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Abstract. This corrigendum fixes an incorrect claim in the paper Gupta et al. [Gupta V,
Moseley B, Uetz M, Xie Q (2020) Greed works—online algorithms for unrelated machine
stochastic scheduling.Math. Oper. Res. 45(2):497–516.], which led us to claim a performance
guarantee of 6 for a greedy algorithm for deterministic online scheduling with release times
on unrelatedmachines. The result is based on an upper bound on the increase of the objective
function value when adding an additional job j to a machine i (Gupta et al., lemma 6). It was
pointed out by Sven Jäger from Technische Universität Berlin that this upper bound may fail
to hold. We here present a modified greedy algorithm and analysis, which leads to a perfor-
mance guarantee of 7.216 instead. Correspondingly, also the claimed performance guarantee
of (6+ 3Δ)h(Δ) in theorem 4 of Gupta et al. for the stochastic online problem has to be cor-
rected.We obtain a performance bound (7:216+ 3:608Δ)h(Δ).

In Gupta et al. [1], we claim several results for stochastic online scheduling on unrelated machines to minimize
the total weighted completion time

∑
j wjCj. For the version of the problem where jobs are released over time

and become known at individual release times rj, the analysis of the greedy algorithm as presented in Gupta
et al. [1], section 6.1.1, is incorrect, as the upper bound given in lemma 6 in Gupta et al. [1], section 6.1.2, may
fail to hold. To understand what the issue is, recall that the greedy algorithm works by modifying release times rj to
rij when job j is assigned to a machine i, where rij :�max{rj, c · pij}, and c ≥ 0 is a parameter that is optimized later in
the analysis. The reason why lemma 6 in Gupta et al. [1] may fail to hold is potential low-priority jobs with respect
to a given job j—that is, jobs h with wh=pih < wj=pij—that could be released in the open time interval (rj, rij). Such
jobs could delay the start of job j beyond the upper bound claimed in Gupta et al. [1], lemma 6.

This problem can be fixed by simply accounting for the potential additional delay that such jobs could im-
pose on job j. This can be done because we know at most one low-priority job could be in process upon time
rij and impose such additional delay. We therefore suggest a small modification of the greedy algorithm,
namely, in the way jobs are assigned to machines in step 3 of the algorithm: Instead of letting this assignment
depend on the actual increase in the objective function value, we let it depend on an upper bound on the in-
crease in the objective function value. This upper bound also includes the potential delay that could be
caused by one low-priority job. Technically speaking, in contrast to Gupta et al. [1], we now define cost j→ i( )
as an upper bound on the increase of the objective function value when assigning job j to machine i and as-
sign a job to any of the machines minimizing this quantity. This leads to several necessary changes in the
subsequent analysis, including a different choice for several of the parameters used in the analysis (e.g.,
parameter c is chosen to be 2=3 instead of 1). The rest of this corrigendum gives all necessary changes for the
analysis.

Greedy Algorithm (Online Time Model for Deterministic Processing Times) Consider any fixed job j that is released
at time t � rj with processing times pij on machines i � 1, : : : ,m. Then, we proceed as follows.

1. Modified release times: On machine i, the release time of job j is modified to rij :�max{rj, c · pij}; we will opti-
mize parameter c ≥ 0 later.

2. LetUi(t) denote the set of jobs that have been assigned to machine i at time t and that have not been started yet
(excluding the fixed job j).
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3. To decide on the assignment of job j to a machine, we define cost j→ i( ) as an upper bound on the additional
cost of job j, when included into a hypothetical greedy weighted shortest processing time (WSPT) schedule of jobs
Ui(rj) onmachine i:

cost j→ i( ) :� wj 1+ 1
c

( )
rij + pij +

∑
k∈Ui(rj), wkpik

≥wj
pij

pik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠+ ∑

k∈Ui(rj), wkpik
<
wj
pij

wkpij: (1)

The reason to work with this upper bound is potential jobs that could be released in the interval (rj, rij). One of
these could delay the earliest possible start time of job j beyond rij. In defining cost j→ i( ), we account for the
maximum additional delay that such jobs could impose on j.

4. Among all machines i ∈ {1, : : : ,m}, assign job j to a machine m( j) that minimizes cost j→ i( ), ties broken
arbitrarily.

5. On each machine i, schedule jobs following the greedy weighted shortest processing time rule with modified
release times rij. That is, as soon as a machine falls idle at time t, we schedule among all unscheduled jobs k as-
signed to machine iwith rik ≤ t, any job jwith maximal ratio wk=pik.

The following lemma replaces lemma 6 of Gupta et al. [1]:

Lemma 6. If ALG denotes the objective function value of the above greedy algorithm, and if m(j) is the machine to which
job j got assigned, then

ALG ≤∑
j∈J

cost j→m j( )( ):

Proof. Denote by Xi(t) the remaining processing time of a job that is in process on machine i at time t, with
Xi(t) � 0 if no such job exists. Consider a fixed job j’s contribution to the objective

∑
jwjCj. When job j is released

at time rj, it is assigned to a machine that minimizes cost j→ i( ).
We bound the contribution of this job j to

∑
j wjCj as follows: First, we estimate the contribution of job j itself: j

can be started no earlier than time rij, and at time rij, the machine might be blocked for another Xi(rij) time units
by some job h. Note that such job h could even get released later than rj, namely, in time interval (rj, rij). Indepen-
dent of this, job j’s start can be further delayed by “high-priority” jobs k from Ui(rj), where high priority means
that wk=pik ≥ wj=pij. Second, the fact that job j got assigned to machine i could delay the “low-priority” jobs from
Ui(rj), where low priority means that wk=pik < wj=pij.

Altogether, the increase of
∑

jwjCj, caused by job j being assigned to machine i, is at most

wj rij +Xi(rij) +
∑

k ∈Ui(rj), wkpik
≥ wj

pij

pik + pij
( )+ ∑

k ∈Ui(rj), wkpik
<

wj
pij

wkpij ≤ cost j→ i( ):

To see why the last inequality is true, let h be the potential job in process at time rij, then

Xi(rij) ≤ pih ≤ rih
c
≤ rij

c
:

The claim of the lemma now follows by summing over all jobs j ∈ J, and because of the following observation: In
time interval (rj, rij), an even higher priority job k could get released, and such a job k can cause j’s start to be de-
layed even further. But the delay that these jobs will impose on j will be accounted for in the term cost k→ i( ). The
set of all low-priority jobs that could get released in interval (rj, rij) can cause j’s start to be delayed by at most Xi(rij).

Dual Lower Bound
The analysis in Gupta et al. [1] proceeds by defining a linear programming (LP) relaxation for the deterministic
version with processing times E[Pij], which is termed (Pr), and finding a lower bound on the optimal solution
value zPr of this LP relaxation by any feasible solution to its dual linear program, which is:

max zDr � ∑
j∈J

αj −
∑
i∈M

∑
s∈Z≥0

βi,s

s:t:
αj

E Pij
[ ] ≤ βi,s +wj

s+ 1
2

E Pij
[ ]+ 1

2

( )
for all i ∈M, j ∈ J, s ∈ Z≥rj ,

βi,s ≥ 0 for all i ∈M, s ∈ Z≥0:

(Dr)
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Presaging the speed-scaling analysis, define

αj :� cost j→m j( )( )
βi,s :�

∑
k:m k( )�i; rk≤s;Ck≥s

wk, (2)

and their analogues in the modified instance where both the release times and processing times are scaled by a
factor f ≥ 1,

α
f
j �

αj

f
,

β
f
i,s � βi,f s:

(3)

In words, αj is the previously defined upper bound on the contribution of job j to the objective, and βi,s is the total
weight of jobs assigned to machine i that were released by time s, but are yet unfinished. The values α f

j and β
f
i,s

are the corresponding values for an identical instance where time is scaled by factor f . The following lemma re-
places lemma 7 of Gupta et al. [1]:

Lemma 7. With α f and β f as defined in (3), the values (α f=a,β f=b) are a feasible solution for the dual (Dr), given that
a ≥ 1, f ≥ 1, af ≥ 2(2+ c), 1=c ≤ f (a− 1), and af ≥ b. Specifically, one feasible solution is obtained when c � 2=3,
a � 32=23, b � 16=3, and speed f � 23=6.

Proof. Denoting E[Pij] by pij, the dual constraints require that, for all jobs j and machines i, and for all times s ≥ rj,

αj

pij
≤ βi,s +wj

s+ 1
2

pij
+wj · 12 : (4)

Fixing job j and machine i, and plugging in the values α f
j =a and β

f
i,s=b, we need to show

α
f
j

a · pij ≤
β
f
i,s

b
+wj

s+ 1
2

pij
+wj · 12 , (5)

for all s ≥ rj. Equivalently, noting that α f � α=f , we have to show that

αj

pij
≤ af · β

f
i,s

b
+wj

s+ 1
2

pij
· af +wj · af2 : (6)

Because β f
i,s � βi,f s, and replacing s+ 1=2 by s, it therefore suffices to show

αj

pij
≤ af · βi,f s

b
+wj

s
pij

· af +wj · af2 (7)

for all s ≥ rj. Because of our choice of αj as minimizer of cost j→ i( ), we have for all machines i

αj

pij
≤ wj

pij
· 1+ 1

c

( )
rij + pij +

∑
k∈Ui(rj), wkpik≥

wj
pij

pik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠+ ∑

k∈Ui(rj), wkpik
<
wj
pij

wk : (8)

Hence, it suffices to show that the right-hand side in (8) is upper-bounded by the right-hand side in (7). To that
end, we even show that a slightly stronger inequality is true: Note that βi,f s is the total weight of jobs k assigned
to machine i and unfinished at time f s, but with rk ≤ f s. As long as f ≥ 1, and because rj ≤ s, we have rj ≤ f s.
Hence, βi,f s ≥

∑
k:m(k) � i,rk ≤ rj ,Ck≥f swk ≥∑

k∈Ui(rj),Ck≥f swk. Therefore, it suffices to show that the right-hand side of (8)
is bounded from above by

af
b
· ∑
k∈Ui(rj),Ck≥f s

wk +wj
s
pij

· af +wj · af2

� af
b
· ∑
k∈Ui(rj),Ck≥f s

wk +wj

pij
· f s− rj
( )( )

+wj

pij
· f s a− 1( ) + rj
( )

+wj · af2 :
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Multiplying everything with pij, we therefore need to argue that the following inequality is true:

wj 1+ 1
c

( )
rij + pij +

∑
k∈Ui(rj), wkpik

≥wj
pij

pik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠+ ∑

k∈Ui(rj), wkpik
<

wj
pij

wkpij

≤ af
b
· ∑
k∈Ui(rj):Ck≥f s

wkpij +wj · f s− rj
( )( )

+wj · f s a− 1( ) + rj
( )

+wjpij · af2 :

Let us rewrite this more conveniently as

wj · 1+ 1
c

( )
rij + pij

( )
︸������︷︷������︸

I

+ ∑
k∈Ui(rj), wkpik

≥wj
pij

wjpik +
∑

k∈Ui(rj), wkpik
<

wj
pij

wkpij

︸��������������������︷︷��������������������︸
II

≤ af
b
· ∑
k∈Ui(rj):Ck≥f s

wkpij + wj · f s− rj
( )

︸������������������︷︷������������������︸
II∗

+ wj · f s a− 1( ) + rj
( )

+ pij · af2
( )
︸������������︷︷������������︸

I∗

: (9)

The following observations and conditions are sufficient for the above inequality to be true:
1. I ≤ I∗: Distinguish two cases. When rij � rj, we have I � (1+ 1=c)rij + pij � rj + rj=c+ pij. Moreover, since s ≥ rj,

I∗ � ( f s(a− 1) + rj) + pij · af=2 ≥ rj + f (a− 1)rj + pij · af=2. Therefore, we get that I ≤ I∗ under the conditions that
1=c ≤ f (a− 1), and af ≥ 2. On the other hand, when rij � cpij, we get I � (2+ c)pij, and we get that I ≤ I∗ under the
condition that 2(2+ c) ≤ af , whenever a ≥ 1. Summarizing, we get that I ≤ I∗ for both cases, conditioned on 1=c ≤
f (a− 1) and 2(2+ c) ≤ af .
2. II ≤ II∗: We have by definition ofUi(rj) that

wj f s− rj
( ) ≥ wj

∑
k∈Ui(rj),Ck<f s

pik:

Therefore, under the condition that af=b ≥ 1, we get that II ≤ II∗, because then

II∗ − II ≥ ∑
k∈Ui(rj), wkpik

≥wj
pij
,Ck≥f s

wkpij −wjpik( ) + ∑
k∈Ui(rj), wkpik

<
wj
pij
,Ck<f s

wjpik −wkpik( ) ≥ 0:

One can now check that parameter values c � 2=3, a � 32=23,b � 16=3, and f � 23=6 fulfill all necessary requirements.

Main Results
Finally, the following theorem replaces theorem 3 of Gupta et al. [1]. Note that the competitive ratio 7.216 is still
an improvement over the best prior algorithm that was known to be 8-competitive (Hall et al. [2]).

Theorem 3. The greedy algorithm for the deterministic online scheduling problem with release times has competitive ratio
7.216 for minimizing the total weighted completion times

∑
jwjCj on unrelated machines. That is, ALG ≤ 7:216OPT.

Proof. By definition of α in (2) and by Lemma 6, we have

ALG ≤∑
j
αj:

Moreover, because
∑

iβi,s is the total weight of the jobs that have been released by time s, but are yet unfinished,∑
i,s βi,s �

∑
jwj (Cj − rj) ≤ ∑

j wjCj. Therefore, we have

ALG ≥∑
i, s

βi,s:

Consider now a modified problem instance where both the release times and the processing times are scaled by
a factor f as follows:

r f
j :� rj

f
and p f

ij :�
pij
f
,

Gupta et al.: Online Algorithms for Unrelated Machine Stochastic Scheduling
Mathematics of Operations Research, 2021, vol. 46, no. 3, pp. 1230–1234, © 2021 INFORMS 1233



so that we also have

r f
ij � rij

f
:

Then, α f
j as defined in (3) is the analogous upper bound on the increase in total weighted completion time due to

the presence of job j in the modified instance, and β
f
i,s as defined in (3) is the weight of the released, but yet unfin-

ished, jobs on machine i at time s in the modified instance. Here, we assume without loss of generality that all job
sizes and release times are integer multiples of f , which can be achieved by scaling. Also, let us denote by ALG f

the value achieved by the greedy algorithm for the modified instance, and note that ALG=f � ALG f ≤∑
jα

f
j , and

ALG=f � ALG f ≥∑
i,sβ

f
i,s.

By Lemma 7, which gives a lower bound on the optimal solution value OPT via a feasible solution for (Dr) of
the form (α f=a,β f=b) for constants (a,b), we get

OPT ≥∑
j

α
f
j

a
−∑

i, s

β
f
i,s

b
≥ ALG

f
1
a
− 1
b

( )
,

or

ALG ≤ f ·
1=a− 1=b

OPT
:

Now, because parameters c � 2=3, a � 32=23,b � 16=3, and speed f � 23=6 are feasible choices for Lemma 7, we
get that ALG ≤ (7+ 11=51) ·OPT < 7:216 ·OPT.

The above rational parameters have been obtained by using a basic nonlinear solver, combined with binary
search on one of the parameters. As a matter of fact, optimizing over the four parameters a,b, f , c using SCIP as a
solver for nonlinear constrained optimization yields as optimal solution f=(1=a− 1=b) ≈ 7:2151018 < 7+ 11=51,
however, with nonrational solution values. For the sake of simplicity and for feasibility of scaling arguments, we
decided to go with the rational solution as presented above.

The proof of theorem 4 of Gupta et al. [1] is unchanged; the new competitive ratio of Theorem 3 implies the fol-
lowing modification to the main result of Gupta et al. [1]:

Theorem 4. The greedy algorithm has a performance guarantee of (7:216+ 3:608Δ)h(Δ) for online scheduling of stochastic
jobs with release times on unrelated machines to minimize the expectation of the total weighted completion times
E

∑
jwjCj

[ ]
. That is, ALG ≤ (7:216+ 3:608Δ)h(Δ)OPT.
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