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Canopy Height Models (CHMs) or normalized Digital Surface Models (nDSM) derived from LiDAR data
have been applied to extract relevant forest inventory information. However, generating a CHM by height
normalizing the raw LiDAR points is challenging if trees are located on complex terrain. On steep slopes,
the raw elevation values located on either the downhill or the uphill part of a tree crown are height-
normalized with parts of the digital terrain model that may be much lower or higher than the tree stem
base, respectively. In treetop detection, a highest crown return located in the downhill part may prove to

ﬁ%//\;vsrds: be a “false” local maximum that is distant from the true treetop. Based on this observation, we theoreti-
Processing cally and experimentally quantify the effect of slope on the accuracy of treetop detection. The theoretical
Forestry model presented a systematic horizontal displacement of treetops that causes tree height to be sys-

tematically displaced as a function of terrain slope and tree crown radius. Interestingly, our experimental
results showed that the effect of CHM distortion on treetop displacement depends not only on the steep-
ness of the slope but more importantly on the crown shape, which is species-dependent. The influence of
the systematic error was significant for Scots pine, which has an irregular crown pattern and weak apical
dominance, but not for mountain pine, which has a narrow conical crown with a distinct apex. Based on
our findings, we suggest that in order to minimize the negative effect of steep slopes on the CHM,
especially in heterogeneous forest with multiple species or species which change their morphological
characteristics as they mature, it is best to use raw elevation values (i.e., use the un-normalized DSM)

and compute the height after treetop detection.
© 2015 Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote
Sensing, Inc. (ISPRS).

Tree detection
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1. Introduction

Information on individual trees is critical for a variety of forest
activities and for environmental modeling at the local and regional
scales (Lichstein et al.,, 2010). In the last decade, airborne Light
Detection and Ranging (LiDAR) has become a reliable remote sens-
ing technique for estimating individual tree parameters, due to its
capability to generate detailed and very precise three-dimensional
tree information (Hyyppa et al., 2008; Lim et al., 2003).

As an initial and important step in any analysis of LIDAR data on
individual trees, treetop detection has attracted much attention
and research (Hosoi et al., 2012; Hyyppa et al,, 2012; Jing et al,,
2012; Kaartinen et al., 2012; Popescu and Wynne, 2004;
Vastaranta et al., 2011). Identifying the correct treetop can provide
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accurate information on crown characteristics and the tree height
information, which in turn are useful inputs for growth and vol-
ume estimation models (Gebreslasie et al., 2011; Vastaranta
etal.,, 2011; Wulder et al., 2000). A widespread approach is to iden-
tify local maxima, which generally correspond to the location and
height of individual trees, and then to construct crown segments
(Falkowski et al., 2006; Naesset and @kland, 2002; Solberg et al.,
2006; Véga and Durrieu, 2011).

The local maxima are typically obtained from the height varia-
tion of a LiDAR-derived Canopy Height Model (CHM), also known
as a normalized Digital Surface Model (nDSM) (Forzieri et al.,
2009; Li et al., 2012; Persson et al., 2002; Yu et al., 2011). There
are two ways to create a CHM: with rasters or with point clouds
(Li et al., 2012; Persson et al., 2002). When working with rasters,
the LiDAR ground returns are used to create a raster DTM
(Digital Terrain Model), and the highest or first LiDAR returns are
used to create a raster DSM (Digital Surface Model). Then the raster
DTM is subtracted from the raster DSM to create the final raster
CHM (Lim et al., 2003). When working with point clouds, the
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classified LiDAR is height-normalized by replacing the raw eleva-
tion of each return (i.e. its z coordinate) with its height above the
DTM (Khosravipour et al., 2014; Van Leeuwen et al., 2010). Either
way, the end result is the absolute canopy height above the bare-
earth terrain surface.

Although the procedure of computing local maxima from a
CHM is conceptually simple, the accuracy of its result largely
depends on the quality of the acquired LiDAR data, its processing
and/or post-processing, and the forest conditions (Kaartinen
et al., 2012). For example, the use of a higher density of laser pulse
footprints improves the chance of the laser hitting the treetops
(Hyyppad et al., 2008; Lefsky et al., 2002), and the use of an efficient
local maxima technique enhances treetop identification by reduc-
ing commission and omission errors (Chen et al., 2006; Kaartinen
et al., 2012; Vauhkonen et al., 2012). A new study suggests that
the accuracy of treetop detection can be improved further by
removing height irregularities in the CHM (Khosravipour et al.,
2014). Moreover, a number of studies indicate that the various for-
est conditions (e.g., crown sizes, ages, site types, tree species and
forest density) can significantly influence intermediate LiDAR
derivatives and thereby the performance of tree detection algo-
rithms (Falkowski et al., 2008; Pitkdnen et al., 2004; Popescu and
Wynne, 2004; Vauhkonen et al., 2012; Yu et al., 2011).

Complex forest terrain presents a challenging problem, as it
affects the performance of the height normalization step by dis-
torting the CHM, which can reduce the accuracy of extracted tree
biophysical parameters (Vega et al., 2014). On steep slopes, the
raw elevation values located, for example, on either the downhill
or the uphill part of a tree crown are height-normalized with parts
of the DTM that may be much lower or higher than the tree stem
base, respectively (Breidenbach et al., 2008). Therefore, in the
CHM, the downhill part of the crown will “rise” while the uphill
part will “sink”, causing the entire tree crown to be systematically
distorted. In treetop detection, the “rising” branch overhanging
lower terrain in the downhill part can turn into a “false” local
maximum that is distant from the true treetop. This problem was
posed in Isenburg’s keynote speech at Silvilaser 2012 (Isenburg,
2012). He found a CHM that overestimated true tree height by
more than double: eucalyptus trees on steep and eroded slopes
in the Canary Island of Tenerife were estimated as being 51 m tall
whereas their true height was 25 m. Takahashi et al. (2005) and
Véga and Durrieu (2011) also reported that one of the sources of
tree height overestimation from LiDAR-derived CHM is a horizon-
tal offset error between field and LiDAR treetop detection, particu-
larly on steeper slopes. They concluded the difference may be due
to the LiDAR-derived treetop simply being identified as the maxi-
mum value of CHM within the crown area on steeper slopes.
Heurich et al. (2003) pointed out that this error increases for lean-
ing trees and/or steeper terrain slopes. Breidenbach et al. (2008)
reported an increasing underestimation of the CHM-derived height
with steeper upward slopes and vice versa for downward slope,
which can cause tree height - one of the most important stand
characteristics determined in forest inventory - to be misinter-
preted, thereby affecting estimates of subsequent biophysical
parameters such as biomass, volume and carbon sequestration.
The recent study of Vega et al. (2014) suggested using un-normal-
ized elevation values (i.e. using the DSM), and computing the
height after a tree crown segmentation step, to avoid the undesir-
able effect of steep slopes on the CHM. However, until now, the
influence of the normalization process on treetop detection and
height estimation has neither been studied nor quantified.

The aim of this study was to quantify the effects of slope gradi-
ent on the accuracy of treetop detection when using a LiDAR-
derived CHM. We first present a simplified theoretical model to
illustrate how normalization causes a systematic error in CHM-
based treetop detection when an individual tree is located on a

slope. We then assess the accuracy of treetop detection by using
both the CHM (i.e. the normalized elevations) and the DSM (i.e.
un-normalized elevations). Next, we compute the positional differ-
ence between the same tree detected in both the CHM and the
DSM, in order to investigate the influence of the slope on the hori-
zontal displacement of CHM-detected trees and its effect on subse-
quent height estimation.

2. Theoretical model

The systematic error in CHM-based treetop identification can be
quantified by using a conceptual model that is based on field mea-
surement of tree heights. In the field, the original tree height is
determined as a vertical distance from tree apex to the upslope
root crown (Husch et al., 1982). According to the model (illustrated
graphically in Fig. 1), the height of a tree is calculated as the mag-
nitude (length) of a vector h originating at the base of the tree and
ending at the treetop. Without loss of generality, we can assume
that the tree height is formulated as:

h=b+2r (1)

where b is the crown base height and r is the radius of the
hypothetical tree crown.

When computing the tree height from the height-normalized
model (i.e., CHM) the distance from the highest crown return to
its projection on the DTM is used, which introduces a systematic
error when the terrain is sloping (Takahashi et al., 2005; Véga
and Durrieu, 2011; Vega et al., 2014). We assume a tree on a terrain
of constant slope with an idealized spherical crown is always hit at
the highest point across the canopy by the laser pulses (i.e. no

laser energy reflection
from canopy surface

CHM treetop \\

true treetop

¢(x) = crown
contribution

hCHM

b = crown b
base height

b— - - == —- —-

s(x) = slope
Contribution

&>

Y
Y

Fig. 1. Schematic diagram of the geometry involved in the treetop detection based
on the effect of slope gradient on a LiDAR-derived CHM.
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canopy penetration). Although a tree crown is never have perfectly
spherical in nature, tree crowns (e.g., coniferous or deciduous) are
typically considered to be circular in nadir view (Biging and Gill,
1997; Doruska and Burkhart, 1994). Then we can use the following
simplified theoretical model and estimate the CHM-derived tree
height as the local maximum of the function hcyp(x) within
—r<X<T:

heum(x) = b + c(x) + s(x) (2)

where b is the constant crown base height, and c(x) and s(x) are the
contribution of the tree crown and slope in the estimation of CHM-
derived tree height, respectively.

The crown contribution c¢(x) includes a constant r as the crown
radius, and a vertical distance that is a function of the horizontal
displacement x from the original treetop (see Fig. 1). This perpen-
dicular distance can be calculated with the Pythagoras theorem
that relates the lengths of the three sides of any right triangle as:

cx)=r+vVrz —x2 3)

The slope contribution s(x) describes a vertical distance that is
also a function of the horizontal displacement x from the original
treetop. It is based on the terrain slope that is assumed to be con-
stant below the tree:

s(x) = —mx (4)

where m is the constant terrain slope.

The resulting function heyp(x) expresses the tree height that we
expect to measure for our idealized circular crown along a line that
goes through the true treetop in the direction of the steepest slope
for a given radius r and a constant slope m. The X4 is the x that
locally maximizes the function hcyp(x) within the crown diameter
(i.e. —r <x < ). The x4, estimates the expected systematic hori-
zontal displacement from the true treetop (x=0). The value
heam(Xmax) estimates the expected CHM-derived tree height.

The two extrema Xy — one local maximum and one local mini-
mum - of the function hcyp(x) can be determined by finding the
zero crossings of its derivative function hcy/(x) so that the Xpax
can be found by solving hcyp/(x) = 0:

heum(x) =b+1+ V2 —x2 —mx (5)

Mo (X) = —x/Vr2 —x? —m
hpy (Xext) = —X/Vr2 —x2 —m =0
Xexe = =mr/v/m2 + 1

The horizontal displacement is always directed downhill.
Represented in our schematic diagram (Fig. 1), the horizontal dis-
placement will be negative for positive slope (m > 0) but positive
for negative slopes (m < 0).

horizontal displacement = X;qx (6)
Xmax = —mr/yv/m? + 1

By substituting the x value in the CHM-derived tree height func-
tion (Eq. (2)) with the result obtained for x,,,x, We can estimate the
expected CHM-derived tree heights. The expected error difference
(vertical displacement) can be calculated by subtracting the true
tree height (Eq. (1)) from the expected CHM-derived one (Eq. (2)):

vertical displacement = hcyy (Xmax) — h

vertical displacement = r<\/ m2+1- 1)

Though the theoretical model over-simplifies crowns in the real
world, it is adequate to demonstrate the systematic error intro-
duced by sloping terrain during the normalization step: the height
of LiDAR canopy returns is overestimated downhill of the tree stem

(7)

and it is underestimated uphill of the tree stem. This systematic
error is one of the sources of error that usually leads to tree height
being misinterpreted due to steep slope (Breidenbach et al., 2008;
Takahashi et al., 2005; Véga and Durrieu, 2011).

The formulas in Egs. (6) and (7) suggest that for a constant slope
(m) both the expected horizontal and vertical displacement
increase linearly when the crown radius (r) increases (an elliptical
crown behaves similarly). However, for a constant radius (r), when
slope increases, slope effect on horizontal displacement increases
asymptotically whereas slope effect on vertical displacement
increases exponentially. As an example, we simulate the theoreti-
cal model for different slopes for a constant radius (r) of 3.5 m
(Fig. 2). The asymptotic effect on horizontal displacement is clearly
visible when the slope approaches 40 degrees. The effect of slope
on vertical displacement increases exponentially, especially when
the slope reaches 45°, and goes to infinity as the slope approaches
90°.

3. Experimental data
3.1. Study area

Bois Noir (44°23'N, 6°45’E) is a forest in the Barcelonnette basin
in the southern French Alps (Fig. 3). The northern part of Bois Noir
is characterized by irregular rugged topography with slope gradi-
ents ranging from 10° to 35° (Thiery et al., 2007) and the southern
part is characterized by extensive steep scree slopes of up to 70°
(Razak et al., 2011b). The test area was 1.30 km?, with a cover pre-
dominantly of mountain Pine (Pinus uncinata) and Scots pine (Pinus
sylvestris), at an elevation ranging from 1400 to 2380 m above sea
level (Razak et al., 2013).

3.2. Field data

Field inventory data were collected during September 2011 and
2012. Some parts of the forest had been affected by a landslide that
had caused the tree stems to bend and tilt. We used the landslide
boundaries provided by Thiery et al. (2007) and Razak et al.
(2011a) to establish 46 plots outside the landslide area. For this
research, the measurements collected included tree location, tree
crown diameter (in two perpendicular directions) and tree species
determination (Table 1). The position of individual trees and the
central point of each plot were recorded using the Leica 1200
Differential GPS System and a total station (see Khosravipour
et al. (2014) for more detail). The total number of trees sampled
was 514.

3.3. LiDAR data and pre-processing

The LiDAR data were acquired using a helicopter in July 2009.
The small footprint full-waveform LiDAR system (RIEGL VQ-480i)
utilized by Helimap has been developed specifically for mapping
mountainous forested area (Vallet and Skaloud, 2004). The system
was operated at a laser pulse repetition rate of 300-kHz and a scan
width of 60° and performed on-line full-waveform analysis to
extract up to five discrete returns for each pulse. The survey was
flown 250 m above ground level, resulting in a mean footprint
diameter of 75 mm on the ground. In order to increase the laser
pulse density, the area was covered by seven overlapping flight
lines. The mean point density of all return was 160 points/m?.

The LiDAR data were stored separately in adjacent, non-over-
lapping tiles. The LiDAR points were retiled to a tile size of
300 m with a 15 m buffer along all sides of each tile, in order to
avoid edge artifacts at the tile boundaries during tile-based pro-
cessing (Isenburg et al., 2006b). The LiDAR points were classified
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Fig. 2. The relationship between slope, horizontal displacement, and vertical displacement for an idealized spherical crown with a radius of 3.5 m.
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Fig. 3. Location of the Barcelonnette basin in the map of France (left) and the slope map of the Bois Noir forest (right).

into ground and non-ground returns, using automatic progressive
TIN (triangular irregular network) densification filtering as devel-
oped by Axelsson (2000). Once classified, the ground returns point
clouds were interpolated with a TIN by Delaunay triangulating
(Isenburg et al., 2006a), which was then rasterized onto a grid with
0.15 m? spatial resolution, to create the DTM. This LiDAR-derived

DTM of the Bois Noir forest was quantitatively and qualitatively
assessed, using procedures described by Razak et al. (2011b). The
vertical accuracy of the DTM varied between 0.28 and 0.36 m com-
pared to the field data, depending on whether the terrain was open
or forested. From this DTM a slope gradient raster was computed
with ESRI's ArcGIS software, which implements the third-order
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Table 1
Descriptive statistics of the tree crown diameter measurements (m).

All (n=514) Scots pine (n=263) Mountain pine (n=251)
Minimum  0.50 0.90 0.50
Maximum  9.10 9.10 6.70
Median 2.50 3.45 1.70
Mean 2.82 3.66 1.94
Std Dev 147 1.40 0.92

finite difference method (Horn, 1981). The slope at each tree stem
location used in our analysis was calculated as the mean terrain
slope within the reference tree crown.

The first returns were used for generating the DSM and the
CHM. Such LiDAR-derived surface models often contain so-called
“data pits” which occur, for example, when a laser pulse penetrates
deep into the canopy before producing its first return, or when
multiple flight lines that scan the canopy from different viewpoints
are merged (Axelsson, 1999; Ben-Arie et al., 2009; Leckie et al.,
2003). The pit-free algorithm, developed by Khosravipour et al.
(2014), was used for generating the pit-free CHM. This algorithm
consists of two stages: the first stage normalizes the height of
the LiDAR returns and generates a standard CHM raster from all
first returns and several partial CHM rasters from only those first
returns that are above a set of increasing height thresholds (e.g.,
above 2 m, 5m, 10 m and 15 m). The second stage composes the
standard and all partial CHM rasters into one final CHM by keeping
for each pixel the highest value across all CHMs. A variation of the
pit-free algorithm was used to generate the pit-free DSM simply by
omitting the normalization step and operating on the original ele-
vations. The CHM and DSM were rasterized to the same 0.15 m?
grid spacing as that of the DTM. The pre-processing was imple-
mented by batch-scripting several modules of the LAStools soft-
ware (rapidlasso GmbH, 2014).

3.4. Individual treetop detection

In order to extract individual treetops, a method based on mor-
phological opening and reconstruction was applied to both the
CHM and the DSM. The mathematical morphological opening
operation (erosion followed by dilation) with an appropriate struc-
turing element (which defines a neighborhood around a given
point) is an image-processing technique that can separate different
objects (Serra, 1982; Vincent, 1993) and preserve the structural
information of each object, based on the structuring element’s
shape (Wang et al., 2004). The shape and size of the structuring
element are commonly based on the shape and size of the objects
of interest. In this study, a flat disk with a diameter of 1.05 m (7
pixel sizes) was experimentally found appropriate (based on the
field crown size data) to identify the treetops. The opening opera-
tions removed “foreground” objects (i.e., treetops) that were smal-
ler than the selected structuring element in the image. The result is
an opened image. Afterward, morphological reconstruction, which
is a very efficient method for extracting regional maxima
(Khoshelham et al., 2010; Vincent, 1993), was implemented. The
opened image was selected as a marker under the original canopy
surface as a mask image, in order to retrieve the shape of tree
crown boundaries that were smoothed by the opening operation.
Subsequently, the reconstructed image was subtracted from the
original canopy surface in order to isolate the individual treetops
that had been removed by the opening operation as regional max-
ima. The local maxima of each regional component were extracted
from the image. They are the estimated treetop points (x, y, and z).
For the CHM, the z coordinate of each treetop point corresponds to
the estimated tree height. For the DSM, the z coordinate of each
treetop point was height-normalized using its projection onto
the DTM.

3.4.1. Accuracy assessment of individual treetop detection

The performance of the treetop detection was evaluated by
comparing the automatically detected trees from both the CHM
and DSM with the trees measured in the field. If one treetop had
been detected within a reference crown boundary, the detection
was considered correct. If more than one treetop was detected,
the closest reference tree was considered as correct, and other
trees were then defined as commission errors. However, if no
LiDAR-detected treetop was found, this error was considered as
an omission error. Subsequently, the distance between the trees
detected from the CHM and those detected from the DSM was
measured, in order to calculate the horizontal displacement of
detected trees in the CHM. The linear regression model was used
to find the relationship between the horizontal displacement and
the slope of the terrain. Due to the lack of accurate tree height
measurements in the field for our super-high density LiDAR points,
it was not feasible to validate the tree heights derived from the
CHM and the DSM. Thus, only the differences between the height
measurements in the CHM and the DSM were used to find the
relationship between the vertical displacement and the slope of
the terrain. In addition, a visual 3D comparison between the
CHM and the DSM provided further insight into the results.

4. Experimental results

In order to create a CHM for detecting individual treetop posi-
tion, the normalization process was applied to the elevation of
the LiDAR points. Fig. 4 shows the distorting influence of slope
on this LiDAR height normalization on the original morphological
structure of the crown of a Scots pine and the crown of a mountain
pine. As can be seen, the Scots pine tree, which has a wider, more
irregular crown pattern and weaker apical dominance, is affected
more than the mountain pine tree, which has a smaller and nar-
rower crown.

In order to quantify the effect of the slope, the treetop detection
technique was applied to both the CHM and DSM. Fig. 5 shows the
CHM raster, examples of trees detected in both the CHM and the
DSM, and also omission and commission errors. The Fig. 5 also
illustrates an example of the horizontal displacement of a CHM-de-
tected treetop position compared to its location as detected in the
corresponding DSM.

Table 2 presents the numbers and the percentages of correctly
detected trees, omission and commission errors, assessed for
Scots pine and mountain pine. The overall tree detection rate of
both species was high (“Correct” Table 2). Note that the number
of false trees results (“Commission”) was higher for Scots pine than
for mountain pine.

Out of a total 514 trees, 395 trees were detected in both the
CHM and the DSM. The range of positional differences between
the same CHM-detected and DSM-detected trees was between
0.15 m (one pixel) and 1.80 m. Because remotely sensed data of
high spatial resolution is often spatially auto-correlated (Chen
et al., 2012; Hu et al., 2014), we used the range of semi-variogram
statistics in order to adjust the minimum distance of the horizontal
displacement of treetops. The semi-variograms (using the spherical
model) of the both CHM and the DSM images indicated that pixels
are highly correlated within a range of 0.35 m. Therefore, treetops
detected in both the CHM and DSM within 0.35 m of each other
were assumed to belong to the same tree (i.e. to have a positional
difference of 0.0 m).

The numbers and percentages of the same treetops that were
correctly detected from both the CHM and the DSM are reported
in Table 3 per tree species and for three different slope ranges
(i.e. 0°-15°, 15°-30°, and 30°-45°). On a terrain slope of less than
15° there was no significant horizontal displacement of treetops
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Fig. 5. An example of identified treetops, omission and commission errors, and the horizontal displacement between a CHM-detected and a DSM-detected treetop position.

Table 2
Tree detection results for the CHM and the DSM.
Field-measured trees CHM DSM
Number of trees Species Correct n (%) Omission n (%) Commission n (%) Correct n (%) Omission n (%) Commission n (%)
263 Scots pine 215 (81.7) 48 (18.2) 30(11.4) 223 (84.8) 40 (15.1) 25 (9.5)
251 Mountain pine 207 (82.4) 44 (17.5) 1(0.3) 206 (82.0) 45 (17.9) 0(0.0)
514 Total 422 (82.1) 92 (17.8) 31 (6.0) 429 (83.4) 85 (16.5) 25 (4.8)
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Table 3
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Percentages and numbers of correctly detected trees located on three different slopes.

Field-measured trees

Linked CHM- and DSM-detected trees

Number of trees Slope class Species Total n Without displacement n (%) With displacement
n (%) Horizontal Vertical displacement
displacement (m) (m)
Min Max Mean Min Max Mean
64 0-15 44 43 (97.7) 1(22) 042 042 010  0.10
179 15-30 Scots pine 142 126 (88.7) 16(112) 042 171 074 003 075 0.16
20 30-45 15 8 (53.3) 7 (46.6) 080 180 139 001 178 097
263 Total 201 177 (88.0) 24(119) 042 180 092 001 178 040
81 0-15 64 64 (100) 0(0.0)
148 15-30 Mountain pine 114 111 (97.3) 3(2.6) 045 127 073 007 014 010
22 30-45 16 16 (100) 0(0.0)
251 Total 194 191 (98.4) 3(1.5) 045 127 073 007 014 010
between the CHM and the DSM, but the number of affected trees —
increased with steepness of the terrain. The maximum displace- — 2001 ?;%412
ment of CHM-detected treetops from DSM-detected treetops was % 2= 6.01
1.80m and occ.u.rred on slopes of more than 30° As gxpecFed, the 2 175 RMSE=047m = "
horizontal positional error caused an increasing vertical displace- < . %
ment error (i.e., an overestimation of CHM-derived tree height). o Expecte.dlmfz X
The maximum height overestimation was 1.78 m for slope of more % 1504 ==~ Regression line
than 30°. However, the effect of the systematic error became evi- = X
dent only for Scots pine trees, not for mountain pine trees. A g 195
remarkable 46.6% of correctly detected Scots pine trees located 8 X
on steep terrain (more than 30°) were affected by the systematic -
error, whereas the conical mountain pines were not affected by % 1004 T XL X
this error. s | A T
A linear regression model using slope as the independent vari- s x T X ——n
. . . . .. c .75 X
able explained 54% of the variance associated with the positional o % 5
displacement of CHM-detected Scots pine trees (Fig. 6). The result N LI
of its ANOVA demonstrated that the regression model is significant I° 50 X x % "
when predicting the horizontal displacement of CHM-detected e x
trees (F=(1,23) = 23.73, p < 0.05). The field-measured crown radius T T T T T T T
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of Scots pine species was also plotted against the horizontal dis-
placement. Surprisingly, however, there was no correlation
between the magnitude of the systematic error and the crown size
within Scots pine trees (Fig. 7).
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Fig. 6. Horizontal displacement of the Scots pine treetops regressed against slope.

crown radius (m)

Fig. 7. Horizontal displacement of the Scots pine treetops regressed against crown
radius.

The height differences between the CHM-derived tree height
and DSM-derived tree height were plotted against slope gradient.
On average, the CHM-derived height was 0.40 m above the DSM-
derived height, as was expected from our theoretical model. The
absolute minimum difference was 0.01 m and absolute maximum
was 1.78 m. The regression model using slope terrain explained
48% of the variance associated with the vertical displacement rate
(Fig. 8). Its ANOVA result demonstrated the regression model is a
significant model when predicting the height differences by slope
(F=(1,23)=20.44, p<0.05).

5. Discussion

One of the challenges when generating a CHM through height
normalization is that a systematic error appears whenever trees
are located on complex, sloping terrain. Based on this observation,
we theoretically and experimentally quantified the effect of slope
on the accuracy of treetop detection and its effect on the tree
height estimation before and after height normalization.

The theoretical model presented the systematic error in LiDAR-
derived treetop detection and height estimation as a function of
terrain slope surface and tree crown radius. For a constant radius,
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Fig. 8. Vertical displacement of the Scots pine trees’ height regressed against slope.

the horizontal displacement increases asymptotically with the
slope and reaches its maximum at a value equal to the radius size;
the vertical displacement increases exponentially and goes to
infinity as the slope approaches 90°. For a constant slope, both
the horizontal (i.e., treetop) and vertical (i.e., height) displacement
increase linearly, concomitantly with the crown radius. However,
our idealized circular tree crown is different from the crowns that
were measured as an average of two longest extending perpen-
dicular directions in the field. This explains why we did not
observe any correlation between the magnitude of the systematic
error and the field crown size measurement. To better approximate
other crown shapes, it would be possible to replace the circular
crown contribution to the CHM-derived tree height estimate with
various non-circular functions. Our idealized theoretical model is
intended to show that terrain slope systematically creates an error
for all crown shapes but the actual magnitude of this error will
vary with each individual shape.

Our experimental results showed that the effect of CHM distor-
tion on treetop displacement depends not only on the steepness of
the slope but - more importantly - on the crown shape, which is
mainly determined by species. The influence of the systematic
error was only evident for the Scots pine trees (which are have a
larger average crown size), not for the mountain pine trees (which
have a narrow, conical crown with distinct apex). Holmgren and
Persson (2004) reported that tree species conical in shape, such
as the mountain pine, have a lower 90th LiDAR height percentile
than Scots pine. This suggests that the LiDAR returns from the api-
cal portion of mountain pine (i.e. the highest 10%) are distinctly
higher than other canopy returns. Hence, no matter how steep
the slope, the apical portion always becomes the local maximum
in both the CHM and the DSM and is always identified as the cor-
rect treetop.

Our experimental results also showed that the effect of system-
atic error on horizontal displacement varies greatly among Scots
pine trees. The probable reason is that the crown shape of Scots
pine tends to differ with the age of the tree. Scots pine trees are
conical when young but become more rounded and irregular as
they mature (Holmgren and Persson, 2004; Ross et al., 1986).
Local tree competition can also influence crown shape, with the
resulting more slender and conical crown (Rouvinen and
Kuuluvainen, 1997) being similar to the crown shape of mountain
pine. The higher percentage of the commission error also

confirmed that the Scots pine crown shape is more irregular than
that of mountain pine. Previous studies such as Popescu and
Wynne (2004) and Kato et al. (2009) have reported that rounder
crowns resulted in individual trees being falsely delineated by local
maxima techniques.

According to the theoretical model, the height of LiDAR returns
calculated from the distance between the highest crown return and
its projection on the DTM on steep areas will be overestimated. Our
experimental results confirmed that the average vertical displace-
ment error between CHM-derived tree height and DSM-derived
tree height was a positive value, i.e., an overestimation of tree
height by CHM. The cause was obviously the horizontal downhill
displacement of CHM-detected trees on sloping terrain. A few
researchers have suggested that the tree height overestimation
error might be caused by the differences between field-measured
and LiDAR-derived heights on steeper slopes (Breidenbach et al.,
2008; Takahashi et al., 2005; Véga and Durrieu, 2011). Our results
demonstrate for the first time that - in steep terrain - the height
normalization step causes systematic vertical errors, due to the
horizontal displacement of treetops. Furthermore, we have shown
that these errors depend on the crown shape of the species being
measured. On the basis of our results, we recommend using raw
elevation values (i.e.,, the un-normalized DSM) and computing
the height after treetop detection and/or tree crown segmentation,
in order to minimize the negative effect of steep slopes on the
CHM, especially a heterogeneous forest type consisting of multiple
species, or species which change their morphological characteris-
tics as they mature.

6. Conclusions

We have theoretically and experimentally shown in this paper
that the LiDAR height normalization process systematically
reduces the accuracy of treetop detection when trees are located
on sloping terrain. Our experiments also showed that the effect
of slope-distorted CHMs on treetop detection strongly depends
on the tree’s crown shape, which is largely determined by its
species. It would be interesting to investigate the effect of height
normalization on various other non-conical crown shapes (e.g., flat
or ellipsoidal) located on terrain with a more complex topography
(e.g. with gullies, mounds and other sudden local elevation
changes).
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