify and to debug existing sophisticated algorithms which are in general hard
to validate.

Acknowledgement

We would like to thank J. Chalopin and Y. Métivier for helpful remarks and sug-
gestions.
References

[1] Bauderon, M., Y. Métivier, M. Mosbah and A. Sellami, From local computations
to asynchronous message passing systems, Technical Report RR-1271-02, LaBRI

1. LJ1UIVDIUL AINLD 1VL. VIO DALL

(2002).
URL http://www.labri.fr/visidia/

[2] Bauderon, M. and M. Mosbah, A unified framework for designing, implementing and
visualizing distributed algorithms, International Workshop on Graph Transformation
and Visua Modeling Techniques (GT-VMT’ 02) (2002).

URL http://www.elsevier.nl/locate/entcs/volume72.html

[3] Chaopin, J. and Y. Mé&tivier, A bridge between the asynchronous message passing
model and local computations in graphs, 30th Int. Symp. on Mathematica
Foundations of Computer Science LNCS, to appear (2005).

[4] Chang, E. J. H., Echo algorithms: Depth parallel operations on general graphs., |IEEE
Trans. Software Eng. 8 (1982), pp. 391-401.

[5] Cormen, T. H., C. E. Leiserson and R. L. Rivest, “Introduction to Algorithms,” MIT
PresssMcGraw-Hill, Cambridge, MA, 1990.

[6] Derbel, B. and M. Mosbhah, Distributing the execution of a distributed algorithm over a
network, 7th |EEE International Conference on Information Visualization, 1V03-AGT.
(16-18 July 2003, London), pp. 485-490.

[7] Godard, E., Y. Métivier and A. Muscholl, Characterizations of classes of graphs
recognizable by local computations, Theory of Computing Systems 37:2 (2004),
pp. 249-293.

[8] Litovsky, 1., Y. Métivier and E. Sopena, Different local controls for graph relabelling
systems, Math. Syst. Theory 28 (1995), pp. 41-65.

[9] Litovsky, 1., Y. Mé&tivier and E. Sopena, Graph relabelling systems and distributed
algorithms, , 3, H. Ehrig and H.J. Kreowski and U. Montanari and G. Rozenberg,
World Scientific, 1999 pp. 1-56.

[10] Lynch, N. A., “Distributed Algorithms,” Morgan Kaufmann Publishers, Inc., 1996.

[11] Métivier, Y., M. Mosbah and A. Sellami, Proving distributed algorithms by graph
relabeling systems: Examples of trees in networks with processor identities, in: Applied
Graph Transformations, Grenoble, 2002, pp. 45-57.

[12] Mosbah, M. and R. Ossamy, A programming language for local computations in
graphs: Computational completeness, in: IEEE, editor, 5" Mexican Int. Conference
in Computer Science Colima Mexico 20-24 September (2004), pp. 12-19.

[13] Peleg, D., “Distributed Computing, A Locaity-Sensitive Approach,” SIAM
Monographs on Discrete Mathematics and Applications, 2000.

[14] Segall, A., Distributed network protocols., |EEE Transactions on Information Theory
29 (1983), pp. 23-34.

[15] Tel, G., “Introduction to distributed algorithms,” Cambridge University Press, 2000.

39

40

(This page intentionally left blank)

GT-VC 2005 Preliminary Version

Graphical Verification of a Spatial Logic
for the m-calculus

Fabio Gadducci! and Alberto Lluch Lafuente ?

Dipartimento di Informatica, Universita di Pisa
largo Bruno Pontecorvo 3c, I-56127 Pisa, Italia

Abstract

The paper introduces a novel approach to the verification of spatial properties for fi-
nite m-calculus specifications. The mechanism is based on a recently proposed graph-
ical encoding for mobile calculi: Each process is mapped into a (ranked) graph, such
that the denotation is fully abstract with respect to the usual structural congruence
(i.e., two processes are equivalent exactly when the corresponding encodings yield
the same graph). Spatial properties for reasoning about the behavior and the struc-
ture of m-calculus processes are then expressed in a logic introduced by Caires, and
they are verified on the graphical encoding of a process, rather than on its textual
representation. More precisely, the graphical presentation allows for providing a sim-
ple and easy to implement verification algorithm based on the graphical encoding
(returning true if and only if a given process verifies a given spatial formula).

Key words: Process calculi, spatial logic, verification.

1 Introduction

A recent series of papers advocated spatial logics as a suitable formalism for ex-
pressing behavioral and spatial properties of system specifications, often given
as processes of a calculus. Besides the temporal modalities of the Hennessy-
Milner tradition, these logics include operators for reasoning about the struc-
tural properties of a system. For example, the connective void represents the
(processes structurally congruent to the) empty system, and the formula ¢; |,
is satisfied by those processes that can be decomposed into two parallel compo-
nents, satisfying ¢, and ¢,, respectively. Moreover, these logics come equipped
with mechanisms for reasoning about the names occurring in a system.

* Work partly supported by the EU within the project HPRN-CT-2002-00275 SEGRAVIS
(Syntactic and Semantic Integration of Visual Modelling Techniques).
! Email: gadducci@di.unipi.it
2 Email: 1afuente@di.unipi.it
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

41

42

GADDUCCI AND LLUCH LAFUENTE

There are several approaches to the verification of spatial properties, on
logics either for process calculi (see e.g. [2,4,3] and the references therein) or
for other data structures such as heaps [14], trees [6], and graphs [5]. In this
paper we propose a novel approach to the verification of spatial formulae [2]
for finite m-calculus specifications, based on a graphical encoding for nominal
calculi [8]. Even if a few articles have been already proposed on the verifi-
cation of graphically described systems (see e.g [1,13,16]), to the best of our
knowledge this is the first attempt to the model-checking of spatial properties
for processes of nominal calculi, based on a graphical presentation.

Our paper is to be considered a combination of the graphical encoding of
the m-calculus in [8] and of the verification techniques for spatial properties
in [2], and it provides mechanisms for checking spatial formulae on the graph-
ical representation of processes. Even if the present work focuses on the finite
fragment of the m-calculus (hence on the recursion-free formulae of the spatial
logic), we believe that it may offer novel insights on the model-checking of
spatial formulae, possibly linking it to the standard logics for graphs; more-
over, it offers further evidence of the adequacy of graph-based formalisms for
system design and verification.

The structure of the paper is as follows. Section 2 presents the finite frag-
ment of the m-calculus and the spatial logic for processes proposed in [2].
Section 3 recalls the main definitions concerning ranked graphs [7]. Section 4
presents an encoding of m-calculus processes into ranked graphs, streamlining
the proposal already discussed in [8]. Section 5 proposes our algorithm for
the verification of (closed) spatial formulae, briefly discussing its computa-
tional costs. The final section outlines future research avenues. Due to space
constraints, (sketches of) the proofs are included in an appendix.

2 The 7-calculus and a Spatial Logic

2.1 Synchronous (finite) w-calculus

We now introduce the finite, sum-free fragment of synchronous 7-calculus.

Definition 2.1 (processes) Let N be a set of names, ranged over by
a,b,c,...; and let A = {a(b),ab | a,b € N} be the set of prefix operators,
ranged over by 0. A process P is a term generated by the syntax

Pi= 0 | (wa)P | P|P | 4.P

We let P,Q, R, ... range over the set P of processes.

The standard definition for the set of free names of a process P, denoted by
fn(P), is assumed. Similarly for a-convertibility, with respect to the restriction
operators (va)P and the input operators b(a).P: In both cases, the name a is
bound in P, and it can be freely a-converted.

GADDUCCI AND LLUCH LAFUENTE

Using the definitions above, the behavior of a process P is described as
a relation over abstract processes, i.e., a relation obtained by closing a set of
basic rules under structural congruence.

Definition 2.2 (structural congruence) The structural congruence for
processes s the relation =C P x P, closed under process construction and
a-conversion, inductively generated by the following set of axioms

PIQ=Q|P Pl@QIR=(PIQ)|R Pl0o=P (va)0=0
(va)(Wb)P = (vb)(va) P (va)(P | Q) = P [(va)Q for a ¢ fn(P)
Definition 2.3 (reduction semantics) The reduction relation for pro-

cesses 18 the relation R, C P x P, closed under the structural congruence
=, inductively generated by the following set of axioms and inference rules

P—qQ P—qQ
a(b).P|ac.Q — P{°/i}}|Q (va)P - (va)Q P[R—Q[R

where P — @Q means that (P,Q) € R,.

The first rule denotes the communication between two processes: Process
ac.q is ready to communicate the (possibly global) name ¢ along the channel a;
it then synchronizes with process a(b).P, and the local name b is substituted by
c on the residual process P. The latter rules state the closure of the reduction
relation with respect to the operators of restriction and parallel composition.

Finally, we present the commitment relation, a variant of the standard
labeled transition system semantics, introduced in [2] for verification purposes.

Definition 2.4 (commitment semantics) Let A = {7} W A be the set of
commitment labels, ranged over by \. The commitment relation for processes
is the relation R, C P x A x P, closed under the structural congruence =,
inductively generated by the following set of axioms and inference rules

P—qQ a,c ¢ N a,cg N
P5Q (vN)(@.P|Q) ™ (vN)(PIQ) (uN)(a(b).P|Q) “Y (vN)(P{</s}|Q)

where P 2 Q means that (P,\,Q) € R. and (vN) stands for (vay)...(vay)
for any finite N = {aq,...,ax} CN.

Example 2.5 Let us consider the process race = (va)ba.aa | b(d).dc. The
sub-process on the left is ready to send a bound name a via a channel b.
After a scope extension of the restriction operator, a possible commitment of
race thus consists of a synchronization on b: race — (va)(aa | @c). The
residual process is deadlocked, since the restriction forbids a to be observed.
Removing the restriction results in a process that may perform commitments

aa | ac % @c (a sent over a) and @a | ac > aa (c sent over a).

43

44

GADDUCCI AND LLUCH LAFUENTE

2.2 Spatial logic

This section recalls the finite fragment of the spatial logic presented in [2].

Definition 2.6 (logic syntax) Let V be a set of name variables, ranged
over by z,y, ..., and let = = AU{Ty, z(y) | =,y € V'} be the set of observables,
ranged over by . A spatial formula is a term generated by the syntax

=T]=¢|¢Ve|void | ¢ | n®¢ | Fx.¢ | Nz.d | n=n| ()¢

where n € VWN. We let ¢, ¢y, ... range over the set SF of spatial formulae.

Boolean connectives have the usual meaning; void characterizes processes
that are structurally congruent to the empty process; ¢1|¢o holds for processes
that are structurally congruent to the composition of two sub-processes, sat-
isfying ¢1 and ¢, respectively; n®¢ is true for those processes such that ¢
holds after the revelation of name n; dx.¢ and Vx.¢ characterize processes
such that ¢ holds for a name in A and a fresh name in N (see below), re-
spectively; n; = n9 requires 7; and 72 to be equal; and (\)¢ is satisfied by a
process P if P can be committed into () with label A and @ satisfies ¢.

A formula is closed if all its variables occur inside the scope of either an
existential or a fresh quantifier. The set of free names of a formula ¢, denoted
as £fn(¢), is defined in the obvious way, since the only binding operators are
the name quantifiers. A name is fresh with respect to a formula (process) if it
is different from any free name of the formula (process, respectively).

Definition 2.7 (logic semantics) The denotation [¢], mapping a closed
formula ¢ into a set of abstract processes, is defined by

7] =P [a®¢] = {P | IP".P = (va)P' and P’ € [¢]}
[-¢] =P\ ¢l [Brd] = wenlol"/s}]
[0V @] =[] Ula]l [M20] = pprenie) [/ NP [a € £n(P)})
P ifa=0>

[void] ={P|P =0} [a=0]=
0 otherwise

[p1|p2] = {P | 3P1, Po.P = Pi|Py and Py € [¢1] and P € [¢2] }
[(Ne] = {P]3IQ.P > Q and Q € [¢]}

In addition to the usual abbreviations, we shall use the hidden name quan-
tifier (Hr.¢ = Vlz.x®¢) for existentially quantifying over restricted names.

Example 2.8 (a spatial property) In our running example two component
processes are ready to send distinct names over the same restricted channel
after a synchronization. We may express that property by the formula

crash = Hx.3y.3z.y # 2 N(1)((Zy)T | (T2)T)

GADDUCCI AND LLUCH LAFUENTE

Explicitly, the formula first quantifies over all the possible restricted names
x. Then, it quantifies over all pairs of different names vy, z such that after a
synchronization the residual process can be decomposed into two components,
sending names y and z, respectively, on the same channel x.

2.8 Some technical results

We state some technical lemmas. The first recalls Gabbay-Pitts Property [2].

Proposition 2.9 (Gabbay-Pitts) Let P be a process, and let ¢ be a formula
such that x is the only free variable. Then

(i) P e Vz.g] iff P € genpyosemoylol/s]-
(i) P € [Bz.¢] off P € [Nx.d] or P € ienpyusen(on 01"/

These properties make existential and fresh quantification decidable. Con-
sider item 1: By definition, the semantics of the fresh name quantifier is given
in terms of the union over the substitution with those names appearing neither
in P nor in ¢; hence, fresh quantification Vz.¢ can be decided by substituting
any fresh name for variable x in ¢, and then checking the resulting formula.

The second lemma describes a normal form for processes. This result is used
on Proposition 2.11: It concerns the revelation operator, stating that only a
finite set of instances for the channel to be revealed has to be considered.

Lemma 2.10 (normal forms) Let P be a process. Then, P is structurally
congruent to a process (vay)...(va,)(Py | ... | Pn), such that all a;’s are
different names, all P;’s are prefizved processes, and {ay,...,a,} C i fn(P;).

We then denote a normal form as (vN)Q, for Q a set of prefixed processes,
since the order of restriction operators and parallel compositions is immaterial.

Proposition 2.11 (revelation set) Let P be a process and a®¢ a closed
formula. Then, P € [a®¢] iff a ¢ tn(P) and either (i) P € [¢]; or (ii)
(va)(vN)Q is a normal form of P and (vN)Q € [¢].

In order to verify if a®¢ holds in process P, the check that a is not free
in P is firstly performed; then it suffices either to check again P, or to fix a
normal form (vN)Q for P and check all those processes obtained by revealing
any restricted name as a. This result will simplify the verification procedure,
since the normal form directly corresponds to the graphical representation.

3 Graphs and their Ranked Version

We recall a few definitions concerning (labeled hyper-)graphs, and their ranked
extension, referring to [7] for a detailed introduction and a comparison with
the standard presentation [11]. In the following we assume a chosen signature
(33,.9), for ¥ a set of operators (edge labels), and S a set of sorts (node labels),
such that the arity of an operator in ¥ is a pair (s,w), for w € S* and s € S.

45

46

GADDUCCI AND LLUCH LAFUENTE

Definition 3.1 (graphs) A graph d (over (3,S5)) is a tuple (N, E,l, s,t),
where N, E are the sets of nodes and edges; [is the pair of labeling functions
le : E— X, 1,: N— S;s: E— Nandt: E — N* are the source
and target functions; and such that for each edge e € E, the arity of l.(e) is
(I(s(e)), L (t(e))), i.e., each edge preserves the arity of its label.

With an abuse of notation, in the definition above we let [} stand for the
extension of the function [/,, from nodes to strings of nodes; sometimes, we use
[as a shorthand for [,, and [.. In the following, we denote the components of
a graph d by Ny, Ey, lg, sq and t4, dropping the subscript whenever clear.

In order to define the process encoding, we need operations on graphs. The
first step is to equip them with “handles” for interacting with an environment.

Definition 3.2 (ranked graphs) Let d,.,d, be graphs with no edges. A
(d,,d,)-ranked graph (a graph of rank (d,,d,)) is a triple g = (r,d,v), for
d a graph and r :d, — d, v :d, — d the root and variable morphisms.

Let g, g’ be ranked graphs of the same rank. A ranked graph morphism
f:g9— ¢ is a graph morphism fq:d — d' between the underlying graphs that
preserves the root and variable morphisms.

We let d, = d < d, denote the (d,, d,)-ranked graph d. With an abuse of
notation, we sometimes refer to the image of the root and variable morphisms
as roots and variables, respectively. More importantly, in the following we will
often refer implicitly to a ranked graph as the representative of its isomorphism
class, still using the same symbols to denote it and its components.

r

Definition 3.3 (sequential and parallel composition) Let G = d, =
d < d; and H = d; = d <& d, be ranked graphs. Then, their sequential
composition is the ranked graph G o H = d, = d" %= d,, for d" the disjoint
union dW d', modulo the equivalence on nodes induced by v(z) = r'(x) for all
x € Ny, and r" : d, — d", V" : d, — d" the uniquely induced arrows.

,r,/

LetG=d, = d<&d,and H=d. = d £ d. be ranked graphs. Then, their

parallel composition is the ranked graph G @ H = (d, Ud)) e (d,ud),
for d"” the disjoint union d W d', modulo the equivalence on nodes induced by
r(x) =r'(x) for all x € Ng, N Ny and v(y) = v'(y) for ally € Ng, N Ny, and
" d, Ud, — d" V" d,ud, — d’ the uniquely induced arrows.

The sequential composition G o H is obtained by taking the disjoint union
of the graphs underlying G and H, and gluing the variables of G with the
corresponding roots of H. Similarly, the parallel composition G® H is obtained
by taking the disjoint union of the graphs underlying G and H, and gluing
the roots (variables) of G with the corresponding roots (variables) of H.

The two operations are concretely defined, but they are intended to act
on isomorphic classes of ranked graphs (hence, with the same rank). In fact,
the result is clearly independent of the choice of the representative, up-to
isomorphism. Moreover, the operators then become associative.

GADDUCCI AND LLUCH LAFUENTE

Doye LR P pobe o

Fig. 3. The ranked graph | ba.@a| ® ||b(d).dc].

Example 3.4 (some graphs) Fig. 1 depicts two ranked graphs (part of the
encoding of our running example): Their sequential composition appears in
Fig. 2 (left). Fig. 3 represents the parallel composition of the graphs in Fig. 2.

The nodes in the domain of the root (variable) morphism are depicted as
a vertical sequence on the left (right, resp.); the variable and root morphisms
are represented by dotted arrows, directed from right-to-left and left-to-right,
respectively. Fdges are represented by a bozed label, from where arrows pointing
to the target nodes leave, and to where the arrow from the source node arrives;
the sequence of target nodes is usually the clockwise order of the start points of
the tentacles, even if sometimes it is indicated by a numbering on the tentacles:
For the edge of the leftmost graph of Fig. 1 the sequence is (v(p),v(b),v(a)).

The leftmost graph of Fig. 1 has rank ({p},{p,a,b}), four nodes and one
edge labeled by out; the rightmost graph has rank ({p,a,b},{a,b}), four nodes
and one edge labeled by out. For graphical convenience, nodes with different
labels appearing in the underlying graph are also denoted differently.

A graph expression is a term for the syntax containing ranked graphs as
constants, and parallel and sequential composition as operators. An expression
is well-formed if all occurrences of these operators are defined for the rank
of the sub-expressions, according to Definition 3.3: Its rank is inductively
computed and its value is the graph obtained by evaluating its operators.

47

48

GADDUCCI AND LLUCH LAFUENTE

Fig. 4. Ranked graphs opg (for op € {in,out}), v, idg, 04 and 0.

4 From Processes to Graphs

We now present the encoding of m-calculus processes into ranked graphs, based
on the encoding presented in [8]. It is built out of a signature (¥, S;), and
it preserves structural congruence. The set of sorts S, is Intuitively, a graph
reachable from a node of sort s, corresponds to a process, while each node
of sort s, represents a name. The set X, contains three operators: {in, out}
of sort (sp, Spspsn), and {v} of sort (s, s,). Clearly, the operators in and out
simulate the input and output prefixes, respectively; and operator v stands for
restriction. Furthermore, please note that there is instead no explicit operator
accounting parallel composition.

The second step is the characterization of a class of graphs, such that all
processes can be encoded into an expression containing only those graphs as
constants, and parallel and sequential composition as binary operators. Let
p & N: Our choice is depicted in Fig. 4, for all a,b € V.

Finally, let idp be a shorthand of [id,, for a set I" of names (since the
ordering is immaterial). Finally, The encoding of processes into ranked graphs,
mapping each finite process into a graph expression, is presented below.

Definition 4.1 (encoding for processes) Let P be a process. The encod-
ing || P||, mapping a process P into a ranked graph, is defined by structural
induction according to the following rules

LA if a & £n(P)
(LP] ® va) 0 (04 ® iden(py\{a}) Otherwise
PRI =[1Plelcl
[o] = 0p
|ab.P|| = outap o (|[P]] ® idgap)
La(®).P|| = inap o (LP] @ idgap) © (0 @ iden(ry\is})

Note the conditional rule for (va).P: It is required for removing the occur-
rence of useless restriction operators, i.e., those binding a name not occurring
in the process. The mapping is well-defined, since the resulting graph expres-
sion is well-formed, and the encoding || P|| is a graph of rank ({p}, fn(P)).

[(va)P| =

GADDUCCI AND LLUCH LAFUENTE

Fig. 5. The ranked graph || (va)ba.aa | b(d).dc|.

Example 4.2 (mapping a process) In order to give some intuition about
the intended meaning of the previous rules, we show the construction of the
encoding for the process ba.aa (a subprocess of our runmning example) whose
graphical representation is depicted in Figure 2 (left)

[LBa.anJ = outy, o ([[@al] ®idgapy) = outyg o ((outeq o (0, @idiay)) ®idep)

The denotation of (|[aal| ®id(apy) coincides with (out,,®id(apy)o (0, @idiepy),
and the latter is clearly matched by its graphical representation. On the other
hand, the graphical representation of ||racel| is depicted in Fig. 5.

The mapping ||| is not surjective, since there are graphs of rank ({p},I")
that are not image of any process. Nevertheless, let us assume that we restrict
our attention to processes verifying a simple syntactical condition, namely,
forbidding the occurrences of input prefixes such as a(a). Then, our encoding
is sound and complete, as stated by the proposition below (adapted from [8]).

Proposition 4.3 Let P, Q) be processes. Then, P = Q iff | P|| = [@]l

5 A Verification Algorithm

This section introduces an algorithm for verifying spatial formulae over the
graphical representation of processes. It takes as input a closed formula ¢ to
be verified and a ranked graph G = r = d < v such that G = || P|| for some
process P, and returns a boolean, namely, true if P € [¢], false otherwise. It is
defined by case induction on the formula to be verified, exploiting the structure
of the graphical encoding. For any process P, the first call is eval(|| P, ¢).

Checking Booleans, Void and Name equality. The procedures to evaluate
boolean formulae and name equality are self-explaining, and checking void
just consists on determining whether d has no edge.

case T’ return true;

case —¢ return —eval(G, ¢);

case @1 V ¢y return eval(G, ¢1) V eval(G, ¢»);

case void if E; = () then return true else return false;
case a = b return a = b;

49

50

GADDUCCI AND LLUCH LAFUENTE

Checking Composition (¢1 | ¢2). The algorithm builds all pairs that cor-
respond to a decomposition of the graph under consideration. These graphs
are obtained by splitting the set of edges outgoing from the root that are not
labeled with v. This latter set is denoted by E in the pseudo-code below.

case o1 |,
E — {e€ E;| sqle) =r(p) and ly(e) # v};
R« {(n,e) € Ny x Eq| sqle) =r(p) ANlg(e) =v Atq(e) =n};
foreach E; € 2¥ do
(G, « sub-ranked graph of G generated by Ei;
Go « sub-ranked graph of G generated by E \ Ej;
foreach (n,e) € R do
if n € dy and n € d; then continue outermost loop;
if ne d1 then d1 — d1 U {6},
if n € dy then dy «— dy U {6};
if eval(Gy, ¢1) A eval(Ga, ¢2) then return true;
return false;

Intuitively, each edge in E corresponds to a prefixed sub-process of the process
represented by G. However, not every graph decomposition correspond to a
correct process decomposition, and the reason for this is basically pinpointed
by the structural axiom (va)(P | Q) = P | (va)@ for a ¢ £n(P). In other
terms, after choosing a graph decomposition G; and G, it is necessary to
consider all the names in the scope of a restriction operator placed on top
of the process, and to check that each name occurs only in one of the two
graphs. Hence, the procedure computes the set R of restricted nodes (together
with the corresponding edges), and it checks for each restricted node n in
R whether n belongs to both d; and d,. If this is the case, then the chosen
graph decomposition is not valid, since the name corresponding to [,,(n) would
occur free in both sub-processes. On the other hand, if n occurs in only one
of the d;’s, the restriction edge is added to the corresponding ranked graph.
After checking every restricted node in R, the algorithm recursively evaluates
whether GG satisfies ¢ and G5 satisfies ¢s.

Sub-ranked graphs are defined in the appendix. They correspond to the usual
sub-graphs reachable from a node (namely r(p)) and a set of adjacent edges,
and they are built in linear complexity by a depth-first exploration.

Checking Name Quantification (3z.¢). We exploit Proposition 2.9 and let
x range on the nodes in d, U £fn(¢), since d, represent the free names in the
process encoded by G. If the result is negative in all such cases, we check if
»{*/.} holds, for fresh name a, relying on the case for fresh quantification.

case Jz.¢
foreach a € d, Uffn(¢) do if eval(G, p{*/.}) then return true;
return eval(G, Vz.¢);

GADDUCCI AND LLUCH LAFUENTE

Checking Fresh Quantification (Nx.¢). Once more we exploit Proposi-
tion 2.9. We let a be a name neither in d, nor in £fn(¢), i.e., a name that is
fresh for both the process and the formula. Then, we evaluate ¢{*/,} on G.

case Nzx.¢
a < new name not in d, U £fn(¢);

return eval(G, ¢o{*/.});

Checking commitment ((\)¢). The algorithm distinguishes three different
cases for . If X is 7 then the algorithm looks for an out-labeled edge and an
in-labeled edge which operate on the same name node. Once such a pair is
found a synchronization is simulated by building the residual graph, i.e., by
coalescing the continuations of the two operators with the root of the process
and the node being sent with the node being received. The procedure then
removes the two involved edges, and it performs a garbage collection, deleting
the useless occurrences of the restriction operator and all the isolated nodes
(i.e., those nodes that appeared uniquely in the target sequence of the removed
operators); finally, the algorithm checks whether ¢ holds in the resulting graph.
Input and output commitments are computed similarly.

case (\)o
if A =7 then
foreach el, e2 € E; with l;(el) = out and l4(e2) = in do
if sq(el) = sq(€2) = r(p) and ty(el)[l] = t4(e2)[1] then
Gr = G dy = dipy=ty(en)O=ta(e)0)ta(et)2=ta(e2)2)} \ 1€1,€2};
Gy« gc(Gh);
if eval(Gy, ¢) then return true;
if A\ =ab then
foreach e € E; with [(e) = out do
if sq4(e) =r(p) and ty(e)[l] = v(a) and ty(e)[2] = v(b) then
G1— G di — dpp=taeop \ {e}; Gr — ge(Gh);
if eval(G1, ¢) then return true;
if A =a(b) then
foreach e € E,; with l;(e) = in do
if sq4(e) =r(p) and ty(e)[1] = v(a) then
G1 — G; di — dipg)=ta@epp \ {e} do, — dy U{b};
v —vU{br ty(e)2]}; Gi — ge(Gy);
if eval(Gy, ¢) then return true;
return false;

The garbage collection phase gc(G7) takes linear time, since it checks the
connectivity for at most three nodes. It ensures that the resulting graph rep-
resents the encoding of the residual process after the commitment: To this
end, garbage collection may also remove nodes from the variable graph.
Note that, even if not explicitly stated, the occurrence of labels as x(z) in
a formula is forbidden and the algorithm returns false whenever a(a) is met.

52

GADDUCCI AND LLUCH LAFUENTE

[]
. . .
L 0<a
[] []
04 poore 04a
04 C

Fig. 6. The ranked graph ||aa | ac|| (left) and two sub-ranked graphs (right).

Checking Revelation (a®¢). According to Proposition 2.11, the algorithm
first checks whether a is free in the process represented by G, that is, if it
belongs to d,. If this fails, the algorithm then tries to check whether P satisfies
¢. Finally, it reveals any restricted node as a: This is done by removing v-
labeled edges outgoing from the root of d and adding a to the variables.

case a®¢
if a € d, then return false;
if eval(G, ¢) then return true;
foreach e € E; with l;(e) = v and sq(e) = r(p) do
Gy — G; Eg «— Eg\{e}; dy, — d,U{a}; vy —vU{ar t4(e)[0]};
if eval(Gy, ¢) then return true;
return false;

Example 5.1 Does race = (va)ba.aa | b(d).dc satisfy the property crash =
Hr.Jy.3z.y # 2 AN(1)((Ty)T | (z2)T)? The algorithm will first try and fiz
as a fresh name (say a) and try to reveal it as one of the restricted names in
|race||. Thus, x is revealed as a and the ranked graph depicted in Fig. 3 is
constructed. Next, the algorithm will try and find a synchronization. The input
and output edges, communicating on node b, are found and the residual graph
is constructed: This latter is depicted in Fig. 6 (left). Then, the algorithm looks
at every possible decomposition, which in this case (apart from the trivial ones
where one component is void) are two, namely the two possibilities to form
an ordered pair with the two out-labeled edges. The corresponding sub-ranked
graphs are represented in Fig. 6 (right). In the decomposition formed with first
the top graph and then the bottom graph the algorithm will successfully find
the commitments sending a and ¢ on channel a, thus returning true.

We now state the correctness of the proposed evaluation procedure.

Theorem 5.2 (correct algorithms) Let P be a process and ¢ a closed for-
mula. Then, P € [¢] iff eval(|| P]], ¢) = true.

Concerning the complexity of the algorithm, most of the operations rely
on enumerating sets of edges or nodes and thus require polynomial time. The
only exception is the verification of composition, where an exponential number
of decompositions has to be considered.

GADDUCCI AND LLUCH LAFUENTE

6 Conclusions and Future Work

The paper introduced a graph-based technique for the verification of spatial
properties of finite m-calculus specifications. We considered only the deter-
ministic fragment of the calculus, in order to offer as simple a presentation as
possible: The choice operator could be included without major efferts.

Besides being intuition appealing, the graphical presentation offers canon-
ical representatives for abstract processes, since two processes are structurally
congruent iff they are mapped to the same ranked graph (up to isomorphism).
The encoding has also a unique advantage with respect to most of the ap-
proaches to the graphical implementation of calculi with name mobility (such
as Milner’s bigraphs [10]): It allows for the reuse of standard graph transforma-
tion theory and tools for simulating the reduction semantics of the calculus [8].

The paper offers an effective mechanism for the verification of spatial prop-
erties, thus presenting a constructive alternative to the techniques proposed
in [2]. In fact, even if no formal comparison is drawn, our algorithm on graphs
exploits a “normal form” representation for processes that seems to be under-
lying also the model-checker proposed in [15]. Concerning efficiency, our worst
case is the verification of parallel composition, since graph decomposition is
exponential for general formulas. Again, no comparison can be traced to the
results in [15], since the efficiency for their algorithms is not fully reported.

We are not aware of any other tool for model-checking formulas of spatial
logics with respect to processes of w-calculus. However, besides any consid-
eration on the efficiency and usability of our algorithm, we believe that a
main contribution of our paper is the further illustration of the usefulness of
graphical techniques for the design and validation of concurrent systems: The
claim is supported by a sound and complete encoding of spatial formulae into
formulae of a temporal graph logic that is going to appear elsewhere.

The present proposal restricts to the finite fragment of the 7-calculus. We
are currently investigating how to generalize our approach in order to include
recursive specifications, and thus considering the full spatial logic of [2]. The
original graphical encoding of [8] already considers recursive processes, hence
our main efforts are going to focus on extending the algorithm. Finally, we
are planning an implementation of our approach, possibly by integrating it in
existing tools for the analysis of graphically designed systems, such as [9,12].

References

[1] Baldan, P., A. Corradini and B. Kéenig, A static analysis technique for graph
transformation systems, in: K. Larsen and M. Nielsen, editors, Concurrency
Theory, Lect. Notes in Comp. Sci. 2154 (2001), pp. 381-395.

[2] Caires, L., Behavioral and spatial observations in a logic for the m-calculus,
in: I. Walukiewicz, editor, Foundations of Software Science and Computation
Structures, Lect. Notes in Comp. Sci. 2987 (2004), pp. 72-87.

53

54

GADDUCCI AND LLUCH LAFUENTE

[3] Caires, L. and L. Cardelli, A spatial logic for concurrency (part I), Information
and Computation 186 (2003), pp. 194-235.

[4] Caires, L. and L. Cardelli, A spatial logic for concurrency — II, Theor. Comp.
Sci. 322 (2004), pp. 517-565.

[5] Cardelli, L., P. Gardner and G. Ghelli, A spatial logic for querying graphs, in:
P. Widmayer and F. Trigueiro Ruiz et alii, editors, Automata, Languages and
Programming, Lect. Notes in Comp. Sci. 2380 (2002), pp. 597-610.

[6] Cardelli, L., P. Gardner and G. Ghelli, Manipulating trees with hidden labels,
in: A. Gordon, editor, Foundations of Software Science and Computation
Structures, Lect. Notes in Comp. Sci. 2620 (2003), pp. 216-232.

[7] Corradini, A. and F. Gadducci, An algebraic presentation of term graphs, via
gs-monoidal categories, Applied Categorical Structures 7 (1999), pp. 299-331.

[8] Gadducci, F., Term graph rewriting and the m-calculus, in: A. Ohori, editor,
Programming Languages and Semantics, Lect. Notes in Comp. Sci. 2895 (2003),
pp. 37-54.

[9] Kozioura, V. and B. Konig, AUGUR: An unfolding-based verification tool
for GTS, available at http://www.fmi.uni-stuttgart.de/szs/tools/augur
(2005).

[10] Milner, R., Bigraphical reactive systems, in: K. Larsen and M. Nielsen, editors,
Concurrency Theory, Lect. Notes in Comp. Sci. 2154 (2001), pp. 16-35.

[11] Plump, D., Term graph rewriting, in: H. Ehrig and G. Engels et alii, editors,
Handbook of Graph Grammars and Computing by Graph Transformation, II:
Applications, Languages and Tools, Theoretical Computer Science 2, World
Scientific, 1999 pp. 3-61.

[12] Rensink, A., The GROOVE simulator: A tool for state space generation,
in: J. Pfaltz, M. Nagl and B. Bohlen, editors, Applications of Graph
Transformations with Industrial Relevance, Lect. Notes in Comp. Sci. 3062
(2003), pp. 479-485, tool available at http://sourceforge.net/projects/
groove.

[13] Rensink, A., Towards model checking graph grammars, in: M. Leuschel,
S. Gruner and S. Lo Presti, editors, Automated Verification of Critical Systems,
University of Southampton Technical Reports DSSE-TR—-2003-2 (2003), pp.
150-160.

[14] Reynolds, J., Separation logic: A logic for shared mutable data structures, in:
Logic in Computer Science (2002), pp. 55-74.

[15] Torres Vieira, H. and L. Caires, The spatial logic model checker user’s
manual, Technical Report TR-DI/FCT/UNL-03/2004, Faculty of Science and
Technology, New University of Lisbon (2004).

[16] Varré, D., Automated formal verification of visual modeling languages by model
checking, Software and Systems Modeling 3 (2004), pp. 85-113.

GADDUCCI AND LLUCH LAFUENTE

A Technicalities and Proofs

Proposition 2.11 (revelation set) Let P be a process and a®¢ a closed
formula. Then, P € [a®¢] iff a ¢ tn(P) and either (i) P € [¢]; or (i7)
(va)(vN)Q is a normal form of P and (vN)Q € [¢].

Proof. By definition, a process P € [a®¢] iff IP'.P = (va)P’ and P’ € [¢].
Thus, this clearly implies that a ¢ fn(P). So, let us choose such a process
P’ and let us assume that a ¢ fn(P’): Then, P = P’. Otherwise, a normal
form (¥M)Q can be obtained for P’, such that a ¢ M, since structural con-

gruence preserves free variables. And since structural congruence also preserve
satisfiability, then P = (va)(vM)Q with (vM)Q € [¢]. 0

Next we present the definition of ranked graph generated by a set of edges.

Definition A.1 (generated graph) Let G = {p} = d & d, be a ranked
graph, and E C E4 a set of edges of its underlying graph with source r(p).
Then, the sub-ranked graph of G generated by E is the ranked graph H =

{p} 4g L dy,, for dy the smallest graph containing E and r(p) and satisfying
e VYe€ E;:e € Ey = Vitg(e)]i] € Ny
o Ve € Ey:sq(e) € Ny, \7(p) = € € Ey,
e Vned,:v(n) € Ngyy =ned,
where all the derived functions are obviously defined by restriction.
The definition is well-given, since H clearly is a ranked graph.

In order to show the correctness of the algorithms we need some additional
lemmas. The first provides a set-theoretical characterization for those ranked
graphs that are the encoding of a process (recall that ||-]| is not surjective,
and there are some graphs of rank ({p},I") that are not image of any process.

Lemma A.2 (encoded process) Let G = {p} = d < T be a ranked graph.
Then, there exists a process P with I' = fn(P) such that G = || P]| iff

(i) d is a connected hyper-tree with r(p) as root;

leaves of sort s, are in the target on exactly one edge;
d has no useless restriction edge;

no variable in I' is mapped to a bound node in d;

)
)
)
(V) mno bound node in d is bounded more than once;
) every free node of d is the image of a variable in T';
)

if e bounds a node name u and u is in the target of an edge €' then there
is a path of length 1 or more from sy(e) to sq(€’).

where a node is bound if it is the first argument of an edge labeled by a restric-
tion or the second argument of an input operator, and free otherwise.

55

56

GADDUCCI AND LLUCH LAFUENTE
Proof. Suppose G = || P|| for some P. It is easy to see that the encoding only
delivers ranked graphs that are connected trees and that satisfy exactly the

conditions listed above.
If G satisfies the above conditions, then we define P as [G]?

(vt(e)[0)[G/{e})? if de € E4.l(e) = v and r(p) = s(e)

(e)[1]t(e)[2].[G1])? | [G\ G1])? if Fe € Eq.l(e) = out and r(p) = s(e)

~

t(e)[1](t(e)[2]).[G1]¢ | [G\ G1)? if Fe € Ey.l(e) =in and r(p) = s(e)

0 otherwise

where G is the sub-ranked graph of G generated by a node e with r(p) =
t(e)[0] after its removal, i.e. the sub-ranked graph corresponding to the contin-
uation of the operation represented by e. Clearly, the definition is ambiguous
but all possibilities of choosing e deliver structurally congruent processes.
Moreover, it can be shown that [|-|| and [-]¢ are mutually inverse. O

The next lemma states that every ranked graph created during the evalu-
ation of a closed formula corresponds to a process.

Lemma A.3 (algorithm sub-calls) Let P be a process and ¢ a closed for-
mula. Then, for every sub-call eval(G, ¢') of eval(|| P||, ¢) there exists a process
Q such that G = || Q]].

The proof of the lemma is a straightforward check that every ranked graph
considered during the evaluation satisfies the conditions of Lemma A.2.

Theorem 5.2 (algorithm soundness) Let P be a process and ¢ a closed
formula. Then, P € [¢] iff eval(|| P]], ¢) = true.

Proof. The proof is by induction on P and ¢ distinguishing the different cases
for ¢. Booleans and name equality are trivial.

If ¢ is void observe that if P € [void] then P = 0. Clearly, the set of
edges in ||0] is empty. On the other hand, if we have a ranked graph G = || P||
for some P such that Ej is empty, then P can only be the empty process and
thus P € [void].

If ¢ is ¢y | @9 first observe that every edge in G is necessarily either in G4
or G. By Lemma A.3, G; = ||Q]] and G5 = || R]| for some processes @, R € P.
It is easy to see that G = G; ® G, hence P = @ | R. Applying induction we
have that eval(P, ¢y | ¢2) implies P € [¢1 | ¢2].

GADDUCCI AND LLUCH LAFUENTE

To show the opposite direction assume that P € [¢1 | ¢2]. This implies
that there are two processes @, R such that P = @ | R with @ € [¢1] and
R € [¢2]. Suppose that eval(P, ¢y | ¢2) returns false. Since we assume the
induction hypothesis to hold, the only possibility is that the pair of ranked
graphs [|Q]], [[R]| is missed by the algorithm. Let Eq,Ep respectively be the
edges of the graphs of || @] and || R]|. Since G can be seen as || Q]| ® [R]], the
ranked graphs generated by Eg,Eg could not be missed. Thus, eval(P, ¢; | ¢2)
returns true.

If ¢ is a®¢; we use Proposition 2.11. Since d, = fn(P) checking whether
n & d, and checking whether n ¢ fn(P) is the same. By induction the first
sub-call in the procedure is correct. Finally, observe that each of the ranked
graphs G considered by the algorithms is the encoding of one the processes
(vM)Q for a & M.

If ¢ is Jx.¢; observe that d, = fn(P). Hence a sub-call eval(G, $1{*/.})
returns true exactly when P € [¢{*/.}] for some a € £n(P)Uffn(¢). Applying
induction for the last call of the procedure and by Proposition 2.9 we obtain
the desired result.

If ¢ is Nx.¢y we recall again that d, = fn(P) and thus the sub-call
eval(G, ¢1{*/.}) returns true exactly when P € [¢{*/.}] for the fresh name
a. By Proposition 2.9 we obtain the desired result.

If ¢ is ()¢, suppose that A is 7 and that eval(|| P||, ¢) is true. This im-
plies that the algorithm finds a ranked graph [|@] for some @ such that
eval(||Q]], ¢1). It is easy to see that this generation corresponds to a synchro-
nization P -). Hence, we have that P € [¢]. The opposite direction is
similar since the algorithm can not miss any synchronization. The other cases
for \ are similar. O

57

58

(This page intentionally left blank)

Hoare vs Milner: comparing synchronizations
in a graphical framework with mobility *

1 2

Ivan Lanese® Ugo Montanari

Computer Science Department, University of Pisa, Pisa, Italy

Abstract

We compare the expressive power of Hoare (i.e., CSP style) and Milner (i.e., CCS
style) synchronizations for defining graph transformations in a framework where
edges can perform actions on adjacent nodes to synchronize their evolutions. Fur-
thermore, nodes can be communicated and merged. We show that the expressive
powers of the two synchronization models are different, but no one is greater than
the other. Finally, we show that in many interesting cases the behaviour of a syn-
chronization model can be mimicked by the other one using suitable translations
for the rewritten graphs.

Key words: graph transformations, Hoare synchronization,
Milner synchronization, Synchronized Hyperedge Replacement,
mobility, expressiveness.

1 Introduction

A fundamental aspect of many modern distributed systems is synchronization,
i.e., how different components of the system can coordinate their behaviour
in order to reach a common goal. Clearly, synchronization can be performed
in different ways. This has emerged since the beginning of computational
models for interacting systems: while CCS [11] used the so called Milner
synchronization, where two processes interact by performing complementary
actions, CSP [6] used Hoare synchronization where all the processes must
synchronize by performing the same action.

We are interested in comparing these two synchronization models, but in
a setting which is more complex than the original one. We work in the frame-
work of Synchronized Hyperedge Replacement (SHR) [2,5,3], a graph transfor-
mation formalism aimed at representing distributed interacting systems. In

* Research supported by the Project FET-GC II SENSORIA.
! Email: lanese@di.unipi.it
2 Email: ugo@di.unipi.it
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

59

60

LULAINLUOLYy LVANJIN LN I

particular, we model system components as hyperedges and communication
channels as shared nodes. System evolution is specified by productions, i.e.,
rules that describe the evolution of single hyperedges. Productions are syn-
chronized by performing actions on adjacent nodes, and a set of productions
can be executed concurrently only if the actions performed on each node are
compatible. Compatible here means that they must synchronize using a given
synchronization model. While SHR can be used with any synchronization
model [9], here we are interested in comparing the Hoare and the Milner mod-
els. In addition, we consider mobility of nodes: references to nodes can be
sent together with actions, and when actions are synchronized corresponding
nodes are merged. As far as Milner synchronization model is concerned, this
is the style of mobility used in Fusion Calculus [12] as pointed out in [7].

We will compare these two synchronization models from the point of view
of which classes of reconfigurations they can specify, in three important cases:
(i) one-step reconfigurations, (ii) reconfigurations specified by maximal (i.e.,
where no transition is possible from the final graph) computations and (iii)
reconfigurations specified by any possible computation.

We will prove the following original results:

(i) the expressiveness of Hoare and Milner synchronization models are in-
comparable for all the above defined classes of reconfigurations;

(ii) the expressiveness of Milner synchronization is greater than the one of
Hoare synchronization for graphs with no interface to the environment
where each node is shared by exactly two edges, since Milner synchro-
nization is asymmetric;

(iii) Hoare synchronization can be implemented using Milner synchronization
and a suitable translation for graphs;

(iv) the encoding approach used in proving (iii) can not be used in the opposite
direction, since it would require to force interleaving in a distributed
structure.

Structure of the paper.

§ 2 introduces Synchronized Hyperedge Replacement and the Hoare and Mil-
ner synchronization models. In § 3 we define the formal setting for comparing
the models. The comparison is carried out in § 4. The case of closed graphs
with nodes shared by exactly two edges is analyzed in § 5. § 6 deals with the
problem of implementing one model using the other one. Finally, conclusions
and traces for future work are presented in § 7.

2 Synchronized Hyperedge Replacement

In this section we present Synchronized Hyperedge Replacement (SHR) [2]
and, in particular, the Hoare and the Milner synchronization models, but first
we introduce some mathematical notation.

LULAINLUOLYy LVANJIN LN I

Mathematical notation. Given a syntactic structure ¢ (e.g., a term, a set of
terms, an equation), we denote with to the application of substitution o to t (in a
capture-avoiding way if ¢ contains binders). The operator | — | computes the number
of elements in a vector or in a set. Given a set S, p(S) is its powerset and S* is
the set of strings on alphabet S. Given a function f, we denote with dom(f) its
domain and with f|g its restriction to the new domain S. Finally, when we use set
operators on functions and substitutions, we refer to their representation as sets of
pairs.

SHR [2] is an approach to (hyper)graph transformation that defines global
transitions using local productions. Productions define how a single (hy-
per)edge can be rewritten and the conditions that this rewriting imposes on
adjacent nodes. Thus the global transition is obtained by applying in parallel
different productions whose conditions are compatible. What exactly compat-
ible means depends on which synchronization model is used. In this work we
will use both the Hoare and the Milner synchronization models. The former
requires that all the edges connected to a node execute the same action on
it. The latter requires two edges to interact by performing complementary
actions while the others stay idle. For a general definition of synchronization
models see [9].

We use the extension of SHR with mobility [5,3], that allows edges to send
node references together with actions, and nodes whose references are matched
during synchronization are unified.

We will give a formal description of SHR as labelled transition system, but
first of all we need an algebraic representation for graphs.

An edge is an atomic item with a label and with as many ordered tentacles
as the rank rank(L) of its label L. A graph is composed by a set of nodes
and a set of such edges, and each edge is connected, by its tentacles, to its
attachment nodes. A graph is connected to its environment by an interface
which is a subset of its nodes. Nodes in the interface are called free nodes,
while other nodes are called bound (or restricted). We will consider graphs
up to isomorphisms that preserve free nodes, labels of edges, and connections
between edges and nodes. We denote with Graphs the set of such graphs.

Now, we present a definition of graphs as syntactic judgements, where
nodes correspond to names, free nodes to free names and edges to basic terms
of the form L(z1,...,x,), where the z; are arbitrary names and rank(L) = n.
Also, nil represents the graph with no edges, | is the parallel composition
of graphs (merging nodes with the same name) and vy is a declaration of a
bound node y.

Definition 2.1 (Graphs as judgements) Let N be a fized infinite set of
names and LE a ranked alphabet of labels. A judgement is of the form I' - G
where:

(i) T C N is a finite set of names (the free nodes of the graph);

(ii) G is a term generated by the grammar

61

62

LULAINLUOLYy LVANJIN LN I

(AG1) (G1]G2)|Gs = G1](G2|G3) (AG2) G1]|G2 = G2|G1 (AG3) G|nil =G
(AG4) vz vy G=vyve G (AGH) v G =G if z ¢ fn(Q)
(AG6) vx G =vy Gly/z} if y ¢ fIn(G)
(AG7) vx (G1|G2) = (I/:E G1)|G2 if x §é fn(GQ)

Table 1
Structural congruence for graph terms.

G:=L(x) | G|G | vy G | nil
where x is a vector of names, L is an edge label with rank(L) = |x| and
Y 1S a name.

We define the restriction operator v as a binder. We denote with fn the
function that given a term G returns the set fn(G) of free names in G. We

demand that fn(G) C T

When defining the interfaces, we use the notation I,z to denote the set
obtained by adding x to I', assuming = ¢ I" and I'1, I’y to denote the union of
'y and T'y, assuming 'y N Ty = ().

Graph terms are considered up to the axioms of structural congruence in
Table 1. As far as judgements are concerned, we define I' - G = I + G’ iff
'=I"and G =G

Axioms (AG1), (AG2) and (AG3) define respectively the associativity,
commutativity and identity over nil for operation |. Axioms (AG4) and (AGb)
state that nodes of a graph can be restricted only once and in any order. Axiom
(AG6) defines a-conversion of a graph w.r.t its bound names. Axiom (AGT)
defines the interaction between restriction and parallel composition.

Note that function fn is well-defined on equivalence classes.

Judgements up to structural axioms are isomorphic to graphs up to iso-
morphisms. For a formal statement of the correspondence see [4].

We present now the steps of an SHR computation.

Definition 2.2 (SHR transition) Let Act be a set of actions, and given
a € Act let ar(a) be its arity. A SHR transition is of the form:

reai™ oL@

where I' = G and ® & G are judgements for graphs, A : T' — (Act x N'*)
15 a total function and m : ' — ' is an idempotent substitution. Function A
assigns to each node x the action a € Act and the vector y of node references
exposed on x by the transition (in a more message-passing view, we say that
node references are sent to x). If A(x) = (a,y) then we define acty(x) = a
and np(x) = y. We require that ar(acta(z)) = |na(z)].

We define:

* n(A) ={z|3z.z € np(x)} set of exposed names;

LULAINLUOLYy LVANJIN LN I

e 'y =n(A)\T' set of exposed fresh names.

Substitution m allows to merge nodes. Since 7 is idempotent, it maps every
node into a standard representative of its equivalence class. We require that
Ve € n(A).xm = x, i.e., only references to representatives can be exposed.
Furthermore we require ® = I'm Uy, namely free nodes are never erased (2)
and new nodes are bound unless exposed (C).

Note that the set of free names ® of the resulting graph is fully determined
by A and 7 (since I' = dom(A)). When writing A as set of pairs we write the
triple (z,a,y) for the pair (z, (a,y)).

SHR transitions are derived from basic productions using suitable sets of
inference rules.

Definition 2.3 (Production)
A production is an SHR transition of the form:
i,y b Lz, ... xy) Ao G

where all x;, 1 =1,...,n are distinct.
We suppose to have for each edge label L of arity n a special idle pro-
duction xq,...,x, b L(xq,...,2,) Acid, 1, Ty B L(xy,...,2,) where

Ac(z;) = (€,()) for each i (e is a special “idle” action with ar(e) = 0). Idle
productions are included in all sets of productions, which are also closed w.r.t.
a-conversion of names in {xy,...,x,} U P.

We present now the set of inference rules for Hoare synchronization. The
intuitive idea of Hoare synchronization is that all the edges connected to a
node must expose the same action on that node.

Definition 2.4 (Rules for Hoare synchronization)

e 2aorae, a2 ora,
DIV F GGy AT 0 - G| GY

(par)

where (TU®) N (I"U ') = 0.

-G, 2 o+ a,
FUF—GWMNI)’I—GQJp

(merge)

where o : I' — I' 1s an idempotent substitution and:
(i) Vx,y € I'.xo = yo = acty(x) = acta(y)

(ii) p = mgu({(na(2z))o = (na(y))olze = yo} U{zo = yolor = yr}) where
we choose names in I'a as representatives whenever possible

(iii) Vz € I'A'(z0) = (A(2))op

(iv) 7 = plro

63

64

LULAINLUOLYy LVANJIN LN I

T okG 25 kG,

Alr,7|r

'rve Gy —— ' +vZ Gy

(res)

where:
(v) Qyelar=yr)=an#z

(vi) Z = ({z} Un(A)) \n(Alr)

| TN YU

(new)
Dz Gy 2AEeW T gy g,

where 2 ¢ TU® and y N (TUP U {z}) = 0.

A transition is obtained by composing productions, which are first applied
on disconnected edges. Composition is performed by merging nodes and thus
connecting the edges. Finally, nodes can be bound. In particular, rule (par)
deals with the composition of transitions which have disjoint sets of nodes
and rule (merge) allows to merge nodes (note that o is a projection into
representatives of equivalence classes). Condition (i) requires that we have
the same action on merged nodes. Condition (ii) defines the most general
unifier p of the union of two sets of equations: the first set identifies (the
representatives of) the tuples associated to nodes merged by o, while the
second set of equations adds previous merges traced by m. Thus p is the
merge resulting from both 7 and 0. Note that (iii) A is updated with these
merges and that (iv) 7’ is p restricted to the nodes of the graph which is the
source of the transition. Rule (res) binds node z, guaranteeing that z is not a
representative if it belongs to a non trivial equivalence class and binding also
all the nodes that were extruded on node x in the starting transition. Rule
(new) allows adding to the source graph an isolated node where arbitrary
actions (with fresh names) are performed.

We write P Iy I'+ Gy AT P Gy if ' G, AT p (G5 can be obtained
from the productions in P using Hoare inference rules.

A similar set of rules can be defined also for Milner synchronization.
Definition 2.5 (Rules for Milner synchronization)
A ANz’
-G — o+ G I'+-G, —— '+ G

(par) —
LI F GG 2T ¢ @ - Gy G

where (U ®) N (I"U D) = 0.

| NS ETELNY SR

To b Gio 27 & - vU Goop
where o : I' — I' 1s an idempotent substitution and:

(merge)

LULAINLUOLYy LVANJIN LN I

(i) Va,y € D.xo = yo Nacty(z) e Nacty(y) FeNx #y =
(Vz e N\ {z,y}.20 = 10 = actp(z) = €)A
acta(x) =a Nacta(y) =aANa#T1

(ii) p = mgu({(ns(z))o = (na(y))oleo = yo} U{ro = yolow = ym}) where
we choose names in I'a as representatives whenever possible
(1,()) ifro=yo=zANx#yANacty(x),acty(y) # €
(iii) A'(2) = ¢ (A(z))op if vo = 2z A acty(z) # €
(e,()) otherwise
(iv) " = plre
(v) U= (®ap)\ ¢

T okG 25 -G,

A|F77T|F

'rve Gy —— ' +vZ Gy

(res)

where:
(vi) Qyelar =yr) =ar #
(vil) acty(z) =€ Vacty(z) =7
(viii) Z ={z} if v ¢ n(A|r), Z = 0 otherwise

| AR ETELNY SEE
Tk g 20 6 g,

(new)

where v ¢ I'U ®.

Rules for Milner synchronization suppose that actions can be normal ac-
tions a (representing input) or coactions @ (representing “output”). We also
assume @ = a. Furthermore we have the two special actions € and 7 (completed
synchronization) of arity 0.

Rules are similar to the ones for Hoare synchronization. The main dif-
ferences are that in rule (merge) during action synchronization (i) we require
to have (at most) two complementary non e actions, and their composition
is 7. Thus we may have to reintroduce restrictions (v) if some nodes were
extruded by the synchronized actions. In rule (res), just nodes x where € or
T actions are performed can be restricted, and since these actions have arity
0 only node x may have to be restricted in the final graph. Finally, in rule
(new) only action e is allowed on the newly created node.

We write P by TGy 25 @ F Gy if T+ Gy 25 & + Gy can be obtained
from the productions in P using Milner inference rules. We drop the subscript
M or H from IF when we refer to an unspecified synchronization model.

A SHR computation is a sequence of SHR transitions such that for each 7
the final graph of transition ¢ is the starting graph of transition ¢ +1. A SHR
computation is called trivial if the starting graph is equal to the final graph.

66

LULAINLUOLYy LVANJIN LN I

3 Expressiveness measures

We want to study the expressiveness of the Hoare and Milner synchronization
models in the SHR framework. Different measures of expressiveness can be
useful, according to which is the intended use of the model. In our case, we are
mainly interested in using graph transformation to express reconfigurations of
the topology of distributed systems, thus the main point is which is the class
of reconfigurations that can be expressed by a set of productions together with
a synchronization model.

Formally, we define reconfigurations as functions r : Graphs — o(Graphs).

Intuitively, the behaviour of a set of productions P on a graph G w.r.t.
a synchronization model S is the set of graphs that are the results of “suit-
able” computations starting from G. The choice of which computations are
“suitable” determines the observable behaviour of the system.

Definition 3.1 (Behaviour function)

The function C-behav®(P)(G) is the function that computes the set of graphs
reachable from graph G using computations in the class C' obtained from the
productions in P using synchronization model S.

Thus we can say that the C-expressiveness of synchronization model S;
is greater than the Cs-expressiveness of a synchronization model Sy, written
as (S1,C1) > (52, Cy) if there exists a function f from sets of productions to
sets of productions such that for each set of productions P and for all graphs

G we have that Cs-behav™*(P)(G) = C1-behav® (f(P))(G).

We will consider three different choices for C:

1 one-step computations;

max maximal computations (i.e., computations whose final state does not
allow further non trivial transitions);

all all possible computations.

If a synchronization model Sy is not as expressive as a synchronization
model S7, we can try to simulate reconfigurations of S, using reconfigurations
of Sy by translating the graph G (this will be done formally in § 5 and § 6).

4 The expressiveness of Hoare and Milner synchroniza-
tions are not comparable

In this section we show that the expressive power of Hoare and Milner syn-
chronization models are different, but no one is greater than the other, inde-
pendently of the class of computations used.

We first need an auxiliary definition.

Definition 4.1 (Monotonicity) We define the following partial order on
transitions: T UL F G1|G’ A duUln k- Go|G'm is greater than T' - G4 A,

LULAINLUOLYy LVANJIN LN I

O+ Gy iff 1" G is a graph and A = N'|r. A SHR system is monotone iff the
set of derivable transitions is upward-closed (i.e., for each set of productions
P, if a transition is derivable, then all the greater transitions are derivable
too).

Intuitively, in a monotone system we can always add to the graph an
additional part which stays idle.

Proposition 4.2 Milner SHR is monotone.

Intuitively, this happens because Milner synchronization involves exactly
two participants. The same is not true for Hoare synchronization, because
there is a universal quantification on the participants connected to the node
where the synchronization is performed.

Since the monotonicity property can be extended from transitions to gen-
eral computations, each set of Milner computations must be upward-closed
too. Using that, we can prove the following theorem.

Theorem 4.3 (Milner,Cy) # (Hoare,Cs) for each Cy € {1,all} and each
Cy € {1, max,all}.

Proof. Let us consider the set of productions P generated by the only pro-
duction:

2k d(z) Y ok @)

For Cy € {1, all} we have that:

Cy-behav? (P)(z F d(z)) = {z F d(z),z + d'(x)}

Cy-behav? (P)(z F d(z)|d(z)) = {z F d(z)|d(z),z - d'(x)|d (z)}

while for Cy = max the behaviours do not contain the trivial reconfigurations
(which are not maximal). Since, for each choice of Cj, behaviours are not
monotone, the thesis follows from Proposition 4.2. a

The case of max-expressiveness requires a bit more work.
Theorem 4.4 (Milner,mazx) # (Hoare,C) for each C' € {1, maz,all}.

Proof. Let us consider the set of productions P generated by the only pro-
duction:

- d(z) 2 o il

For each C € {1, all} we have that:

C-behav? (P)(z F d(z)) = {z F d(z), = F nil}

C-behav? (P)(z + d(z)|d'(x)) = {z F d(x)|d'(z)}

while for C' = max we have not the trivial reconfiguration in the first case.
Suppose that we can obtain this behaviour with Milner SHR. By monotonicity
from the first case we have a transition from x & d(z)|d'(x) to F d'(z). If
x b d'(x) can not be rewritten then we have a contradiction, since it is not in
the behaviour. Otherwise by monotonicity also x F d(x)|d'(z) can be rewritten
and so it can not be in the behaviour for maximal computations, as it is. O

67

68

LULAINLUOLYy LVANJIN LN I

Now we consider the inverse problem, that is we prove that the expressive-
ness of Milner synchronization model can not be reached by Hoare SHR.

Notice that, if all nodes are free, Milner synchronization can not force pro-
ductions to be executed together, i.e., each production can always be applied
in isolation. Hence, restriction is fundamental for constraining the behaviour
of components using Milner synchronization (and this does not surprise, since
even in CCS restriction is necessary to reach Turing equivalence).

Notice that instead in Hoare SHR restriction just performs hiding of part
of the observation, i.e., no transition can be forbidden by restriction. More
formally, the following proposition holds.

Proposition 4.5 Given a set of productions P, if P lFg I';z F Gy AT

Gy then Plky I'Frvx Gy Ry Gy where N, " and @' are subsets of
A, m and ® respectively, and Z = &\ P'.

Theorem 4.6 (Hoare,Cy) # (Milner,Cy) for each Cy,Co € {1, maz, all}.

Proof. Let us consider the set of productions P generated by the only pro-
duction:

vk d(z) 22 0 - d ()
For each Cy € {1, all} we have that:
Cy-behav (P)(z + d(z)) = {x F d(z), 2 - d'(z)}
Cy-behav (P)(F vz d(z)) = {F va d(z)}
while for Cy = max we have not the trivial reconfiguration in the first case.
Since this behaviour does not satisfy Proposition 4.5, it can not be obtained
by Hoare SHR (with any class of computations). O

5 Reconciling Hoare and Milner synchronizations

Until now we have shown that the expressiveness of Hoare and Milner SHR are
quite different. We consider now a case where they become closer, i.e., when
we consider closed graphs (i.e., graphs where all nodes are restricted) where
each node is attached to exactly two tentacles. We call these graphs closed
2-shared graphs. Even if this case is quite simple, it shows some interesting
features of the two synchronization models and it is a first step towards the
more general results of next section.

The reconfigurations have to preserve the two invariants above. The in-
variant of having closed graphs is preserved automatically since new nodes are
bound by default, and an extrusion can happen only if there is a free node on
which it is performed.

The second condition is not preserved in general, but it can be enforced
by constraining the allowed productions. Let us consider the application of a
single production: when the rewritten edge is removed, all the nodes attached
to it have one attached tentacle missing (two if the edge was connected two
times to the same node). Thus when inserting the new graph, the same number

LULAINLUOLYy LVANJIN LN I

of connections to those nodes must be provided, and two connections must be
provided for each new node. Notice also that when merges are performed, two
nodes with one connection each are merged into one with two connections,
thus occurrences of nodes in A or in 7w count as new connections for that node.

Definition 5.1 A production P is connection-preserving if for each node x
the number of occurrences of x in the right hand side, plus the ones in A,
plus the number of nodes that are merged with x by 7 equals the number of
occurrences of x in the left hand side (that is, 1) if x occurs there, and it is 2
for new nodes.

Proposition 5.2 Let P be a set of connection-preserving productions and G
a closed 2-shared graph. If P I- G AT G then G is a closed 2-shared graph.

Proof. By rule induction on the derivation. a

Thus from now on we consider only connection-preserving productions. We
will show later that this kind of productions is expressive enough to simulate
general Hoare transitions (via a translation of graphs).

Theorem 5.3 For closed 2-shared graphs, (Milner,C) > (Hoare,C) for
each C € {1, maz,all}.

Proof. The set of productions for Milner model can be obtained by replicating
each Hoare production with all possible “orientations” of actions, i.e., any
action a must be substituted by either a or @ and a production is needed for
each possible combination of choices. O

This proves that for closed 2-shared graphs, Hoare synchronization is equal
to Milner synchronization where the distinction between actions and coactions
is dropped. In that case, Milner synchronization is strictly more expressive
than Hoare synchronization and the additional expressiveness is given exactly
by the asymmetry, as shown by the following proposition (whether this result
holds for max expressiveness is an open problem).

Proposition 5.4 For closed 2-shared graphs, (Hoare, Cy) % (Milner, Cy) for
each Cy,Cy € {1,all}.

Proof. Let us consider the graph F vz d(x)|d(x). This graph is symmetric.
Using Hoare synchronization, for any choice of production for the left edge,
the same production can always be applied in the same step also to the right
edge, and the result is again a symmetric graph. Thus for each choice of
productions, if a transition exists, then also a transition that preserves the
symmetry exists.

Using Milner synchronization and the set of productions generated by:
x Fd(z) @al), 4 c(x)
o - dz) Y2 o b d(e)

we have just one non trivial allowed transition, with final graph F vz ¢(x)|d(z).

69

70

LULAINLUOLYy LVANJIN LN I

Notice that this is also the result of all the allowed non trivial computations.
Since no symmetric graph is obtained, this reconfiguration can not be per-
formed using Hoare SHR. O

Thus we will consider a different form of simulation, that uses a translation
for graphs. In particular, we define two functions [—],[-]~' : Graphs —
Graphs such that for each graph G we have [[G]]™' = G (but we may have
[[GT~'] # G).

We say that (C1,S;) can simulate (Cy, S) iff we have Cy- behav® (P)(G) =
[C1-behav™ (f(P)([G]] ", i-e., the result of a (Cs, S) reconfiguration can
be obtained by translating the graph, reconfiguring it using (C4, S;) and trans-
lating it back again.

We use a translation based on the concept of amoeboid [8]: each node
shared by n tentacles is translated into a graph called amoeboid with n ex-
ternal nodes. The inverse translation [—]~! just removes the amoeboids and
reinserts the nodes they stand for. In our case an amoeboid (which connects
two nodes) for [—] is simply an edge L(x,y), where L is a special label with
productions of the following form for each action a of arity k:

) (m7a7<m17~~~7$k>)(y767<y17~~~7yk>)

z,y b L(z,y
Ty Y, Tiy ooy They Y1y - -5 Yk - L(Zlf,y)| :[7;:17”'7]€ L('xuyz)

and where L o G, is the parallel composition of graphs G; for each ¢ € I.
As far as [—] 7! is concerned, an amoeboid is any chain of such edges. The
translation f of productions just drops 7 and connects each pair of nodes
merged by 7 using an L edge.

The following theorem holds.

Theorem 5.5 For each set generated by connection-preserving productions P,
each closed 2-shared graph G, and each class of computations C' € {1, max, all}
we have C-behav™ (P)(G) = [C-behav™ (f(P))([G]] "

Proof. The result holds because the L edge allows on its nodes complemen-
tary synchronizations, and amoeboids to be merged are instead connected
using L edges. The tricky part is that the chains of L edges that are created
(and that are translated into nodes by the inverse translation) have always
odd length, and this is exactly the condition required to have complementary
actions on the two ends of the chain. Notice also that the productions for L
edges are connection-preserving. O

6 Dealing with general closed graphs

We want now to go back to the general case, at least as far as the number of
tentacles attached to each node is concerned. In particular, we will show that

LULAINLUOLYy LVANJIN LN I

by using a different kind of amoeboids, the general case can be reduced to the
2-shared one.

As far as Hoare synchronization is concerned, we want to use amoeboids
that perform the broadcast of the action.

Those amoeboids are composed by edges H (for Hoare) of arity 3 and
edges C (for closing) of arity 1 to deal with nodes with less than 3 attached
tentacles. These edges have for each action (we consider as an example an
action a of arity 2) productions of the form:

) ($7fl7<$179ﬂ2>)(y,a7<y1 ,y2>)(2,f17<21 7Z2>)

xr,y,zF H(x,y, 2
x,Y,z,T1,Y1, 21,22, Y2, 22 H H(%%ZﬂH(flay172’1)|H($2ay2>Z2)

v - O(x) D0m) 0 g b O(@)|C(a1)|C)

Such an amoeboid imposes the same action to be executed on each node
and it creates a copy of itself for each set of corresponding names, that are in
this way connected in the resulting graph.

An amoeboid used to connect a set of nodes S is any connected graph
composed by H and C' edges whose nodes in S are attached to just one tentacle
while whose other nodes are 2-shared. Thus for each graph G, [G] is a 2 shared
graph.

Analogously we have to translate productions in order to make them
connection-preserving. This can be done by splitting nodes that are used too
many times and connecting the different copies using H edges, while nodes
that are used too few times must be closed using C' edges. Also, 7 is dropped
and the nodes to be merged are connected using amoeboids.

Example 6.1 Let us consider the following production, which is used in [5]
to specify a reconfiguration from a ring graph to a star one:

) (z,r,(w))(y,r,(w)) ,I, y7 w l_ S(y, w)

z,ybr(zy
In this production the name x is not used in the right hand side, whereas the
name w is used 3 times (two times in A and one by edge s) while it does not
occur in the left hand side. We can translate the production into:

) @ w1 w2)) x, Y, wy, we, ws = C(x), s(y, ws), H(wy, ws, w3)

z,y b r(zy
which is a connection-preserving production such that the inverse translation
of the right hand side is the right hand side of the starting production (up to
renaming of nodes).

By using for functions [—] and [—]~' the new amoeboids, we have the
following result.

71

72

LULAINLUOLYy LVANJIN LN I

Theorem 6.2 For ecach set of productions P, each closed graph G, and each
class of computations C' € {1,max,all} we have that C-behav’ (P)(G) =
[C-behav? (f(P)([G])]~" where f performs the above described translation
of productions.

This result can be composed with Theorem 5.3 to get a translation from
Hoare synchronization to Milner synchronization for any closed graph. To deal
with general graphs, one just needs to trace which nodes are free. This can be
done by adding to each amoeboid representing a free node an edge ENV (x)
representing a connection with the environment. Such an edge must allow any
action and it must attach a copy of itself to each node it receives (to simulate
the fact that a node sent on a free node is extruded), like the C' edge does.
Note that in this way we may get amoeboids with many connections to the
environment. We can add productions to delete them if they are redundant,
but there is no way to force these reconfigurations to be executed before the
normal transitions.

Now we want to apply the same approach to Milner synchronization. Mil-
ner amoeboids are essentially routers that create a path from an action to the
corresponding coaction.

We start by introducing an M (for Milner) edge of arity 3. We want the
edge to perform complementary actions on any pair of its three attachment
nodes. Thus we have a production of the form:

Ty, 2 I_ M(l', Y, 2) (z,a,(sl,sg))(y,67(51732>)(z,e7<)) Ty, 2 l_ M(

.y, 2)

Note that in Milner synchronization we always merge pairs of nodes, thus
it is not necessary to replicate the amoeboid. We also have to use a different
kind of edge for dealing with nodes shared by less than 3 tentacles, which
we denote by I (for inactive). This edge has only the idle production. This
guarantees that actions and coactions are performed only by edges from the
original graph.

For productions we use the same kind of translation that we have used in
the Hoare case, with the new edges for amoeboids.

However w.r.t. Hoare model we have here an additional problem: many
independent synchronizations may be allowed inside an amoeboid during one
transition, but this is not allowed in standard Milner synchronization. In
particular, this occurs when the pairs of interacting nodes are connected by
disjoint paths inside the amoeboid. Also, cycles in the amoeboid may cause
new isolated nodes to be created, but these can be discarded by [—] ™.

Using the new definition for the translation functions, we have the following
partial correctness result.

Theorem 6.3 For each set of productions P, each closed graph G, and each
class of computations C € {1, max,all} we have that C-behav™ (P)(G) C
[C-behav™ (f(P)([G]] ™" where f performs the usual translation of produc-

LULAINLUOLYy LVANJIN LN I

tions into connection-preserving ones.

The other inclusion holds, e.g., for amoeboids connecting at most 3 nodes,
since in that case we can have at most one synchronization. Notice that this
theorem can be composed with Theorem 5.5 to have an implementation of Mil-
ner synchronization using Hoare synchronization. The composed translation
has been used in [8] to map Fusion Calculus into logic programming.

We show now that the problem of guaranteeing interleaving inside amoe-
boids of the above seen kind can not be solved.

Theorem 6.4 Let G C Graphs contain for each n at least a graph with n
nodes in its interface and let it be closed w.r.t. composition of graphs by
joining them via a node in the interface. Then the maximum k such that all
G € G allow only transitions where at most k actions on the interface are not
€, if it exists is 0.

Proof. Suppose that such a k exists and it is not 0 and take a graph with
more than k nodes in its interface, and a transition where k of the actions are
not €. Take a node where € action is executed. By connecting two such graphs
by merging these two nodes, we get a graph which allows at least 2k non ¢
actions on its interface. This gives a contradiction. a

This proves that we can not have a set of amoeboids for Milner synchro-
nization (since this requires k = 2), since the closure property is needed to
model mobility. Notice in fact that if we want to model reconfigurations with-
out mobility we can use, e.g., amoeboids with a tree structure whose leaves
are the interface and whose roots check that the resulting action is a 7. Using
mobility, the tree shape can not be preserved.

Also in that case, free nodes can be managed using edges standing for
connections to the environment.

7 Conclusion and future works

We have analyzed the expressive power of Hoare and Milner synchronizations
in the SHR setting, proving that they are incomparable and that implementing
one synchronization with the other is not a trivial task. Also, for Milner
synchronization no fully satisfactory simulation can be obtained using the
concept of amoeboid. Notice that no counterexample (but the last one) uses
mobility, thus we have proved that the expressiveness is incomparable without
mobility, and that adding mobility does not help to bridge the gap.

These results justify the idea of having different synchronization models
available in the same framework in order to be able to use all of them with-
out complex translations. Such an approach was used in process calculus
ACP [1], and has been extended to deal with graph transformations and mo-
bility in [9,10].

73

74

LULAINLUOLYy LVANJIN LN I

As future work we want to carry out a similar comparison among generic
synchronization models as defined in [9]. Another issue is to consider not only
the allowed reconfigurations, but also the labels of the transitions. Finally, the
possibility of using maximal expressivity to break symmetry in Hoare synchro-
nization must be further investigated (see discussion before Proposition 5.4).

References

[1] J.A. Bergstra, and J.W. Klop. The algebra of recursively defined processes and
the algebra of regular processes. In Proc. of ICALP’84, volume 172 of LNCS,
pages 82-94. Springer, 1984.

[2] P. Degano and U. Montanari. A model for distributed systems based on graph
rewriting. Journal of the ACM, 34(2):411-449, 1987.

[3] G. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of ambients via
graph synchronization with mobility. In Proc. of ICTCS 01, volume 2202 of
LNCS, pages 1-16. Springer, 2001.

[4] D. Hirsch. Graph transformation models for software architecture styles.
PhD thesis, Departamento de Computacién, Facultad de Ciencias Exactas y
Naturales, U.B.A., 2003.

[5] D. Hirsch and U. Montanari. Synchronized hyperedge replacement with name
mobility. In Proc. of CONCUR’01, volume 2154 of LNCS. Springer, 2001.

[6] C.A.R. Hoare. CSP — Communicating Sequential Processes. International
Series in Computer Science. Prentice-Hall, 1985.

[7] I. Lanese and U. Montanari. A graphical fusion calculus. In Proc. of the
Workshop of the COMETA Project on Computational Metamodels, volume 104
of ENTCS, pages 199-215. Elsevier, 2004.

[8] I. Lanese and U. Montanari. Mapping fusion and synchronized hyperedge
replacement into logic programming. Theory and Practice of Logic
Programming, Special Issue on Multiparadigm Languages and Constraint
Programmaing, 2004. To appear.

[9] I. Lanese and U. Montanari. Synchronization algebras with mobility for graph
transformations. In Proc. of FGUC’04 — Foundations of Global Ubiquitous
Computing, ENTCS, 2004. To appear.

[10] I. Lanese and E. Tuosto. Synchronized hyperedge replacement for
heterogeneous systems. In Proc. of COORDINATION’05, volume 3454 of
LNCS, pages 220-235. Springer, 2005.

[11] R. Milner. A calculus of communicating systems. In volume 92 of LNCS.
Springer, 1989.

[12] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in
mobile processes. In Proc. of LICS ’98. IEEE, Computer Society Press, 1998.

Extending C for Checking Shape Safety

— Work in Progress —

Mike Dodds' and Detlef Plump 2

The University of York, UK

Abstract

The project Safe Pointers by Graph Transformation at the University of York has
developed a method for specifying the shape of pointer-data structures by graph
reduction, and a static checking algorithm for proving the shape safety of graph
transformation rules modelling operations on pointer structures. In this paper, we
outline how to apply this approach to the C programming language. We extend
ANSI C with so-called transformers which model graph transformation rules, and
with shape specifications for pointer structures. For the resulting language C-GRS,
we present both a translation to C and and an abstraction to graph transformation.
Our main result is that the abstraction of transformers to graph transformation
rules is correct in that the C code implementing transformers is compatible with
the semantics of graph transformation.

Key words: Pointer programming; shape safety; C; graph transformation.

1 Introduction

Pointers in imperative programming languages are indispensable for the ef-
ficient implementation of many algorithms at both applications and systems
level, but pointer programming is notoriously prone to undetected errors. This
is because the type systems of current programming languages are too weak
to detect ill-shaped pointer structures.

To improve this situation, the project Safe Pointers by Graph Transforma-
tion® (SPGT) at the University of York has developed a method to specify
the intended shape of a family of pointer data-structures by graph reduction
specifications (GRSs). A GRS consists of a signature of admissible node and
edge labels, a set of graph reduction rules, and a so-called accepting graph.

! Email: miked@cs.york.ac.uk
2 Email: det@cs.york.ac.uk
3 http://cs-people.bu.edu/bake/spgt/
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

75

76

1L/ULIO, L LULIVLL

The shape specified by a GRS contains all graphs that can be reduced to the
accepting graph by some series of rule applications [1,3].

For example, Figure 1 shows a GRS for full binary trees with an auxiliary
pointer. Tree nodes are either L-labelled leaves or B-labelled branch nodes
with outgoing pointers [and r, and there is a unique R-labelled node with
pointers top and aux which point to the root of the tree and to an arbitrary
tree node, respectively. The accepting graph, Acc, is the smallest graph of
this kind. The left reduction rule redirects the auxiliary pointer to the top of
the tree (regardless of the labels of nodes 2 and 3), the right rule deletes two
leaves and relabels their parent node as a leaf. Every full binary tree with
an auxiliary pointer can be reduced to Acc by these two rules, but no other
graph can be reduced to Acc.

top

Acc: %@

1 1 1 @ 1 @
N = top auzx L/\" N
() O 2 O L W

Fig. 1. Graph reduction specification of binary trees with an auxiliary pointer

Operations on pointer data-structures are also modelled by graph trans-
formation rules. A static checking algorithm for proving that such operations
are shape preserving is presented in [2] (generalizing a similar algorithm for
context-free shapes given in [4,5]). Figure 6 shows an operation on the shape
of Figure 1 that replaces a leaf destination of the auxiliary pointer with a
branch node and two new leaves. This is an example of a shape preserving
operation: when applied to a full binary tree with an auxiliary pointer, it will
always produce a graph of the same shape.

In what follows, we outline how to apply the SPG'T approach to the C pro-
gramming language. The next section summarises how shapes are defined by
graph reduction and sketches the checking algorithm for shape-preservation.
Section 3 describes constructs which allow C programmers to write shape
specifications and operations on shapes, Section 4 indicates how to translate
the extended language—called C-GRS—to standard C, Section 5 discusses the
correctness of an abstraction of C-GRS shape-specifications and operations to
GRSs and graph transformation rules, and Section 6 concludes with a brief
discussion of related work.

2 Safe Pointers by Graph Transformation

This sections summarises our method of specifying shapes [1,3] and briefly
discusses the shape-checking method of [2].

1L/ULIO, L LULIVLL

A graph G = (Vg, Eg, sg, ta, la, mg) consists of a finite set of nodes (or
vertices) Vg, a finite set of edges Eg, functions sq,tq: Eq — Vi assigning
a source and a target node to each edge, a partial node labelling function
lg: Vg — Ly, and an edge labelling function mg: Eq — Lg. Graph G models
a pointer-data structure by retaining only the pointer fields of records and
abstracting from other values. Each node models a tagged record of pointers
where the node label, drawn from the node-label alphabet Ly, is the tag.
Each edge leaving a node corresponds to a pointer field where the edge label,
drawn from the edge-label alphabet Lg, is the name of the pointer field. We
use a function type: Ly — o(Lg) to associate with each record tag its set of
field names: if node v is labelled [and has an outgoing edge e, then the label
of e must be in type(l) and no other edge leaving v must have this label. The
triple ¥ = (Ly, Lg, type) is called a signature and graphs conforming to the
above constraints are called »-graphs. A Y-graph is Y-total if every node v is
labelled and for each label in type(ig(v)) there is an outgoing edge with that
label. A shape is a set of Y-total graphs. So shape members model pointer
structures with no missing or dangling pointers.

A graph morphism g: G — H between Y-graphs G and H consists of a node
mapping gy: Ve — Vg and an edge mapping gg: E¢ — Epy such that sources,
targets and labels are preserved: sgogr = gvosg, tHFogr = gy otg, MEogr =
mg, and ly(gy(v)) = lg(v) for all nodes v where lg(v) is defined. Morphism
g is an inclusion if g(z) = x for all nodes and edges x. An isomorphism is a
graph morphism that is injective and surjective in both components and maps
unlabelled nodes to unlabelled nodes. If g is an isomorphism then G and H
are isomorphic, denoted by G = H.

A rule r = (L «— K — R) consists of three ¥-graphs L, K and R, and
inclusions K — L and K — R. Graph K is the interface of r. Intuitively, a
rule deletes the nodes and edges in L — K, preserves those in K and allocates
those in R— K. Our pictures of rules show only the left- and right-hand graphs,
the interface always consists just of the numbered nodes of the left- and right-
hand graphs. Y-graphs in rules need not be Y-total, they can contain nodes
with an incomplete set of outgoing edges or unlabelled nodes with no outgoing
edges. We refer to [1] for conditions on unlabelled nodes and outgoing edges in
rules which ensure that rule applications preserve both »-graphs and >-total
graphs. Rules satisfying these conditions are called >-total rules.

Graph G directly derives graph H through rule r = (L «— K — R) and
injective morphism g, denoted by G =, , H or G =, H or just G = H, if
squares (1) and (2) in Figure 2 are natural pushouts. (See [6] for the definition
of natural pushouts.)

Operationally, graph D is obtained from G by deleting the nodes and edges
in g(L) — g(K), and making each node unlabelled that is the image of an
unlabelled node in K that is labelled in L. By the pushout property of square
(1), deleted nodes cannot be incident to any edges in G — (g(L) —g(K)); this is
called the dangling condition. Graph H is obtained from D by adding all items

77

78

1L/ULIO, L LULIVLL

L «— K — R

gl (1) 1 (2]
G «— D — H

Fig. 2. A double-pushout diagram

in R — K, and labelling unlabelled nodes with the labels of their counterparts
in R. We write G =% H if there asequence G =Gy = ... = G, = H,n > 0,
where each direct derivation uses a rule from the set R. If no graph can be
directly derived from G through a rule in R, we say that G is R-irreducible.

A graph reduction specification S = (%, R, Acc) consists of a signature 3,
a set of X-total rules R and a Y-total R-irreducible accepting graph Acc. It
defines the graph language L(S) = {G | G =% Acc}.

A GRS can be turned into an equivalent graph grammar by swapping left-
and right-hand sides of the rules and using the accepting graph as a start
graph. But we insist on the reduction-rule view as we usually impose con-
ditions such as termination and closedness to ensure that shape membership
can be efficiently checked (see below). In addition to the above definition,
nonterminal labels can be allowed, see [1]. Because the rules in R are -total,
we have for every step G = H that G is a ¥-total if and only if H is »-total.
So the graphs defined by GRSs are Y-total and L(S) is a shape.

A GRS S is polynomially terminating if there is a polynomial p such that
for every reduction Gy =% ... =x G, on X-total graphs, n < p(|Ve| + |Egl).
It is closed if for all G € L(S), G =x H implies H € L(S). A polynomial
graph reduction specification, PGRS for short, is a polynomially terminating
and closed GRS. Membership of PGRS shapes is decidable in polynomial
time—see [1], where also sufficient conditions for closedness and polynomial
termination are discussed.

Unrestricted GRSs are universally powerful in that they can define every
recursively enumerable shape, but their membership problem is undecidable
in general. The power of PGRSs goes beyond the reach of context-free graph
grammars (used by Fradet and Le Métayer to specify shapes [4,5]). For exam-
ple, [1] contains PGRSs for various forms of balanced trees, including red-black
trees. Balance is known to be not context-free specifiable.

To illustrate the above notions, consider again the GRS of Figure 1. Its
signature is given by Ly = {R,L,B}, Lr = {top,auz,l,r}, type(R) =
{top, auz}, type(B) = {l,r} and type(L) = (. Every full binary tree with
an auxiliary pointer can be reduced to the accepting graph: using the left
rule in Figure 1, one first redirects the auz-edge to the target of the top-
edge (if the auz-edge points to some other node), and then repeatedly applies
the other rule which removes two leaves and relabels their parent node as a
leaf. To see that the rules cannot reduce ill-shaped graphs to Acc, consider
their inverses (which are obtained by swapping left- and right-hand sides):

1L/ULIO, L LULIVLL

these rules clearly preserve full binary trees with an auxiliary pointer which
implies that the specified shape cannot contain other graphs. The GRS is
polynomially terminating—actually linearly terminating—because for every
step G = H on X-graphs, the number of nodes without outgoing parallel
edges is reduced. The GRS is also non-overlapping, meaning that for each
pair of steps H; <= G = H, on X-graphs, either H; = H, or there is a Y-
graph M such that H; = M < H,. This property implies closedness and
hence the GRS is a PGRS.

Operations on pointer structures—such as the replacement of a leaf in
a tree shown in Figure 6—are also modelled by graph-transformation rules
(which need not obey the restrictions of PGRSs). A graph-transformation
rule 7 is safe with respect to a shape L(S) if for all G in L(S), G =, H
implies H € L(S).* The static checking algorithm for shape safety developed
in the SPGT project is described in [2]. Briefly, given a graph-transformation
rule » and a GRS §, the algorithm constructs two abstract reduction graphs
(ARGs) which represent all contexts of 7’s left- and right-hand side in members
of L(S). The rule is safe if the right-hand ARG includes the left-hand ARG.
Some ARGs are infinite and hence their construction does not terminate, but
in many practical cases the algorithm produces finite ARGs representing all
left- and right-hand contexts so that inclusion can be checked. The general
shape-safety problem is undecidable even for context-free shapes [5] and hence
every checking method is necessarily incomplete.

3 C-GRS — An Extension to C

The language C-GRS is a small extension to ANSI C which is intended to
implement the approach to shape specification and shape checking described
above. The main idea (adopted from [4]) is that pointers are only manipulated
by transformers which correspond to graph transformation rules. For example,
Figure 3 shows a C-GRS function which inserts an integer value i into a binary
search tree b whose shape bt corresponds to the GRS of Figure 1. This
function uses the transformer bt_auxreset to first move the auxiliary pointer
to the root of the tree. Then the tree is traversed by repeatedly comparing
the integer values in branch nodes (retrieved by bt_getval) with the integer
i and following either the left or the right pointer, using the transformers
bt_goleft and bt_goright. If the search ends at a leaf, then bt_insert
transforms the leaf into a branch node and inserts i into that node. The
definition of bt_insert is shown on the right of Figure 4.

4 For simplicity, this paper assumes that rules have the same input and output shape. The
shape-checking method of [2] can handle shape-changing rules, too.

79

80

1L/ULIO, L LULIVLL

bt *insert(int i, bt *b) {

int t;

bt_auxreset(b);

while (bt_getval(b, &t)) {
if (t == 1) return b;
else if (t > i) bt_goleft(b);
else bt_goright(b);

}

bt_insert(b, &i);

return(b);

}

Fig. 3. C-GRS function to insert a value into a binary search tree

3.1 Shapes

Nodes in a C-GRS shape are similar to C structures. In addition to values
of normal C data-types, nodes can contain pointers to nodes, declared by the
keyword edge. Unlike C pointers, edges are defined without stating the type
of the objects they are pointing to—edges can point to every (non-root) node
of the given shape. For example, the type of a branch node of the binary-tree
shape is declared as follows:

nodetype branchnode {
edge 1, r;
int val;

}

The collection of node-type definitions of a C-GRS shape declaration cor-
responds to a GRS signature. Shape declarations also contain transformers,
described below, which correspond to the reduction rules of a GRS. The ac-
cepting graph of a C-GRS shape is defined after the keyword accept, using
the same syntax as for the left- and right-hand sides of transformers. Figure
4 shows the declaration of the shape bt which corresponds to the GRS of Fig-
ure 1 (where the node types btroot, branchnode and leafnode correspond to
the node labels R, B and L.) Note that nodes in a C-GRS shape can contain
values such as the integer val which do not occur in the graphs specified by

a GRS.

3.2 Transformers

Transformers are the mechanism by which pointer data-structures are manip-
ulated in C-GRS programs. To ensure shape safety, all manipulations of shape
members must be written as transformers. Like graph transformation rules,
transformers consist of a left- and right-hand graph. For example, consider the
transformer bt_insert of Figure 4 which replaces a leaf with a value-carrying
branch. To apply this transformer to a tree, its left-hand node rt must match
the source node of the auxiliary pointer aux in the tree and node n1 must

1L/ULIO, L LULIVLL

shape bt {
signature {
nodetype btroot {
edge top, aux;

}
nodetype branchnode { transformer
edge 1, r; bt_insert(bt *tree,
int val; int *inval) {
} left (rt, ni1) {
nodetype leafnode {} root btroot rt;
} leafnode ni;
accept { rt.aux => ni;
root btroot rt; }
leafnode leaf; right (rt, n1l, 11, 12) {
rt.top => leaf; branchnode nl;
rt.aux => leaf; leafnode 11, 12;
} rt.aux => nl;
rules { nl.1l => 11;
moveaux2root; nl.r => 12;
branch2leaf; nl.val = *inval;
} }
} }

Fig. 4. Left: shape declaration corresponding to the GRS of Figure 1. Right:
transformer replacing a leaf with a branch and inserting a value

match a leaf in the tree that is pointed to by the auxiliary pointer.
The constituent nodes of the left- and right-hand sides of a transformer
are declared in a list, as follows:

left(rt,nl)

Nodes are assigned a type (or tag in the terminology of Section 2) using a
syntax similar to C variable declarations:

btroot rt;
leafnode ni;

It is important to note that transformers can alter node types. One can also
declare nodes without assigning a type, these nodes correspond to unlabelled
nodes in graph transformation rules and will match nodes of every type.

The target of the aux-edge leaving rt is specified as follows:

rt.aux => nil;

Edges must point to nodes, null edges are not allowed. The right-hand side of
bt_insert allocates the leaves 11 and 12 as children of n1. The types of the
new leaves are assigned in the same way as shown for the left-hand side. Leaf
nl is retyped as a branch node by the following assignment on the right-hand
side:

81

82

1L/ULIO, L LULIVLL

branchnode nil;

Transformers can overwrite the values held in nodes or return them through
transformer parameters. Arguments to a transformer are passed by reference
to ensure that several values can be manipulated simultaneously, as C makes
it difficult for a function to return several values. The transformer bt_insert,
for instance, inserts an integer value into the branchnode on its right-hand
side as follows:

nl.val = *inval;

A transformer such as bt_insert is used in the same way as an ordinary C
function, as shown in the search-tree insertion example of Figure 3.

The EBNF syntax definition of C-GRS is given in Appendix A, together
with some (but not all) context conditions. The definition extends the syntax
of ANCI C by adding transformer and shape declarations to the categories
fun-def and type-def.

3.8 Rootedness

Adding graph transformation rules to C presents two problems. Rules can be
applied in a graph wherever their left-hand sides match, which does not fit
with C’s deterministic world. Moreover, the search for a match of a (fixed)
rule requires polynomial time which is too expensive. We solve both problems
by requiring that C-GRS shape-structures and left-hand sides of transformers
contain unique roots and that all nodes in the left-hand sides of transformers
are reachable from the roots.

Roots are distinguished nodes which can be declared with the keyword
root in a shape declaration. For example, the node rt in the declaration of
bt in Figure 4 with its outgoing edges top and aux is a unique entry point for
every binary-tree structure. In general, we require that every shape structure
has at least one root and that different roots in the same structure must have
different node types. The same applies to the left-hand sides of transformers
where, in addition, each node must be reachable from some root by a directed
path of edges. Also, transformers must not delete or add root nodes.

Under these conditions the application of a transformer to a shape struc-
ture is a deterministic process: the roots of the left-hand side occur in unique
places in the structure and whenever a node of the left-hand side has been
matched, it is checked if all its outgoing edges are among the outgoing edges
of the corresponding node in the structure. The matching of the transformer
fails as soon as one of the edge comparisons fails. The matching is successful
if all edges of the left-hand side have been found, if the sharing of target nodes
in the left-hand side corresponds to the sharing in the structure, and if the
dangling condition for direct derivations (see Section 2) is satisfied.

It is not difficult to see that for a fixed transformer, the matching process
requires only constant time. This is because every member of a shape comes

1L/ULIO, L LULIVLL

with a fixed selection of roots (which can be found in constant time) and
because the number of outgoing edges of each node is bounded (as shape
structures correspond to X-total graphs).

4 Translating C-GRS to C

For execution, C-GRS is translated into ANSI C by the translation function
C given in Appendix B (shape translation) and Appendix C (transformer
translation). Only shapes and transformers result in modified code, the C
portion of a C-GRS program is left unmodified by the translation.

The translation of shapes transforms node types into C structures with the
same name. All non-root structures of a shape S are wrapped into a single C
union S_node and edges become pointers to S_node. This also allows to retype
nodes in-place in memory. For example, the type btroot from the shape bt
of Figure 4 is translated into the following C structure:

struct btroot {
bt_node *top, *aux;

3

Appendix C shows the translation of transformers into C functions which
can be applied to shape members. The application of such a function proceeds
in two major phases: first, the transformer’s left-hand side is matched against
nodes in the shape member, and second the image of the left-hand side is
transformed into the right-hand side by deleting and adding nodes and altering
the contents of preserved nodes.

The matching phase of a transformer uses matching variables which corre-
spond to nodes in the left-hand graph. These variables hold pointers to nodes
in the shape member such that a variable holds a pointer to a node if and only
if the left-hand node corresponding to the variable has been matched with the
shape-member node.

Root nodes correspond to pointer fields in the C structure S representing a
shape member, so they can be easily assigned to matching variables. As only
one root of each type can exist in a shape member, the fields are distinctly
named after the types of the root nodes. For example, the following code in
the translation of the transformer bt_insert,

rt = tree->btroot;

assigns the pointer to the root of a binary-tree to the matching variable rt,
where tree is the parameter of bt_insert holding a pointer to the tree.
When a root has been matched, the matching process proceeds by follow-
ing the edges outgoing from matched nodes. To keep the description of the
translation simple, we assume that edge statements are ordered in a way such
that no non-root node occurs as the source of an edge before it occurs as a
target of some edge. This ensures that nodes are matched in a correct order.

83

84

1L/ULIO, L LULIVLL

if (! typeeq((rt->btroot).aux, "leafnode"))
return False;

else if (nl1 == NULL) nl = (rt->btroot).aux;

else if (n1 !'= (rt->btroot).aux) return False;

Fig. 5. Matching code for the edge aux in the left-hand side of bt_insert

As all nodes in the left-hand side of a transformer are reachable from some
root, each node will eventually be matched. For example, Figure 5 shows the
matching code produced for the edge aux from rt to nl in the left-hand side of
bt_insert. This code first checks that the node found by following the aux-
edge is a leaf. Then, if the matching variable n1 is null, it is assigned a pointer
to the target of the aux-edge. This gives nl an initial value if it is the first
time it has been reached. If n1 already holds a non-null value, then node n1
on the left-hand side of the transformer has more than one incoming edge and
the code checks that the pointers n1 and aux point to the same node. If any
of the checks fail, the transformer function returns False without modifying
the shape member.

Once all nodes of the left-hand side of a transformer have been matched,
the system performs two more checks. First, it checks by comparison of pointer
values that each pair of distinct transformer nodes has been matched with
distinct nodes in the shape member. Then the dangling condition for deleted
nodes (see Section 2) is checked by reference counting, using the indegree
field of deleted nodes. Failure of the dangling condition is treated in the same
way as failure in the above cases.

If the matching process has been successful, the image of the transformer’s
left-hand side in the shape member is modified to the right-hand side by delet-
ing, allocating and retyping nodes, and recreating edges. Nodes are managed
using the normal C memory allocation functions. Edges are recreated by as-
signing new values to pointer fields in nodes. For example, the edge aux in
the right-hand side is recreated by

(rt->btroot) .aux = nil;

where rt and nl are the matching variables for the nodes of the same names.
After the C-GRS code has been translated by C, the resulting C code can
be compiled and executed in the normal way.

5 Abstracting C-GRS to Graph Transformation

Our main aim in adding shapes and transformers to C is to make it possible to
statically check the shape safety of graph transformation rules corresponding
to transformers, using the algorithm described in [2]. We denote by G the
function which abstracts C-GRS shapes and transformers to GRSs and graph
transformation rules, respectively. The form of C-GRS shapes and transform-
ers is intentionally very close to GRSs and graph transformation rules, so G’s

1L/ULIO, L LULIVLL

straightforward definition is omitted from this paper. As an example, Figure
6 shows the graph transformation rule produced by applying G to the trans-
former bt_insert of Figure 4. The node labels R, B and L stand for btroot,
branchnode and leafnode, respectively.

D - iff
@

l T

Fig. 6. Graph transformation rule produced from bt_insert by the abstraction G

The translation G maps C-GRS shape declarations to GRSs whose shapes
consist of graphs which model pointer data-structures by abstracting from
non-pointer values. Accordingly, graph transformation rules produced from
transformers only model structural modifications of pointer structures and
ignore value changing operations. For instance, G forgets the integer held in
node n1 when abstracting the transformer bt_insert to the rule in Figure 6.

To analyse the correctness of the translation C with respect to the graph
model given by G, we fix a few notions. By a pointer structure we mean a set of
individual records (’structures’ in C’s terminology) in a C program-state such
that all pointers in the records point to records in the set. A pointer structure
is consistent with a signature ¥ = (Ly, Lg, type) if each record contains a
field type holding a value [€ Ly such that type(l) consists of the names of
the pointer fields in the record. We denote by asy the function that abstracts
(in the obvious way) pointer structures consistent with 3 to 3-total graphs.

Using these notions, we say that the translation C is correct with respect
to G if for every transformer F' and every pointer structure S that is consistent
with F’s signature X,

G[F(as(S)) = as(C[F](S)).
In other words, the diagram of Figure 7 has to commute. Here we assume that

a failed application of the graph-transformation rule G[F] returns the input
graph unmodified.

G—G[F]— ¢ Y-total graphs

T f

axn = ax

S —C[F]— s’ C pointer-structures

Fig. 7. Correctness of the translation C

85

86

1L/ULIO, L LULIVLL

Suppose that this correctness property holds and that all pointer manip-
ulations in a C-GRS program P happen through applications of transformers
to pointer structures that correspond to members of the shapes associated
with the transformers. Then we can check that P is shape safe by checking
the corresponding graph-transformation rules produced by G.

To show that the diagram of Figure 7 commutes for every transformer F
we first show that G[F'] and C[[F] select corresponding graph elements in their
matching phases. This can be proved by induction on the size of the left-hand
side of F:

(i) Roots are correctly matched, as both graphs and pointer structures can
only contain a single instance of a particular root.

(ii) The children of correctly matched nodes are correctly matched, as in both
the graph and the pointer structure they are connected to their parent
by a distinctly-labelled edge.

The same kind of argument shows that in the case of a matching failure,
it fails for corresponding nodes processed by G[F] and C[F]. Similarly, G[F]
violates the dangling condition for a deleted node if and only if the C code in
C[F] checking the dangling condition reports failure for the C record corre-
sponding to that node. The proof of correctness is completed by showing that
corresponding right-hand modifications are performed by G[F] and C[F].

6 Related Work

Our language C-GRS is similar to Fradet’s and Le Métayer’s Shape-C [4], the
main difference is that Shape-C is restricted to shapes specified by context-free
graph grammars. The graph reduction specifications incorporated in C-GRS—
even when restricted to polynomial GRSs—allow programmers to specify non-
context-free data structures such as grids and various forms of balanced trees.
In addition, shapes defined by polynomial GRSs come with an efficient mem-
bership test which can be used for testing and debugging shape specifications.
Shapes defined by context-free graph grammars, on the other hand, are known
to have an NP-complete membership problem.

Graph types [8] are spanning trees with additional pointers defined by path
expressions; they form the basis of pointer assertion logic [10], a monadic
second-order logic for expressing properties of pointer structures in program
annotations. This requires programmers to use quite a sophisticated logic,
but the formalism is still too weak to express some important properties such
as balance in trees. These drawbacks also apply to the TVLA system [9]
which demands that data structures and the effects of program statements
are expressed in three-valued logic with transitive closure. TVLA employs the
shape analysis method of [12] to verify invariants.

Separation logic [7,11] extends classical Hoare-style program verification
so that specifications and proofs can deal with properties of linked data struc-

1L/ULIO, L LULIVLL

tures. The logic allows the heap to be divided into regions for which different
logical formulas hold, making it possible to reason locally about pointers. But
so far there seems to be no automatic verification method for separation logic.

Acknowledgement. We would like to thank Adam Bakewell and the anony-
mous referees for comments that helped to improve this paper.

References

[1] Bakewell, A., D. Plump and C. Runciman, Specifying pointer structures by
graph reduction, Mathematical Structures in Computer Science. To appear.
Preliminary version available as Technical Report YCS-2003-367, University
of York, 2003.

[2] Bakewell, A., D. Plump and C. Runciman, Checking the shape safety of pointer
manipulations, in: Int. Seminar on Relational Methods in Computer Science
(RelMiCS 7), Revised Selected Papers, Lecture Notes in Computer Science 3051
(2004), pp. 48-61.

[3] Bakewell, A., D. Plump and C. Runciman, Specifying pointer structures by
graph reduction, in: Int. Workshop Applications of Graph Transformations With
Industrial Relevance (AGTIVE 2003), Revised Selected and Invited Papers,
Lecture Notes in Computer Science 3062 (2004), pp. 30-44.

[4] Fradet, P. and D. Le Métayer, Shape types, in: Proc. Principles of Programming
Languages (POPL ’97) (1997), pp. 27-39.

[5] Fradet, P. and D. Le Métayer, Structured Gamma, Science of Computer
Programming 31 (1998), pp. 263-289.

[6] Habel, A. and D. Plump, Relabelling in graph transformation, in: Proc.
International Conference on Graph Transformation (ICGT 2002), Lecture
Notes in Computer Science 2505 (2002), pp. 135-147.

[7] Ishtiaq, S. and P. W. O’Hearn, BI as an assertion language for mutable data
structures, in: Proc. Principles of Programming Languages (POPL ’01) (2001),
pp. 14-26.

[8] Klarlund, N. and M. Schwartzbach, Graph types, in: Proc. Principles of
Programming Languages (POPL ’93) (1993), pp. 196-205.

[9] Lev-Ami, T. and M. Sagiv, TVLA: A system for implementing static analyses,
in: Proc. Static Analysis (SAS ’00), Lecture Notes in Computer Science 1824
(2000), pp. 280-301.

[10] Mgller, A. and M. 1. Schwartzbach, The pointer assertion logic engine, in: Proc.
Programming Language Design and Implementation (PLDI ’01) (2001), pp.
221-231.

87

88

1L/ULIO, L LULIVLL

[11] Reynolds, J., Separation logic: A logic for shared mutable data structures, in:
Proc. Logic in Computer Science (LICS ’02) (2002), pp. 55-74.

[12] Sagiv, M., T. Reps and R. Wilhelm, Parametric shape analysis via 3-valued
logic, ACM Transactions on Programming Languages and Systems 24 (2002),
pp. 217-298.

Appendix
A EBNF Syntax of C-GRS

transformer trid (sid *id, [tid *id]*) {
left ([nid]*) { [node-dec;|™ [left-graph;]* }

fun-def = right ([nid]*) { [node-dec;]* [right-graph;]* }
}
|
node-dec ::= root ntid nid | ntid nid [, nid]*
left-graph = nid.ed => nid
right-graph == nid.ed => nid | nid.id = id | id = nid.id
shape sid {
signature { [node-def;]™ }
type-def = accept { [node-dec;]* [nid.ed => nid;]* }
rules { [trid;]* }
}
|
node-def := nodetype ntid { [node-cont;]* }
node-cont := edge ed [, ed]* | struct-decl-cont

e id and tid stand for identifiers of C variables and C types, respectively.
nid, ntid, sid, trid and tid stand for identifiers of nodes, node types, shapes
and transformers, respectively. ed stands for edge labels.

e struct-decl-cont corresponds to the statements that can be part of a C
structure-declaration.

Context Conditions

* Root nodes must not be deleted by a transformer.

e On both sides of a transformer, all nodes must be reachable from some
root node.

* Nodes that are created or retyped on the right-hand side of a transformer
must have all the edges for their type declared.

o All rules of a shape must be defined as transformers.

LU,

B Shape Translation

shape S {
signature { Ny;...N,; }
C|| accept { Aj;...A,; } =
rules { Py;...P,; }

}

N[nodetype N{C}] =
T[edge Eq,....E,] =
T[C] =

I[root TV] =

I[T Vy,...

7Vn]] =

I[SE=>T] =

1 LiuiviL

[NIN;] Ji=1,..n

typedef struct S {
[Smode *r; |er

}

typedef struct S_node {
char *type;
int indegree;
union {
[struct d; Jgep
} node;

}

S * newgraph S () {
S *new;
new = malloc(sizeof(S));
[ZTAi] Ji=1,..m

return new;

where:

D = types of nodes defined in {Ny,...
R = types of root nodes
{A1,.. ., A}

Nt
declared in

struct N{7[C]}
[Scmode *E;i|i=1,. n

C

new.V = createnode(T);
define ¢,(V) =T

[Vi = createnode(T); |i=1 .

©

define t,(V;) =T, fori=1,...,n

(S->t,(S)) .E = T;

&9

90

C Transformer Translation

LU,

transformer F (S *G; A)

}

left (N)){ Ly;...Ly; }
right (N,){ Ry;...Ry; }

L[root TV]

L[T Vi,....Vy,]

L[SE=>T]

R[root T V]
R[T Vy,....,V,]
R[SV =X]
R[X=S.V]

R[SE=>T]

1 LiuiviL

bool F (S *G; A) {

[LILi] Ji=1,...n

[ZL' '=y;]{:c7y}€Pai7’s

[if (d.indegree !'= C(d))
return False; |gepelete

[n.indegree

= n.indegree - C(n); |nen,

[retypenode (p, t,(P)) 5 |peRetype

[a = createnode(tr(a))) 5]aEAllocate

[R[Ri] Ji=1,..n

[deletenode(d) ;]gepelete

return True;

}

where:

C(i)=#{(s,e) | (s.e => i) € {Ly,...,L,}}
Delete = Nj — N,

Allocate = N, — Nj

Retype = {p € NN N, | t1(p) # t:(p)}

Pairs = {{z,y} CNi | x # y}

S_node *V;
V = G->T;
define (V) =T

[Smode V;; V; = NULL |i=1,. »
define t;(V;) =T, fori=1,...,n

if (! typeeq((S—>t(S).E, t,(T)))
return False;

else if (T == NULL)
T = (S->(5)) .E;

else if (T == (S->(9)).E)

return False;

define ¢,(V) = T

define t,.(V;) = T, fori=1,...,n
(S=->t,(5)) .V = X;

X = (S=>t.(S).V;

(S->t,(S)) .E = T;

T.indegree = T.indegree + 1;

GT-VC 2005 Preliminary Version

Towards Attributed Graphs in Groove

Work in Progress

Harmen Kastenberg !

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE, Enschede, The Netherlands

h.kastenberg@cs.utwente.nl

Abstract

Graphs are a very expressive formalism for system modeling, especially when
attributes are allowed. Our research is mainly focused on the use of graphs for
system verification.

Up to now, there are two main different approaches of modeling (typed) attributed
graphs and specifying their transformation. Here we report preliminary results of
our investigation on a third approach. In our approach we couple a graph to a data
signature that consists of unary operations only. Therefore, we transform arbitrary
signatures into a structure comparable to what is called a graph structure signature
in the literature, and arbitrary algebras into the corresponding algebra graph.

Key words: attributed graphs, graph transformation, algebra
graph, signature structure

1 Introduction

Representing (parts of) software systems (or their states) as graphs, has proven
to be a very powerful approach for specifying program structure and verifying
its behavior. In the Groove project [10] we aim at the use of graphs for verify-
ing object oriented systems. Since the state of such systems is determined on
basis of the occurring objects and the values of their attributes, it is necessary
to extend the Groove Tool to support the use of attributed graphs.
Although we want to stay as close as possible to currently available theory
about modeling attributed graphs and specifying their transformation [7,1,6],
we believe there is a simpler, more intuitive way of specifying attributed graph
transformations in the context of our tool. In our investigation we focus on

! The author is employed in the GROOVE project funded by the Dutch NWO (project
number 500.19205).
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

91

92

KASTENBERG

minimizing tool implementation efforts and keeping transformation specifica-
tion as straightforward as possible. This means that instead of both changing
the graphical representation of graphs in our tool (e.g. to more UML-like
structures as used in [11]) and extending the underlying tool engine to support
attribution, we combine the latter with introducing some notational conven-
tions.

In order to support graph attribution in our tool we need to introduce
data type signatures and couple those to ordinary graphs, as currently avail-
able. This coupling can be established by using special edges connecting nodes
from the graph-part to nodes from the data-part representing attribute values.
The difference with other approaches is that in our approach the data-part
is based on data type signatures consisting of unary operations only. There-
fore, we transform arbitrary signatures into a structure that is comparable to
what is called a graph structure signature in the literature [5] and arbitrary
algebras into the corresponding algebra graph. The algebra graph contains all
necessary information about the data types that are supported and provides
the semantics of the operations of each of the data types.

In this report we focus on how to model and transform attributed graphs
in our tool, instead of focusing on the transformation of data type signatures,
although some details of this transformation will be mentioned. In the future
we will work on a more precise functor specification of this transformation in
order to specify the exact relation to other approaches.

This paper is structured as follows. First we give some definitions of con-
cepts used in the rest of this work and give some insight in how we transform
arbitrary signatures into the structure we prefer. Then we show how we model
attributed graphs and how we specify their transformation by means of a sim-
ple example. Thereafter, we list the advantages of our approach one by one.
We conclude with a short note on related work and some comments on the
restrictions of our approach.

2 Signature Structure and Attributed Graphs

In this section we define the notion of signatures and attributed graphs as they
are generally accepted. We also show how we transform arbitrary signatures
into signatures with unary operations only and how this is done for a small
example.

Traditionally (e.g. [4]), signatures are defined as follows.

Definition 2.1 (signature) A signature SIG = (s1,...,8,;0P1,..,0Dm)
consists of sorts s; (1 < i < n) and constant and operation symbols op,
(1<j<m). 0

We transform arbitrary signatures of the above form into signatures with
unary operations only (this structure is comparable to what is called graph
structure signature in [5]):

KASTENBERG

SIG" = (S1,...,8p, 0D, ..., 0P ; PTOJ1 1, -« s DTOJ1a141s - -« s PTOJm 1y« -+ DTOJmam+1)s
such that op’; is the sort-counterpart of the original SIG-operation op;. When
op;(z1, ... ,xaj) = r, projj; projects op; on its i" component and Projja;+1
projects op); on its last component, being the result of op; (a; is the arity of
op; and 1 < i < a;).

Example 2.2 (integer algebra) In order to specify an integer algebra with
only the add-operation we start with the following signature:

SIGINT = (int;+),
where int is the set of integer values and + : int X int — int.

In a SIGINT-algebra A the +-operation could then be partially specified
as + = {((1,2),3),((2,3),5)}.

The transformed signature SIGINT’ then has the following structure:

SIGINT' = (int,+';arg0,argl, result),
where +' : int X int X int is the sort representing the original +-operation
and the operations arg0, argl, and result (all of type +' — int) are
projections that correspond to the +'-sort.

In the SIGINT'-algebra A’ the +'-sort would contain the tuples (1,2, 3)
and (2,3,5) and the projections would look as follows:

arg0((1,2,3)) =1 argl((1,2,3)) =2 result((l,2,3))
arg0((2,3,5)) =2 argl((2,3,5)) =3 result((2,3,5))

3
5

O

Attributed graphs generally consist of two parts: a graph-part and a data-
part.

Definition 2.3 (attributed graph) Consider a data signature DSIG =
(S, OP) with attribute value sorts S and a graph G = (V| E). An attributed
graph AG = (G, D) consists of a graph G and a DSIG-algebra D such that
WeesDs C Gy. O

When applying the described transformation to the data signature DSIG
from Definition 2.3, there exists a straightforward way of visually modeling the
transformation of (the data-part of) attributed graphs in which the constants
and operations are part of the algebra graph. The algebra operations to be
applied are represented by nodes, labeled with the operation-symbols, being
connected to the operands on which they will be applied and the resulting
value.

The algebra graph can be looked upon as being a bipartite graph in which
the nodes representing the instances of the algebra operations (with arity > 0)
form one set and the nodes representing the constant data values form the
other disjoint set. Moreover, the edges of the algebra graph all have the same
direction, namely from the set of algebra operations to the set of constant
data values. Fig. 2.1 shows part of the algebra graph of the INT S1G’-algebra
A’ from Example 2.2 as a bipartite graph. The right subset contains the

93

KASTENBERG

instances of the algebra operations; the left subset contains the constant data
values. This bipartitioning property of the algebra graph will later on play
an important role when discussing the finiteness of attributed graphs in our
approach.

Figure 2.1. Bipartitioning of the algebra graph.

3 Transformation Specification

We have just explained how we model attributed graphs theoretically. In this
section we will explain how we model and transform attributed graphs in a vi-
sual way by means of an example, focusing on how to change attribute values.
The example, inspired by [5], is a graphical representation of method signa-
tures in which a method is identified by its name and its ordered parameters.

3.1 Attributed Graphs

In Groove the attribute values are each represented by a single node and the
names of the attributes are represented by the labels on the edges connecting
them to the graph-part. An example method signature can then look as shown
in Fig. 3.1.

[Method | par—)-_ name x|

order

name par

m

order

Figure 3.1. Graphical representation of the method signature add (x, y) .

3.2 Changing Attribute Values

Specifying the transformation of attributed graphs basically consists of two
parts: specifying (1) graph-structure changes and (2) attribute value changes.

KASTENBERG

The first part is performed by graph rewriting, while the second part involves
term graph rewriting [8]. Here we focus on the second part. Fig. 3.2 shows
a transformation rule, using the single pushout approach [3], which adds a
parameter to a method signature.

nrOfPars Order

nromars [resuit-»_| - resuﬁiﬂj

argd arg1 argd arg1

O W

af [Par [—nar ——{Method | —par—>{Par]

nrofPars order
nrofPars

T
order +|-result > order result ¥
argu argo
arg1 \Ali(’argﬂ

Figure 3.2. Rule application for adding a parameter to a method signature.

In this rule we specify how to add a new parameter to the method signature.
This involves the calculation of the new value of the nrOfPars-attribute and the
creation of a new parameter which gets this new value as its order-attribute.
The part of this rule that specifies the attribute value change in this rule con-
sists of four nodes and three edges connecting them. One node represents the
operation, two nodes represent the operands on which the operation must be
applied and one node represents the result. Note that two nodes in the trans-
formation rule (upper row in the figure) representing constant data values are
left unlabeled. The value of the unlabeled operand can be determined after
matching the rule’s left-hand-side in the source graph. The result of apply-
ing the algebra operation on the operands is then determined by the algebra
graph.

Note that we assume that the algebra elements (operations and constants)
are always present. Of course, this is practically not possible because this
would imply infinitely large graphs. In a tool implementation this could be
resolved by only including those attribute-values of the algebra graph that are
directly reachable from the graph-part. Combining the facts that the graph-
part only refers to nodes from the algebra graph representing constant data
values and that those nodes do not have outgoing edges (remember the bipar-
titioning property of the algebra graph discussed in Sect. 2) then implies the
inclusion of a finite subgraph of the algebra graph in any attributed graph.
Another point of attention is the fact that constant data values are represented

2 In the given rule specification we have left out the parts involving the creation of the
name-attribute because of implementation issues.

2

95

96

KASTENBERG

by unique nodes. This becomes clear from the rule application part of Fig. 3.2
where the node representing the integer-value 1 is both the first and second
operand of the +-operation. The uniqueness of algebra operations is deter-
mined by their operands, i.e. algebra operations having distinct operands are
represented by distinct nodes labeled with the operation symbol being con-
nected to the nodes representing the operands and the corresponding unique
result [8].

4 Advantages

We have shown how we transform arbitrary signatures in a signature structure
with unary operations only and how we use the latter to specify the transfor-
mation of attributed graphs. Here we discuss a number of advantages of this
approach, some of which are mainly related to tool implementation issues.

4.1 Variables

Normally, specifying the transformation of attributed graph requires the in-
troduction of a set of variables when changing data values. In that case the
transformation process involves activities such as assigning the actual value
of the attributes to those variables, calculating the new value by applying the
algebraic operation and assigning that new value to the original attribute. In
our approach we do not introduce such a set of variables. We, instead, re-use
ordinary rule nodes to stand for data values. When these nodes are matched
in the source-graph, we can easily obtain the data value it stands for. This
reduces the efforts needed for implementing attribution support in our tool.

4.2 Graphical Representation

The way we specify the transformation of attributed graphs graphically is
closely related to the underlying theory. The part of the transformation rule
shown in Fig. 3.2 that specifies the attribute value change, could also be viewed
as being a hyperedge, having the nodes representing the constant data values
as its endpoints and the operation symbol as its label. The list of endpoints
then is an element of the sort corresponding to that operation. The labels
of each tentacle represent the corresponding projection functions. Since our
tool does not (yet) support hypergraphs, the algebra operation to be applied
is represented by a distinct node having one outgoing edge for each tentacle
of the corresponding hyperedge.

4.8 Changing Semantics

A third advantage of our approach is the separation of the use of algebra
operations in transformation rules and their semantics. Since the semantics of
the algebra operations are enclosed in the algebra graph, operation semantics

KASTENBERG

can be changed by changing the algebra graph, or better stated, by changing
the algebra from which the algebra graph is derived. Fortunately, this has no
effect on the transformation rules themselves, because they do not refer to the
algebraic semantics of the used operations: the nodes representing the result
of applying algebra operations are left unlabeled. Actually, other approaches
may be using the same idea, but to our best knowledge this has never been
stated explicitly.

5 Conclusion

A number of approaches to transform attributed graphs have been developed
[7,6,5]. They all distinguish between the graph-part and the data-part of at-
tributed graphs, but describe different ways of connecting these two parts to-
gether. In this report we focussed on how to specify attribute-value changes.
In the literature, two main different approaches appear for this: relabeling
attribute-nodes (see e.g. [7,9]) and reconnecting graph-nodes to the new
attribute-nodes (see e.g. [6]). Our work is based on the second approach
and differs from [6] in the way of specifying the actual attribute value change,
since we store the semantics of the algebra operations in, what we call, the
algebra graph by means of hyperedge-like structures. This way of model-
ing operation application is comparable to what is called a graph structure
signature in [5]. This graphical structure binds every operation to the corre-
sponding projection functions. In contrast to [5], our approach neither allows
edge attribution nor typing.

Further work on this subject consists firstly of specifying the exact relation
between our way of modeling attributed graphs and the other approaches
(functor specification) and secondly of finishing the implementation of the
tool concerning attribution support.

Acknowledgements

We would like to thank the anonymous referees for their detailed comments
and constructive suggestions.

References

[1] Berthold, M. R., I. Fischer and M. Koch, Attributed Graph Transformation with
Partial Attribution, in: H. Ehrig and G. Taentzer, editors, Proceedings Joint
APPLIGRAPH/GETGRATS Workshop on Graph Transformation Systems
(2000), pp. 171-178.

[2] Ehrig, H., G. Engels, F. Parisi-Presicce and G. Rozenberg, editors, “Proceedings
of the 2"¢ International Conference on Graph Transformation,” Lecture Notes
in Computer Science 3256, Springer, 2004.

97

98

KASTENBERG

(3] Ehrig, H., R. Heckel, M. Korff, M. Loéwe, L. Ribeiro, A. Wagner and
A. Corradini, Algebraic Approaches to Graph Transformation, Part II: Single
Pushout Approach and Comparison with Double Pushout Approach, in:
G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. 1: Foundations, World Scientific, 1997 pp. 247-312.

[4] Ehrig, H. and B. Mahr, “Fundamentals of Algebraic Specification 1: Equations
and Initial Semantics,” Monographs on Theoretical Computer Science 6,
Springer-Verlag, 1985.

[5] Ehrig, H., U. Prange and G. Taentzer, Fundamentel Theory for Typed Attributed
Graph Transformation, in: Ehrig et al. [2] pp. 161-177.

[6] Heckel, R., J. M. Kister and G. Taentzer, Confluence of Typed Attributed
Graph Transformation Systems, in: A. Corradini, H. Ehrig, H. J. Kreowski
and G. Rozenberg, editors, Proceedings of the 15t International Conference on
Graph Transformations, Lecture Notes in Computer Science 2505, Springer,
2002 pp. 161-176.

[7] Lowe, M., M. Korff and A. Wagner, An Algebraic Framework for the
Transformation of Attributed Graphs, in: Term Graph Rewriting: Theory and
Practice, John Wiley and Sons Ltd., 1993 pp. 185-199.

[8] Plump, D., Term Graph Rewriting, in: H. Ehrig, G. Engels, H. J. Kreowski and
G. Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. 2: Applications, Languages and Tools, World Scientific,
1999 pp. 3-61.

[9] Plump, D. and S. Steinert, Towards Graph Programs for Graph Algorithms, in:
Ehrig et al. [2], pp. 128-143.

[10] Rensink, A., The GROOVE Simulator: A Tool for State Space Generation,
in: J. L. Pfalz, M. Nagl and B. Bohlen, editors, Applications of Graph
Transformations with Industrial Relevance (AGTIVE), Lecture Notes in
Computer Science 3062 (2004), pp. 479-485.

[11] Taentzer, G., AGG: The Attributed Graph Grammar System (2005),
http://tfs.cs.tu-berlin.de/agg/.

A Framework for Stochastic System Modelling
and Analysis

Work in Progress

Sebastian Menge! Georgios Lajios?

Software Technology
University of Dortmund
Germany

Abstract

Stochastic Graph Transformation combines the benefits of graphical modelling with
stochastic analysis techniques. In this paper we report on our framework SMA for
Stochastic Modelling and Analysis, and SGT*, a tool which uses the framework for
Stochastic Graph Transformation.

Key words: graph transformation, stochastic analysis, model
checking, tool support

1 Introduction

In distributed and mobile systems with volatile bandwidth and fragile con-
nectivity, non-functional aspects such as performance and reliability become
more and more important. To analyse such properties, stochastic methods are
required. At the same time such systems are characterized by a high degree of
architectural reconfiguration. This gave rise to the notion of Stochastic Graph
Transformation [HLMO04], which combines the benefits of using graph trans-
formation for system modelling with the power of stochastic analysis as known
from areas such as queueing theory, Markov theory, or recently probabilistic
model checking.

While this combination is conceptually beneficial, it is still difficult to
integrate graphical modelling with stochastic analysis when it comes to tool
support. Though many tools are available to meet the requirements of either

! Email: sebastian.menge@uni-dortmund.de
2 Email: georgios.lajios@uni-dortmund.de

Preprint submitted to Elsevier Preprint

99

100

functional B state space input

_—

specification generation adaptor
stochastic stochastic Y analysis
specification extension results
—— /
output analysis
adaptor y

Fig. 1. the architecture of the framework

graphical modelling or stochastic analysis, there is still lack of tool support
to combine both aspects. Thus, to analyse case studies for stochastic graph
transformation, there was the need to develop something to bridge the gap
between intuitive modelling and good analysis capabilities.

When developing the tool, we did not want to restrict ourselves to a spe-
cific approach, but wanted to retain flexibility both in the modelling and the
analysis paradigm. Therefore, we decided to build a framework to accomodate
the integration of different approaches to stochastic modelling and analysis.

In this paper, we present such a framework. Section 2 presents the overall
architecture and main ideas, while Section 3 discusses how we used the frame-
work for stochastic graph transformation. Section 4 concludes the paper and
presents further ideas.

2 A Framework for Stochastic Modelling and Analysis

The main aim of the SMA framework is to keep modelling and analysis of
stochastic systems separate but to allow tight integration of specific tools at
the same time.

Since we want to reuse the existing powerful tools when investigating
stochastic systems, we have to adapt to these tools and map between the
different kinds of models they deal with. Furthermore, we want to perform
non-trivial transformations on the models, such as merging modular specifica-
tions [HLMO5a], minimizing the state space etc. To meet these requirements,
we use pipes and filters [SG96] as main architectural style: Each pipe rep-
resents a model and each filter transforms data from one representation into
another. Because the filters are independent of each other, we are able to
reuse the adaptors and transformations in many different combinations.

Figure 1 depicts the architecture of the SMA framework. The system spec-
ification is twofold: we separate functional and stochastic specification. Using

the functional specification, the first step is state space generation. Because
this is done by external tools, the input adaptor transforms the state space
representation into our own data structures. In the next step, we extend the
state space with the stochastic parts of the specification. The resulting model
could subsequently be transformed. This is an important step, because most
often, the input transition system is not in a form that is easy to analyse. At
last, the model is exported through an output adaptor and eventually analysed.

Thus, we focus on two key aspects: The extension of a state-based system
to obtain some kind of stochastic model (such as a Discrete or Continuous
Time Markov Chain) and the transformation of this model such that it is
easier to analyse. For the modelling and analysis part we are able to reuse
existing tools.

The separation of functional and stochastic aspects in the specification
is most reasonable since many of the existing approaches to stochastic sys-
tem modelling extend existing formalisms with stochastic information. Exam-
ples are stochastic Petri nets [KBD"94] or stochastic process algebras [BHO1].
Since both rely on labelled transition systems it would be possible to build up
a tool chain to investigate such systems using our framework.

3 Stochastic Graph Transformation with SGT*

Since our focus is on stochastic graph transformation (SGT), we now illustrate
the framework by discussing SGT*, our tool to analyse SGT systems along
with a simple example.

A SGT System consists of a Graph Transformation System [Roz97] to-
gether with a mapping which associates with each rule a positive real number,
the rate of the exponentially distributed application delay of the transforma-
tion. We showed in [HLMO04] how this leads to a Continuous Time Markov
Chain (CTMC).

As a proof of concept, we modelled and analysed an example situation in
mobile communications with SGT*. Given a fixed network of base stations,
a mobile device can connect to one of them in order to make a call, and
disconnect afterwards. A station may be broken with a certain probability, and
will then be repaired. The actual state of a station (broken or not broken) is
expressed by a boolean attribute, whose value switches between true and false,
stochastically triggered by rules fail and repair. The configuration of such a
mobile network can easily and intuitively be represented as an attributed
graph. The corresponding rules are shown in Fig. 2 and 3.

Apart from the graph grammar, the specification of a SGT System consists
of a table containing the rates of the exponential distribution?® associated

3 We assume all tranformations to be exponentially distributed. While this is standard

for the reliability of hardware components [Kec93], also call attempt rates und call holding

101

102

s:Station s:Station

connected !! connected
s:Station s:Station

d:Device d:Device ok=true ok=false

Fig. 2. connect and disconnect Fig. 3. fail and repair

rule name p | rate p(p) | rule name p | rate p(p)

repair 500 connect 10000
fail 1 disconnect 10000

Fig. 4. Rates associated with the rules

y 4
graph B Groove
grammar adaptor
/—

application CTMC o analysis
rates — Rate Multiplier results

Prism
adaptor

Fig. 5. SGT*

with the rules (Fig. 4). We generate the labelled transition system defined
by the graph grammar with GROOVE [Ren04] and use SGT* to combine the
GROOVE output with the rates, yielding a CTMC, exported in PrisM [KNP02]
format. PRISM is a stochastic model checking tool which allows for a variety
of stochastic models and logics, including CTMCs and Continuous Stochastic
Logic (CSL).

As Fig. 5 shows, SGT* consists of different components: The GROOVE
adaptor to understand GROOVE’s representation of a labelled transition sys-
tem, the C'TMC decorator which maps the application rates of the transfor-
mation rules to the corresponding transitions, a so-called Rate Multiplier to
replace multiple transitions with identical label, source and target with one
transition and the multiplied rate (see [HLMO05b]), and the PRIsM adaptor to
generate a CTMC in the PRISM language.

times are often modelled in this manner (see the discussion in [FCL98]).

We emphasize, that the transformation-step (multiplication of the rates),
can be easily extended with additional transformations. This could be used to
cope with parameterized rules, prioritized rules, typing information (GROOVE
has no typing-concept)

4 Conclusion and Perspectives

In this paper, we presented the SMA framework and SGT*, our tool for
stochastic graph transformation. By using the pipes and filters architecture
we gain a lot of flexibility. First, we can easily replace modelling and analysis
tools, for example there are other probabilistic model checkers besides PRisMm
or interesting specification languages like PEPA[GH94]. Second, we could also
model more complex systems. For example, if a rule is associated with an Er-
lang distribution, SGT* can be extended by a filter which introduces virtual
states into the CTMC in order to simulate the Erlang distribution. Every
probability density function with rational Laplace transform can be treated
in that manner [Cox55]. At last, apart from CTMCs, we plan to support
other stochastic models like Discrete Time Markov Chains or Hybrid Systems
[MPO03].

References

[BHO1] Ed Brinksma and Holger Hermanns. Process algebra and markov chains.
In J.-P. Katoen E. Brinksma, H. Hermanns, editor, FMPA 2000, number
2090 in LNCS, pages 183-231. Springer, 2001.

[Cox55] D.R. Cox. A use of complex probabilities in the theory of stochastic
processes. Proc. Camb. Phil. Soc., 51, 1955, pp. 313-319, 51:313-319,
1955.

[FCL98] Yuguang Fang, Imrich Chlamtac, and Yi-Bing Lin. Channel occupancy
times and handoff rate for mobile computing and pcs networks. IEEE
Trans. Comput., 47(6):679-692, 1998.

[GH94] Stephen Gilmore and Jane Hillston. The PEPA workbench: A tool to
support a process algebra-based approach to performance modelling. In
Computer Performance Fvaluation, pages 353—-368, 1994.

[HLMO04] Reiko Heckel, Georgios Lajios, and Sebastian Menge. Stochastic
graph transformation systems. In Hartmut Ehrig, Gregor Engels,
and Francesco Parisi-Presicce, editors, Graph Transformations: Second
International Conference, ICGT 2004, Rome, Italy, volume 3256 of
LNCS, pages 210-225. Springer, 2004.

103

104

[HLMOb5a] Reiko Heckel, Georgios Lajios, and Sebastian Menge. Modulare Analyse
Stochastischer Graphtransformationssysteme. In Peter Liggesmeyer,
Klaus Pohl, and Michael Goedicke, editors, Software FEngineering,
volume 64 of LNI, pages 141-152. GI, 2005. ISBN 3-88579-393-8.

[HLMO5b] Reiko Heckel, Georgios Lajios, and Sebastian Menge. Stochastic
Graph Transformation Systems. Technical Report 154, Lehrstuhl fr
Softwaretechnologie, Uni-Dortmund, Dortmund, Germany, March 2005.

[KBD194] D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and Giuseppe
Conte. Modelling with Generalized Stochastic Petri Nets. John Wiley
& Sons, Inc., New York, NY, USA, 1994.

[Kec93] Dimitri Kececioglu. Reliability Engineering Handbook, volume 1.
Prentice Hall, 1993.

[KNP02] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic
symbolic model checker. In T. Field, P. Harrison, J. Bradley, and
U. Harder, editors, Proc. 12th Int. Conf. on Modelling Techniques and
Tools for Computer Performance Evaluation (TOOLS’02), volume 2324
of LNCS, pages 200-204. Springer, 2002.

[MP03] O. Maler and A. Pnueli, editors. Hybrid Systems: Computation and
Control: 6th International Workshop, HSCC 2003. LNCS 2623. Springer,
2003.

[Ren04] A. Rensink. = The GROOVE simulator: A tool for state space
generation. In J.L. Pfaltz, M. Nagl, and B. Bhlen, editors, Applications
of Graph Transformation with Industrial Relevance Proc. 2nd Intl.
Workshop AGTIVE’03, Charlottesville, USA, 2003, volume 3062 of
LNCS. Springer, 2004.

[Roz97] G. Rozenberg, editor. Handbook on Graph Grammars: Foundations,
volume 1. World Scientific, Singapore, 1997.

[SG96] Mary Shaw and David Garlan. Software architecture: perspectives on an
emerging discipline. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1996.

GT-VC 2005 Preliminary Version

Semi-local model of computations on graphs to
break the local symmetry

Work in Progress

Dobiestaw Wréblewski 12

Institute of Computer Science
Polish Academy of Sciences
Warsaw, Poland

Abstract

We consider finite connected undirected graphs without self-loops as a model of
computer networks. The nodes of the graph represent computers or processors,
while the edges of the graph correspond to the links between them. We present a
model of distributed computations, called semi-local. This extension of the classical
local model breaks the local symmetry. As a result, many useful tasks become
deterministically solvable in every network assuming a very small initial knowledge
about its graph representation. One of these tasks is a creation of a token in an
arbitrary anonymous ring — an example of election of a leader. A semi-local solution
to this problem is presented.

Key words: Transformations and refinements, verification and
analysis, local computations, graph relabelling systems, election,
anonymous graphs, rings, token ring networks.

1 Introduction, Related Work

A finite connected labelled graph is a natural model of a computer network. Its
nodes represent computers or processors, its edges stand for communication
links, and its labelling represents the network state. The labelled graph is
called anonymous, if its labelling is uniform. A series of transformations of
graph labelling is a model of a computation in the network.

Different models of distributed computations in undirected graphs were
presented ([1,2,3,6]). They are called local models of computations. Among
these models, the one presented in [3] has the most computational power — if

! The author acknowledges support from the Ministry of Scientific Research and Informa-
tion Technology grant No 3 T11C 006 27 for the years 2004-2005.
2 Email: wrobldob@wars.ipipan.waw.pl

This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

105

106

WROBLEWSKI

a certain computational task is proved not to be solvable in this model, it is
not solvable in the other ones, either. We refer to the model presented in [3]
as to the (classical) local model.

Certain tasks are not solvable in this model. The most important example
is the election problem in anonymous graphs of arbitrary structure [3]. The
weakness of the local model comes from the symmetry of certain types of
anonymous graphs. Such graphs are locally indistinguishable from other, not
isomorphic ones.

The semi-local model of computations is the least known extension of the
classical local model that breaks the local symmetry. As a result, all problems
solvable with global methods are also solvable semi-locally [5]. This includes
the election problem. In [5] we present a semi-local election protocol for anony-
mous graphs of arbitrary unknown size and structure. The main drawback of
the protocol is the complexity of its definition.

In this paper we present another practical application of the same idea: a
semi-local solution to the well-known problem of creation of a unique token in
anonymous ring of arbitrary size. This problem is an example of the election
task and is proved to be solvable locally only for rings with a priori known
prime size [4]. Although the algorithm presented in [5] might be applied in this
case without any modifications, we decided to define a new optimised protocol
for rings by applying the general idea used in the universal protocol. The new
protocol is very simple and readable when defined as a relabelling system. The
protocol presented in [5] in turn, was defined in a different formalism and only
shown to be definable in terms of relabelling systems (the actual definition was
skipped due to its expected complexity and unreadability). Before we define
the protocol, we briefly present the semi-local model and compare it with the
classical local one.

Standard mathematical notation is used through the paper. The reader is
assumed to be familiar with basic notions from graph theory. By convention,
we use bold fonts to denote labelled graphs.

The paper is organised as follows. Section 2 introduces the semi-local
model of computations. Section 3 defines a semi-local token creation protocol
for rings. Then come the conclusions, including a discussion on complexity of
the defined algorithm and prospects for further research.

2 Locality and semi-locality

Graph transformations are represented as binary relations in the set of labelled
graphs. We say that a transformation T is a relabelling if it changes only the
labelling, i.e. for all (G,G’) € T the underlying graphs of G and G’ are
equal® .

3 The requirement of equality (not just isomorphism) has its practical explanation. The
underlying graph models the network and the physical structure of the network remains the

WROBLEWSKI

We say that a relabelling T is local in H iff for all (G, G’) € T such that
H is a subgraph of G :

(a) the labelling does not change outside H, and

(b) the change does not depend on the structure or labelling of the graph
outside H.

H is called a locality region of T'. Note that if 7" is local in H, it is also local
in every H' such that H € H C G. The minimum locality region of T' is
denoted as reg(T).

Distributed computations are modelled by sequences of local relabellings.
However, the relabellings whose locality regions do not intersect might be ap-
plied concurrently.

In the classical local model it is required that in every sequence of rela-
bellings, all transformations are local in balls of radius 14, i.e. the subgraphs
consisting of some node linked with its neighbours (see Fig. 1).

More formally, in the classical local model, for every sequence of labelled
graphs (Gi, Ga,...) such that for each ¢ € N (G;, G;11) € T; (where T; is a
relabelling), for all j € N we have:

reg(T;) < B(v;),

where v; is a node of Gj.

Fig. 1. Two successive relabellings in the local model. Locality regions are indicated
with grey background, their centres are pointed with arrows.

In the semi-local model we employ the fact (ignored in the local model)
that a distributed protocol might gather a structural knowledge about the
network in every step. Namely, if some step of the protocol is a local transfor-
mation in a ball B(v) centred in some node v, we assume that the structure
of B(v) is recognised. Now, take any node w € B(v). In the local model, the
next transformation (the next step of the protocol) might be local in B(w).
This means, however, that the previously gathered knowledge of the struc-
ture of B(v) would be ignored despite the fact that w € B(v). Why not use
B(v) UB(w) as the new locality region?

same after the change of its logical state.
4 More generally, in balls of some a priori chosen radius k& € N (a k-local model).

107

108

WROBLEWSKI

Thus, in the semi-local model we allow that in every sequence of rela-
bellings, each transformation is local in some ball of radius 1°, or in some
connected subgraph that is a sum of such a ball and some locality regions
used in the preceding transformations (see Fig. 2).

More formally, in the semi-local model, for every sequence of labelled
graphs (G, Ga,...) such that for each i € N (G;,G;41) € T; (where T; is
a relabelling), for all j € N we have:

reg(T;) C B(v;), or
reg(T;) is a connected subgraph of [reg(77) U ... Ureg(Tj_1)] UB(v;)

where v; is a node of G;.

a) iz i % f b) g ; z E
Fig. 2. Two successive relabellings in the semi-local model (compare Fig. 1).

This means that the initial locality regions are balls of radius 1, and then
they might grow using local methods (by adding balls of radius 1). Thus, semi-
local process still conforms with the intuitive meaning of a local computation,
but it is capable of solving all tasks solvable with global methods. Next section
provides a representative example.

3 Semi-local creation of a token in a ring

The simplest symmetric network architecture is modelled by a ring — a con-
nected graph in which every node v has exactly two neighbours (let us call
them left(v) and right(v). We assume that left(right(v)) = right(left(v)) =
v for every node v%. Our task is to define a semi-local protocol which starts
with an anonymous ring and transforms its initial uniform labelling into such
a labelling in which exactly one node is labelled differently than the rest. This
node will be given the token. Such a task is a typical example of a leader
election and the result labelling breaks the initial symmetry.

The idea of our protocol is quite simple. Let a group be a connected sub-
graph of a ring. The global state of the protocol is a set of groups numbered
with non-zero natural numbers. Every node can belong to at most two groups,
and it can be left border, interior, or right border of any group it belongs to.
If a node does not belong to any group, we call it a free node. Initially, the set
of groups is empty, thus every node is free. In the subsequent steps, groups

5 More generally, a ball of some a priori chosen radius k € N (a k-semi-local model).
6 This global assumption simplifies our algorithm. However, it can be easily avoided: the
definition of the algorithm would be approximately two times longer.

WROBLEWSKI

are created (from triples of free nodes), extended (by free nodes adjacent with
border nodes) or merged (when two different groups have the same border
node). The product of each creation, extension or merge is numbered in such
a way that any two incident groups have different numbers. After a series of
extensions and merges, all nodes belong to the same group and exactly one
node is its left and right border. This node is selected and gets the token.

Let R be any finite ring. R is fixed till the end of Section 3. The set of R’s
nodes is denoted as V. The local states of nodes are described by the labelling
functions I,i,7 : V — N and ¢t : V — {0, 1} where for each v € V:

e l(v) /i(v) / r(v) —anumber of a group for which v is right border / interior
/ left border, respectively © ; they are all 0 for free nodes; initially 0,

* {(v) — the indicator of the presence of the token in v; it is 1 if v has the
token, otherwise 0; initially 0.

The labelled graph (R, 1,1, r,t) is denoted R, the initial labelling is anonymous.

Let v € V. The list of protocol transformations follows. The symbols
[,1,r,t denote the labelling before the transformation, whereas the primed
symbols I, 7, r",t" denote its result.

o If a node v is free, let w = left(v) and x = right(v).
A new group is created from w, v, x, namely:

l(v) =i(v) =7(v) = 0 A gmax = maz(l(w),r(x)) A
r'(w) =7 (v) =U'(x) =1 + gmax (see Fig. 3a).

e If a node v is left border of some group G and is not a right border of any
other group®, then let w = left(v) and let x be the other border node of
G. The group G is extended by w, namely:

l(v) =i(v) =0 A r(v) >0A gmax = max(l(w),r(v),r(x)) A
r'(w) =4 (v) =1(x) =1+ gmax A 7' (v) =0 A
Vye G —{v,z} ' (y) = 1 + gmax (see Fig. 3b).

e If a node v is right border of some group G and left border some other group
H, then let w be the other border node of G, and = be the other border
node of H. The groups G and H are merged, namely:

l(v) >0 Ai(v) =0A7TWV) >0 A gnax = maz(l(w),l(v),r(v),r(z)) A
r'(w) =14(v) =1(z) =14 gmax N l'(v) =7"(v) =0 A
Vy e (GUH) —{w,v,z} i'(y) =1 4 gmax (see Fig. 3c).

e If a node v is right border and left border of the same group G, and it does

not have a token yet, then it is given the token, namely:

7 Note that the symbol [(v) corresponds to the text ”right border”. Intuitively speaking,
I(v) denotes the number of the group that spans from v to the left (i.e. in the direction
pointed by v’s left neighbour). This means that v is right border of the group numbered
[(v). The situation is symmetrical for the symbol r(v).

8 The situation in which v is right border and not a left border is symmetrical.

109

110

WROBLEWSKI

t(v) =0AIlv)>0Ai(v)=0AT@)>0AIlv)="r(v)A
! 1.

Fig. 3. Examples of a) creation, b) extension and ¢) merging of groups. The groups
are indicated with grey background, their numbers are placed nearby.

The example of a full run of the defined protocol is depicted in Fig. 4

1 1
—>
1
3 4 4
Fig. 4. An example of a run of the algorithm. The selected node that receives the
token is indicated with black background.

2

—> —> —>

The scope of this paper does not allow for a detailed discussion of the
properties of the defined protocol. Instead, we present the most important
properties in the form of the following theorem.

Theorem 3.1 The defined protocol is semi-local and creates a unique token
in R using exactly |V| transformations.

Proof. The protocol is semi-local because every transformation is a local
relabelling either

* in the ball of radius 1 centred in a free node, or

e in a group summed with the ball of radius 1 centred in a node that is left
border of the group and is not a right border of any other group, or

 in two different groups whose intersection is a node that is right border of
the first group and left border of the latter, or

* in a single node that is right border and left border of the same group,

and every group is a locality region used in some previous transformation.

Every run of the protocol uses |V| transformations because:

e every transformation requires a node v such that i(v) = 0 and t(v) = 0;
after the transformation one of these labels changes to non-zero value, but
for v only,

WROBLEWSKI

* as long as there is a node v such that i(v) = 0 and ¢(v) = 0, a transformation
might be performed,

and in the initial configuration i(v) = 0 and t(v) = 0 for all v € V.

All groups created by the transformations of the protocol are given different
numbers if they intersect. Thus, if for some node v we have I(v) = r(v) > 0,
then v is is right border and left border of the same group. This means that the
group contains all nodes of the ring, so for all nodes w # v we have i(w) > 0,
thus only v might be given the token.

On the other hand, subsequent transformations increase the number of
nodes w for which i(w) > 0. At the same time the appropriate groups are
created, extended or merged. As soon as for all w # v we have i(w) > 0, all
nodes belong to the same group. This means that v will be given the token.

O

4 Conclusions

The semi-local model of computations makes several useful tasks determinis-
tically solvable without using global transformations and with employment of
very little knowledge about the graph that models the network. A solution to
a representative problem was presented.

Future work will include detailed discussion of the properties of the defined
protocol, including its complexity measured as the number of actual changes
of individual labels. We currently estimate it to be O(|V|?).

However, our main focus is to define a self-stabilising version of the proto-
col. We believe that the protocol for rings is a good starting point, because
it is by far less complicated than the universal protocol defined in [5]. On the
other hand, we hope that achieving self-stabilisation for rings will be easy to
generalise for the universal case.

References
[1] Angluin, D., Local and Global Properties in Networks of Processors, Proc. of
the 12" Symposium on Theory of Computing (1980), 82-93.

[2] Chalopin, J., Y. Métivier, and W. Zielonka, Election, naming and cellular edge
local computations, Proc. of ICGT 04, LNCS 3256 (2004) 242-256.

[3] Godard, E., and Y. Métivier, A characterization of families of graphs in which
election is possible, LNCS 2303 (2002), 159-171.

[4] Mazurkiewicz, A., Solvability of the Asynchronous Ranking Problem,
Information Processing Letters 28/5 (1988), 221-224.

[5] Wréblewski, D., Universal Semi-local Election Protocol Using Forward Links,
Fundamenta Informaticae 67/1-3 (2005), 287-301.

111

WROBLEWSKI

[6] Yamashita M., and T. Kameda, Computing on anonymous networks: Part I -
characterizing the solvable cases, IEEE Transactions on Parallel and Distributed
Systems 7/1 (1996) 69-89.

112

	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf

