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Objectives: This study aimed to systematically review recent health economic evaluations (HEEs) of artificial intelligence (AI)
applications in healthcare. The aim was to discuss pertinent methods, reporting quality and challenges for future imple-
mentation of AI in healthcare, and additionally advise future HEEs.

Methods: A systematic literature review was conducted in 2 databases (PubMed and Scopus) for articles published in the last
5 years. Two reviewers performed independent screening, full-text inclusion, data extraction, and appraisal. The Consolidated
Health Economic Evaluation Reporting Standards and Philips checklist were used for the quality assessment of included
studies.

Results: A total of 884 unique studies were identified; 20 were included for full-text review, covering a wide range of medical
specialties and care pathway phases. The most commonly evaluated type of AI was automated medical image analysis models
(n = 9, 45%). The prevailing health economic analysis was cost minimization (n = 8, 40%) with the costs saved per case as
preferred outcome measure. A total of 9 studies (45%) reported model-based HEEs, 4 of which applied a time horizon .1
year. The evidence supporting the chosen analytical methods, assessment of uncertainty, and model structures was
underreported. The reporting quality of the articles was moderate as on average studies reported on 66% of Consolidated
Health Economic Evaluation Reporting Standards items.

Conclusions: HEEs of AI in healthcare are limited and often focus on costs rather than health impact. Surprisingly, model-
based long-term evaluations are just as uncommon as model-based short-term evaluations. Consequently, insight into the
actual benefits offered by AI is lagging behind current technological developments.

Keywords: artificial intelligence, cost-effectiveness, health economic evaluation, impact, modeling, systematic review.
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Introduction

Within the healthcare sector, artificial intelligence (AI) has
seen a substantial rise in development over the past years because
of growing interest and its potential impact on healthcare delivery
and effectiveness.1 Advancements in computing power and algo-
rithms together with the digitization of large volumes of health
data have made AI-supported healthcare increasingly more com-
mon. The progression of AI is taking center stage in how health-
care is personalized and delivered to patients, leading to new
opportunities and challenges in clinical practice.1,2 A fundamental
challenge in today’s healthcare is the growth of digital health data
quickly exceeding the human capacity to process and analyze it in
routine clinical practice. The advancement of AI carries the po-
tential to address this gap and simultaneously improve patient
care in clinical practice.1 Additionally, impeding healthcare staff
shortages, aging populations, and increasing costs at narrowing
budgets are asserting pressure on healthcare systems. Conse-
quently, the healthcare industry is progressively and
15 - see front matter Copyright ª 2021, International Society for Pharmacoec
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/
understandably resorting to AI to address these challenges.
Nowadays, AI is growing in different domains of healthcare, from
the automation of clinical workflows to the interpretation of
clinical findings and the prediction of health outcomes, treatment
response, and disease recurrence.3 At the rate at which AI appli-
cations are being developed, augmented, and used, AI creates an
opportunity for accessible and evidence-based decision making
within the global health community.4 In the areas of image pro-
cessing and also electronic health record interpretation, medical
decision support through text mining, and the analysis of medical
time series data (ie, longitudinal data on blood pressure, electro-
cardiograms), the use of AI has shown promising results.5-7

Therefore, processing digital health data with AI could support
the delivery of effective and efficient healthcare.8 Nonetheless,
even though the advancement of AI carries much potential, what
value AI can and will deliver in actual clinical practice remains a
central question and proper implementation guidance is crucial.
Although the number of publications describing AI applications in
a healthcare setting has been growing rapidly over the past years,
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Table 1. Search queries for title, abstracts, and keywords in the
database search conducted on May 10, 2021.

Database Query

PubMed (("artificial intelligence"[Title/Abstract] OR
"machine learning"[Title/Abstract] OR
"deep learning"[Title/Abstract] OR
"computer aided"[Title/Abstract] OR
"CAD"[Title/Abstract] OR "data
driven"[Title/Abstract]) AND ("health
outc*"[Title] OR "health eff*"[Title] OR
"quality*"[Title] OR "econom*"[Title] OR
"cost*"[Title] OR "budget*"[Title] OR
"implement*"[Title])) AND 2016/01/
01:3000/12/31[Date - Publication] AND
(cost effectiveness[MeSH Terms] OR
artificial intelligence[MeSH Terms])

Scopus (TITLE-ABS("AI" OR "artificial
Intelligence" OR "Machine Learning"
OR "Deep Learning" OR "computer aided"
OR "CAD" OR "data driven")
AND TITLE("Health outc*" OR "health eff*"
OR "econom*" OR "quality*" OR "cost*"
OR "budget*" OR "implement*") AND
KEY(cost AND effectiveness)) AND
PUBYEAR . 2015

CAD indicates computer aided diagnosis; MeSH, Medical Subject Headings.
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the majority solely report on their accuracy and precision.9

Nevertheless, neither excellent prediction accuracy nor clear
explainable relations between patient or image characteristics and
outcomes guarantee clinical effectiveness and adoption. Plus the
commonly used area under the curve of a receiver operating
characteristic of a detection task does not unquestionably reflect
clinical applicability.10 At the same time, evidence supporting
clinical effectiveness, specifically comparative effectiveness, cost-
effectiveness, or other formal health technology assessment
(HTA), of AI in a clinical healthcare setting appears to be limited.1

HTA serves an important purpose for stakeholders and decision
makers as a method to establish policies making most efficient use
of available health resources before being implemented in clinical
practice. Regulatory policy is currently lacking, hindering the
adoption of AI. The medical community is overwhelmed by the
large number of developed AIs, yet the absence of clear guidelines
makes it difficult for researchers, policy makers, and developers to
determine when an AI is indeed qualified for clinical adoption.

Therefore, the aim was to systematically review recent health
economic evaluations (HEEs) of AI applications in healthcare and
to discuss their methods, outcomes, and reported challenges. This
systematic review focuses specifically on formal HEEs, such as
cost-effectiveness and cost-utility analyses, as one of the di-
mensions of HTA, generating evidence on (long-term) impact to
support implementation and financing decisions.11 In addition, the
quality of the reported studies was assessed based on published
checklists. Challenges for the future HEEs and implementation of
AI in healthcare were identified and discussed.
Methods

A systematic literature review of health economic analysis of AI
applications was conducted following the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses and described in
the following sections.12

Literature Search Strategy

Considering that AI is currently developing at an accelerated
pace and novel AI applications will likely outperform older AI
applications, the systematic literature search focused on studies
published within the last 5 years between January 1, 2016, and
April 1, 2021. The studies were extracted from the PubMed and
Scopus databases separately using the search queries provided in
Table 1. To identify potential studies regarding health economic
analysis, relevant free-text terms included “health outcomes” or
“effects,” “economic,” “cost,” “budget,” and “quality.” These terms
were required to be present in article titles only, because these
were too broad when applied for abstract searches. Cost-related
free-text terms included terms such as “reduction,” “minimiza-
tion,” “benefit,” and “sensitive.” Free-text terms for AI were used
in both title and abstract and included “artificial intelligence,”
“machine learning,” “deep learning,” “computer-aided,” and
“data-driven.” Besides broad terms such as “artificial intelligence,”
“machine learning,” and “deep learning,” additionally more
specialized terms such as “support vector machine,” “neural
network,” or “random forest” in similar manner are apt within the
AI paradigm. Medical Subject Headings terms and keywords
describing AI and cost analysis methodologies were used to
further limit results. On account of the presumption that any
relevant studies would not only contain specialized terms, but at
least 1 broader term too, a sensitivity analysis for “neural net-
works,” “support vector machine,” and “random forest” in both
title or abstract and Medical Subject Headings terms was con-
ducted. Databases and search strategies were discussed with
information specialists and search strategies were pilot tested to
ensure all studies previously identified by authors were captured.
The final database searches were performed on May 10, 2021.

Inclusion and Exclusion Criteria

Studies that evaluated an AI application compared with stan-
dard care, other types of care, or another AI within the same
healthcare setting and reported a quantified impact evaluation in
terms of costs, health-related or process outcomes, or resources
were included for analysis. Studies that did not comply with the
inclusion criteria were excluded, as were those outside of health-
care, without any type of quantitative HEE of the AI application or
not available in English. Moreover, studies of other types than
“original research” or “systematic review,” such as “commentary,”
“letter to the editor,” or “editorial” were also excluded. Reviewers
M.V. and R.K. independently screened the titles and abstracts of all
identified records after duplicates were removed. Definitive inclu-
sion or exclusion of the studies was concluded by the same 2
reviewers, who independently reviewed the full texts of the
included studies. Persisting uncertainties or disagreements
between reviewers during the screening or full-text review process
were settled after consulting a third independent reviewer (H.K.).

Data Extraction

Relevant data of the included studies were extracted indepen-
dently by the 2 reviewers (M.V. and R.K.). A data extraction form
was designed and included several general aspects: year of publi-
cation, patient population, study location, and funding source.
Specific information extracted regarding the subject AI included
description of the AI, field of application, care pathway phase
(prevention, diagnostics, intervention, prognosis, etc), and techno-
logical aspects (ie, pattern recognition, natural language processing,
virtual reality, etc). Finally, extracted information related to the HEE
involved type of health economic analysis, intervention and
comparator, time horizon, perspective, health or cost outcomes,
modeling technique, and sensitivity analysis.



Figure 1. PRISMA flowchart describing study selection and
reasons for exclusion during full-text screening.
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AI indicates artificial intelligence; HEE, health economic evaluation; PRISMA,
Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
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Quality Assessment

The methodological quality of the included studies was eval-
uated using the Consolidated Health Economic Evaluation
Reporting Standards (CHEERS) and Philips checklist.13,14 Although
CHEERS was initially not developed as a quality assessment tool
for health economic studies, but as a reporting checklist, its
widespread use for evaluation of the design of health economic
studies makes it an appropriated checklist for this systematic re-
view.15-17 CHEERS includes 24 items subdivided into 6 main cat-
egories to conduct a thorough reporting of HEEs, but does not
include items directly related to model-based HEEs. The Philips
checklist was specifically designed to analyze the quality of
model-based HEEs and includes 3 pillars: modeling approach,
model data, and assessment of uncertainty. The decision for a
specific model type and justification of the model parameter
values and handling of uncertainty are crucial to the perceived
quality of the studies.18 Therefore, the Philips checklist was
applied in addition to the CHEERS checklist to model-based
studies. Points were awarded for each of the criteria met. A
point was withheld if the criterion was not completely met. A
checklist score was derived for each included study based on the
proportion of the 24 criteria met. The final included studies were
independently reviewed by the same 2 reviewers (M.V. and R.K.).
Results

Search Results

The databases search identified 982 records in total, of
which 98 were excluded as duplicates. In the remaining sample
of 884 unique records, 853 records were excluded after title
and abstract screening based on the exclusion criteria. The
sensitivity analysis yielded 62, 13, and 1 additional articles,
respectively. None were eligible for full-text screening after
assessment of title and abstract. A total of 31 full-text studies
were screened, after which another 11 studies were excluded
because they did not meet the inclusion criteria. A flow dia-
gram of records found, screened, selected, and excluded with
corresponding exclusion criteria is shown in Figure 1. The
remaining 20 studies were read full text.19-38 The relevant data
were extracted and the 2 reviewers independently further
assessed the quality of the articles per the CHEERS and Philips
checklists.

General Overview of the Included Studies

A general overview of the included studies, including the de-
tails of the reported AI applications, is provided in Table 2.19-38 The
majority of studies was published in 2019 or later. The studies
were conducted in a range of medical specialties, yet ophthal-
mology was evidently the dominant field. A total of 4 of 20 articles
(20%) involved ophthalmology, all of which evaluated the same AI
application for diabetic retinopathy screening.20,21,28,29 The most
common type of AI was automated medical image analysis
models, as 9 studies (45%) evaluated this type of AI.19-22,27-30,32 A
total of 6 studies (30%) evaluated pattern recognition in clinical
data for predictive modeling.24-26,36-38 Nevertheless, all phases of
the care pathway from prevention to follow-up were supported by
AI in at least 1 included study; screening and treatment moni-
toring (intervention) were the most prevalent phases of the care
pathway in which AI was applied. Notably, 7 of 20 studies (35%)
reported complete government funding, and 6 (30%) reported
industry funding. One study (5%) reported that the industry
funder participated in the analysis, data interpretation, and
writing of the article.36

Health Economic Analysis

The primary health economic analysis was a cost-minimization
analysis with the costs per case as primary outcome (n = 8, 40%).
Most cost-minimization analysis adopted the hospital perspective
(n = 4, 50%), and 2 others adopted the payer perspective. The
remaining 2 studies applied a health system or patient perspec-
tive. A total of 3 studies incorporated the societal perspective in
their evaluation, although the definition of this perspective var-
ied.32,34,37 One study defined the societal perspective by including
healthcare utilization and productivity losses34 and another by
including reimbursement, opportunity, and additional hospitali-
zation costs.37 The third study did not explicitly elaborate on its
definition of societal perspective.32 The second most prevailing
health economic analysis was incremental cost-effectiveness
analysis (n = 6, 30%), with different health outcomes. One study
reported improvements in life expectancy. A total of 3 studies
performed incremental cost-utility analysis, using incremental
quality-adjusted life-years as the health outcome. The remaining 3
studies reported the incremental effectiveness in context-specific
outcome measures. Overall, the time horizons adopted by the
studies ranged from 28 days to lifetime. A total of 6 studies (30%)
reported a time horizon shorter than 12 months, 7 (35%) adopted
a time horizon of 12 months, and 3 studies (15%) included patient
lifetime as the time horizon. Of these studies, 4 (20%) reported the
applied discount rates for health and economic outcomes. Two
studies (10%) did not report a time horizon; nevertheless, 1 study
evaluated incremental effectiveness on overall survival as health
outcome.23 A complete overview of the health economic meth-
odological details of the included studies can be found in
Table 3.19-38



Table 2. Characteristics of the included studies (N = 20).

Main
author

Year Patient population Location Description of AI
application

Medical field Care
pathway
phase

AI
technology

CHEERS
score, %

Funding

Philipsen
et al19

2016 Self-referred Tuberculosis
suspects

Africa Automated digital chest
radiography for tuberculosis
detection*

Radiology Screening Automated
image analysis

58 Government

Tufail et al20 2016 Consecutive patients with
diabetes who attended a
routine annual NHS DESP
visit

UK Automated retinal image
analysis system for diabetic
retinopathy screening*

Ophthalmology Screening Automated
image analysis

96 Academic

Fernandez-
Vicente
et al31

2017 Patients in need of thumb
orthosis

Europe CAD software for 3D printing Orthopedics Intervention
(treatment)

3D printing 50 Unknown

Takahashi
et al32

2017 Women from 50 years old
without breast cancer
eligible for screening

Asia-Pacific Mammography CAD and CT
colonography CAD

Radiology Screening Automated
image analysis

63 Government

Mervin et al33 2018 Geriatric residents, all 60
years or older and with
documented dementia

Asia-Pacific Therapeutic pet-type robot to
reduce agitation and
medication use in dementia

Geriatrics Self-
management

Robotics 83 Government

Bremer
et al34

2018 Men and women aged 18
years or older with major
depressive disorder, not of
high suicidal risk, not
treated for depression

Europe Internet-based personalized
psychology treatment
recommendations

Psychology Intervention
(treatment)

Recommender
system

67 EU

Gönel et al35 2018 No patient population Turkey Elimination method of
unnecessary laboratory tests
with 5 algorithms

Laboratory Diagnostics Recommender
system

50 NR

Golas et al36 2018 Heart failure patients (men
and women) who were
discharged alive from an
inpatient hospital admission

USA Deep Unified Networks; a
mesh-like network structure
of deep learning designed to
avoid overfitting

Heart failure Intervention
(treatment)

Pattern
recognition

63 Industry

Padula et al37 2019 Hospitalized adults (men
and women) with Braden
scores

USA Risk assessment for HAPI
based on EHR

General Prevention Pattern
recognition

83 Government

Lee et al38 2019 Adult patients (men and
women) with total joint
replacements

USA ML prediction model with
RUSBoost for total joint
replacement readmission risk

Surgery Intervention
(treatment)

Pattern
recognition

50 Government

Fuller et al21 2020 Adult patients (men and
women) with diabetes

USA Automated retinal image
analysis system for diabetic
retinopathy screening†

Ophthalmology Screening Automated
image analysis

83 Industry and
academic

Mansour
et al22

2020 Patients (men and women)
who presented with acute
ischemic stroke

Africa Automated cerebrovascular
analysis on CT-imaging†

Neurology Intervention
(treatment)

Automated
image analysis

38 NR

Murtojärvi
et al23

2020 Male patients with
metastatic castration-
resistant prostate cancer

Europe Survival prediction for
patients with advanced
prostate cancer

Urology Prognosis Feature
Selection

54 Government

Eigner et al24 2020 Adult patients (men and
women) hospitalized for a
variety of major surgeries

Asia-Pacific Prediction modeling for
readmission risk

Surgery Follow-up Pattern
recognition

25 NR

Hill et al25 2020 Patients (men and women)
above 50 years old eligible
for Atrial Fibrillation
screening

UK Targeted screening through
risk prediction for atrial
fibrillation

Cardiology Screening Pattern
recognition

92 Industry

Rozenblum
et al26

2020 Adult patients (men and
women) who had at least 1
outpatient encounter in
selected hospitals

USA ML system to identify clinically
valid medication error

General Follow-up Pattern
recognition

67 Industry

Mori et al27 2020 Adult patients (men and
women) with diminutive
rectosigmoid polyps
removed after assessment
with AI

Asia-Pacific,
Europe,
USA

Support software
for colorectal endoscopy
to differentiate between
neoplastic or non-neoplastic
polyps‡

Gastroenterology Diagnostics Automated
image analysis

58 Industry and
government

continued on next page
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Table 2. Continued

Main
author

Year Patient population Location Description of AI
application

Medical field Care
pathway
phase

AI
technology

CHEERS
score, %

Funding

Xie et al28 2020 Consecutive patients (men
and women) with diabetes
in a national diabetic
retinopathy screening
program

Asia-Pacific Ensemble deep learning of 3
networks to detect referable
diabetic retinopathy

Ophthalmology Screening Automated
image analysis

75 Government

Wolf et al29 2020 Youths below 21 years old
with Type 1 and Type 2
Diabetes

USA Commercial AI, CNN as
detector for diabetic
retinopathy†

Ophthalmology Screening Automated
image analysis

63 Industry

Schwendicke
et al30

2021 Twelve years old individuals
(men and women) with
posterior permanent teeth

Europe U-Net, a fully convolutional
neural network

Dentistry Diagnostics Automated
image analysis

96 None

3D indicates 3-dimensional; AI, artificial intelligence; CAD, computer aided diagnosis; CE, Conformité Européene; CHEERS, Consolidated Health Economic Evaluation
Reporting Standards; CNN, convolutional neural network; CT, computed tomography; DESP, Diabetic Eye Screening Program; HER, electronic health record; EU,
European Union; FDA, Food and Drug Administration; HAPI, hospital acquired pressure injury; ML, machine learning; NHS, National Health Service; NICE, National
Institute for Health and Care Excellence; NR, not reported; UK, United Kingdom; USA, United States of America.
*CE approved.
†FDA approved.
‡NICE approved.
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Quality Assessment

The methodological quality of studies was evaluated using the
CHEERS and Philips checklists. A score was calculated as the per-
centage of criteria fulfilled for the analysis of the CHEERS results.
As shown in Table 2,19-38 the scores ranged from 25% to 96%, and
the average score was 66%. The study with the highest score was
an elaborate HTA study commissioned by the National Health
Service in the United Kingdom.20 A short article presumably
containing preliminary results received the lowest score.24 Addi-
tionally, Figure 2 specifies the number of studies that satisfied
each checklist item, ranging from 1 to 20. All studies provided an
explicit statement of the study context and the main question in
the introduction. None but 1 study reported on handling varia-
tions among subgroups through conducting tests with different
training and test cohorts.23 A total of 6 studies (30%) described the
analytical methods, 4 of which were modeling-based studies.
Furthermore, 1 study evaluated an AI algorithm to maximize
hospital profit based on retrospective data, but did not compare
the outcomes to standard care profit.24 This was the only study to
not report a comparator. Finally, 11 (55%) and 13 of 20 studies
(65%) explicitly mentioned study location and perspective,
respectively.

The review included 9 modeling-based studies, and a summary
of characteristics of these modeling-based studies is shown in
Table 4.20,21,25,28-30,32,37,38 The Philips checklist was used to report
on the quality of the modeling-based studies.14 Among the 9
modeling-based studies, merely 2 distinct model types were
identified: decision trees and Markov models. A total of 4 of 9
modeling-based studies listed their specific reason for choosing a
model type.29,32,37,38 Markov modeling was particularly chosen
because this allows incorporating recurring events32 and time-
dependent transitions.37 Reasons listed for choosing decision
trees were the trade-off between interpretability and accuracy38

and the simplicity of the model.29 Studies that did not list the
specific rationale for the model structure used made it difficult to
determine whether the modeling type was sufficiently reasoned
(as reflected in Philips’ items on structural assumptions and model
type). The decision trees and the Markov models had simplistic
structure. All decision trees had 2 or 3 arms, 1 for the AI appli-
cation under evaluation and 1 or 2 for the comparator strategies,
with similar events/states in each arm. The cycle lengths used in
the Markov models ranged from 1 day to 2 years and were mostly
determined based on healthcare protocols (ie, testing frequencies
in practice) rather than the natural progression of disease.
Regarding model data, only 3 of 9 studies reported to have used
multiple studies or systematic reviews to synthesize model
parameter values.25,29,30 The other 6 studies (66%) reported a
single data source, in 2 studies even from the same group or
institution.21,37 None of the 9 studies reported how heterogeneity
and structural uncertainties were addressed. Methodological un-
certainties were evaluated in 2 studies, both by means of sensi-
tivity analysis with different clinical scenarios.25,37 Nevertheless,
all 9 studies reported on parameter uncertainty through sensi-
tivity analysis. The majority of studies conducted 1-way or uni-
variate and probabilistic analysis.21,29,30,37 Two studies performed
deterministic sensitivity analysis.20,28 One study conducted 3-way
sensitivity analysis.38
Discussion

In this systematic review, 20 studies were identified that re-
ported on a HEE of an AI application in healthcare. Given the large
total number of studies describing the development of AI (over
120 000 in 2019) or the number of HEEs (nearly 20 000 in 2016
alone), 20 included studies are quite a limited number.39,40 The
most common AI technology was automated medical image anal-
ysis in a variety of care pathway phases. The majority of studies (n =
17) compared an AI application with usual care and concluded the
AI to be cost saving. Additionally, a large number of studies reported
no details regarding characterizing uncertainty (n = 12), model as-
sumptions (n = 11), and analytical methods (n = 14).

These limitations may be attributed to the choice of health
economic method, because the included studies used relatively
simple modeling methods, such as Markov models and decision
trees. Therefore, one important finding of this study is that current
HEEs of AI applications are unfortunately both quantitatively and
qualitatively limited. The fact that only few assessments are
published, often of suboptimal quality, may severely hinder the
adoption of AI into clinical practice. Considerable challenges still
need to be overcome to progress beyond the generally limited
adoption in individual institutions and achieve its full
potential.9,41

The continuous development of innovations is at the core of
improving outcomes and affordability in healthcare. There is an



Figure 2. Overview of proportion of studies reporting CHEERS checklist items. Green, yes; red, no.

CHEERS indicates Consolidated Health Economic Evaluation Reporting Standards.
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abundance of exiting AI innovations and inspiring initiatives, but
clinical practice and policy makers are asking for suitable
methodologies and outcomes measures relevant to assess
(added) value and improve patient care. The availability and
applicability of these outcomes measures and methodologies are
the basis on which appropriate research can be performed and
the collection of evidence can be further improved. Hence,
continuous developments in AI require an accompanying regu-
latory framework. Although the Food and Drug Administration
(FDA), the European Commission, and many European countries
individually are developing strategies and policies to regulate
the development of AI, the process is time consuming.2,42 The
disparity between AI development and implementation stems
from the fact that AI is uniquely situated among healthcare in-
novations because of its ability to learn and improve perfor-
mance from experience through retraining. Currently, the
regulatory groundwork for AI applications as a medical device
considers AI to be static models, meaning that alterations (ie,
retraining) are difficult to regulate. To this end, the FDA is
developing a framework to allow adjustments to AI applications
and support a total product life cycle approach.42 In Europe,
since the introduction of the Medical Device Regulation in May
2020, approval for dynamic AI exists, yet in many situations still
requires renewed risk assessment.

In these proposals, the FDA and European Commission expect
AI applications to demonstrate analytical and clinical validation,
yet validation guidelines have not been established.43 Thus AI
researchers do not knowwhen AI performance is acceptable in the
clinical validation setting or if the AI needs further adjustments.
The quality of data from daily clinical practice may be much lower
given that healthcare professionals do not always collect all the
necessary clinical information in real time.43 Therefore, an AI
ready for clinical adoption should be able to manage low quality
data adequately, but this is not explicitly addressed by the pro-
posed frameworks. This is reflected in this systematic review,
given that only 5 included studies mentioned validation of their
AI20,25,30,33,34 and data uncertainty (n = 8) and heterogeneity (n =
1) were greatly underreported. Thereupon, until regulatory policy
is adopted for AI, the translation of AI toward clinical practice will
remain fragmented and the incentive for qualitatively thorough
evaluations remains low. Currently, no governing body has clear
and definitive guidelines on the admission procedure for AI ap-
plications. The traditional paradigm of regulation of medical de-
vices was not designed for adaptive AI technologies, resulting in
inadequate high-quality evidence to support clinical imple-
mentation.44,45 Several of the included studies affirmed the frag-
mented translation. They accentuated how AI implementation
requires organizational development,34 how evidence about long-
term costs and benefits is incomplete,21 and that they were the
first to conduct a HEE in their field.27

Nonetheless, the number of Conformité Européene–marked
and FDA-approved AI-based medical devices is increasing sub-
stantially, indicating that there is a degree of scientific evidence
showing safety and effectiveness available.46 Nevertheless, few of
the currently approved AIs have yet been proven to be “value for
money” from a societal perspective, given that this requires



Table 3. Health economic methodological details of included studies (N = 20).

Main author HEE
type

Intervention Comparator Perspective Discount
rate

Time
horizon

Outcome measure

Philipsen et al19 CMA Automated chest
radiography

Human reading Payer * * CSS, CNTBC

Tufail et al20† CEA Replacing human
graders with automated
grading

Automated grading
before human
grading

Payer 3.5% 12 months Outcome of cost per
appropriate screening
outcome

Fernandez-
Vicente et al31

CMA MCS with CAD 3D
printing

Traditional MCS Hospital * 12 months Cost reduction in MCS

Takahashi
et al32†

CEA CAD alone for
mammography and
computed tomographic
colonography

2 human readers, 1
human reader 1
CAD

Societal 3% Lifetime Incremental expected
life expectancy

Mervin et al33 CEA Therapeutic pet-type
robot

AI-disabled pet-
robot, usual care

Hospital * 10 weeks Incremental
effectiveness of unit
improvement in
agitation level

Bremer et al34 CEA Combined internet-
based personalized plus
face-to-face treatment

Treatment as usual
(face-to-face)

Societal * 12 months Incremental
effectiveness of
individual treatment
recommendations

Gönel et al35 CMA 5 algorithms to
eliminate unnecessary
tests

Ordering tests
without algorithms

Hospital * 45 days Cost savings of
laboratory tests

Golas et al36 CMA Deep learning
prediction model

Traditional
telemonitoring

Hospital * 30 days All-cause 30-day
readmission

Padula et al37† CUA AI-based risk stratified
prevention based on
Branden scores

All-level risk
assessment,
standard care

Societal and
hospital

3% 12 months Incremental QALYs

Lee et al38† Total
cost

AI predictive model for
readmission risk

Standard logistic
regression

* * 90 days Total cost of TJR post
discharge care and
readmissions

Fuller et al21† CUA ARIAS Current standard of
care

Payer 3% 5 years Incremental QALYs

Mansour et al22 CEA Automated
cerebrovascular CT
image analysis

CT image scoring on
mobile device

Hospital * 90 days Outcomes after IV
thrombolysis

Murtojärvi
et al23

BIA Survival prediction
feature selection with
Greedy Cox

Feature selection
with LASSO

Hospital * * Incremental
effectiveness overall
survival

Eigner et al24 Profit Decision algorithm for
optimal time of patient
discharge

* Hospital * 28 days Prediction of
readmission risk

Hill et al25† CUA Targeted screening for
atrial fibrillation

Opportunistic,
systematic screening

NHS (payer) 3.5% Lifetime Cost per QALY gained

Rozenblum
et al26

CMA AI-based CDS for
medication errors

Standard CDS Hospital * 2 years Cost savings of
medication errors

Mori et al27 CMA AI-supported colorectal
endoscopy plus
diagnose-and-leave

No use of AI, resect-
all-polyps strategy

Payer * 12 months Cost reduction per
colonoscopy and gross
annual reimbursement

Xie et al28† CMA Screening for diabetic
retinopathy with 1 of 2
DLS models

Standard screening
program with
manual grading

Health System * 12 months Annual cost savings

Wolf et al29† CMA Autonomous AI
screening

Clinician-based
screening

Patient * 12 months Reduction of patient
out-of-pocket
payments

Schwendicke
et al30†

CEA Bitewing radiographs
with AI

Bitewing radiographs
without AI

Payer 3% Lifetime Cost for tooth
retention years

3D indicates 3-dimensional; AI, artificial intelligence; ARIAS, Automated Retinal Image Analysis System; BIA, budget-impact analysis; CAD, computer aided diagnosis; CDS,
clinical decision system; CEA, cost-effectiveness analysis; CMA, cost-minimization analysis, CNTBC, cost per notified tuberculosis case; CSS, cost per screened subject; CT,
computed tomography; CUA, cost-utility analysis; HEE, health economic evaluation; IV, intravenous; LASSO, least absolute shrinkage and selection operator; MCS, mould
casting splinting; NHS, National Health Service; QALY, quality-adjusted life-year; TJR, total joint replacement.
*Item not reported.
†Model-based study, included in Table 4.20,21,25,28-30,32,37,38
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Table 4. Summary of Philips’ main items of health economic modeling studies (n = 9).

Main
author

Model type HEE
type

Model states/
tree summary

Time horizon,
cycle length

Sensitivity
analysis

Outcome Result

Tufail et al20 Decision tree CEA 2 screening
pathways

1 year, NA Deterministic,
1-way

£4.51, £11.81 (strategy
1); £2.80, £9.71 (strategy
2)

Strategy 1
preferred

Takahashi
et al32

Markov model CEA Diagnosis,
treatment, follow-
up; diagnosis, after
detection, treatment

Lifetime, 2 years Univariate ICERs are U268,181/life
and U163,971/life (BC)
$18,980/life and
$16,336/life (CRC)

Intervention
dominant

Padula et al37 Markov model CUA State transition, 5
risk categories until
discharge

1 year, 1 day Univariate 1-way,
2-way and
probabilistic

$2000/QALY (societal),
$2142/QALY (hospital)

Intervention
dominant

Lee et al38 Decision tree Cost High, Medium,
Low risk

90 days, NA 3-way Total costs $651 490,
$1 994 654 and $963 550

Lowest total
cost for high-
risk patients
with home-
service

Fuller et al21 Markov model CUA Referred, not
referred; adherent,
nonadherent

5 years, NA 1-way and
probabilistic

$258721.81/QALY Intervention
dominant

Hill et al25 Decision tree 1
Markov model

CUA AF, no AF. Targeted,
systematic or
opportunistic
screening

Lifetime, NA Univariate £4847/QALY
(systematic) and £5544/
QALY (opportunistic)

Intervention
dominant

Xie et al28 Decision tree CMA Fully automated,
semiautomated,
human assessment;
screened/
unscreened

1 year, NA Deterministic,
1-way

Total costs US$62
(semiauto), $66 (fully-
auto) per patient per
year. Annual savings
$489000

Semiautomated
screening
preferred

Wolf et al29 Decision tree CMA Autonomous AI, ECP;
screening/
examination;
diagnosed, not
diagnosed

1 year, NA 1-way and
probabilistic

Patient payment $8.52
for T1D and $10.85 for
T2D (AI), $7.91 for T1D
and $8.20 for T2D (ECP)

Autonomous AI
screening
preferred

Schwendicke
et al30

Markov model CEA True- and false-
positive and true-
and false-negative
detections

Lifetime, 1 year Univariate and
probabilistic

213.9 Euros/year Intervention
dominant

AF indicates atrial fibrillation; AI, artificial intelligence; BC, breast cancer; CEA, cost-effectiveness analysis; CMA, cost-minimization analysis; CRC, colorectal cancer; CUA,
cost-utility analysis; ECP, eye care professional; HEE, health economic evaluation; ICER, incremental cost-effectiveness ratio; NA, not applicable; QALY, quality-adjusted
life-year; T1D, type 1 diabetes; T2D, type 2 diabetes; US, United States.
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performing a formal HEE.47 Of the 6 FDA- or Conformité
Européene–approved AIs included in this review, only 129 is
currently adopted in a clinical setting.19-22,27 Between market
approval and clinical adoption, the question on how AI applica-
tions can best be deployed as an integrated part of a healthcare
system rises.48 If the AI application needs to be reimbursed by
health insurance, an economic evaluation becomes increasingly
important to provide insight into the health gained and the
timeframe in which costs are incurred and benefits are used.
Unfortunately, the proposed regulatory frameworks for AI do not
explicitly mention HEE, and therefore, it remains unclear whether
HEE will become a necessary condition for health insurance
reimbursement. A positive HEE also does not guarantee the
adoption of AI in clinical practice. The current absence of regula-
tory frameworks could explain why so few HEEs are reported.
Furthermore, a previous systematic review published by Wolff
et al49 in early 2020 evaluating economic impact of AI in health-
care, similarly reported a scarcity of publications conducting
extensive and qualitatively sound economic impact evaluations.
Comparable with findings in our study, this previous review
concluded that the economic evaluations of AI in healthcare often
focused on specific elements within health economics (eg, only
included direct costs) rather than performing a comprehensive
analysis.

Compared with many other interventions, the primary goal of
an AI may not be to improve health outcomes but instead to
improve other outcomes, such as shared decision making, well-
being, or patient independency. This makes performing HEEs
more challenging because such outcomes are notoriously difficult
to value, for example, in monetary terms. Nevertheless, the soci-
ety’s expectations are growing toward reflecting the broader
benefits of healthcare interventions, not captured in traditional
HEEs. Therefore, future HEEs of AI need to include additional
benefits other than in standard health dimensions, so that these
benefits may weigh in as contextual factors in decision making.50

Furthermore, Guo et al51 identified a gap in the evaluation
methods used in practice for digital health innovations including
AI-based software as a medical device. The wider use of different
types of simulation approaches such as computational, clinical,
and system simulation is needed to overcome limitations and
support better decision making. Applying advanced simulation
methods such as system dynamics, discrete event, and agent-
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based simulation maintaining a complex system view could
provide a methodology highly capable of modeling the effects of
a complex intervention such as AI from a systems perspec-
tive.52,53 In this systematic review, 9 articles included
simulation-based modeling and many mentioned limitations of
their simulation models. These limitations will continue to
persist unless new and advanced simulation methods are used
for the evaluation of advanced and complex technologies such as
AI. Other limitations discussed were the underestimations of
costs. Costs not directly linked to the assessed invention were
often not considered in the evaluation. For example, costs
incurred from increased staff time, physician training, or soft-
ware updates were not included.19,26 Equivalently, excluding
future health benefits resulting from effective interventions
leads to an underestimation of benefits.

Limitations

Despite the development of AI taking off in the last 2 decades,
the number of scientific publications has been increasing even
faster in recent years and justifies our search for publications since
2016.9 Nevertheless, it is possible that relevant articles not written
in English were missed. Many articles were excluded in this re-
view based on title and abstract screening. Remarkably, we found
that many of the articles in our initial search results claimed to
describe a cost-effective AI application, yet did not conduct a HEE
to justify those claims, leading to a high exclusion rate. Addi-
tionally, articles evaluating only patient health outcomes or hos-
pital process outcomes were not included, even though such
improved outcomes could lead to a reduction in costs, per the
concepts of value-based healthcare.54 Finally, following the
CHEERS and Philips checklists can ensure economic evaluations
include the appropriate components, but it does not necessarily
reflect the correct implementation of the item. Although the
computed score can be questioned for assuming equal weight for
each checklist item, it does provide an estimation of the
completeness of the evaluation per study.
Conclusions

This systematic review exposes an important gap in the
methods used for HEE of AI applications in healthcare. In the
context of health economics, the cheetah of AI innovation is only
at a slow pace pursued by the tortoise (formal HEE). Currently,
HEEs of AI are incapable of capturing the complexities and clinical
applicability needed to support appropriate decision making.
Unless this tortoise catches up, beneficial AI applications run the
risk of not being adopted because of lack of proven health and
economic benefits. Moreover, there is a risk of nonvaluable AI
applications being adopted based on poor and limited evidence.
Both situations lead to potential health loss and unnecessary costs
and will likely persist until AI, with its seemingly endless possi-
bilities, is recognized as an intervention that can and should be
properly assessed. Therefore, further work to enhance health
economic assessment of AI will likely be crucial to their future
adoption into clinical practice.
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