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a b s t r a c t 

In this paper, we study an inventory model for an omnichannel retailer, that is, a retailer that sells items 

both via brick-and-mortar stores and online. Online items are delivered from a warehouse, which also 

replenishes the stores. When the inventory in a store drops below a certain level, the retailer offers cus- 

tomers a discount for purchasing online. In this way, the retailer can save items for customers who need 

the item immediately and thus avoid lost sales. For this model, we propose an approximation method for 

calculating the average inventory costs for one store and one warehouse and an optimization procedure 

for the case of more stores. Using extensive numerical experiments, we show that the approximations are 

very close to the performance measured via simulation. Finally, we show that by adopting the discounts 

policy proposed in this paper, the retailer can reduce its total cost, on average, by 8.5% compared to the 

no-discounts policy. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In recent years, an increasing number of retailers have deployed 

n omnichannel strategy, where customers can buy products in 

rick-and-mortar stores as well as online. For traditional stores, 

xpanding to the online environment is a necessity for remaining 

ompetitive. At the same time, online retailers discovered the ben- 

fit of showrooms, where customers can physically see the items 

hey are interested in before purchasing them ( Bell, Gallino, & 

oreno, 2018; 2020 ). However, from a supply chain perspective, 

dopting an omnichannel strategy can lead to significant complex- 

ties, as discussed by Hübner, Holzapfel, & Kuhn (2016) . 

Integration of the inventory for the online and offline channels 

s a key element for an omnichannel retailer ( Bendoly, Blocher, 

retthauer, & Venkataramanan, 2007 ). Most of the literature on ful- 

llment strategies and inventory integration focuses on pure online 

etailers or retailers who use the stores for fast fulfillment of on- 

ine orders. In this situation, assigning orders dynamically to fulfill- 

ent centers is essential ( Acimovic & Graves, 2017; Jasin & Sinha, 
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015; Mahar, Bretthauer, & Venkataramanan, 2009 ). An adequate 

nventory pricing scheme that predicts the fulfillment at stores can 

urther improve the revenue ( Harsha, Subramanian, & Uichanco, 

019 ). 

In this research, we focus on an omnichannel retailer of expen- 

ive, slow-moving items. The retailer’s network consists of a ware- 

ouse and a network of brick-and-mortar stores. The stores have 

nly a few items in stock, their main role being to let customers 

xperience the product, and thereby increase the overall demand 

nd decrease the returns. Companies such as WarbyParker.com and 

mazon have already successfully used this strategy ( Bell, Gallino, 

 Moreno, 2020 ). Note that the same policy is being used by 

tores selling electronic appliances and furniture, which have lim- 

ted space. 

In this paper, we propose a mathematical model that allows 

tudying the advantages of offering discounts to store visitors for 

witching to the online channel. In our model, we assume that the 

tores follow an (S − 1 , S, IC) inventory policy, where, every time 

n item is sold, another item is ordered from the warehouse. The 

tores only sell items to store visitors; they do not fulfill online 

rders. Note that the (S − 1 , S) policy is suitable for slow-moving 

tems. If customers visiting the store find the inventory level below 

he critical level IC, they are offered to switch to the online chan- 

el in exchange for a discount. This basically means that their or- 

er will be fulfilled at a later time from the warehouse. Customers 

https://doi.org/10.1016/j.ejor.2021.07.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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ho find the inventory depleted and do not switch to the online 

hannel are lost. The main advantage of offering this discount is 

o prevent future lost sales due to customers who find the inven- 

ory at stores depleted and may be tempted to buy from a com- 

eting retailer. The discount acceptance probability is assumed to 

e known. The warehouse has two roles. First, it is used to fulfill 

nline orders, that is, orders that are placed directly via the online 

hannel, as well as orders of customers who switched to the on- 

ine channel after accepting the discount at the store. Second, the 

arehouse is used to replace the items bought at the stores. At the 

arehouse, we assume an (R, Q ) -policy with backlogging. The ar- 

ival processes of online and store customers are assumed Poisson, 

nd all the lead times are assumed to be deterministic. Observe 

hat the integration of online and offline inventories in this model 

akes place at the warehouse. To the best of our knowledge, the 

roposed model has not been studied before in the literature. 

The paper is organized as follows. In Section 2 , we revise the 

elated literature and discuss the contribution of the present paper. 

ection 3 presents an approximation method for the long-run av- 

rage costs in the special case of one store and one warehouse. In 

ection 4 , we prove some properties of the objective function and 

ropose a heuristic for the case of more stores based on decom- 

osing the original problem into a series of optimization problems 

t the retailer level. Finally, we present extensive numerical results 

n the quality of the approximations and heuristic proposed and 

ensitivity analysis for the impact of discounts in Section 5 . We 

onclude the paper with a discussion and managerial insights re- 

arding the use of discounts in a multi-echelon, omnichannel set- 

ing. 

. Related literature 

The model discussed in this paper is a two-echelon model with 

ne warehouse and a set of stores. The warehouse follows an 

R, Q ) policy, while the stores follow a base-stock rationing pol- 

cy (S − 1 , S, IC) combined with discounts. There are two demand 

lasses: offline demand, which is served directly from the stores 

f there are items on stock, and online demand, served from the 

arehouse. Customers who find no inventory and refuse the dis- 

ount are lost. The problem studied in this paper is closely related 

o the omnichannel literature and three important research direc- 

ions in inventory management: multi-echelon inventory models 

ith lost sales at the lowest echelon, rationing policies, and pric- 

ng. We will revise the most related papers in all these research 

treams. 

Improving the performance of the supply chain of omnichan- 

el retailers is a booming area in operations management. E- 

ulfillment and distribution strategies together with inventory in- 

egration are key aspects for cost reduction and high customer 

atisfaction for these retailers. Mahar et al. (2009) have shown 

he importance of assigning orders to fulfillment centers in a dy- 

amic way. Fulfillment decisions become very complex when or- 

ers might contain multiple items, having different availability at 

ifferent locations. LP-based heuristics for optimizing the fulfill- 

ent of multi-item orders for online channels have been proposed 

y Acimovic & Graves (2015) and Jasin & Sinha (2015) . The ben- 

fits of dynamic fulfillment strategies can be further enhanced if 

nventory is jointly optimized with fulfillment decisions, as shown 

y Acimovic & Graves (2017) and Govindarajan, Sinha, & Uichanco 

2018) . Besides location, pricing of inventory also plays an impor- 

ant role in omnichannel retail. Harsha et al. (2019) showed that 

nventory pricing can help balance inventory across the network, 

or example, by fulfilling more online orders from stores with low 

emand. Our paper differs from the literature as the online orders 

an only be fulfilled from the warehouse and not from the stores. 

imilar to Acimovic & Graves (2017) , we are interested in find- 
59 
ng the up-to-level at stores; however, we consider a continuous 

eplenishment policy and focus of the joint replenishment of the 

arehouse and stores and not on the joint replenishment of the 

ifferent fulfillment centers. Moreover, the demand for each chan- 

el is controlled through a discount for switching from the store 

o the online channel. To the best of our knowledge, the joint op- 

imization of inventories with the possibility of channel migration 

as not been studied before. 

The inventory system analyzed in this paper is, in essence, a 

wo-echelon continuous review inventory system with a backlog 

ossibility at the warehouse and lost sales at the stores. Due to 

he importance of these models in manufacturing and spare parts 

upply chains, the literature on multi-echelon systems is very vast. 

or extensive reviews of the multi-echelon literature, we refer to 

an Houtum (2006) , Simchi-Levi & Zhao (2011) , and de Kok et al.

2018) . Here we shall comment only on papers with similar net- 

ork structure (two echelons consisting of one warehouse and N

tores/retailers) and related inventory policies. 

Most of the multi-echelon papers on continuous review poli- 

ies consider the situation where demand can be backlogged. One 

f the widely used approaches to calculate performance mea- 

ures for multi-echelon systems is the METRIC model proposed in 

herbrooke (1968) . In the METRIC approximation, the average de- 

ay at the warehouse is used to estimate costs at the stores instead 

f the real stochastic times. For a review of the method and articles 

hat build upon it, we refer to Axsäter (2015) . Axsäter (1990) pro- 

ides an exact recursive procedure for calculating the long-run av- 

rage costs in a system of one warehouse and N stores, in which all 

acilities follow an (S − 1 , S) inventory policy. Axsäter (1993) and 

xsäter (1998) derive the expected holding and shortage costs in 

 system with the same network structure and (R, Q ) inventory 

olicies at each facility. The exact probability distribution of the 

nventory levels in this system is studied in Axsäter (20 0 0) . 

Lost sales models have received less attention in the multi- 

chelon literature. In one of the first papers on a multi-echelon 

ystem with lost sales, Nahmias & Smith (1994) find optimal so- 

utions for a periodic model with zero replenishment times where 

ome of the lost sales can be delayed. For the case of one ware- 

ouse and N stores, where all facilities follow an (S − 1 , S) pol- 

cy and excess demand at retailers is lost, Andersson & Melchiors 

2001) propose an efficient queueing-based approximation that ex- 

ends the METRIC-model described in Sherbrooke (1968) . The au- 

hors model each store as an Erlang-loss queue, which permits the 

alculation of the loss probabilities and subsequently allows them 

o give an estimate of the arrival rate at the warehouse. An it- 

rative heuristic is then used to calculate the base stock levels 

t facilities. Hill, Seifbarghy, & Smith (2007) calculate the aver- 

ge stock and the fraction of demand met at stores in a model 

here the stores follow an (R i , Q ) policy and the warehouse an 

SQ, (S − 1) Q ) policy. The model relies on the assumption that at 

ny moment in time, each store can have at most one outstanding 

rder at the warehouse and that the transportation time from the 

arehouse to store is not less than the lead time of the warehouse. 

ur model is similar to the one studied in Andersson & Melchiors 

2001) and Hill et al. (2007) ; however, in this paper, the stores fol-

ow a rationing policy, and some of the customers at the stores can 

e served by the warehouse if they accept a discount. Moreover, in 

ur case, the warehouse has an (R, Q ) policy, which requires a dif- 

erent analysis of the delay at the warehouse. 

Our model considers two classes of customers: the customers 

ho visit the stores and the online customers. One of the most 

ommonly used inventory policies when dealing with different 

lasses of customers is the so-called rationing policy ( Kleijn & 

ekker, 1999 ). In order to improve the service level of higher pri- 

rity customers, orders from lower-priority customers are backo- 

dered or rejected when inventory reaches a certain critical level. 
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e will denote a rationing policy by the inventory policy followed 

y the critical level. Nahmias & Demmy (1981) derived the first ap- 

roximation for the expected number of backorders and fillrates in 

 continuous (R, Q, K) inventory system with two demand classes 

odeled by Poisson processes and deterministic lead times. Orders 

or the low priority customers are backordered when the inventory 

n hand drops below K. Deshpande, Cohen, & Donohue (2003) ex- 

end the model in Nahmias & Demmy (1981) by allowing multi- 

le outstanding orders in the pipeline. Arslan, Graves, & Roemer 

2007) further generalize this model to multiple demand classes 

ith different shortage costs or service requirements. Fadlo ̆glu & 

ulut (2010) propose an approximating embedded Markov Chain 

o estimate the steady-state probabilities in an (S − 1 , S, K) sys- 

em with constant lead times, two demand classes, and backlogged 

emand. For the same system, the exact distribution of the re- 

ponse times of low priority customers and an approximation of 

he fillrate for the high priority customers are derived in Gabor, 

an Vianen, Yang, & Axsäter (2018) . For the case of exponential 

ead times, Vicil & Jackson (2016) calculate the steady-state dis- 

ribution of the on-hand inventory and the number of backorders 

f each class. They show that under certain independence condi- 

ions, the same balance equations hold in the case of general lead 

imes. 

Ha (1997) was one of the first to analyze a critical level pol- 

cy in a lost-sales environment. He analyzed a make-to-stock sys- 

em with n demand classes and exponential lead times. By model- 

ng the system as an M/M/ 1 /S queue with state-dependent service 

ates, he was able to show that in this setting, a base stock policy 

ombined with a rationing policy is optimal. Melchiors, Dekker, & 

leijn (20 0 0) calculate the expected inventory costs in an (s, Q, K) 

ystem with two demand classes and lost sales. In our model, a 

ationing policy is used at the stores. The main difference between 

ur policy and the ones in the literature is that we do not reject 

ne of the customer classes but allow customers of one class to 

hange the delivery channel in exchange of a discount, if inven- 

ory drops below the critical level. This is equivalent to allowing a 

elay in delivery, with the delayed item being delivered from an- 

ther echelon. Furthermore, we consider the impact of this policy 

n a two-echelon setting, whereas, to the best of our knowledge, 

ost literature addresses rationing in one echelon. 

The last stream of literature related to our model is the one 

ombining pricing decisions and inventory theory. It is well known 

hat offering economic incentives to backorder can result in signif- 

cant gains ( Bhargava, Sun, & Xu, 2006; Cheung, 1998; DeCroix & 

rreola-Risa, 1998; Ding, Kouvelis, & Milner, 2006 ). The paper most 

elated to our paper is the one of Cheung (1998) , in which the im-

act of offering discounts for delayed service in an (R, Q ) system 

s analyzed. Cheung (1998) proposes a policy in which, if the on- 

and inventory drops below a certain level within a period T after 

he reorder time epoch, a discount is offered to customers in ex- 

hange for accepting a delayed service. Under the assumptions of 

t most one outstanding order and backlog being smaller than Q at 

ny time, Cheung (1998) derives the expected costs of this system 

nd, using computational experiments, concludes that discounts 

an lead to significant savings. DeCroix & Arreola-Risa (1998) study 

he benefits of offering an economic incentive to all the customers 

ho see an inventory on hand below r in an (s, S) inventory sys- 

em with uncertain supply. Lei, Jasin, & Sinha (2018) propose an 

P-based heuristic for maximizing the profit of an e-commerce re- 

ailer who has to decide in each period what price to ask and from 

hich facility to fulfill online orders. Similar to Cheung (1998) and 

eCroix & Arreola-Risa (1998) , in our model, a discount is offered 

t the retailer for accepting a delay, which in our case, is equiv- 

lent to accepting an online delivery. However, we extend these 

odels to two echelons and study the impact of the discounts in 

 multi-retailer setting. 
60 
Contribution of the paper: The model analyzed in this paper 

llows to study whether a discount policy for switching to an on- 

ine channel is beneficial in a two-echelon network, where the on- 

ine orders are fulfilled from a warehouse, while physical items 

an be purchased in person at the stores. The results of extensive 

umerical experiments indicate an 8 . 5% cost reduction on average 

with the maximum of 19 . 8% ) compared to the case where no dis-

ounts are offered. They also indicate that the discount policy is 

ore effective for higher holding costs at stores, a larger number 

f stores, and for high lost sales costs. 

The analysis presented in this paper enhances the literature in 

everal ways. First, we extend the multi-echelon lost sales models 

f Andersson & Melchiors (2001) and Hill et al. (2007) by consid- 

ring a critical level policy at the stores, controlled by a discount 

nd a (R, Q ) policy at the warehouse. For a model with one ware- 

ouse and one store, building on the METRIC model, we propose 

 queueing-based approximation to find the expected delay at the 

arehouse. The approximation is based on a recursive procedure 

or which we prove convergence. Note that the approximation pro- 

edure proposed in Andersson & Melchiors (2001) for a simpler 

odel, without critical levels, and with an (S − 1 , S) policy at the 

arehouse, is shown to converge under the conjecture that the 

ase-stock levels levels at the stores increase when the delay at 

he warehouse. The convergence proof for our procedure does not 

ely on this conjecture. For the model with more stores, we pro- 

ose a novel optimization heuristic based on the discretization of 

he expected delay at the warehouse. This allows decomposition of 

he network problem in a series of independent problems per re- 

ailer and one problem for the warehouse. We show numerically 

hat the results obtained via this procedure are close to the results 

btained via simulation. 

. Problem formulation for one warehouse and one store 

In this section, we consider a simplified model of an omnichan- 

el retailer who has only one brick-and-mortar store which is re- 

lenished from one warehouse. The retailer sells expensive items 

nd has limited storage space; hence she prefers to keep only a 

ew items in store (showroom). The store follows an (S − 1 , S, IC ) 

nventory policy, meaning that when an item is sold, it is replen- 

shed with another item ordered from the warehouse. If the in- 

entory on hand at the store is less or equal to IC , customers are 

ffered a discount d for a delayed delivery from the warehouse. 

 customer accepts this offer with probability p a (d) . We assume 

hat p a (·) is increasing in the discount. If the customer rejects the 

iscount, the retailer will give an item from the stock, if available. 

ustomers who find no inventory at the store and do not order on- 

ine are lost. Through the discount, the retailer tries to reduce the 

umber of lost customers at the store. We assume that the extra 

osts incurred for switching to the online channel are covered by 

he discounts. Customers can also buy the same item directly on- 

ine without visiting the shop. In this case, the purchased item is 

ent to them from the warehouse, and no discount is offered. 

The warehouse satisfies three types of orders: orders placed by 

nline customers, orders originating from store visitors who ac- 

epted the discount, and replenishment orders from the store. The 

arehouse follows an (R, Q ) policy, where orders that find the in- 

entory at the warehouse depleted are backlogged. Fig. 1 summa- 

izes the main features of the supply network. 

We assume that requests at the store follow a Poisson process 

ith rate λs , while online requests at the warehouse follow a Pois- 

on process with rate λo . The lead times at the store and ware- 

ouses are denoted by L s and L w 

, and assumed constant. The store 

nd the warehouse incur a holding cost per time unit and per item 

n stock of h s and h w 

, respectively. Each lost customer has an as- 

ociated cost of l s . Finally, there is a cost of c t (w ) for transport-
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Fig. 1. Network for an omnichannel retailer with one store. 
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ng an item between supplier and warehouse and a cost of c t (w, s )

or transporting an item between warehouse and store. These costs 

re incurred for all the items sold in store, as well as for the orders

hat switched from the store to the online channel. In our model, 

e assume that the extra delivery costs between stores and home 

ue to a customer switching to the online channel are already in- 

orporated in the offered discount. The costs for delivering orders 

hat were originally placed online are not included in the model, 

s we assume that all online orders are eventually fulfilled, and 

ence these costs do not affect the optimization. 

The goal is to find the vector u = (R, S, IC , d) that minimizes the

ong-run average costs for the retailer. The order quantity Q at the 

arehouse is assumed given, as it is usually decided based on the 

nnual demand, holding costs, and transportation costs between 

he warehouse and its supplier. 

.1. Approximating model for one store 

We approximate the (S − 1 , S, IC ) inventory system at the store 

y an M(n ) /G/S/S system as follows. The arrival process at this 

ueue is formed by all the customers who, upon arrival, see an 

nventory higher than IC and by the customers who, upon arrival, 

ee an inventory below IC and refuse the discount. Every time a 

ustomer leaves with an item, a service is started in the queueing 

odel. Hence, having k items in stock at the store is equivalent to 

aving S − k busy servers in the queueing system. Customers who 

ee the inventory depleted at the store, or equivalently, all the S

ervers in the queueing system busy, are lost. Thus, the arrival pro- 

ess at the M(n ) /G/S/S queue is a Poisson process with rate λ( j, d) 

epending on the number of busy servers j as follows: 

( j, d) = 

{
λs when j < S − IC 

λs (1 − p a (d)) when S − IC ≤ j ≤ S. 
(1) 

The service times are assumed to be independent and equal to 

 s + T , where T is a random variable representing the delay at the

arehouse. In reality, the return times of store orders are depen- 

ent on the inventory on hand at the warehouse. Following an idea 

imilar to the METRIC model, the service rate μ in the M(n ) /G/S/S

ueue is given by 

1 

μ
= L s + E(T ) . (2) 

An approximation of E(T ) will be presented in Section 3.2 . As- 

ume for a moment that μ is known. Let P (u ) be the steady-state
k 

61 
robability that the store has k orders outstanding with the ware- 

ouse when the discount is d, or, equivalently, that the inventory 

t the store is equal to S − k . By Theorem 3 in Brumelle (1978) , in

n M(n ) /G/S/S system, 

 k (u , E(T )) = 

πk 

λ(k,d) ∑ S 
j=0 

π j 

λ( j,d) 

(3) 

here 

k = π0 

k ∏ 

j=1 

λ( j, d) 

jμ

nd π0 + . . . + πk = 1 . 

Replacing the rate λ( j, d) by (1) we obtain: 

k = 

{ 

π0 
λk 

s 

k ! μk , for k < S − IC 

π0 
λk 

s 

k ! μk (1 − p a (d)) k −S+ IC +1 , for S − IC ≤ k ≤ S 

nd 

0 = 

[ 

S−IC ∑ 

k =0 

λk 
s 

k ! μk 
+ 

S ∑ 

k = S−IC 

λk 
s 

k ! μk 
(1 − p a (d)) k −S+ IC +1 

] −1 

. 

Note that the steady-state probabilities depend on the distribu- 

ion of L s + T only through the mean. The next section explains the 

alculation of E(T ) . 

.2. Expected fulfillment time of a store order 

The warehouse uses an (R, Q ) inventory model with backorders, 

hat is, every time the inventory position IP w 

drops to R , an order 

f Q is ordered at the supplier. The lead time from the supplier to 

he warehouse is assumed deterministic and equal to L w 

. 

Recall that the orders arriving at the warehouse are of two 

ypes: orders placed directly online, which arrive according to a 

oisson process at rate λo , and orders originating from the cus- 

omers who visit the store, except the ones who found the stock 

epleted and refused a delayed delivery. Assuming that the orders 

riginating from the store also follow a Poisson process, with rate 

s [1 − P S (u )(1 − p a (d))] , the arrival process at the warehouse is 

oisson with rate: 

w 

(u , E(T )) = λo + λs [1 − P S (u , E(T ))(1 − p a (d))] . (4)
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Let IL w 

(t) be the inventory on hand at the warehouse at time t . 

t any time t ≥ L w 

, 

L w 

(t) = IP w 

(t − L w 

) − D w 

(t − L w 

, t) . (5) 

here D w 

(a, b) denotes the demand at the warehouse during the 

ime interval (a, b) . 

Tag an order arriving at the warehouse from the store at an 

rbitrary time t . Assume that at time t , IL w 

(t ) = −k with k ≥ 1 ,

nd IP w 

(t − L w 

) = l. Based on (5) , we conclude that D w 

(t − L w 

, t) =
 + l. These l + k arrivals generated 1 + � R + k Q � orders at the sup-

lier: the first order is generated after the arrival of the first 

 − R orders, when IP w 

= R , after which the rest of R + k orders ar-

ive at the warehouse. The tagged order is fulfilled right after the 

 o (k ) = � k Q � + 1 -th order is delivered from the supplier. This order

s placed right after the l − R + (N o (k ) − 1) Q-th order after time

 − L w 

arrives at the warehouse. Since orders arrive at the ware- 

ouse according to a Poisson process, the expected time between 

wo arrivals in the interval [ t − L w 

, t) is L w 
k + l+1 

(see Tijms, 2003 ).

ence, the tagged store order is delivered after t − L w 

+ (l − R + 

N o (k ) − 1) Q ) L w 
k + l+1 

+ L w 

− t = (l − R + (N o (k ) − 1) Q ) L w 
k + l+1 

. 

By the law of total expectation, (5) and the fact that in an 

R, Q ) system, the inventory position is uniformly distributed on 

 R + 1 , R + Q] we obtain 

(T ) = 

= 

1 

Q 

∞ ∑ 

k =0 

R + Q ∑ 

l= R +1 

E(T | IP w (t − L w ) = l, IL w (t −) = −k ) P( IP w (t − L w ) 

= l, IL w (t −) = −k ) 

= 

1 

Q 

1 

Q 

∞ ∑ 

k =0 

R + Q ∑ 

l= R +1 

E(T | IP w (t − L w ) = l, IL w (t −) = −k ) P(D w (t − L w , t) = l + k )

= 

1 

Q 

∞ ∑ 

k =0 

R + Q ∑ 

l= R +1 

(l − R + (N 0 (k ) − 1) Q ) 
L w 

k + l + 1 
po (λw (u , E(T )) L w , k + l) , 

(6) 

here po (λL, k ) = 

(λL ) k 

k ! 
e −λL . 

Observe that the expression of E(T ) derived above depends on 

w 

(u ) , which in turn depends on E(T ) . In order to calculate E(T )

or a fixed u , we propose the following recursive procedure: 

Next, we show that this procedure converges. 

emma 1. The function f : R + �→ R + given by 

f (λ) = 

1 

Q 

Q−1 ∑ 

k =0 

∞ ∑ 

n =0 

R + Q ∑ 

� = R +1 

� − R + nQ 

� + nQ + k + 1 

po ( λL w 

, � + nQ + k ) 

s increasing. 

roof. We rewrite Eq. (6) to 

f (λ) = 

1 

Q 

Q−1 ∑ 

k =0 

∞ ∑ 

n =0 

R + Q ∑ 

� = R +1 

� − R + nQ 

� + nQ + k + 1 

po (λL w 

, � + nQ + k ) 

= 

1 

Q 

Q−1 ∑ 

k =0 

∞ ∑ 

m = R +1 

m − R 

m + k + 1 

po (λL w 

, m + k ) . 

ow we note that the function f k (m ) = (m − R ) / (k + m + 1) is in-

reasing in m , so we may write 

f k (m ) := 

m − R 

k + m + 1 

= f k (m − 1) + �km 

, 

here �km 

> 0 . Continuing, we find 

f k (m ) = 

m ∑ 

˜ m = R +1 

�k ̃ m 
62 
nd 

f (λ) = 

1 

Q 

Q−1 ∑ 

k =0 

∞ ∑ 

m = R +1 

m ∑ 

˜ m = R +1 

�k ̃ m 

Po (λL w 

, m + k ) 

= 

1 

Q 

Q−1 ∑ 

k =0 

∞ ∑ 

˜ m = R +1 

�k ̃ m 

∞ ∑ 

m = ̃ m 

po (λL w 

, m + k ) . 

bserve that 
∑ ∞ 

m = ̃ m 

po (λL w 

, m + k ) = Po(λL w 

, ˜ m + k ) is increasing

n λ, as the family of Poisson distributions is stochastically in- 

reasing (see Shaked & Shanthikumar, 2007 , Example 8.A.2). As 

km 

≥ 0 , it follows that f (λ) is increasing in λ. �

heorem 1. The sequence (E 2 k +1 (T )) k ≥0 constructed in Algorithm 1 

lgorithm 1 

1: Step 1: Set k = 0 , E −1 = E −2 = −1 , E 0 (T ) = 0 . 

2: while | E k (T ) − E k −2 (T ) | > ε do 

3: Step 2 Calculate μ, P S (u , E k (T )) , λw 

(u , E k (T )) . 

4: Step 3: Calculate E k +1 (T ) based on (6) 

5: Step 4: Set k = k + 1 

6: end while 

onverges. 

roof. Fix u . We show that (E 2 k +1 (T )) k ≥0 is monotonic and 

ounded. Assume that E 1 (T ) ≤ E 3 (T ) . We show by induction that

f E 2 k −1 (T ) ≤ E 2 k +1 (T ) for some k > 1 , then E 2 k +1 (T ) ≤ E 2 k +3 (T ) . 

As P S (u , E(T )) is increasing in 

1 
μ , it follows that P S (u , E(T ))

s increasing in E(T ) . Relation (4) implies that λw 

(u , E(T )) 

s decreasing in P S (u , E(T )) , hence decreasing in E(T ) . Thus,

w 

(u , E 2 k +1 (T )) ≤ λw 

(u , E 2 k −1 (T )) . As the parameters of the in-

entory policy at the warehouse are fixed, an increase in arrival 

ate corresponds to an increase in the average delay by Lemma 1 . 

ence E 2 k +1 (T ) ≤ E 2 k (T ) . By the monotonicity of λw 

, we find that

 2 k +1 (T ) ≤ E 2 k +3 (T ) . 

Similarly, one can show that if E 1 (T ) ≥ E 3 (T ) , then (E 2 k +1 ) k ≥1 

s decreasing. As E(T ) is bounded between 0 and the delay corre- 

ponding to λ = λo + λs , the sequence (E 2 k +1 ) k ≥1 is convergent. �

.3. Total costs 

The total costs comprise the costs at the store, the costs due to 

iscounts, the costs at the warehouse, and the transportation costs. 

Since the store incurs holding costs of h s per time unit an 

tem is in stock and the probability of having k items in stock 

quals P S−k (u ) , the expected holding cost at the store is equal to
 S 
k =0 P S−k (S, IC , d) kh r . 

As the probability that a customer is lost equals (1 −
p a (d)) P S (u ) , the expected cost due to lost customers equals

 s λs (1 − p a (d)) P S (u ) . 

Recall that the retailer offers a discount d to all customers who 

rrive when the inventory on hand is below IC . The probability that 

he inventory at the store is less or equal to the critical level is 

 (u ) = 

∑ S 
k = S−IC P k (u ) . Hence, the total expected costs incurred due

o discounts are d λs p a (d ) q (u ) . 

The warehouse incurs holding costs h w 

per unit hold and back- 

rder costs b for each item that is backordered (from the store or 

rom online customers). The backorder costs at the warehouse are 

iven by bE( IL −w 

) , where E( IL −w 

) = λw 

(u ) E(T ) by Little’s law. Based

n (5) 

( IL + w 

) = E( IL −w 

) + R + 

Q 

2 

− λw 

(u , E(T )) L w 

. (7)

Finally, there are transportation costs for every echelon and 

rom the warehouse to the brick-and-mortar stores. As all the cus- 

omers who initially ordered online are assumed to be served, the 
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ransportation costs of their items do not influence the optimal so- 

ution of the problem. Therefore we will not further consider these 

osts in the optimization. Recall that the delivery costs for items 

rdered by customers who switched from the offline to the online 

hannel are assumed included in the discounts. 

The transportation costs per time unit between supplier and 

arehouse are c t (w ) λw 

and between warehouse and store are 

 t (w, s ) λs [1 − P S (u )(1 − p a (d)] . 

Summarizing all the costs described above, the total costs ( T C) 

ncurred in the system are equal to: 

 C = h s 

S ∑ 

k =0 

P S−k (u ) k + l s λs P S (u )(1 − p a (d)) + h w 

E( IL + w 

) + bE( IL −w 

) 

+ d λs p a (d ) q (u ) + c t (w, s ) λw 

(u ) . 

emark 1. The optimal value of S and R that achieve minimal to- 

al costs for one warehouse and one retailer can now be obtained 

ia direct enumeration. For each value of S and R , the recursive 

rocedure in Algorithm 1 for calculating the expected delay at the 

arehouse is guaranteed to converge. This also holds for the op- 

imal levels S ∗ and R ∗. In Section 5.1 , we will show that the ex-

ected delay at the warehouse converges to the expected delay 

t the warehouse obtained by simulation. Note that the conver- 

ence of the sequence of the expected delays at the warehouse 

onstructed by the recursive procedure proposed in Andersson & 

elchiors (2001) relies on the conjecture that the up-to-level at 

he retailer is increasing in the delay at the warehouse. Our proof 

oes not rely on this conjecture. 

. Network of more stores 

In this section, we generalize the results in the previous section 

o a network of N stores and a warehouse. The demand at each 

tore i is independent of the demand at other stores and follows a 

oisson process with rate λi . As in the previous section, each store 

 adopts an (S i − 1 , S i , IC i ) inventory policy with discount d, and the

arehouse adopts an (R, Q ) policy. We assume the discount is the 

ame for all stores. Let ( S , IC ) = (S i , IC i ) i =1 , ... ,n . The goal is to find

he vector u = (R, Q, S , IC , d) that minimize the total costs at the

arehouse and the stores. 

As in the previous section, the (S i − 1 , S i , IC i ) system at each

tore i is approximated by an M(n ) /G/S/S system, with arrival 

ate defined as in (1) . The flow of orders from store i to the

arehouse is approximated by a Poisson process with rate ˜ λi = 

i (1 − P S (u i ))(1 − p a (d)) . Thus, the orders (online and offline) are

ssumed to arrive at the warehouse according to a Poisson process 

ith rate 

w 

( S , IC ) = λo + 

N ∑ 

i =1 

˜ λi . (8) 

he service rate in the M(n ) /G/S/S is defined as in the previous 

ection, the main difference being that the arrival rate at the ware- 

ouse is λw 

( S , IC ) . 

The total costs that need to be minimized are given by the costs 

f all stores, the costs at the warehouse, and the total transporta- 

ion costs. 

.1. Optimization procedure 

Before presenting the optimization procedure in detail, we dis- 

uss a few monotonicity results regarding (R, Q ) inventory models 

ith a backlog and (S − 1 , S) inventory models with lost sales. 

The first statement in the following Lemma is a special case of 

heorem 1 in Song, Zhang, Hou, & Wang (2010) , while the second 

s a special case of Corollary 1 (f) in Federgruen & Wang (2013) . 
63 
emma 2. Consider an (R, Q ) inventory model with Poisson arrivals 

nd backlogging, with the order quantity Q fixed. 

a) For two constant lead times L 1 and L 2 such that L 1 ≤ L 2 , the corre-

sponding optimal reorder levels R ∗(L 1 ) and R ∗(L 2 ) satisfy R ∗(L 1 ) ≤
R ∗(L 2 ) . 

b) The optimal R ∗ is increasing in the Poisson arrival rate. 

Lemma 2 implies that the maximum value of R ∗ in the network 

ith one warehouse and N stores is attained for λ = λo + 

∑ N 
i =1 λi 

nd lead time L w 

. 

Next consider the (S − 1 , S) inventory model at a store i , for

 fixed delay at the warehouse ˆ T and arrival rate given by (1) . 

emark that ˆ T is the main factor through which the warehouse 

mpacts the stores. If the delay at the warehouse was known, 

he stores can optimize their system without knowing the explicit 

alue of R . 

The expected costs per time unit at store i are given by 

 i ( ̂  T , S i , IC i , d) = h [ S − (1 − P S ( ̂  T , S i , IC i , d)(1 − p a (d))) λi ( ̂  T + L i )]+
+ P S ( ̂  T , S i , IC i , d) λi l i 

= hS i + P S ( ̂  T , S i , IC , d) λi (l i + h ( ̂  T + L i )(1 − p a (d))) 
(9) 

− hλi ( ̂  T + L i )(1 − p a (d)) 

emma 3. The cost function at store i has the following properties: 

a) Let d min be a discount such that p(d min ) = 0 and d max a

discount for which p a (d max ) = 1 . Then, C i ( ̂  T , S, IC , d min ) and

C i ( ̂  T , S, IC , d max ) are convex in S. 

b) For d fixed, C i ( ̂  T , S, S, d) is convex in S. 

c) C i ( ̂  T , S, IC , d) is decreasing in d. 

roof. 

a) As p a (d min ) = 0 , the (S − 1 , S, IC ) system at the store reduces

to an (S − 1 , S) inventory system. The corresponding queueing 

model at store i is an M/G/S/S with constant rate λi . The con- 

vexity in S of C i ( ̂  T , S, IC , d min ) follows from the convexity in the

number of servers of the loss probability in an M/G/c/c queue- 

ing model ( Messerli, 1972 ). 

As p a (d max ) = 1 , all customers accept the discount and are redi-

rected to the warehouse. Hence, for S > IC , the (S − 1 , S, IC ) in-

ventory system at the store is equivalent to an (S − IC − 1 , S −
IC ) inventory system. The corresponding queueing model is an 

M/D/S − IC /S − IC with constant rate λr . The convexity in S of 

C( ̂  T , S, IC , d max ) follows from the convexity in the number of 

servers of the Erlang formula. If S = IC and p a (d max ) = 1 , all

customers are directed to the warehouse, hence the store’s 

costs are equal to the holding costs, which are linear, thus con- 

vex. 

b) When IC = S, the actual arrival rate at store i is λi p a (d) . The in-

ventory system can be modeled as an M/G/S/S queue, for which 

the loss probability is known to be convex in S. 

c) From (9) , it follows that it suffices to show that for given μ, 

P S ( ̂  T , S, IC , d) is decreasing in d. By simple algebraic manipula-

tions of (3) , one can show that 

P S ( ̂  T , S, IC , d) = 

λS 

S! μS ∑ S−IC −1 
k =0 (1 − p a (d)) −IC λk 

k ! μk + 

∑ S 
k = S−IC 

λk 

k ! μk (1 − p a (d)) k −S 
, 

where any sum from a to b with b < a is considered 0. It fol-

lows readily that P S ( ̂  T , S, IC , d) is decreasing in d. �

Observe that Lemma 3 a) and c) implies that for d ∈ 

 d min , d max ] , such that p a (d min ) = 0 and p a (d max ) = 1 , the cost

unction of store i is between two convex functions in S, 

 i ( ̂  T , S, IC , d min ) and C i ( ̂  T , S, IC , d max ) . We were not able to prove

he quasi-convexity of C ( ̂  T , S, IC , d) in S, although we observed
i 
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Algorithm 3 Optimization procedure for the retailer network for 

a given discount and discretization of the warehouse delay. 

1: T : discretization of E(T ) over an interval I with step a (assume 

the elements of T are in increasing order. 

2: R pre v = 0 

3: Set R max to the optimal R in an (R, Q ) system with lead time 

L w 

and λ = λo + 

∑ 

i ∈ N λi 

4: for ˆ T ∈ T do 

5: for i ∈ N do 

6: Use Algorithm 2 to find (S ∗
i 
, IC ∗

i 
) for which minimal costs 

at store i are achieved 

7: end for 

8: Calculate λw 

by (8) 

9: Find R ∈ [ R pre v , R max ] that gives the closest value to ˆ T when 

using (6) 

10: Set R pre v = R 

11: Calculate the cost at the warehouse for R : 

C w 

( ̂  T , R, d) = h w 

E( IL + w 

) + bE( IL −w 

) + c t (w, s ) λw 

12: Calculate the network total costs for (d, ̂  T ) : 

T C = C w 

( ̂  T , R, d) + 

N ∑ 

i =1 

C i ( ̂  T , S ∗i , IC 
∗
i , d) 

13: Find the delay ˆ T ∗(d) that results in minimum total costs 

when the discount is d 

14: end for 

Algorithm 4 Improved Optimization procedure for an omnichan- 

nel network. 

1: D : set of discounts 

2: Choose η ∈ N 

3: for d ∈ D do 

4: Let I = [0 , L w 

] and the discretization step a = � L w η � 
5: while a ≥ ε do 

6: T : discretization of I with step a 

7: Apply Algorithm 4 to find the delay ˆ T ∗(d) ∈ T that gives 

minimal total costs for discount d 

8: If ˆ T ∗(d) = ka , set I = [ max { 0 , (k − 1) a } , min { (k + 1) a, L } ] 
9: a = 

length (I) 
η

10: end while 

11: end for 

12: Output the combination (d ∗, ̂  T ∗(d ∗)) that results in minimal to- 

tal costs. 

5

d

p  

h

S

e

5

S

r

c

a

a

v

uasi-convexity in all our experiments. In our optimization pro- 

edure, we will assume that a stronger statement than Lemma a) 

nd c) holds, namely that the optimal base stock levels at stores 

re decreasing in d. 

The difficulty of optimizing the entire network relies on the 

act that the up-to-level at each store influences the other stores 

hrough the impact they have on the delay at the warehouse. In 

rder to facilitate an independent optimization at each store, we 

ropose to discretize the possible delays E(T ) at the warehouse. 

ote that E(T ) ∈ [0 , L w 

] . 

For each value of the discount d, we proceed as follows. For 

 chosen value η ∈ N , we discretize [0 , L w 

] with a step a = � L w η � .
et T = { ka | k ∈ N , 0 ≤ k ≤ η} . For each 

ˆ T ∈ T , we solve a separate

nventory optimization for each store to find the optimal values 

S ∗
i 
, IC ∗

i 
) . The optimal parameters of the inventory policy at each 

tore are found by enumeration, as described in Algorithm 2 . 

lgorithm 2 Optimization procedure for store i . 

1: Let d be a specific discount value 

2: Let ˆ T be a given deterministic delay at the warehouse 

3: for i ∈ N do 

4: Set ˜ S i optimal base stock level at store i if p a (d) = 0 , IC i = 0

and lead time L i + L w 

5: Set the lead time for store i equal to 1 
μi 

= L i + 

ˆ T 

6: for S i ∈ [0 , ̃  S i ] and IC i ∈ [0 , S i ] do 

7: Calculate C i ( ̂  T , S i , IC i , d) using (9) 

8: end for 

9: Find (S ∗
i 
, IC ∗

i 
) for which minimal costs at store i are 

achieved. 

0: end for 

Remark that in limiting the optimal base stock to [0 , ˜ S i ] , we as-

umed that the optimal base-stock at a store is decreasing in d. 

Knowing the base-stock and critical levels at the stores allows 

stimation of the arrival rate at the warehouse through (8) and, 

ubsequently, the level R that results in the expected delay closest 

o ˆ T . Finally, we choose the ˆ T ∗ ∈ T that gives minimum total costs. 

 detailed description for finding the optimal delay for a given dis- 

ount d and a discretization T is given in Algorithm 3 . 

Observe that in limiting the values of R in Line 9, we used 

emma 2 . Assume the optimal value of the delay is ˆ T ∗ = ka . We

ontinue the search for a better delay by refining the discretization 

s follows. Consider the interval I = [ max { 0 , (k − 1) a } , min { (k +
) a, L } ] . While the length of this interval is larger than a value ε,

e discretize I further with a step a = � length (I) 
η � and continue the 

earch for a value of the delay that gives a lower cost by apply-

ng Algorithm 3 . Finally, we repeat all the steps for different values 

f the discount and choose the one that results in minimal total 

osts. The final optimization procedure is given in Algorithm 4 . 

Observe that, by searching in a discretized set of E(T ) , we as- 

umed that the objective function is quasi-convex. However, this 

iscretized set is in general larger than the set of delays used in 

he procedure described in Andersson & Melchiors (2001) , where, 

or a fixed up-to-level at the warehouse, the delays considered 

re the results of a recursive procedure iterating over optimal val- 

es of S ∗
i 

at retailers. The procedure in Andersson & Melchiors 

2001) stops when the set of optimal S ∗
i 

converges, assuming 

hat the S ∗
i 

are monotonic in E(T ) . By guiding the search by the

iscretized values of E(T ) , the procedure has less chance to be 

rapped in a local minima. We show in Section 5.2 that this op- 

imization heuristic obtains close to optimal solutions in most of 

he cases. Moreover, due to the fact that discretization allows for 

ecomposition of the problem per retailer, the running times are 

ery fast, as it will be seen in Section 5.3 . 
64 
. Numerical experiments 

In this section, we describe the numerical experiments we con- 

ucted. First, we analyze the quality of the approximation pro- 

osed in Section 3.1 , for the case of one store and one ware-

ouse. Then we analyze the optimization procedure proposed in 

ection 4 and comment on the insights gained from the numerical 

xperiments. 

.1. Quality of the approximation for one store and one warehouse 

To assess the quality of the approximation proposed in 

ection 3.1 , we conducted experiments by varying the problem pa- 

ameters as described in Table 1 . In total, we ran 22,814 parameter 

ombinations. 

We measured the relative differences between simulation and 

pproximation 

(
Sim −Approx 

Sim 

)
for four measures: Inventory on hand 

nd expected number of lost customers at the stores, expected in- 

entory on hand, and expected backlog at the warehouse. As the 
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Table 1 

Experimental settings for testing the quality of the approximation. 

Param. Value Param. Value 

λs { 0 . 5 , 1 , 2 , 4 , 8 } λo { 1 , 4 } 
L s 1 L w { 1 , 3 , 6 } 
d 0.1 p a (d) { 0 . 2 , 0 . 7 } 
S { 1 , . . . , min { 6 , 2 λs L s }} IC { 0 , . . . , S} 
R { max { 1 , (λs + λo ) L w } , . . . , min { 20 , 2(λs + λo ) L w }} Q { 1 , . . . , min { 10 , R }} 

Fig. 2. Relative differences between simulation and approximation in the arrival rate λw at the warehouse. 
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otal costs are linear in these quantities, errors in costs can be di- 

ectly found from the errors of these quantities, for any combina- 

ion of costs. The simulation experiments were limited to 50 repli- 

ations for each combination, with 30 , 0 0 0 total demand events 

nd 10 0 0 warming up demand events in each replication. The 

ummarized results are plotted using the violin plots that can 

how the average (the circle in the violin plot) and the full dis- 

ribution (along the vertical axis) of the grouped data. 

Fig. 2 presents the relative difference in the arrival rate at 

he warehouse between simulation and approximation 

(
λsim 

w −λapp 
w 

λsim 
w 

)
. 

ach violin graph corresponds to a parameter setting mentioned 

elow the horizontal axis. For example, the first violin graph in 

ig. 2 , describes the results for the experiments having ( p a (d) =
 . 2 , λo = 1 , λs = 0 . 5 ). As the graphs show, most of the errors are

elow 0 . 2% , indicating that the arrival rate at the warehouse is well

pproximated. The relative average difference between simulation 

nd approximation is 0 . 086% , and the standard deviation is 0 . 12% .

he maximum relative difference is 1 . 98% , obtained for λs = 2 ,

o = 1 , p a (d) = 0 . 2 , L s = 1 , L o = 6 , S = 3 , IC = 0 , R = 18 , Q = 1 . 

The relative errors in inventory on hand at the store and at 

he warehouse for different parameter settings are presented in 

igs. 3 A and B. The graphs indicate that both the expected inven- 

ory on hand at the store and at the warehouse are well approxi- 

ated for different combinations of parameters. The average rela- 

ive difference for the inventory on hand at the store (see Fig. 3 A)

s 0 . 6% , and the standard deviation is 1 . 01% . The outliers in Fig. 3 A

orrespond to low values of inventory on hand. The maximum rel- 

tive difference is reached for a case where the simulated aver- 

ge inventory on hand is 2.02, while the approximated average in- 

entory is 1.77. For the inventory on hand at the warehouse (see 

ig. 3 B), the average relative difference is 0 . 39% , and the standard

eviation is 0 . 98% . The maximum relative difference is achieved for 

mall inventory levels when the absolute difference between the 

imulated and approximated average inventory at the warehouse 

s 0.4. 

The quality of the approximation for the expected number of 

ost sales is discussed in Fig. 4 . This figure contains the relative 
65 
ifferences between approximation and simulation ( Fig. 4 A) and 

he expected number of lost sales in the simulation ( Fig. 4 B) for

ifferent values of λo , λs , and S indicated in Table 1 . In 92% of

he cases, the relative difference is below 5% . The higher differ- 

nces are caused by the fact that in many cases, losing customers 

s a rare event; hence it is difficult to capture it by simulation. To 

emonstrate this behavior, we refer to the expected number of lost 

ales in different cases ( Fig. 4 B). It can clearly be seen that the

igh relative differences (the outliers in Fig. 4 A) appear only in the 

ases with higher stock levels ( S) and lower expected numbers of 

ost sales (see Fig. 4 B). In general, in the performed experiments, 

he expected numbers of lost customers are typically small (the 

verage over all cases is 0.93), with the standard deviation of 1.22. 

s expected, the lost sales are decreasing in S and increasing in 

he arrival rates at the store. Also, they are higher for the lower 

cceptance rate of the discount ( p a (d) = 0 . 2 ). 

A similar effect can be seen in the case of backorders at the 

arehouse (see Figs. 5 and 6 ). In the performed experiments, the 

xpected backorder levels are rather small (in simulation, the aver- 

ge of all the cases is 0.068), with the standard deviation of 0.13. 

o understand better the behavior of backorders, we separated the 

ases with simulated average backorders larger than 1 ( Fig. 5 A and 

) and the cases with simulated average backorders lower than 1 

 Fig. 6 A and B). For the cases with average backorders larger than 

, we report the relative difference in backorders between simula- 

ion and heuristic. For the cases with the simulated average num- 

er of backorders smaller than 1, we report the absolute difference, 

s for these cases, the relative difference can give a distorted image 

f the error. 

For the cases where the simulated average number of backo- 

ders is larger than 1 ( Fig. 5 A and B), the average relative difference

s 1 . 1% , with the standard deviation of 0 . 8% . As expected, Fig. 5 B

ndicates that the total number of backorders is higher when the 

robability of accepting the discount is higher ( p a (d) = 0 . 7 ), and

he arrival rate at the warehouse is higher. 

For the cases where the average number of backorders is below 

.0, ( Fig. 6 A and B), the absolute differences are below 0.19, with 
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Fig. 3. Relative differences between simulation and approximation in on hand inventories at the store (A) and the warehouse (B). 

Fig. 4. Relative differences between simulation and approximation in lost sales at the store (A), and the expected simulated lost sales (B). 
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Fig. 5. Relative differences and the total backorders at the warehouse, when the expected backorders are greater than 1. 

Fig. 6. Absolute differences and the total backorders at the warehouse, when the expected backorders are less than 1. 
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Table 2 

Experimental settings for testing the quality of the op- 

timization heuristic. 

Param. Value Param. Value 

λs { 0 . 5 , 1 , 2 } λo 1 

L s 1 L w { 1 , 3 , 6 } 
h s h w × { 1 , 1 . 5 , 2 } h w 10 

l s p × { 0 . 5 , 1 , 2 } b h w × { 2 , 10 } 
p h s × { 10 , 20 } N { 1 , 2 } 
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Table 3 

Experimental settings for testing the total cost reduc- 

tion created by discounts. 

Param. Value Param. Value 

λs { 0 . 5 , 1 , 2 } λo { 0 . 5 , 1 , 2 } 
L s 1 L w { 1 , 3 , 6 } 
h s h w × { 1 , 1 . 5 , 2 } h w 10 

l s p × { 0 . 5 , 1 , 2 } b h w × { 2 , 10 } 
p h s × { 10 , 20 } N { 1 , 4 , 10 } 
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c  
he average absolute difference of 0.013 and the standard deviation 

f 0.021. As for a higher number of backorders, the expected back- 

rders are better approximated in the simulation, and the errors 

re lower for p a (d) = 0 . 7 . 

.2. Quality of the optimization heuristic for more stores 

To assess the quality of the optimization heuristic described in 

lgorithms 2 –4 , we compared the solutions provided by the op- 

imization heuristic with the optimal solutions found by brute- 

orce enumeration of the optimized variables ( S, R, IC , d) for a set 

f combinations of the problem parameters. As the costs are es- 

ential in discussing the impact of discounts, we added the hold- 

ng, lost sales, and backlog costs to the parameters that are being 

aried. Due to the computational time required by the brute force 

alculations used to benchmark the proposed heuristic, we had to 

estrict the number of the tested values for each parameter. The 

alues used for each parameter are described in Table 2 . Note that 

eeping the parameters λs , L s , and h w 

fixed allows us to study es-

entially different situations, corresponding to different values of 

he ratios λs 
λo 

, L w 
L s 

, and 

h s 
h w 

. In total, we ran 432 different parameter 

ombinations. 

In all these combinations, the order quantity Q and the trans- 

ortation costs ( c t (w ) and c t (w, s ) ) are fixed to 10. The discounts

ake values in D = { 0 . 0 , 0 . 05 p, 0 . 1 p, 0 . 15 p, 0 . 2 p, 0 . 25 p} , with the

robability of accepting a discount being equal to p a (d) = 3 d, d ∈
. The stores have identical characteristics and the number of 

tores is N ∈ { 1 , 2 } . For each set, we found the optimal reorder lev-

ls S i , the critical levels IC i ( i = 1 , . . . , N), the reorder point at the

arehouse R , and the optimal discount d. In the optimization pro- 

edure, the discretization parameter for the delay at the warehouse 

s η = 10 . 

In most of the studied cases ( 91% of the single-store cases and 

0% of the two-store cases), the total costs obtained via the opti- 

ization procedure were almost equal (with ≤ 0 . 1% difference) to 

he total costs obtained by brute-force enumeration (see Fig. 7 A 

nd B). The maximum difference between the approximated to- 

al costs and the optimal costs was 2 . 23% for N = 1 and 2 . 27% for

 = 2 , both are reached for small loss penalties ( l s = 0 . 5 p). 

.3. Running time of the optimization heuristic 

To study the running times of the optimization heuristic pro- 

osed in Algorithms 2 –4 , we ran all the cases described in Table 2 ,

ith N ∈ { 10 , 40 , 70 , 100 } . All the experiments are performed us-

ng Python 3.7 implementation on Intel® Xeon® X5650 @ 2.67GHz 

rocessors. The results regarding the running times are summa- 

ized using violin plots in Fig. 8 . The highest running times are 

or N = 100 , with the average of 833.5 s, the standard deviation of

36.6 s and the maximum of 3958 s. This is a reasonable time for 

his application, regarding that the inventory parameters are cal- 

ulated once for a longer period of time. The factors that have the 

ost impact on the running time are the factors that affect the 

elay at the warehouse E(T ) (the lead time at the warehouse and 
68 
he arrival rates at the stores) and the number of retailers N. Ob- 

erve that the delay at the warehouse impacts the number of the 

iscretized values for which an optimization per retailer is solved, 

hile the number of retailers impacts the number of optimizations 

olved. The presented results indicate that the running times are 

lmost linear in the number of stores ( N) and the arrival rates at 

he stores ( λs ). The lead time at the warehouse seems to have the 

argest impact on the running time, especially for a larger number 

f stores N. Note that in case shorter running times are desirable, 

he optimization procedure we propose can be easily parallelized 

ue to the fact that after discretizing E(T ) , the optimizations per 

etailer become independent. 

.4. Impact of offering discounts 

To evaluate the importance of offering discounts and its sen- 

itivity to the input parameters, we conducted a number of op- 

imization experiments (using Algorithm 4 ) by varying the prob- 

em parameters as described in Table 3 . In total, we ran 1944 pa-

ameter combinations. In all these combinations, the transporta- 

ion costs ( c t (w ) and c t (w, s ) ) are fixed to 10. The discounts take

alues in D = { k × p| k ∈ { 0 , 0 . 05 , 0 . 10 , 0 . 15 , 0 . 20 , 0 . 25 } , where p as

ndicated in Table 3 . The probability of discount acceptance was 

et to be equal to three times the level of the discount ( p a (d) =
 d). The stores have identical characteristics and their number 

 ∈ { 1 , 4 , 10 } . 
Fig. 9 illustrates the total cost reduction compared to the sit- 

ation with no discounts for different combinations of N and λs , 

o ( Fig. 8 A), N, λs , h s /h w 

( Fig. 8 B) and N, p/h w 

and l s /p ( Fig. 8 C).

ver all cases, when using discounts, the total cost is reduced by 

 . 5% on average, with the maximum of 19 . 8% (obtained for N = 10

s = λo = 0 . 5 , L s = L w 

= 1 , h s = 20 , h w 

= 10 , l s = 200 , b = 20 , p =
00 ). This reduction can be explained by the fact that discounts 

llow lower stock at the stores while reducing the risk of losing 

ustomers by redirecting them to the warehouse. 

All graphs in Fig. 9 show that the higher the number of stores, 

he higher the average benefit of discounts. For N = 1 , the aver- 

ge improvement is 6% , while for N = 10 the average improvement 

s 10 . 3% . This indicates the important role of pooling inventory at 

he warehouse, as a result of offering discounts. Figures 9 A and 9 B

ndicate that the benefits decrease as λs increases, as more items 

ave to be kept in stock at the store. This effect is especially visible 

or a higher number of stores, N = 4 and N = 10 . 

Fig. 9 A shows that the cost reductions are higher for smaller 

alues of the online and store demand rates when discounts re- 

ult in higher relative stock reduction at the retailers. For a fixed 

alue of λs , and N, the benefits of offering discounts remain rel- 

tively constant when the values of λo are changed. This is ex- 

ected, as the discounts are only offered to the customers arriving 

t the store. 

Furthermore, Fig. 9 B illustrates that the higher the store hold- 

ng costs, compared to the warehouse, the more beneficial is to 

ffer discounts. For exam ple, when h s = h w 

, the average benefit is 

 . 7% , while for h s = 2 h w 

, the average benefit is 10% over all the

ases. For a large number of stores ( N = 10 ), discounts still result in
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Fig. 7. Relative differences in optimal total costs (obtained by brute force) and the optimized total costs, for N = 1 (A) and N = 2 (B). 

Fig. 8. Running times of the optimization heuristic. 
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arge savings due to the pooling effect at the warehouse. The two 

odes of the distributions in 9 B are due to the additional impact 

f l s /p. 

Fig. 9 C shows that the savings are increasing in l s /p, as losing

ustomers is expensive and thus is beneficial to prevent it through 

iscounts. When l s = 0 . 5 p, the average savings in our experiments

re on average 4% . However, when l s = 2 p, the savings increase to

1% , over all the cases, and to 10% for N = 10 . The figure also con-

rms that discounts are more beneficial for higher holding costs at 

he store ( p = 10 h s ); however, the impact of p/h s does not seem to

e significant. For p = 10 h s , the average improvement is 8 . 7% , and

or p = 20 h s , the average improvement is 8 . 2% . 
69 
Based on the analysis above, we conclude that the main factors 

hat impact the profitability of the discount policy are the number 

f stores N, λs , h s /h w 

, and l s /p. The policy is especially beneficial

or a larger number of stores N, low arrival rates λs , high holding 

osts at the retailers (compared to the warehouse), and high lost 

ales costs. 

The analysis of the optimal discounts ( Fig. 10 ) indicates that the 

ptimal discounts (that can be offered) increase in l s /p. In our ex- 

eriments, when l s /p ∈ { 1 , 2 } , the optimal discounts were on aver-

ge 25% . As expected, the more expensive is too loose customers, 

he higher is the discount that can be offered in order to convince 

he customer to switch to the online channel. 
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Fig. 9. Total Cost improvements when discounts are used. 

Fig. 10. Optimal discounts. 
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Finally, we have analyzed the behavior of the rationing levels IC , 

ee Fig. 11 . Observe that the critical levels become essential when 

he lost sales costs are high. In our experiments, 12% of the cases 

ith l s /p = 2 (118 out of 972) had non-zero IC levels. In an om-

ichannel setting, high lost sales can occur when sold items lead 

o sales-related subscriptions or sales of other related products. 
70 
emark 2. Observe that we assumed that the transportation costs 

or the customers who switch to the online channel are part of the 

iscount. This means that the retailer should run the optimization 

rocedure only with levels of discount that cover the transporta- 

ion costs in order to judge in which situations a discount is prof- 

table. 
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Fig. 11. Optimal IC levels. 
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. Conclusions and discussion 

In this paper, we studied the impact of offering financial in- 

entives to customers for switching the purchasing channel from 

rick-and-mortar stores to online. We assumed a base-stock policy 

ith critical level and lost sales at stores and an (R, Q ) policy with

acklog at the warehouse. The warehouse fulfills the online orders 

nd replenishes the stores. We assumed Poisson distributed online 

nd in-store demand. For the case of a single store, we proposed 

 recursive approximation to estimate the delay at the warehouse. 

e prove that the procedure converges and show via extensive ex- 

eriments that the errors obtained are very low. For the case of 

ore stores, we propose an optimization procedure based on the 

ssumption that optimal base stock levels at stores are decreasing 

n the discount offered. 

The results in this paper indicate that retailers of expensive, 

low-moving items can benefit substantially by redirecting the cus- 

omers that are willing to wait to the online channel. In our ex- 

eriments, by adopting this policy, the average cost reduction was 

 . 5% , with the maximum of 19 . 5% . Discounts are especially benefi-

ial if the arrival rates at the store are low, as in this case, an in-

entory reduction of a few items represents a considerable reduc- 

ion in inventory cost relative to the total costs. The same benefi- 

ial effects occur when holding costs in stores are high compared 

o the holding cost at the warehouse. The policy results in high 

ost reductions also when the number of stores is high, as in this 

ase, there is a pooling effect of inventory at the warehouse. As 

xpected, it is also profitable to offer discounts when the lost sales 

osts are high. In this case, discounts reduce the number of lost 

ustomers, as some of them accept to be served by the warehouse. 

he larger the lost sales costs, the higher the critical level at which 

iscounts should be offered. 

An interesting venue for future research would be to study in 

ore detail the properties of the optimal solution of this model. 

he quasi-convexity of the costs at the stores, although noticed in 

ll the experiments, remained unproven. Similarly, it would be in- 

eresting to prove monotonicity results regarding the optimal stock 

evels, similar to the papers of Song et al. (2010) and Federgruen & 

ang (2013) for the standard one-echelon models. 

As it assumes base-stock policies at the stores, the model dis- 

ussed in this paper is appropriate for slow-moving items. It would 

e interesting to develop models to study pricing (discount) poli- 

ies for faster moving items, where other inventory policies are 

ore appropriate. 
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